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INTRODUCTION

A differential equation is a mathematical equation for an unknown function of one
or several variables that relates the values of the function itself and its derivatives
of various orders. Differential equations play a prominent role in engineering and
physics specifically whenever a deterministic relation involving some continuously
varying quantities modelled by functions and their rates of change in space and/or
time expressed as derivatives is known or postulated. This is evaluated using
mechanics where the motion of a body is described by its position and velocity as
the time value varies. Mechanics is the branch of physics concerned with the
behaviour of physical bodies when subjected to forces or displacements and the
subsequent effects of the bodies on their environment. It is a branch of classical
physics that deals with the particles that are moving either with less velocity or that
are at rest. Newton’s laws allow for the given position, velocity, acceleration and
various forces acting on the body to express these variables dynamically as a
differential equation for the unknown position of the body as a function of time. In
some cases, this differential equation is also termed as an equation of motion and
can be solved explicitly. Differential equations are mathematically examined from
several different perspectives typically concerned with their solutions and the set
of functions that satisfy the equation.

In mathematics, partial differential equations or PDE are differential equations
that contain unknown multivariable functions and their partial derivatives. Partial
differential equations are used to formulate problems involving functions of several
variables. Partial differential equations can be used to describe a wide variety of
phenomenon such as sound, heat, electrostatics, electrodynamics, fluid flow or
elasticity. These apparently distinct physical phenomena can be formalized identically
in terms of partial differential equations which show that they are governed by the
same underlying dynamic. Partial differential equations find their generalization in
stochastic partial differential equations. General solutions of the heat equation can
be found by the method of separation of variables. Solutions of Laplace’s equation
are called harmonic functions. The real and imaginary parts of any analytic function
are conjugate harmonic functions and they both satisfy the Laplace equation.
Laplace’s equation is specifically used to find a solution that satisfies arbitrary
values on the boundary of a domain. The partial differential equations are used to
solve the wave equation and more general hyperbolic partial differential equations
which typically have no more derivatives than the data. Some linear, second order
partial differential equations can be classified as parabolic, hyperbolic or elliptic.

This book, Partial Differential Equations and Mechanics, follows the
SIM format wherein each Unit begins with an Introduction to the topic followed
by an outline of the ‘Objectives’. The detailed content is then presented in a simple
and an organized manner, interspersed with ‘Check Your Progress’ questions to
test the understanding of the students. A ‘Summary’ along with a list of ‘Key
Terms’ and a set of ‘Self-Assessment Questions and Exercises’ is also provided
at the end of each unit for effective recapitulation.
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UNIT 1 PARTIAL DIFFERENTIAL
EQUATIONS - I

Structure
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1.6 Answers to ‘Check Your Progress’
1.7 Summary
1.8 Key Terms
1.9 Self-Assessment Questions and Exercises

1.10 Further Reading

1.0 INTRODUCTION

A Partial Differential Equation (PDE) is a mathematical equation that including two
or more independent variables, an unknown function (dependent on those
variables), and partial derivatives of the unknown function with respect to the
independent variables. Each type of PDE has certain functionalities that help to
identify whether a particular finite element approach is appropriate to the problem
being described by the PDE. The solution depends on the equation and several
variables contain partial derivatives with respect to the variables. There are three-
types of second-order PDEs in mechanics. They are elliptic, Parabolic and
hyperbolic PDE.

The transport equation is a partial differential equation of the form u
t
 + cu

x

= 0. This equation can be used to model air pollution, dye dispersion, or even
traffic flow with u representing the density of the pollutant (or dye or traffic) at
position x and time t.

An Initial Value Problem (IVP) is an ordinary differential equation together
with an initial condition which specifies the value of the unknown function at a
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given point in the domain. Modeling a system in physics or other sciences frequently
amounts to solving an initial value problem.

If all the terms of a PDE contains the dependent variable or its partial
derivatives then such a PDE is called non-homogeneous partial differential equation
or homogeneous otherwise.

In mathematics and physics, ‘Laplace’s Equation’ is a second-order partial
differential equation named after Pierre-Simon Laplace, who first studied its
properties. The general theory of solutions to Laplace’s equation is known as
‘Potential Theory’. The solutions of Laplace’s equation are the harmonic functions,
which are important in multiple branches of physics, notably electrostatics,
gravitation, and fluid dynamics.

Based on the ubiquitous nature of the mean value theorem in problems
involving the Laplacian, it is clear that an analogous formula for a general divergence
form elliptic operator would necessarily be very useful.

Energy methods originate some category of system ‘Energy’ from a partial
differential equation. That energy may then be used to derive such things as existence
or uniqueness of the solution, and whether it depends continuously on the data.

The wave equation is a second-order linear partial differential equation for
the description of waves—as they occur in classical physics—such as mechanical
waves (e.g., water waves, sound waves and seismic waves) or light waves. It
arises in fields like acoustics, electromagnetics, and fluid dynamics. Due to the fact
that the second order wave equation describes the superposition of an incoming
wave and an outgoing wave (i.e., rather a standing wave field) it is also called
‘Two-Way Wave Equation’ (in contrast, the 1st order One-way wave equation
describes a single wave with predefined wave propagation direction and is much
easier to solve due to the 1st order derivatives).

In this unit, you will learn about the partial differential equations, examples
and classification of PDE, transport equation, initial value problem, non-
homogeneous equation, Laplace’s equation,  fundamental solution of Laplace
equation, mean value formula, properties and energy methods of mean value,
wave equation, solution of wave equation by spherical means, non-homogeneous
and energy method of wave equation.

1.1 OBJECTIVES

After going through this unit, you will be able to:

 Analyse partial differential equations

 Solve various types of partial differential  equations

 Know about the classification of PDE

 Understand the transport equation and initial value problems
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 Elaborate of the  non-homogeneous equations

 Understand the significance of Laplace’s equation

 Calculate the mean value formula and thier properties

 Elaborate on the energy methods of mean value formula

 Define wave equation

 Discuss the solution of wave equation by spherical method

 Explain about the non-homogeneous and energy method of wave equation

1.2 PARTIAL DIFFERENTIAL EQUATIONS: AN
INTRODUCTION

In mathematics, a Partial Differential Equation (PDE) is an equation which carry
out the relations between the various ‘Partial Derivatives’ of a multivariable function.
Whereas the function is often thought of as an ‘Unknown’ to be solved for, similarly
to how x is thought of as an unknown number to be solved for in an algebraic
equation similar as like x2 – 3x + 2 = 0.

On the other hand, it is usually impossible to write down explicit formulas
for solutions of partial differential equations. There is, similarly, a vast amount of
modern mathematical and scientific research on methods to numerically approximate
solutions of certain partial differential equations using computers. Partial differential
equations also occupy a large sector of pure mathematical research, in which the
usual questions are, broadly speaking, on the identification of general qualitative
features of solutions of various partial differential equations. Partial differential
equations are ubiquitous in mathematically-oriented scientific fields, such as physics
and engineering. For example, they are foundational in the modern scientific
understanding of sound, heat, diffusion, electrostatics, electrodynamics,
thermodynamics, fluid dynamics, elasticity, general relativity, and quantum mechanics
(Schrödinger equation, Pauli equation, etc.). They also arise from many purely
mathematical considerations, such as differential geometry and the calculus of
variations; among other notable applications.

Let z = f(x, y) be a function of two independent variables x and y. Then ,
z z

x y

 
 

are the first order partial derivatives; 
2 2 2

2 2
, ,

z z z

x y x y

  
   

 are the second order partial

derivatives.

Any equation which contains one or more partial derivatives is called a partial

differential equation. 
z z

x y
x y

 


 
 = z; 

2 2 2

2 2

z z z

x y x y

  
 

   
 = 0 are examples for

partial differential equation (PDE) of first order and second order respectively.
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We use the following notations for partial derivatives,

p = 
z

x




, q =  
z

y




, r = 
2

2

z

x




, s = 
2 z

x y


 

, t = 
2

2

z

y




Partial differential equation may be formed by eliminating (i) arbitrary constants
(ii) arbitrary functions.

Example 1.1: Form the parital differential equation by eliminating the arbitrary
constants from z = ax + by + a2 + b2.

Solution: Given, z = ax + by + a2 + b2 (1)

Here we have two arbitrary constants a and b. Therefore, we need two more
equations to eliminate a and b. Differentiating equation (1) partially with respect to
x and y respectively we get,

z

x




 = p = a (2)

z

y


  = q = b (3)

From equations (2) and (3), we get,

a = p, b = q

Substituting values of a and b in (1) we get,

z = px + qy + p2 + q2

This is the required partial differential equation.

Example 1.2: Eliminate a and b from z = (x + a)(y + b).

Solution: Differentiating partially with respect to x and y,

p = y + b, q = x + a

Eliminating a and b, we get z = pq.

Example 1.3: Form the partial differential equation by eliminating the arbitrary
constants in z = (x – a)2 + (y – b)2.

Solution: Given, z = (x – a)2 + (y – b)2 (1)

Here we have two arbitrary cosntants a and b. To eliminate these two arbitrary
constants we need two more equations connecting a and b. Therefore,
differentiating equation (1) partially with respect to x and y, we get,

z

x




 = p = 2(x – a) (2)
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z

y


  = q = 2(y – b) (3)

From equation (2), we get,

x – a = 
2

p
(4)

From equation (3), we get,

y – b = 
2

q
(5)

Substituting equations (4) and (5) in Equation (1) we get,

z = 
2 2

2 2

p q      
   

Simplifying we get, 4z = p2 + q2

This gives the partial differential equation after elimination of a and b.

Example 1.4: Form the partial differential equation by eliminating the arbitrary
constants from z = (x2 + a)(y2 + b).

Solution: Given, z = (x2 + a)(y2 + b) (1)

Here, we have two arbitrary constants a and b.

Differentiating equation (1) partially with respect to x and y we get,

z

x




 = p = 2x(y2 + b) (2)

z

y


  = q = 2y(x2 + a) (3)

From equation (2) we get, 
2

p

x
 = y2 + b (4)

From equation (3) we get, 2

q

y  = x2 + a (5)

Substituting equations (4) and (5) in Equation (1), we get,

z = .
2 2

p q

x y

pq = 4xyz

This gives the required partial differential equation.
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Example 1.5: Form the partial differential equation by eliminating a, b, c from
2 2 2

2 2 2

x y z

a b c
   = 1.

Solution: Given, 
2 2 2

2 2 2

x y z

a b c
   = 1 (1)

Differential partially with respect to x and y we get,

2 2

2 2x z
p

a c
  = 0 (2)

2 2

2 2y z
q

b c
  = 0 (3)

Differentiating equation (2) partially with respect to y,

0 + 2

2

c
(zs + qp) = 0

zs + qp = 0

Note: More than one partial differential equation is possible in this problem. These partial
differential equations are,

xzr + xp2 – zp = 0,  yzt + yq2 – zq = 0

Formation of Partial Differential Equation by Eliminating Arbitrary
Functions

The partial differential equations can be formed by eliminating arbitrary junctions.
The following examples will make the concept clear.

Example 1.6: Eliminate arbitrary function from,

z = f(x2 + y2) (1)

Solution: Differentiating partially with respect to x and y, we get,

p = f (x2 + y2).2x (2)

q = f (x2 + y2).2y (3)

Eliminating f (x2 + y2) from equation (2) and (3), we get, py = qx

Example 1.7: Form the partial differential equation by eliminating the arbitrary
function  from xyz = (x2 + y2 – z2).

Solution: Given, xyz = (x2 + y2 – z2) (1)

This equation contains only one arbitrary function  and we have to eliminate
it.
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Differentiating equation (1) partially with respect to x and y we get,
yz + xyp = (x2 + y2 – z2)(2x – 2zp) (2)
xz + xyq = (x2 + y2 – z2)(2y – 2zq) (3)

From equation (2), we get,

(x2 + y2 – z2) = 
2 2

yz xyp

x zp




(4)

From equation (3), we get,

(x2 + y2 – z2) = 
2 2

xz xyq

y zq




(5)

Since, LHS of equations (4) and (5) are equal, we have,

2 2

yz xyp

x zp




= 
2 2

xz xyq

y zq




(yz + xyp)(y – zq) = (xz + xyq)(x – zp)

i.e., y(z + xp)(y – zq) = x(z + yq)(x – zp) (6)

On simplifying equation (6) we get,

px(y2 + z2) – qy(z2 + x2) = z(x2 – y2)

Which gives the required partial differential equation.

Example 1.8: Eliminate the arbitrary function from z = (x + y) f(x2 – y2)

Solution: Given,  z = (x + y) f(x2 – y2) (1)

Differentiating partially with respect to x and y we get,

p = (x + y)f (x2 – y2)2x + f(x2 – y2) 1 (2)

q = (x + y)f (x2 – y2)(–2y) + f(x2 – y2) 1 (3)

Eliminating f (x2 – y2) from equations (2) and (3) we get,

2 ( )

2 ( )

x x y

y x y


 

= 
2 2

2 2

( )

( )

p f x y

q f x y

 
 

2x[q – f(x2 – y2)] = –2y[p – f(x2 – y2)]

xq – xf(x2 – y2) = – yp + yf(x2 – y2)

xq + yp = (x + y) f(x2 – y2)

= (x + y)
( )

z

x y

 z = xq + yp

This is a required equation.
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Example 1.9: Eliminate the arbitrary function from z = xy + f(x2 + y2)

Solution: Given,  z = xy + f(x2 + y2) (1)

Differentiating partially equation (1) with respect to x and y we get,

p = y + f (x2 + y2) 2x (2)

q = x + f (x2 + y2) 2y (3)

Eliminating f (x2 + y2) from equations (2) and (3) we get,

(p – y)y = (q – x)x

py – y2 = qx – x2

py – qx = y2 – x2

Which is a required equation.

Example 1.10: Eliminate the arbitrary functions f and  from the relation
 z = f(x + ay) + (x – ay)

Solution: Differentiating partially with respect to x and y we get,

p = f(x + ay) + (x – ay) (1)

q = af(x + ay) – a(x – ay) (2)

Differentiating these again, with respect to x and y we get,

2

2

z

x




= r = f (x + ay) + (x – ay) (3)

2

2

z

y


 = t = a2 f (x + ay) + a2(x – ay) (4)

From equations (3) and (4) we get,

t = a2r

Equations Solvable by Direct Integration

A solution in which the number of arbitrary constants is equal to the number of
independent variables is called complete integral or complete solution.

In complete integral, if we give particular values to the arbitrary constants, we
get particular integral. If (x, y, z, a, b) = 0, is the complete integral of a partial

differential equation, then the eliminant of a and b from the equations 
a




= 0, 
b




 =

0, is called singular integral.

Let us consider four standard types of non-linear partial differential equations and
the procedure for obtaining their complete solution.
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Type I Equations of the form F(p, q) = 0. In this type of equations we have only
p and q and there is no x, y and z. To solve this type of problems, let us
assume that  z = ax + by + c be the solution and then proceed as in the
following examples.

Example 1.11: .Solve  p2 + q2 = 4

Solution: Given,  p2 + q2 = 4 (1)

Let us assume that z = ax + by + c be a solution of equation (1). (2)

Partially differentiating equation (1) with respect to x and y, we get,

z

x




= p = a and 
z

y




 = q = b (3)

Substituting equation (3) in (1) we get,

a2 + b2 = 4 (4)

To get the complete integral we have to eliminate any one of the arbitrary
constants from equation (2).

From equation (4) we get,

b = 24 a  (5)

Substituting equation (5) in (2) we get,

z = ax ± 24y a + C (6)

Which contains only two constants (equal to number of independent variables).
Therefore, it gives the complete integral.

To check for Singular Integral:

Differentiating equation (6) partially with respect to a and c and equating to
zero, we get,

z

a




= 
2

1
( 2 )

2 4
x a

a
 


 = 0 (7)

and,
z

c




= 1 = 0

Here, 1 = 0 is not possible.

Hence, there is no singular integral.

Example 1.12: Solve p2 + q2 = npq

Solution. The solution is, z = ax + by + c, where a2 + b2 = nab

Solving, b = 
 2 4

2

a n n 
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The complete integral is,

z =  2 4
2

ay
ax n n c   

Differentiating partially with respect to c, we see that there is no singular integral,
as we get an absurd result.

Example 1.13: Solve p + q = pq

Solution: This equation is of the type, F(p, q) = 0.

 The complete solution is of the form, z = ax + by + c (1)

Differentiating equation (1) partially with respect to x and y we get,

p = a, q = b

Therefore, the given equation becomes,

a + b = ab

a = b(a – 1); b = 
1

a

a 

Therefore, the complete solution is,

z = 
1

a
ax y c

a
    

This type of equation has no singular solution.

Let, c = (a)

z = ( )
1

a
ax y a

a
    

(2)

Differentiating partially with respect to a,

0 = 2

( 1)1
'( )

( 1)

a a
x y a

a


  
   

0 = 2

1
'( )

( 1)
y a

a
 


(3)

The elimination of a between equations (2) and (3) gives the general solution.

Type II Equation of the form z = px + qy + F(p, q) (Clairaut’s form). In this
type of problems assume that, z = ax + by + F (a, b) be the solution.

Example 1.14: Solve z = px + qy + ab

Solution: This equation is of Clairaut’s type. Therefore, the complete solution is
obtained by replacing p by a and q by b, where a and b are arbitrary constants.
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i.e., the complete solution is, z = ax + by + ab (1)

Differentiating equation (1) partially with respect to a and b, and equating
these to zero we get,

0 = x + b (2)

0 = y + a (3)

Eliminating a and b from equations (1), (2) and (3) we get,

z = –xy – xy + xy

i.e., z + xy = 0

This gives the singular solution of the given partial differential equation and to
get the  general solution.

Put, b = (a) in equation (1)

 z = ax + (a)y + a(a) (4)

Differentiating partially with respect to a we get,

0 = x + (a)y + a(a) + (a) (5)

Eliminating a from equations (4) and (5) we get the general solution.

Example 1.15: Obtain the complete solution and singular solution of,

 z = px + qy + p2 + pq + q2

Solution: This equation is of Clairaut’s form. Therefore, the complete solution is,

z = ax + by + a2 + ab + b2 (1)

Where, a and b are arbitrary constants.

Differentiating equation (1) partially with respect to a and b we get,

0 = x + 2a + b (2)

0 = y + 2b + a (3)

2x – y = 3a, and 2y – x = 3b

a = 
2

3

x y
, b = 

2

3

y x

Substituting this in equation (1) we get,

z = 
2

2 2 2

3 3 3

x y y x x y
x y

             
     
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2
(2 )(2 ) 2

9 3

x y y x y x      
 

Simplifying we get, 3z = xy – x2 – y2. This is the singular solution.

To find singular integral:

Differentiating equation (2) partially with respect to a and b, and then equating to
zero, we get,

z

a




= 
2 21

a
x

a b


 
 = 0 (3)

z

b




= 
2 21

b
y

a b


 
 = 0 (4)

From equation (3), we get,

x2 = 
2

2 21

a

a b 
(5)

From equation (4), we get,

y2 = 
2

2 21

b

a b 
(6)

From equations (5) and (6) we get,

x2 + y2 = 
2 2

2 21

a b

a b


 

 1 – (x2 + y2) = 
2 2

2 2
1

1

a b

a b




 

= 2 2

1

1 a b 

i.e., 1 – x2 – y2 = 2 2

1

1 a b 

 2 21 a b  = 2 2

1

1 x y 
(7)

Substituting equation (7) in (3) and (4) we get,

a = 
2 21

x

x y



 
, b = 

2 21

y

x y



 
(8)
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Substituting equations (7) and (8) in (2) we get,

z = 
2 2

2 2 2 2 2 2

1

1 1 1

x y

x y x y x y


 

     

= 
2 2

2 2

1

1

x y

x y

 

 

 z = 2 21 x y   or,  z2 = 1 – x2 – y2

 x2 + y2 +z2 = 1

This is the singular integral.

Type III Equation of the form, F(z, p, q) = 0

Example 1.16: Solve z = p2 + q2

Solution: Given, z = p2 + q2 (1)

Assume that, z = f(x + ay) is a solution of equation (1). (2)

Put, x + ay = u in equation (2)

Then, z = f(u) (3)

Partially differentiating equation (3) with respect to x and y we get,

p = 
dz

du
, q = 

dz
a

du
(4)

z

x


 
 =  and 

z u z z u

u x y u y

    
      

Substituting equation (4) in (1) we get,

z = 
2 2

2dz dz
a

du du
      
   

i.e.,
2

2(1 )
dz

a
du

   
 

 = z

i.e.,
dz

du
= 

21

z

a

i.e.,
dz

z
= 

21

du

a
(5)
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Integrating equation (5) we get,

dz

z = 
2

1

1
du

a


2 z = 
21

u
b

a




i.e., 2 z = 
21

x ay
b

a






This gives the complete integral.

Example 1.17: Solve ap + bq + cz = 0

Solution: Given, ap + bq + cz = 0 (1)

Let us assume that, z = f(x + ky) (2)

By the solution of equation (2).

Put x + ky = u in equation (2)

 z = f(u) (3)

p = 
dz

du
; q = k

dz

du
(4)

Substituting equation (4) in (5) we get,

dz dz
a b k c z

du du
     = 0

i.e., ( )
dz

a bk
du

 = – cz


dz

du
= 

cz

a bk




i.e.,
dz

z
= 

c
du

a bk



(5)

Integrating equation (5) we get,

dz

z = 
c

du
a bk


 

log z = – ( ) log
c

u b
a bk




i.e., log z = A[x + ky] + log b,   where A = 
c

a bk



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i.e., log z – log b = A(x + ky)

log
z

b
 
 
 

= A(x + ky)

z

b
= eA(x+ky)

 z = beA(x+ky)

This gives the complete integral.

Type IV Equation of the form, F
1
 (x, p) = F

2
 (y, q)

Example 1.18: Solve the equation, p + q = x + y

Solution: We can write the equation in the form, p – x = y – q

Let,  p – x = a, then y – q = a

Hence,  p = x + a, q = y – a

dz = 
z z

dx dy
x y

 


 
 = pdx + qdy

= (x + a)dx + (y – a)dy

On Integrating,

z = 
2 2( ) ( )

2 2

x a y a
b

 
 

There is no singular integral and the general integral is found as usual.

Example 1.19: Solve p2 + q2 = x + y

Solution: Given,  p2 + q2 = x + y

p2 – x = y – q2 = k

 p2 – x = k; y – q2 = k

p = x k  , q = y k 

dz = pdx + qdy

= ( )x k dx  ( )y k dy 

Integrating we get the complete solution.

z = 3 / 2 3/ 22 2
( ) ( )

3 3
x k y k C    

= 3/ 2 3 / 22
( ) ( )

3
x k y k C      
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Example 1.20: Solve p + q = sin x + sin y

Solution:

p – sin x = sin y – q = k

 p = k + sin x; q = sin y – k

dz = pdx + qdy

= (k + sin x)dx + (sin y – k)dy

On integrating, we get,

z = (kx – cos x) – (ky + cos y) + C

z = k(x – y) – (cos x + cos y) + C

This is the complete solution.

1.2.1 Classification of Partial Differential Equation

PDE has definite functionalities, which is help to determine whether a particular
finite element approach is appropriate to the problem being described by the
PDE. The solution depends on the equation and several variables contain partial
derivatives with respect to the variables. There are three-types are following:

 Elliptic PDE

 Parabolic PDE

 Hyperbolic PDE

We usually come across three-types of second-order PDEs in mechanics. These
are classified as elliptic, hyperbolic, and parabolic. The equations of elasticity
(without inertial terms) are elliptic PDEs. Hyperbolic PDEs describe wave
propagation phenomena. The heat conduction equation is an example of a parabolic
PDE.

Each type of PDE has certain characteristics that help determine if a particular
finite element approach is appropriate to the problem being described by the
PDE. Interestingly, just knowing the type of PDE can give us insight into how
smooth the solution is, how fast information propagates, and the effect of initial
and boundary conditions.

 In hyperbolic PDEs, the smoothness of the solution depends on the
smoothness of the initial and boundary conditions. For example, if there
is a jump in the data at the start or at the boundaries, then the jump will
propagate as a shock in the solution. If, in addition, the PDE is non-
linear, then shocks may develop even though the initial conditions and
the boundary conditions are smooth. In a system modeled with a
hyperbolic PDE, information travels at a finite speed referred to as the
wave speed. Information is not transmitted until the wave arrives.
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 In contrast, the solutions of elliptic PDEs are always smooth, even if
the initial and boundary conditions are rough (though there may be
singularities at sharp corners). In addition, boundary data at any point
affect the solution at all points in the domain.

 Parabolic PDEs are usually time dependent and represent diffusion-
like processes. Solutions are smooth in space but may possess
singularities. Conversely, information travels at infinite speed in a parabolic
system.

Suppose we have a second-order PDE of the form

Then, the PDE is called elliptic if,

For example,

The PDE is called hyperbolic if,

For example,

The PDE is called parabolic if,

For example,

If this is true at all points in a domain Ω, then the equation is said to be
elliptic, parabolic, or hyperbolic in that domain.
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Second Order PDEs

Classification of Second Order Linear PDEs

1. Elliptic: The eigenvalues are all positive or all negative.

2. Parabolic: The eigenvalues are all positive or all negative, negative, save
one,  which is zero.

3. Hyperbolic: There is only one negative eigenvalue and all the rest are
positive, or there is only one positive eigenvalue and all the rest are negative.

Canonical Forms

Transformation of independent variables x and y of Equation (1.1) to new variables
ξ, η,

Where ξ = ξ(x, y), η= η(x, y)

 Elliptic: u
ξξ

 + u
ηη 

= φ (ξ, η, u, u
ξ
, u

η
).

 Parabolic: u
ξξ 

= φ(ξ, η, u, u
ξ
, u

η 
) or u

ηη
 = φ(ξ, η, u, u

ξ
, u

η
 )

 Hyperbolic: u
ξξ

 - u
ηη 

= φ(ξ, η, u, u
ξ
 ,u

η
) or u

ξη 
= φ(ξ, η, u, u

ξ
 ,u

η
)

Examples

(i) u
t 
= k(u

xx 
+ u

yy 
+ u

zz
) [linear three-dimensional heat equation]

(ii) u
xx

+ u
yy

+ u
zz
 = 0 [Laplace equation in three dimensions]

(iii) u
tt 
= c2(u

xx 
+ u

yy
 + u

zz
) [linear three-dimensional wave equation]

(iv) u
t
 + uu

x
 = µu

xx
 [non-linear one-dimensional Burger equation]

The order of a partial differential equation is the order of the highest derivative
occurring in the equation. All the above examples are second order partial differential
equations. u

t
 = uu

xx 
+ sinx is an example for third order partial differential

equation.

Consider the example, au
xx

+bu
yy 

+ cu
yy 

= 0, u = u(x,y). For a given point
(x,y), the equation is said to be ‘Elliptic’ if b2 – ac < 0 which are used to describe
the equations of elasticity without inertial terms. ‘Hyperbolic’ PDEs describe the
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phenomena of wave propagation if it satisfies the condition b2- ac >0. For
‘Parabolic’ PDEs, it should satisfy the condition b2 - ac=0. The heat conduction
equation is an example of a parabolic PDE.

1.3 TRANSPORT EQUATION

The ‘Transport Equation’ is a partial differential equation of the form is,

u
t
 + cu

x
 = 0 (1.1)

Where, u is a function of two variables (x,t) and the subscripts denote
partial derivatives. We will assume that c is a fixed constant. Given an initial condition

u(x,0) = f(x) (1.2)

We would like to find a function of two variables that satisfies both the
transport equation (1.2) and the initial condition for an equation (1.2).

In this section we will see that we can quite easily generalise the solution
method and the uniqueness proof we used there to multiple dimensions. Let

d  . The non- homogenous d-dimensional transport equation is,

Whereas, f:    d    is a function and v   is a vector..

Definition: Let f:  d    be a function and n   . We say that f is n times
continuously differentiable iff all the partial derivatives,

exist and continuous. We can say that 

Theorem 1.1 (Leibniz’ Integral Rule) : Let O    be open and

B   d where d   is arbitrary, and let fC1(OB) If the conditions

For all 

For all 

There is a function g: B  such that
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 Then,

                 

Theorem 1.2: If fC1 (   d), gC1 ( d) and v  d, then the function

Solves the non- homogenous d-dimensional transport equation

Proof: We represent that u is appropriately often differentiable. From the ‘Chain
Rule’follows that g(x+ vt) is continuously differentiable in all the directions
t,x

1
…….x

d
 The existence of

 (By Leibniz Integral Rule)

We will well ahead in this proof show to be equal to

Which is occurs because of

Just consists of the derivatives

1.3.1 Initial Value Problem

In the field of differential equations, an initial value problem is an ordinary differential
equation together with specified value, called the initial condition, of the unknown
function at a given point in the domain of the solution.
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An initial value problem is a differential equation,

where  is an open set, together with a point in the domain of ƒ 

called the initial condition.

A solution to an initial value problem is a function y that is a solution to the
differential equation and satisfies,

This statement subsumes problems of higher order, by interpreting y as a
vector. For derivatives of second or higher order, new variables (elements of the
vector y) are introduced.

More generally, the unknown function y can take values on infinite dimensional
spaces, such as Banach spaces or spaces of distributions.

Initial Value Problem of Transport Equation

Let us consider the initial-value problem

(1.3)

Consequently bRn and g: Rn R are known, and the problem is how to
calculate u.

Given (x,t) as above, the line through (x,t) with direction (b,1) is represented
parametrically by, (x + sb, t+s) (sR). This line hits the plane : R {t  0}n
when

s = –t, at the point (x – tb,0). Since u is constant on the line and u(x-tb,0)
= g(x-tb).we deduce

u(x,t) = g(x-tb) (xR ,t 0). (1.4)

So, that if Equation (1.3) has a appropriately regular solution u, it must
certainly be given by Equation (1.4). And conversely, it is easy to check directly
that if g is C1 then u defined by Equation (1.4) is indeed a solution of Equation
(1.3).

Theorem 1.3: If f C1 (   d), gC1 ( d) , then the function

is the unique solution of the initial value problem of the transport equation
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Proof: We easier to show that,

Therefore Theorem1.2, u is a solution to the initial value problem of the
transport equation. So we proceed to show uniqueness.

Suppose that the v is an arbitrary other solution. We show that v = u,
thereby excluding the possibility of a different solution.

We define as w: = u-v. Then

            (*)

           

Analogous to the proof of uniqueness of solutions for the one-dimensional
homogenous initial value problem of the transport equation. Now we define for
arbitrary

Using the multi-dimensional chain rule, we calculate,

Therefore, for all (t,x)    d 
(t,x)
(ξ) is constant, and thus

Which shows that w = u-v = 0 and thus u = v.

Existence and Uniqueness of Solutions

The Picard-Lindelöf theorem guarantees a unique solution on some interval
containing t

0
 if ƒ is continuous on a region containing t

0
 and y

0
 and satisfies the

Lipschitz condition on the variable y. The proof of this theorem proceeds by
reformulating the problem as an equivalent integral equation. The integral can be
considered an operator which maps one function into another, such that the solution
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is a fixed point of the operator. The Banach fixed point theorem is then invoked to
show that there exists a unique fixed point, which is the solution of the initial value
problem.

An older proof of the Picard–Lindelöf theorem constructs a sequence of
functions which converge to the solution of the integral equation, and thus, the
solution of the initial value problem. Such a construction is sometimes called ‘Picard's
method’ or ‘the method of successive approximations’. This version is essentially
a special case of the Banach fixed point theorem. The Peano existence theorem
however proves that even for ƒ merely continuous, solutions are guaranteed to
exist locally in time; the problem is that there is no guarantee of uniqueness.

Picard's Theorem on Existence and Uniqueness

Let and Let 

be such that as well as are continuous on Also, let  be constants

such that

Let Then the sequence of successive approximations

 for the Initial Value Problem (IVP) uniformly converges on to
a solution of IVP. Moreover the solution to IVP is unique.

The theorem asserts the existence of a unique solution on a subinterval

of the given interval In a way it is in a neighbourhood

of  and so this result is also called the local existence of a unique solution. AA
natural question is whether the solution exists on the whole of the interval

1.3.2 Non-Homogeneous Equation

If all the terms of a PDE contains the dependent variable or its partial derivatives
then such a PDE is called non-homogeneous partial differential equation or
homogeneous otherwise. The following equation is consider as non-homogeneous,

(1.5)

Non Homogeneous for transport equation is defined by:

(1.6)
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Solution of non-homogeneous Equation is,

Let (t,x)  Rn+1 and set z(s): u(x + sb,t + s) for sR. Then

Consequently,

      

(1.7)
The general form of the equation of this type is,

dy

dx
= 

1 1 1

2 2 2

a x b y c

a x b y c

 
  ...(1.8)

Where atleast one c
1
 and c

2
 is non-zero.

The cases of this type are considered below:
Case (1): When b

1
 = – a

2

Then the equation becomes,

dy

dx
= 1 1 1

1 2 2

a x b y c

b x b y c

 
  

Cross-multiplying we get,
(–b

1
x + b

2 
y + c

2
)dy = (a

1
x + b

1 
y + c

1
)dx

b
2
ydy + c

2
dy – a

1
xdx – c

1
dx = b

1
(ydx + xdy)

i.e., (b
2 
y + c

2
)dy –(a

1
x + c

1
)dx = b

1
d(xy)

Integrating we get,
2 2

2 2 1 12 2

y x
b c y a c x   = b

1
xy + K
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Example 1.21: Solve 
dy

dx
= 

2 3

3 1

x y

x y

 
 

Solution: Cross-multiplying and rearranging the terms, we get,
(xdy + ydx) = (2x + 3)dx + (3y + 1)dy

Integrating we get, ( )d xy = (2 3) (3 1)x dx y dy   

xy = 2 23
3

2
x x y y K     is the solution.

Case (2): When a
1
 = b

2
 and b

1
 = a

2

Then the equation becomes,

dy

dx
= 

1 1 1

1 1 2

a x b y c

b x a y c

 
 

1 1 1

dy

a x b y c  = 
1 1 2

dx

b x a y c 

= 
1 1 1 2

( )

( )( )

d x y

a b x y c c


   

= 
1 1 2 1

( )

( )( )

d x y

b a x y c c


   

1 1 1 2

( )

( )( )

d x y

a b x y c c


    = 

1 1 2 1

( )

( )( )

d x y

b a x y c c


   

    1 1 1 2
1 1

1
log[( )( ) ( )]

( )
a b x y c c

a b
   



= 1 1 2 1
1 1

1
log[( )( ) ( )]

( )
b a x y c c K

b a
    



Example 1.22: Solve 
dy

dx
= 

3 4 1

4 3 2

x y

x y

 
 

Solution:

 3 4 1

dy

x y  = 4 3 2

dx

x y   = 
( )

7( ) 1

d x y

x y


   = 

( )

( ) 3

d x y

x y


 

( )

7( ) 1

d x y

x y


  = 

( )

( ) 3

d x y

x y


 

1
log[7( ) 1]

7
x y  = log[( ) 3] logx y c  

1
log[7( ) 1]

7
x y  = log [( ) 3]c x y 

log [7(x + y) + 1] = log c[(x – y) + 3]7

7x + 7y +1 = K(x – y + 3)7
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Non-homogeneous Equations with Constant Coefficients

Consider the equation of the form,

f(D, D)z = F(x, y) ...(1.9)

If f(D, D) is not homogeneous then Equation (1.9) is called a non-homogeneous
linear equation.

Compolementry Function (PI) can be found as in homogeneous linear equations.

To find Complementry Function (CF), consider f(D, D)z = 0
...(1.10)

Assume, z = Cehx + ky as a trial solution.

Substituting in Equation (3) we get, f(h, k) = 0

Find k in terms of h [or h in terms of k]

Let the r values of k be,

f
1
(h), f

2
(h),..., f

r
(h)

Then, z = ( )nhx f h y
nC e  , n = 1, 2, .... , r

will be the seperate solution of Equation (3).

The general solution of Equation (3) is of the form,

z = 1 2( ) ( ) ( )
1 2 ... rhx f h y hx f h y hx f h y

rC e C e C e      
Example 1.23: Solve (D2 – DD + D – 1)z = ex

Solution:

To find CF, consider,

(D2 – DD + D – 1)z = 0

Let, z = Cehx + ky as a trial solution.

f(h, k) = 0

h2 – hk + k – 1 = 0

h = 
2 4( 1)

2

k k k  

= 
2( 2)

2

k k 

= 
( 2)

2

k k 
 = k – 1, 1

 CF = ( 1)
1 2

k x ky x kyC e C e   
= ( )

1 2
x k x y x kye C e e C e   

= e–x
1
(y + x) + ex

2
(y)
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PI = 2

1

' ' 1
xe

D DD D  

Put,  D = 1, D = 0, Dr = 0

= 
1

( ' 1)( 1)
xe

D D D  

= 
1

1
xe

D 

= 
1

(1)
1 1

xe
D  

= xex

 z = e–x
1
(y + x) + ex

2
(y) + xex

Example 1.24: Solve (D2 + DD + D – 1)z = cos(x – y)

Solution:

To find CF, consider

(D2 + DD + D – 1)z = 0

Assume, z = Cehx + ky as a trial solution.

f(h, k) = 0 becomes, h2 + hk + k – 1 = 0

h = 
2 4( 1)

2

k k k   

= 
2( 2)

2

k k  

= 
( 2)

2

k k  

= –1, – k + 1

CF = ( 1)
1 2

x ky k x kyC e C e     
= ( )

1 2
x ky x k y xe C e e C e  

= 1 2( ) ( )x xe y e y x   

PI = 2

1
cos( )

' ' 1
x y

D DD D


  

Put, D2 = –a2 = –1

DD = –ab = 1

D2 = –b2 = –1
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= 
1

cos( )
1 1 ' 1

x y
D


   

= 
1

cos( )
' 1

x y
D




= 2

( ' 1)
cos( )

' 1

D
x y

D






= 
1

(sin( ) cos( ))
2

x y x y   

  z = e–x f
1
(y) + ex f

2
(y – x) –

1
[sin( ) cos( )]

2
x y x y  

Example 1.25: Solve (D2 + 2DD + D2 – 2D – 2D)z = ex – y + x2y

Solution: To find CF, consider

(D2 + 2DD + D2 – 2D – 2D)z = 0

f(h, k) = 0 becomes,

h2 + 2hk + k2 – 2h – 2k = 0

h2 + 2h(k – 1) + k2 – 2k = 0

h = 
2 22( 1) 4( 1) 4( 2 )

2

k k k k     

= 
2( 1) 4

2

k  

= 1 – k ± 1

= 2 – k, – k

CF = (2 )
1 2

k x ky kx kyC e C e    
= 2 ( 2 ) ( )

1 2
x k y x k y xe C e C e  

= e2x 
1
(y – 2x) + 

2
(y – x)

PI
1

= 
1

( ' 2)( ')
x ye

D D D D


  

= 
1

(1 1 2)( ')
x ye

D D


  

= ( )1

2
x y xe dx  
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= 
1

2
ye x

= 
1

2
x yxe 

PI
2

= 2
2 2

1

2 ' ' 2 2 '
x y

D DD D D D   

= 2

2

1

' '
2 1 '

2 2

x y
D D D

D D
D D

 
     

 

= 21

'
2 1 '

2

x y
D D

D D
D

         

 2 2' ( ) 0D x y 

= 
1

21 '
1 '

2 2

D D
D x y

D D


         

= 
2

2 21 ' 3 3
1 ' ' ' ' '

2 2 4 4 4

D D D
D DD D DD D D x y

D D

 
         

 

= 
2

2 21 ' 1 3
1 ' '

2 2 4 4 4

D D D
DD D D x y

D D

 
      

 

= 2
2

1 1 1 ' ' 3
'

2 2 4 4 4

D D D
DD x y

D D
        

= 
3 4 2

21 1 3

2 3 2 12 4 2 2

x x x xy x
y x y

 
      

 

  z = e2x 
1
(y – 2x) + 

2
(y – x) –

3 2 4 21 3

2 2 3 2 12 4 2 2
x yx x y x y x x xy x

e   
      

 

CHECK YOUR PROGRESS

1. What do you understand by PDE?

2. What are the types of PDE?

3. State the transport equation.

4. Define the term initial value problem.

5. How will define by non-homogeneous for transport equation?
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1.4 LAPLACE’S EQUATION

In mathematics, Laplace’s equation is termed as a second order partial differential
equation and is named after Pierre-Simon Laplace who initially examined its
properties. The equation is written as follows:

 = 0   or    ²0

Here  = ² is termed as the Laplace operator and  is considered as a
scalar function. Generally,  = ² is referred as the Laplace-Beltrami or Laplace–
de Rham operator. The Laplace’s equation and Poisson’s equation are the termed
as the simple cases of elliptic partial differential equations. Solutions of Laplace’s
equation are known as harmonic functions whereas the general theory of solutions
to Laplace’s equation is known as potential theory. In the case of heat conduction,
the Laplace equation is termed as the steady-state heat equation.

In three dimensions, the difficulty is to find twice differentiable real valued
functions f of real variables x, y and z. We find the solution using the following
coordinate systems:

Cartesian coordinates:

2 2 2

2 2 2
0.

f f f
f

x y z

  
    

  

Cylindrical coordinates:

2 2

2 2 2

1 1
0

f f f
f r

r r r r z

             

Spherical coordinates:

2
2

2 2 2 2 2

1 1 1
sin .

sin sin

f f f
f

                           

Generally, it is written as,

2 0  

For particular cases in more general contexts we can use the form,

0, 

Where  = ² is the Laplace operator. Further,

2 . div grad ,     

Where  = div is the divergence and  = grad is the gradient.
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If the right hand side is specified as a given function f(x, y, z) then equation
is written as follows and is termed as Poisson’s equation:

f 

Boundary Conditions

The Dirichlet condition for Laplace’s equation consists of finding a solution  on
some domain D such that  on the boundary of D is equal to some given function.
Because the Laplace operator is also used in the heat equation hence we can
interpret it by fixing the temperature on the boundary of the domain according to
the given specification of the boundary condition. Permit the heat to flow till a
stationary state reaches in which the temperature at each point on the domain
does not change to any further extent. The temperature distribution in the interior
can then be given by the solution to the corresponding Dirichlet problem. Solutions
of Laplace’s equation are harmonic functions as they are all analytic within the
domain where the equation is satisfied.

Laplace Equation in Two Dimensions

The Laplace equation in two independent variables has the following form:

2 2

2 2
0.xx yy

d d

dx dy

 
     

Analytic Functions: The real and imaginary parts of a complex analytic function
both satisfy the Laplace equation, i.e., if z = x + iy and if

( ) ( , ) ( , ),f z u x y iv x y 

Then the necessary condition that f(z) be analytic is that the following Cauchy-
Riemann equations must be satisfied:

, .x y x yu v u u  

Here u
x
 is the first partial derivative of u with respect to x. It follows that,

( ) ( ) ( ) .yy x y y x x xu v v u     

Consequently u satisfies the Laplace equation. Similarly we can show that
v will also satisfy the Laplace equation. Conversely, given a harmonic function, it is
the real part of an analytic function, f(z).

1.4.1 Fundamental Solution of Laplace Equation

Let consider the solution of Laplace equation u = 0 in U = Rn, having the form
u(x) = v(r),

Where and v is to be chosen so that u = 0 holds.

For i = 1,........... n
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So that u = 0 iff only iff,

This is also known as ‘Fundamental Solution’ of ‘Laplace Equation’ where
b and c are constants.

A ‘Fundamental Solution’ of Laplace’s equation satisfies as following
equation,

Here the ‘Dirac Delta Function’ δ denotes a unit source concentrated at the
points on x, y, z. There is no such function has this property but it can be consider
as limit function whose integrals over space are unity. Generally a different sign
convention for this equation is taken. This choice of sign is often convenient to
work with because – Δ is a positive operator. The definition of the fundamental
solution thus implies that, if the Laplacian of u is integrated over any volume that
encloses the source point, then encloses the source point then we have the following
equation,
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The Laplace equation remains unchanged under a rotation of coordinates
and hence we can obtain a fundamental solution that only depends upon the distance
r from the source point.

It follows that,

On a sphere of radius r that is cantered on the source point, and hence

Remember that, with the opposite sign convention (used in physics), this is
the potential generated by a point particle, for an inverse-square law force, arising
in the solution of Poisson equation. A similar argument shows that in two dimensions,

Where log(r) denotes the natural logarithm. Note that, with the opposite
sign convention, this is the potential generated by a point like sink, which is the
solution of the Euler equations in two-dimensional incompressible flow.

1.4.2 Mean Value Formula of Laplace Equation

Assume that an open set URn and suppose u is harmonic function within U.

Now we derive the important mean-value formulas, which state that u(x)
equals both the average of u over the sphere B(x, r) U. These contained
formulae involving u generate a remarkable number of significance.

Theorem 1.4: If uC2 is a harmonic, then

  for each ball B(x, r)U.

Proof: Set 

Then, 

Consequently, using Green’s formulae, we calculate,
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Here is  is constant and so that

Theorem 1.5: (Opposite to Mean-Value Property)

If uC2 which is, satisfies to the    for each ball B(x, r)U.

Then u is harmonic.

Proof:  If u , there exists some ball B(x, r)U. such that, say,u within
B(x, r). But then for 

Theorem 1.6:  Mean value formula for two dimensional equation

Let u (P) be a harmonic function on Laplace equation.

By,

It is follow

 (1.11)

For the sphere S the normal vector at PS is
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When make the change of variables so that,

Then we have,

Equation (1.11) converts as following

 (1.12)

Equation (1.12) is valid for every a > 0 so that we can consider a as a
variable r and we have

Letting r0, we get
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Further it is follows,

Note: ‘Mean Value Property’ is also useable in the two dimensional case.
Specifically, if u(x, y) is a harmonic function in following equation

In a disk,  which is known as mean

value formula for the two dimensional equation.

Let us consider a measure space ( , , )S m   . Then, for AS S with

0 < (A) <  and 1L , ;h S m R  n) where as –  symbol denoted as finite part

integral.,

1
– –

( )
n

S Shd h
S

  
  

is falled the mean value or the integral mean of h  on S .

Theorem 1.7: In mean value property theorem consider an open set   n, a

harmonic function 2C ( )u  , and an arbitrary ball B ( )r a   . Then, for the

mean values on the ball ( ) { :| | }n
rB a x x a r     and the sphere

S ( ) := B ( ) =r ra a  { :| | }nx x a r   , we have

1
B ( ) S ( )

( ) =  d =  d n
ar ar

u a f u x u  

Proof: For arbitrary  (0, r), by the change of variables =x a ow and the
corresponding integral transformation (which in turn follows from the invariance
and scaling properties of the Hausdorff measure) we have

Differentiating of above equation, exchanging derivative and integral (we
can do this since u  is locally bounded on   ), and using the chain rule we get
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Also using the reverse change of variables, the divergence theorem, and the
harmonicity of u  we can write

Observing the above equation combining the least two chanin of equations,

we can infer that the continuous mapping  has zero

derivative on (0, )r  and hence is constant on (0, ]r . Also, continuity of u  at a

implies  and hence

.

Therefore, the constant value of  is actually equal to

( )u a , and the claim is verified for spherical means.

With the help of spherical coordinates the mean value property on balls can
now be deduced as follows:

This completes the proof.

Remarks 1:  Consider an open set   in n .

• A function 2C ( )u   is said to be sub harmonic 1  on   if 0u   holds

on .  For subharmonic u  on   and B ( )r a   , we can see from the

above proof that the mean values on both B ( )a  and S ( )a  are non-

decreasing functions of (0, ]r   and that the mean value in equality

is valid. On the other hand we can consider if ( ) > 0u a  holds true, the
above mentioned mean values are even strictly increasing functions, and
also the mean value inequality holds in the strict form
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Similarly, superharmonic functions u  are defined by the inequality 0u 
and satisfy the reverse mean value inequality.

• The respective form of mean value inequality even characterizes sub- and
super harmonic functions, respectively, i.e., the converse to the assertions
in above equation now spelled out for the subharmonic case - also holds: If

we have 2C ( )u   and either B ( )
( ) –  d

ar

u a u x   or

1
S ( )( )  d = ( )n

ar
u a f u u a   holds for every ball B ( )r a   , then u  is

subharmonic. Clearly, the combination of the assertions on sub and super
harmonicity implies that the mean value property characterizes harmonic
functions.

Proof of the Statement for the Subharmonic Case: Let us try to prove the
case by contradiction. So, assume that the statement is false, i.e.,

B ( )
( ) –  d

ar

u a u x 
1

S ( )
( ) –  d n

ar

u a u   

for every ball B ( )r a   ,

but still  0 < 0u x  for some 0x  .

Then, by continuity of u , we have 0u   on  2 0B x   for some

sufficiently small > 0 .

Hence, u  is superharmonic on  2 0B x  with  0 < 0u x , and first

assertion yields    
1

B S0 0

( ) > –  d > –  d n

x xs s

u a u x u   

This contradicts the initial assumption on the mean values and thus completes
the proof of the claim.

1.4.3 Properties of Solutions

 Strong maximum principle; Uniqueness.

Assume that is harmonic within U.

(a) Furthermore 
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(b) However, if U is connected and there exists a point x
0
U  such that

 then u is constant within U.

Assertion (a) is the maximum principle for Laplace’s equation and (b) is the
strong maximum principle.

Proof: Supposing that there is a exists point

Then for,

 the mean-value property asserts

As equivalence holds only if u M within B(x
0,
 r) we see u(y) = M y

B(x
0,
 r). Hence the set  } is both open and relatively closed

in U, and thus equals U if U is connected. This proves assertion (b), from which
(a) follows.

 Smoothness- If uC(U) satisfies the mean-value property

Proof: Let us to be  a function.

Then,

Theorem 1.8 (Weak Maximum Principle): Consider a bounded open set 
in n  and a  subharmonic function 2C ( )u    0C ( )

Then we have the bound

onmaxu u


 

(or, clearly equivalent, sup maxu u  ).

Theorem 1.9: Strong Maximum Principle Consider a domain   in nR . If a

subharmonic function 2C ( )u   attains its global maximum in  , then u  is

constant on  .
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Remarks on the Maximum Principles

 • Roughly speaking, the weak maximum principle asserts that the maximum
is attained at the boundary, and the strong maximum principle asserts that it
is attained only at the boundary (apart from the case of constants).

• Boundedness of   is essential for the above form of the weak maximum
principle and connectedness of   is essential for the strong maximum
principle otherwise u  would merely need to be constant on the connected
components of   where the maximum is attained.

• Clearly, for superharmonic functions u , the weak minimum principle

u u minδΩu  on   and the analogous strong minimum principle hold true.

Precisely, for harmonic functions h , both maximum and minimum principles
hold, and particularly this implies the maximum modulus estimate

| | | |maxh h  for harmonic h  on bounded  .

1st  Proof of the Weak Maximum Principle: The boundedness of   implies

that   is compact and max u R   exists. We fix an arbitrary M R   with

> maxM u  and introduce the auxiliary function

2:= ( )v u M 

(with the usual abbreviation := max{ ,0}f f  ).

Since v  is the composition of u M  and the 1C  function 2x x  on the

real line, the chain rule gives

1 0C ( ) C ( )v   

with

= 2( ) on{ }v u M u u M    on = 2( ) on{ }v u M u u M   

and

0on{ }v u M   on 0on{ }v u M  

Moreover, the definition of v  and the choice of M  imply spt { :v x 

( ) }u x M  

Using boundedness of   once more, we deduce that spt v and { }u M
are compact subsets of .  All in all, using v  ’as a test function’ for the
subharmonicity of u  and integrating by parts, we get

2

{ > }
0  d =  d = 2 ( ) | |  d

u M
v u x v u x u M u x

 
         
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From the resulting inequality we can conclude 0u   on { > }u M , and
hence u  is equal to some constant > M  on every connected component of the

open set { > }u M . However, each such component, as it is also open and contained
in a compact subset of  , posses boundary points in which the value of u  is

M .Hence, the existence of any connected component would lead to discontinuity

of u  at its boundary and would thus result in a contradiction. This leaves { > } =u M

 as the only possibility and yields u M  on .  Finally, sending maxM u ,
we arrive at the claim.

nd2  Proof of the Weak Maximum Principle: Let us first assume that > 0u
holds on   and prove that there is no maximum point for u  in   (that is, in the

case > 0u  we prove the strong maximum principle). Indeed, if 0x   is such

a maximum point, the well-known second order necessary criterion for extremal

points asserts that the Hessian  2
0u x  is semi-negative, i.e. has only eigenvalues

0 , and in conclusion we get

    2
0 0= 0u x trace u x  

This contradicts the initial assumption and proves the absence of maximum
points. Under the assumption that   is bounded, u  posseses, however, a maximum

on the compactum  , and thus we have shown < maxu u  on .

Now we merely assume that u  is subharmonic.

For arbitrary positive  , we introduce an auxiliary function

2( ) := ( ) | |u by u x u x x  

for x  and record

= 2 2 > 0u u n n     

Thus, the first part of the reasoning applies to u  and yields < maxu u 

on  . Using <u u  on the left-hand side of this estimate and writing out the

definition of u  on its right-hand side, we arrive at

2 2< ( ) | | | | on .max max max
x x

u u x x u x 
  

     

Considering the boundedness of  , we have 2| |max x x , and sending

0   we can conclude maxu u  on  .
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Proof of the Strong Maximum Principle

:= .supLetM u

By assumption, we have M   and { = }u M   .

Moreover, { = }u M  is closed in  . Next we demonstrate that it is also

open. Indeed, for { = }a u M , we fix a positive radius r  with B ( )r a   .

Then, by the choice of a  and the mean value inequality for the subharmonic function
u , we get

B ( )
= ( ) –  d

ar

M u a u x 

but by the choice of M  we also know u M  on B ( )r a .

This is only possible if u M  holds on the whole ball B ( )r a  and we thus

have B ( ) { = }.r a u M  All in all, the set { = }u M  is non-empty, open, and closed

in .  Since   is a domain and thus connected this leaves { = } =u M   as the
only possibility. We have thus shown that u  is constant with value M  on 
Corollary 1: Continuous Dependence for the Dirichlet Problem

 Consider a bounded open set   in n , and define   as the maximum width of

  in the sense of the smallest number (0, )   such that

1
:| ( ) |

2
nx v x a       

 
 

holds for some point na  and some unit vector nv . If
2 0C ( ) C ( )u     solves the Dirichlet problem

= on , = φ onu f u  

and  2 0C ( ) C ( )u     solves the Dirichlet problem.

= on , = on ,u f u    = on , = on ,u f u     

then we have the estimate

  21
| | | | | |supmax max

8
u u f f 

  
    

Proof: Taking into account linearity of the Laplace operator  , we can assume

0, 0, 0u f   
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Moreover, it can be checked that   is invariant under translations and

rotations, and thus we can also assume 1= 0, = ea v , that is

11 1
,

2 2
n     

 
  

We now abbreviate := | |supM f  and set 
2
1

1
( ) := ( ) .

2
w x u x Mx

Then, in view of = = 0w u M f M      on  , we have that w  is
subharmonic on  . By the weak maximum principle, together with the choices of
w  and  , we get

2 2
1

1
1 2

1 1
= .max max max max max max

2 8x

u w w u M x M
    

    




Applying the same reasoning to u  (and relying on 0f M    ), we
also get

21
.min min

8
u M

 
  

In conclusion we arrive at

21
| | | |max max

8
u M

 
   .

This is the claim.

Corollary 2: Comparison Principle

 Consider a bounded open set   in n  and 2 0, C ( ) C ( )u v    . Then, the

inequalities

on , onu v v    

imply the inequality

even on .u  

Proof: From ( ) = 0u v u v       on   we see that u v  is subharmonic on

.  By the weak maximum principle we infer ( ) 0maxu v u v     and thus

u v  on  .

Remarks (on the Comparison Principle)

 (1) Clearly, the assumption u v    on   is satisfied if u  is subharmonic and

v  superharmonic on  . This is the case in typical applications of the
comparison principle. Often one of the two functions is even harmonic.
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(2) For a subharmonic function u  on   the comparison principle guarantees

u h  on   for every harmonic function h  which coincides with u  on

 . In view of this property the introduction of the term ’subharmonic’
indeed makes sense.

1.4.4 Energy Method of Laplace Equation

Energy methods calculate the some kind of system ‘Energy’ from a ‘Partial
Differential Equation’. Which energy may then be used to derive such things as
existence or uniqueness of the solution, and whether it depends continuously on
the data.

For the Ordinary Differential Equation (ODE) is an equation, which is include
the scalar-valued function from the real line to the real line, and some of its
derivatives. A Partial Differential Equation (PDE) is a simplification of the ordinary
differential equation to the event where the argument is in multiple dimensions. In
this case we have partial derivatives in each direction. For example, if the input is
an ordered pair, then the input belongs to R2, so we may have partial derivatives in
two different directions.

For any given ODE or PDE, there might be one solution; there might be
multiple solutions; or there might not be any at all. By the help of an energy method
we can find answer of this question.

Suppose that  n is an open, with bounded set C smooth boundary
Let T>0, 

T
 = Assume that aC1( ), a>0 on , C1( ).

Suppose that  is solution of,

Prove it u is unique.

The PDE is u
tt 
= C2u-q(x) arise the study of wave prorogation in a non-

homogeneous elastic medium: q(x) is non-negative and proportional to the
coefficient of elasticity at x. Let we will discuss about the

Outline on the Suitable Notion of Energy for Solutions

Solution: The energy integral is 

Let we differentiate this function of t then obtain following equation
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Integration by parts then yields

However tmust constant.

Prove the Corresponding Energy Inequality

For any time

.

Consider the energy function is,

(1.13)

We claim that Equation (1.13) is a non-increasing function of , i.e., the
following energy inequality holds:

(1.14)

To prove Equation (1.13), then we introduce the following notations

Note that  where the unions are disjoint.
Consequently, the exterior unit is normal  on  is given on

 and on 

On C  satisfies  together

with the unit length condition  that implies,
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Given a solution u, we define the vector field

If we use the divergence, we get,

The divergence theorem therefore implies

So that the Cis hold the following inequality,

We may calculate on C

So in actual condition is,

Furthermore we have that,

Which is, prove suitable notion of energy for solutions.

Use the Energy Method to Prove That Solutions are Uniquely Determined
by Their Cauchy Data

Let both u
1 
and u

2 
to be solution to 

with initial conditions

 then we get
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Thus, we know that tand it follows that

Since q(x) is non-negative, the third term implies that w (x,t) and thus
u

1
(x,t)u

2
(x,t)

1.5 WAVE EQUATION

The wave equation is an important second-order linear partial differential equation
of waves. It is analysed on the basis of sound waves, light waves and water waves.
The wave equation is considered as a hyperbolic partial differential equation. In its
simplest form, the wave equation refers to a scalar function u=(x

1
, x

2
,...,x

n
,t) that

satisfies,

Here 2  is the spatial Laplacian and c is a fixed constant equal to the propagation
speed of the wave and is also known as the non-dispersive wave equation. For a
sound wave in air at 20°C this constant is about 343 m/s (speed of sound). For a
spiral spring, it can be as slow as a meter per second. The differential equations
for waves are based on the speed of wave propagation that varies with the frequency
of the wave. This specific phenomenon is known as dispersion. In such a case, c
must be replaced by the phase velocity as shown below:

The speed can also depend on the amplitude of the wave which will lead to a non-
linear wave equation of the form:

A wave can be superimposed onto another movement. In that case the scalar u
will contain a Mach factor which is positive for the wave moving along the flow
and negative for the reflected wave.

The elastic wave equation in three dimensions describes the propagation of
waves in an isotropic homogeneous elastic medium. Most of the solid materials
are elastic, hence this equation is used to analyse the phenomena such as seismic
waves in the Earth and ultrasonic waves which detect flaws in materials. In its
linear form, this equation has a more complex form compared to the equations
discussed above because it accounts for both longitudinal and transverse motion
using the notation:
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Where:

  and  are termed as Lamé parameters which describe the elastic properties
of the medium.

  is the density.

 f is the source function or driving force.

 ü is the displacement vector.

In this equation, both the force and the displacement are vector quantities. Hence,
this equation is also termed as the vector wave equation.

General Solution of One Dimensional Wave Equation

The one dimensional wave equation for a partial differential equation has a general
solution of the form that defines new variables as,

It changes the wave equation into,

This leads to the general solution of the form,

Basically, solutions of the one dimensional wave equation are sums of a right traveling
function F and a left traveling function G. Here the term ‘Traveling’ refers the
shape of the individual arbitrary functions with respect to x which stays constant,
though the functions are transformed left and right with time at the speed c.

As per the Helmholtz equation, named for Hermann von Helmholtz, is the elliptic
partial differential equation of the form 2  A + k2 A = 0, where 2  is the Laplace
operator, k is the wavenumber and A is the amplitude.

On the other hand wave equation is given by,

                                           u
tt
 -u = 0                                                     (1.15)

And the non-homogeneous wave equation is represented by,

                                           u
tt
 - = f                                                        (1.16)

Focused on suitable initial and boundary conditions. Here is t>0 and xU,
where URn is open.

The unknown is , and the

Laplacian is taken with respect to the spatial variables x = (x
1
…..x

n
).
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In Equation (1.16) the function  is given. A common

abbreviation is to write

Physical Interpretation- The wave equation is a basic model for a vibrating
string (n=1), membrane (n=2).or elastic solid (n=3). In these physical interpretation
u(x, t) represents the displacement in some direction of the point x at time t0.

Let V represent any smooth sub region of U. The acceleration within V is
then

So that net contact force is,

Whereas F denotes the force acting on V through V  and the mass density
is taken to be unity. Newton’s law states that “the mass times the acceleration
equals the net force”:

This identity obtains for each sub-region V and so u
tt
 = -divF.

For elastic bodies, F is a function of the displacement gradient Du; whence
u

tt
 + divF (Du) = 0. For small Du, the linearization F(Du) aDu is often

appropriate; and so u
tt 
–au = 0.

This is the wave equation if a =1.

Note: u=displacement, u
t 
=velocity at time t=0.

1.5 .1 Solution by Spherical Means

For the wave equation firstly solving u
tt
 -u = 0

For n=1 directly and then for n2 by the method of spherical.

Solution for n=1, D’ Alembert’s formula:

Initial-value problem for the one-dimensional wave equation in all of R:

(1.17)
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Where g, h are given,

PDE in Equation (1.17) can be ‘Factored’ as following equation is,

(1.18)

Assume that

(1.19)

From Equation (1.18)

Which is, transport equation with constant coefficients.

at n=1, b=1, we find

v = a(x-t) (1.20)

For a(x): = v(x,0) , Combining now Equation (1.18) to (1.20), we obtain
 in 

Which also known as a non-homogeneous transport equation ;( with
n=1, b= -1, f(x, t) = a(x-t)) implies

 (1.21)

Where b(x) : = u(x,0).

First initial condition in Equation (1.17) gives b(x) = g(x) (xR);

Whereas the second initial condition and Equation (1.19) implies

Put in Equation (1.21) which gives that,

Consequently,
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Spherical Means

Now assume that n2, m2 and  solves the initial value

problem:

Value problem 

We propose that to derive an explicit formula for u in terms of g, h. The
study to first the average of u over certain spheres. These averages, taken as
functions of the time t and the radius r, turn out to solve the Euler- Poisson-
Darboux equation, a PDE which we can for odd convert into the ordinary one-
dimensional wave equation. Applying D’Alembert’s formula, or more precisely its
variant in Equation (1.17), eventually leads us to a formula for the solution.

1.5.2 Non-Homogeneous Equation

Initial problem for the non-homogeneous wave equation is defined by,

Modified by Duhamel’s principle we define u=u(x, t;s) to be the solution of

Hence,

Duhamel’s principle emphasises, i.e., a solution of

Theorem 1.10: Solution of non-homogeneous wave equation-

Supposing n2
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And,

Define u by,







Proof: If n is odd, then 

By Solution of wave in odd dimension .

For individually s0 and so that,

 

Consequently,

We then calculate:

Moreover,
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Thus,

Subsequently,

1.5.3 Energy Methods

(i) Uniqueness

 Let URn be bounded, open set with a smooth boundary U , and as usual

set Where T>0.

Theorem 1.11: (Uniqueness for Wave Equation) - There exists at most one

function solving,

Proof: If  is another such solution, then  solves

Define the ‘Energy’ 

So we get,

There is no boundary term since w = 0, and hence w
t
 = 0 on .

Thus for all  and so w
t
, Dw = 0 within U

T
.

Since w = 0 on So we conclude that,

.
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(ii) Domain of Dependence

Let us examine again the domain of dependence of solutions to the wave equation
in all of space.

For this, suppose uC2 solves

Fix and consider the cone as per following

equation

Theorem 1.12: (Finite Propagation Speed)- If u u
t
 on B (x

0
, t

0
) then u 

within the cone C.

Proof:

Define 

Then,

                                         (1.22)

Further,

                                 (1.23)

By the Cauchy- Schwarz and Cauchy inequalities, from Equations (1.22)
and (1.23) we, find

  and so  for all .

Thus u
t
, Du=0 t and consequently u0 within the cone C.

Check Your Progress
6. State the Laplace equation.

7. What do you understand by energy method in PDE?

8. What is wave equation in PDE?

9. Give the physical interpretation of wave equation.

10. How will you define the initial problem for the non-homogeneous wave
equation?
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1.6 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. In mathematics, a Partial Differential Equation (PDE) is an equation which
carry out the relations between the various ‘Partial Derivatives’ of a
multivariable function. Whereas the function is often thought of as an
‘Unknown’ to be solved for, similarly to how x is thought of as an unknown
number to be solved for in an algebraic equation similar as like x2 – 3x + 2
= 0.

2. There are three-types are following:

Elliptic PDE

Parabolic PDE

Hyperbolic PDE

3. The ‘Transport Equation’ is a partial differential equation of the form is,

         u
t
 + cu

x
 = 0

Where, u is a function of two variables (x,t) and the subscripts denote
partial derivatives. We will assume that c is a fixed constant.

4. In the field of differential equations, an initial value problem is an ordinary
differential equation together with specified value, called the initial condition,
of the unknown function at a given point in the domain of the solution.

5. If all the terms of a PDE contains the dependent variable or its partial
derivatives then such a PDE is called non-homogeneous partial differential
equation or homogeneous otherwise. The following equation is consider as
non-homogeneous,

Non-homogeneous for transport equation is defined by:

6. In mathematics, Laplace’s equation is termed as a second order partial
differential equation and is named after Pierre-Simon Laplace who initially
examined its properties. The equation is written as follows:

 = 0   or    ²0
Here  = ² is termed as the Laplace operator and  is considered as a
scalar function.
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7. Energy methods calculate the some kind of system ‘Energy’ from a ‘Partial
Differential Equation’. Which energy may then be used to derive such things
as existence or uniqueness of the solution, and whether it depends
continuously on the data.

8. The wave equation is an important second-order linear partial differential
equation of waves. It is analysed on the basis of sound waves, light waves
and water waves. The wave equation is considered as a hyperbolic partial
differential equation. In its simplest form, the wave equation refers to a
scalar function u=(x

1
, x

2
,...,x

n
,t) that satisfies,

Here 2  is the spatial Laplacian and c is a fixed constant equal to the
propagation speed of the wave and is also known as the non-dispersive
wave equation.

9. The wave equation is a basic model for a vibrating string (n=1), membrane
(n=2).or elastic solid (n=3). In these physical interpretation u(x, t) represents
the displacement in some direction of the point x at time t0.

10. Initial problem for the non-homogeneous wave equation is defined by,

1.7 SUMMARY

 In mathematics, a Partial Differential Equation (PDE) is an equation which
carry out the relations between the various ‘Partial Derivatives’ of a
multivariable function. Whereas the function is often thought of as an
‘Unknown’ to be solved for, similarly to how x is thought of as an unknown
number to be solved for in an algebraic equation similar as like x2 “ 3x + 2
= 0.

 On the other hand, it is usually impossible to write down explicit formulas
for solutions of partial differential equations. There is, similarly, a vast amount
of modern mathematical and scientific research on methods to numerically
approximate solutions of certain partial differential equations using computers.
Partial differential equations also occupy a large sector of pure mathematical
research, in which the usual questions are, broadly speaking, on the
identification of general qualitative features of solutions of various partial
differential equations.
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 Partial differential equations are ubiquitous in mathematically-oriented
scientific fields, such as physics and engineering.

 PDE is also arise from many purely mathematical considerations, such as
differential geometry and the calculus of variations; among other notable
applications.

 A solution in which the number of arbitrary constants is equal to the number
of independent variables is called complete integral or complete solution.

 PDE has definite functionalities, which is help to determine whether a
particular finite element approach is appropriate to the problem being
described by the PDE. The solution depends on the equation and several
variables contain partial derivatives with respect to the variables.

 We usually come across three-types of second-order PDEs in mechanics.
These are classified as elliptic, hyperbolic, and parabolic. The equations of
elasticity (without inertial terms) are elliptic PDEs. Hyperbolic PDEs describe
wave propagation phenomena. The heat conduction equation is an example
of a parabolic PDE.

 In contrast, the solutions of elliptic PDEs are always smooth, even if the
initial and boundary conditions are rough (though there may be singularities
at sharp corners). In addition, boundary data at any point affect the solution
at all points in the domain.

 Parabolic PDEs are usually time dependent and represent diffusion-like
processes. Solutions are smooth in space but may possess singularities.
Conversely, information travels at infinite speed in a parabolic system.

 In the field of differential equations, an initial value problem is an ordinary
differential equation together with specified value, called the initial condition,
of the unknown function at a given point in the domain of the solution.

 The Picard-Lindelöf theorem guarantees a unique solution on some interval
containing t

0
 if ƒ is continuous on a region containing t

0 
and y

0 
and satisfies

the Lipschitz condition on the variable y. The proof of this theorem proceeds
by reformulating the problem as an equivalent integral equation. The integral
can be considered an operator which maps one function into another, such
that the solution is a fixed point of the operator. The Banach fixed point
theorem is then invoked to show that there exists a unique fixed point,
which is the solution of the initial value problem.

 If all the terms of a PDE contains the dependent variable or its partial
derivatives then such a PDE is called non-homogeneous partial differential
equation or homogeneous otherwise.

 In mathematics, Laplace equation is a second order partial differential
equation.
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 Laplace equation and Poisson equation are examples of elliptic partial
differential equations. The universal theory of solutions to Laplace equation
is termed as potential theory. The solutions of Laplace equation are harmonic
functions and have great important in many fields of science.

 The Dirichlet condition for Laplace’s equation consists of finding a solution
j on some domain D such that j on the boundary of D is equal to some given
function. Because the Laplace operator is also used in the heat equation
hence we can interpret it by fixing the temperature on the boundary of the
domain according to the given specification of the boundary condition.

 The definition of the fundamental solution thus implies that, if the Laplacian
of u is integrated over any volume that encloses the source point, then
encloses the source point then we have the following equation,

               

 The Laplace equation remains unchanged under a rotation of coordinates
and hence we can obtain a fundamental solution that only depends upon the
distance r from the source point.

 Energy methods calculate the some kind of system ‘Energy’ from a ‘Partial
Differential Equation’. Which energy may then be used to derive such things
as existence or uniqueness of the solution, and whether it depends
continuously on the data.

 For the Ordinary Differential Equation (ODE) is an equation, which is include
the scalar-valued function from the real line to the real line, and some of its
derivatives. A Partial Differential Equation (PDE) is a simplification of the
ordinary differential equation to the event where the argument is in multiple
dimensions. In this case we have partial derivatives in each direction.

 The wave equation is an important second-order linear partial differential
equation of waves. It is analysed on the basis of sound waves, light waves
and water waves. The wave equation is considered as a hyperbolic partial
differential equation.

 For a sound wave in air at 20°C this constant is about 343 m/s (speed of
sound). For a spiral spring, it can be as slow as a meter per second. The
differential equations for waves are based on the speed of wave propagation
that varies with the frequency of the wave. This specific phenomenon is
known as dispersion.

 The elastic wave equation in three dimensions describes the propagation of
waves in an isotropic homogeneous elastic medium. Most of the solid
materials are elastic, hence this equation is used to analyse the phenomena
such as seismic waves in the Earth and ultrasonic waves which detect flaws
in materials.
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 Basically, solutions of the one dimensional wave equation are sums of a
right traveling function F and a left traveling function G. Here the term
‘Traveling’ refers the shape of the individual arbitrary functions with respect
to x which stays constant, though the functions are transformed left and
right with time at the speed c.

 If u u
t
 on B (x

0
, t

0
) then u within the cone C.

1.8 KEY TERMS

 Partial Differential Equation (PDE): In mathematics, a Partial Differential
Equation (PDE) is an equation which carry out the relations between the
various ‘Partial Derivatives’ of a multivariable function.

 Hyperbolic PDEs: In hyperbolic PDEs, the smoothness of the solution
depends on the smoothness of the initial and boundary conditions.

 Parabolic PDEs: Parabolic PDEs are usually time dependent and represent
diffusion-like processes. Solutions are smooth in space but may possess
singularities. Conversely, information travels at infinite speed in a parabolic
system.

 Initial value problem: In the field of differential equations, an initial value
problem is an ordinary differential equation together with specified value,
called the initial condition, of the unknown function at a given point in the
domain of the solution.

 Non-homogeneous PDE: If all the terms of a PDE contains the dependent
variable or its partial derivatives then such a PDE is called non-homogeneous
partial differential equation or homogeneous otherwise.

 Wave equation: The wave equation is an important second-order linear
partial differential equation of waves. It is analysed on the basis of sound
waves, light waves and water waves. The wave equation is considered as a
hyperbolic partial differential equation.

1.9 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Define partial differential equation.

2. Give the classification of PDE.

3. State the transport equation.

4. What is initial value problem?

5. How are non-homogeneous linear equations with constant coefficients
formed?
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6. Define the significance of Laplace’s equation.

7. How will you calculate the mean value formula?

8. Give the properties of solutions in Laplace equation.

9. What do you understand by wave equation?

10. Determine the energy method in wave equation.

Long-Answer Questions

1. Obtain a partial differential equation by eliminating the arbitrary constants of
the following:

(i) 2 2z ax by a b    (ii) 
2 2 2

2 2 2
1

x y z

a a b
  

(iii) 2 2z xy y x a b    (iv) 3 3z ax by 

(v) 2 2 2 2 2( ) ( )x a y b z a b      (vi) 22 ( )z ax y b  

2. Eliminate the arbitrary function from the following:

(i) z = ey f(x + y) (ii) z = f(my – lx)

(iii) z = f(x2 + y2 + z2) (iv) z = x + y + f(xy)

(v) z = f(x) + eyg(x) (vi) z = f(x + 4y) + g(x – 4y)

(vii) z = f(2x + 3y) + y g(2x + 3y) (viii) z = f(x + y)  (x – y)

3. Solve the following differential equations:

(i) (3z – 4y)p + (4x – 2z)q = 2y – 3x (ii) y2zp + x2zq = y2x

(iii) x2p – y2q = (x – y)z (iv) xp + yq = 2z

(v) x(z2 – y2)p + y(x2 – z2)q = z(y2 – x2)

4. Eliminate the arbitrary function(s) from the following and form the partial
differential equations:

(i) xy + yz + zx = 
z

f
x y

 
  

(ii) z = f(x2 + y2 + z2)

(iii) u = ey f(x – y) (iv) z = f(sin x + cos y)

(v) (x + y + z, x2 + y2 – z2) = 0 (vi) z = f(2x + 3y) +(y + 2x)

(vii) u = f(x2 + y) + g(x2 – y) (viii) u = x f(ax + by) +
        g(ax + by)

5. Find the complete solution of the following partial differential equations:

(i) pq + p + q = 0 (ii) p3 = q3

(iii) p = eq (iv) z = px + qy + p2 + pq + q2

(v) z = px + qy + log pq (vi) z = px + qy + p2 – q2

(vii) z2 = 1 + p2 + q2
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6. Explain in detail about the transport equation in the terms of initial value
problem and non-homogeneous equation with appropriate example.

7. Why is initial value problems solved by Picard method? Give reasons.

8. Discuss about the Laplace equation giving fundamental solution of Laplace
equation with examples.

9. Elaborate on the wave equation in the terms of solution by spherical means,
non-homogeneous equation and Energy mehods.

10. Solve the one dimensional wave equation 
2 2

2 2 2

1f f

x c t

 


 
 for a string of length

l fixed at both ends. The boundary conditions are

  0

2
( , ) , 0

2t

hx l
f x t x

l   

= 2
( ), .

2

h l
l x x l

l
  

Discuss the nature of the solution.
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2.3.3 Legendre Transform
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2.4.5 Hodograph and Legendre Transform
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2.8 Self-Assessment Questions and Exercises
2.9 Further Reading

2.0 INTRODUCTION

If the ODE (Ordinary Differential Equations) has a product of the unknown function
times any of its derivatives, the ODE is non-linear.

A solution of an n the order ordinary differential equation which depand on
n arbitrary constant as well as the independent variable, which is also know as
complete primitive. Where as a solution of a PDE of the first order that contains as
many arbitrary constants as there are independent variables also known as complete
integrals.

In geometry, an envelope of a planar family of curves is a curve, i.e., tangent
to every member of the family at some point, and these points of tangency together
form the total envelope. Typically, a point on the envelope can be thought of as the
intersection of two 'Infinitesimally Adjacent' curves, meaning the limit of intersections
of nearby curves. This idea can be generalized to an envelope of surfaces in space,
and so on to higher dimensions. Envelopes can be used to construct more
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complicated solutions of first order Partial Differential Equations (PDEs) from
simpler ones.

In mathematics, the Hamilton-Jacobi equation is an essential condition which
is, describe extremal geometry in simplifications of problems from the calculus of
variations. It can be understood as a special case of the Hamilton-Jacobi-Bellman
equation from dynamic programming.

The Hamiltonian often has a physical meaning for the system of ODEs, i.e.,
Modeling a particular real-world situation, since it represent a quantity, i.e., being
conserved over time.  Hamilton’s ODE next we introduce the Hamiltonian and
intimately connect it with the Lagrangian. This will give us a tool to convert the
Euler-Lagrange equations into Hamilton’s equations; a system of n second-order
ODE to a system of 2n system of first-order ODE. In mathematics the 'Legendre
Transform' named after Adrien-Marie Legendre, is an involute transformation on
the real valued convex function of one real variable. On the other hand Hop F Lax
formula is state that "With optimal control problem whereas controlled dynamics
is given by a time change 'stochastic process' describing the trajectory of particle
subject to random trapping effects.

The major restriction involved in the Hopf-Lax formula is the fact that F is not
allowed to depend on t, x or u. The reason for that the formula is derived from a
variational characterization of the function u in which straight lines are proved to
be the optimal trajectories. When time or space dependence is allowed it is very
unlikely that this will be the case.

In mathematics, separation of variables (also known as the Fourier method) is any
of several methods for solving ordinary and partial differential equations, in which
algebra allows one to modified an equation so that each of two variables occurs
on a different side of the equation. Similarity solutions to PDEs are solutions which
depend on certain groupings of the independent variables, rather than on each
variable separately. Additionally the concept of soliton is related with solutions for
non-linear partial differential equations. The soliton solution of a non-linear equation
usually is used a single wave.

In the case of partial differential equations, the Fourier transform is the
technique which are related to reduce by one the number of variables with respect
to which differentiation occurs. On the other hand the Laplace transform can be
helpful in solving ordinary and partial differential equations because it can replace
an ODE with an algebraic equation or replace a PDE with an ODE. Another
reason that the Laplace transform is useful is that it can help deal with the boundary
conditions of a PDE on an infinite domain.

The Hopf-Cole transformation turning the strongly non-linear Burgers
equation into the linear heat equation plays an important role in the development of
mathematical sciences. Hodograph transformation is a technique used to transform
non-linear partial differential equations into linear form. It consists of interchanging
the dependent and independent variables in the equation to achieve linearity. The
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Hamiltonian equations it is also possible to compute a Legendre transformation of

the position variable   to a variable. The independent variables in a differential

expression can be changed by a Legendre transformation. The term potential
function may refer to a mathematical function whose values are a physical potential
and the class of functions known as harmonic functions, which are the topic of
study in potential theory.

In this unit, you will learn about the non-linear first order PDE, complete
integrals, envelopes, Hamilton - Jacobi equations, calculus of variations, Hamilton’s
ODE, Legendre transform, Hopf-Lax formula, weak solution, uniqueness,
separation of variables, similarity solution of travelling wave, soliton, similarity under
scaling, Fourier and Laplace transform, Hopf - Cole transform, hodograph and
Legendre transform and potential functions.

2.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the non-linear first order PDE

 Explain about the complete integral

 Define envelops

 Analyse the Hamilton-Jacobi equation

 Discuss about the calculus of variations

 Elaborate on the Hamilton’s ODE

 Know about the Legendre transform for Hamiltion’s-Jacobi equation

 Learn about the Hopf-Lax formula

 Determine the weak solutions and uniqueness

 Exaplin about the separation of variables

 Identify the similarity soultions of travelling wave, soliton and under scaling

 Interpret the Fourier and Laplace transform

 Describe the Hopf - Cole transform

 Discuss about the hodograph and Legendre transform

 Define  potential functions

2.2 BASIC CONCEPT OF NON-LINEAR PARTIAL
DIFFERENTIAL EQUATIONS OF THE FIRST
ORDER

Qualitative theory of differential equations studies the properties of solutions of
ordinary differential equations without finding the solutions themselves.
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The foundations of the qualitative theory of differential equations were laid
at the end of the 19th century by H. Poincare and A.M. Lyapunov. Poincare made
extensive use of geometric methods, regarding the solutions of systems of differential
equations as curves in an appropriate space. On this basis he created a general
theory of the behaviour of solutions of second-order differential equations and
solved a number of fundamental problems on the dependence of solutions on
parameters. Lyapunov studied the behaviour of solutions in a neighbourhood of an
equilibrium position and founded the modern theory of stability of motion. The
geometric approach of Poincare was developed in the 1920s by George Birkhoff,
who discovered many important facts in the qualitative theory of higher-dimensional
systems of differential equations.

Non-Linear Systems

General systems of non-linear differential equations are considered in the normal
form:

                                                                                  …(2.1)

Autonomous systems are given by the equation,

                                                                                                           …(2.2)

The space of vectors  for the system Equation  (2.2) is called phase space.
The system Equation (2.1) can be reduced to the autonomous form Equation
(2.2) by increasing the order by one. An autonomous system of the form Equation
(2.2) defines a dynamical system if all its solutions can be extended to the whole
axis .

Let  be the solution to Equation (2.2) with initial data ,
. The curve ,  , in the phase space is called a

trajectory, while the parts corresponding to  ,   are called semi
trajectories. A special role is played by trajectories which degenerate to a point

  when . Such points are called equilibrium positions. Another
important type of trajectory is that of a periodic solution, representing a closed
curve in the phase space. A closed trajectory is called a limit cycle if at least one
other trajectory converges to it.

An important problem in the qualitative theory of non-linear systems is the
study of the asymptotic behaviour of all solutions as  . For autonomous
systems of the form Equation (2.2), this problem reduces to the study of the
structure of the limit sets of all the semi trajectories and the ways the trajectories
approach these sets. The limit set of each semi trajectory is closed and invariant.
A subset of the phase space is called invariant if it consists of complete
trajectories. If a semi trajectory is bounded, then its limit set is connected.

If , i.e., when the phase space is a plane, Poincare and I. Bendixson
have given an exhaustive description of the possible arrangements of the trajectories.
Under the hypothesis that the equation  has only a finite number of solutions
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in any bounded part of the plane, they proved that the limit set of any bounded
semi trajectory can only be one of the following three types:

(i) A single equilibrium state;

(ii) A single closed trajectory; or

(iii) A finite number of equilibrium states and trajectories converging to these
equilibrium states as  .

Poincare and A. Denjoy considered the case of a first-order equation of the
type Equation (2.1) whose right-hand side is periodic in both arguments  y and x.
The structure of the solutions in this case depends essentially on the rotation number,
defined by the formula

If  is rational, then there exists a periodic solution and if    is irrational,
then all solutions are quasi-periodic functions with two frequencies.

For  it is not possible to give such a clear description of the behaviour
of the trajectories. There is, however, a lot of information about the limiting behaviour
of higher-dimensional autonomous systems. Let a closed bounded invariant set of
the phase space be called minimal if it contains no proper subset with the same
properties. Then each minimal set is the closure of a recurrent trajectory. Thus, the
limit set of each bounded semi-trajectory contains a recurrent trajectory.

In the important particular case when the system has an invariant measure,
the study of general regularity of the behaviour of the solutions has been carried
out in great detail.

Of special interest for applications are structurally-stable systems, i.e.,
systems which are stable under a perturbation of the right-hand sides which is
small in the sense of  . For , in any bounded part of the plane there are only
a finite number of periodic solutions. For   the behaviour of a structurally-
stable system is considerably more complicated. S. Smale has given an example
of a structurally-stable system having an infinite number of periodic solutions in a
bounded part of the phase space.

Numerous investigations have been devoted to the study of global properties
of concrete systems of differential equations. In connection with investigations in
the theory of automatic control, a new branch of the qualitative theory of differential
equations evolved in the 1950s, namely the theory of stability of motion in the
large. An important role in the theory of oscillations is played by dissipative systems
of the form (2.1) for which all solutions fall into some bounded domain as time
increases. The properties of dissipative systems have been studied in great detail.
Relatively reliable methods have been constructed enabling one to establish the
dissipativeness of concrete systems.

One of the problems in the qualitative theory of differential equations is that
of the existence of periodic solutions. For the proof of the existence of such solutions
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use is often made of topological devices, in particular the various criteria for the
existence of a fixed point.

A complete qualitative study of non-linear systems of differential equations
has only been achieved in very special cases. For example, it has been proved that
the Lienard equation  has, under very natural hypotheses,
a unique periodic solution, while all its other solutions converge to this periodic
one.

With regard to the Van der Pol equation with perturbation,

the following interesting facts have been established for large values of the
parameter k. For a special choice of the parameter b the equation has two
asymptotically-stable solutions with periods  and

, where n is a sufficiently large integer, and the majority of
remaining solutions converge to these two. In addition, there is a countable set of
unstable periodic solutions and a continuum of recurrent non-periodic ones.

Lyapunov’s Method to Determine Stability for Non-linear Systems

An equilibrium point is Lyapunov stable if all solutions of the dynamical system that
start out near an equilibrium point  stay near  forever. More strongly, if 
is Lyapunov stable and all solutions that start out near  converge to , then

 is asymptotically stable.

The general study of the stability of solutions of differential equations is
known as stability theory. Lyapunov stability theorems give only sufficient condition.

Lyapunov, in his original 1892 work proposed two methods for
demonstrating stability. The first method developed the solution in a series which
was then proved convergent within limits. The second method, which is almost
universally used nowadays, makes use of a Lyapunov function V(x) which has
an analogy to the potential function of classical dynamics. It is introduced as follows.
Consider a function V(x) : Rn  R such that

  with equality if and only if  (positive definite.)

  with equality if and only if (negative definite).

Then V(x) is called a Lyapunov function candidate and the system is asymptotically

stable in the sense of Lyapunov.  is required otherwise

 would prove that is locally stable. AnAn

additional condition called properness or radial unboundedness is required in order
to conclude global asymptotic stability.

It is easier to visualize this method of analysis by thinking of a physical
system (for example, vibrating spring and mass) and considering the energy of
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such a system. If the system loses energy over time and the energy is never restored
then eventually the system must grind to a stop and reach some final resting state.
This final state is called the attractor. However, finding a function that gives the
precise energy of a physical system can be difficult, and for abstract mathematical
systems, economic systems or biological systems, the concept of energy may not
be applicable.

Lyapunov’s realization was that stability can be proven without requiring
knowledge of the true physical energy, providing a Lyapunov function can be
found to satisfy the constraints.

Normally non-linear first-order PDE of the form F(Du,u, x) = 0, where
xU and U is an open subset of Rn.

Where is  is given and  is the unknown,

u = u(x).

We can consider,

For . So that, ‘p’ is the name of the variable for which
we substitute the gradient Du(x), and ‘z’ is the variable for which we substitute
u(x). We also assume that F is smooth and set

We are concerning with discovering solution u of the PDE F(Du,u, x) = 0
in U, usually subject to the boundary condition u = g on where is some given
subset of U and g :R is prescribed.

2.2.1 Complete Integrals

Analysis of PDE

F(Du, u, x) = 0 (2.3)

Let us consider an open set A  Rn. Assume that for each parameter =a

 1, , na a A  we have a 2C  solution = ( ; )u u x a  of the partial differential

Equation 2.3.

Definition of Complete Integral: A 2C  function = ( ; )u u x a  is called a complete

integral in U   A provided,

    1.  ( ; )u x a  solves the PDE Equation (2.3) for each a A  and

    2.   2, =a xarank D u D u n , where ,x U a A  .
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Remark 1.

 We use the following shorthand notation.

 
1 12 1 1

2

12 1

, := .

a x a x an

a xa

a x a x an n n n

u u u

D u D u

u u u

 
 
 
  

  

Thus a complete integral is a solution of a partial differential equation of the
first order that contains as many arbitrary constants as there are independent

variables. The second condition guarantees that the solution ( ; )u x a  depends on
all of the n  independent parameters a  (this can be seen by assuming otherwise
and then checking that the determinant of each submatrix constructed from the

assumed new solution equals zero; consequently the rank is strictly less than )n .

For example,

 The very important Hamilton-Jacobi equation that forms an alternative formulation
of classical mechanics in its simplest form is the partial differential equation

( ) = 0,tu H Du

where : nH R R  is a given Hamiltonian and = ( )u u x . By setting =x

 1 1,.., , , =n
n nx x R t R t x    and  1

= = , , ;x x xn
Du D u u u  a complete

integral of the PDE is

( , ; , ) = ( ) ,u x t a b a x tH a b  

where ,na R b R   and 0t  . This can be verified by simple calculations:

 2
1= ( ), = , = , = 1 , ,1t a xa nu H a Du a D u x D diag  ,

and 0s   2, =a xarank D u D u n .

Remark 2.

The above formulation can also be acquired by assuming that the variables of u
can be separated additively. Let us look for a solution of the form:

( , ) = ( ) ( ) , 0.nu x t w x v t x R t  

Now

0 = ( , ) ( ( , )) = ( ) ( ( ))'
tu x t H Du x t v t H Dw x 

if and only if

( ( )) = = ( ) > 0'Dw x v t t 
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for some constant  . Consequently if ( ) = αDw  for some   R, then

( , ) = ( )u x t w x t b 

will solve

( ) = 0tu H Du

for any constant b . Setting ( ) =w x a x  for some na R  and = ( )H a ,
we get the same solution as above.

Very often the convention 1= nt x   is used in literature to give a special

meaning to the last position. This is because the parameter is usually reserved for
time, which is one of the hugely important single variables used in most PDE:s.
This text will follow this convention.

We shall next construct new solutions from complete integrals. These
solutions will turn out to be somewhat more complicated due to the fact that they
will depend on an arbitrary function of 1n  variables instead of just n  parameters
as in the definition of the complete integral. In general, the new solutions will come
out as envelopes of complete integrals of other m -parameter families of solutions.

Definition

 Let = ( ; )u u x a  be a 1C  function of ,x U a A  , where nU R  and mA R
are open sets. Consider the equation

( ; ) = 0aD u x a (2.4)

Suppose that we can solve Equation (2.4) for the parameter a as a 1C

function of x , = ( )a x  and so:

( ; ( )) = 0.aD u x x

We then call

( ) := ( ; ( ))v x u x x

the envelope of the functions { ( ; )}a Au a  . It’s worth noting that the function

u  is now assumed to be 1C  instead of 2C , which is much less restrictive. The
assumption that the parameters a  are a function of x  also reduces the amount of

independent variables from n m  to just 1n  (since the function   itself varies).

With the help of the newly defined envelopes we can now construct new
solutions of the nonlinear first-order PDE.

2.2.2 Envelopes

Envelope, in mathematics, a curve, i.e., tangential to each one of a family of curves
in a plane or, in three dimensions, a surface, i.e., tangent to each one of a family of
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surfaces. For example, two parallel lines are the envelope of the family of circles
of the same radius having centres on a straight line.

Let u = u(x;a) be a C1 function of xU, aA, where URn and ARm are
open sets.

Consider the vector equation

D
a
u (x;a) = 0 (xU,aA).                                                                      (2.5)

Assume that we can solve Equation (2.5) for the parameter a as a C1 function
of x,

a = (x); (2.6)

Subsequently,

(2.7)

Then, we said

              (2.8)

The envelope of the functions .

Example 2.1: Consider the partial differential equation is .

Solution: A complete integral is              

Then we calculate the 

Provided a=  (x) = x.

Therefore v 1 are singular integrals of Equation (2.5).

The equation f(x, y, a) = 0 represents, in general, a curve in the xy plane for
any given value of a. For different values of a, the relation f(x, y, a) = 0 represents
a system of curves, called a one-parameter family of curves. The curve which
touches every member of the family is called the envelope of the family f(x, y, a)
= 0 where a is a parameter. For example, consider the family of circles of a fixed
radius a whose centres lie on the x-axis. when the lines y =  a touch each member
of the family

  222 ayx  , (2.9)

where  is the parameter of the family. Similarly, consider the family of straight
lines

1sinycosx  (2.10)

where  is a parameter. A unit circle touches every member of the family of straight
lines.
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Although the above two examples are geometrically clear, it is often not
possible to visualize the envelope. We will develop a mathematical way to obtain
the equation of the envelope of the family f(x, y, a) = 0.

Consider two members of the family which are infinitesimally close to each
other,

  0a,y,xf   and   0aa,y,xf 

These two curves intersect at a point which is also a point of intersection of

f(x, y, a)= 0 and      0a,y,xfaa,y,xf
a

1




As a  0, we see that this point of intersection tends to a limiting position
given by the equation

    0a,y,x
a

f
,0a,y,xf 



 (2.11)

Geometrically, it is the point on the curve f(x, y, a) = 0 approaching the
intersecting point of f(x, y, a) = 0 and f(x, y, a + a) = 0 as a  0. To understand
clearly what the limiting position of the point of intersection of f(x, y, a) = 0 and f(x,
y, a + a) = 0 mean,let us consider a simple example.

m

a
mxy   is a family of straight lines with m as the parameter (a is a

constant)

 
mm

a
xmmy


 .

Solving these two equations (non-parallel lines) for their point of intersection,

 
 
 mmm

mm2a
yand

mmm

a
x







 .

Limiting pointing of this is x = 
m

a2
y,

m

a
2

 .

The point 







m

a2
,

m

a
2  lies on 

m

a
mxy  .

As the parameter a varies, the point of intersection of the pair in (2.11) will
trace out a curve, whose equation g(x, y) = 0 is obtained by eliminating a between
the equations represented by (2.11). This curve is the envelope of the one-parameter
family of curves f(x, y, a) = 0. For example, in the case of the family (2.9),

  222 ayax  , (, a are the parameters)

   01ax2   (differentiating w.r.t. )
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Eliminating  from these two relations, we get 22 ay  , which represents

the pair of lines ay  , as the envelope of the given family of circles (2.1). Similarly,,
for the family of straight lines,

1sinycosx  .

Differentiating w.r.t ,

22 yx

1

x

cos

y

sin
0cosysinx








 .

Thus, 22 yx

x
cos


  and 22 yx

y
sin


 .

Substituting these in the equation of the family, 
yx

yx
22

22





1yx1 22  .

Envelope of the family       0y,xcmy,xbmy,xa 2  ; m is a parameter

Differentiating the equation of the family with respect to the parameter m,

a2

b
m0bam2 

Substituting this in the equation of the family, 0c
a2

b
b

a4

b
a

2

2

 .

That is, 0ac4b 2   (discriminant of the quadratic)

Then the envelope of the family is       0y,xcy,xa4y,xb 2  .

Example 2.2: Find the envelope of  cosasinyx , where  is the
parameter.

Solution:   0cosasinyx,y,xf 

0sinacosy0
f





.

From which we get,

22 ya

1

a

cos

y

sin








.
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0
ya

a
a

ya

y
yx

2222






 , that is,

0yax 22  .

That is, 222 ayx  ; a rectangular hyperbola.

Example 2.3: Show that the envelope of the circles whose centres lie on the

parabola ax4y2   and which pass through the vertex is   0xa2xy 32  .

Solution:  at2,at 2  is any point on the parabola which is the centre of a member

of the family under consideration. Since each circle passes through (0, 0), the
vertex of the parabola, the square of the radius of the circles is, 2242 ta4ta   and
the equation of a member of the family is

     4ttaat2yatx 222222   with t as parameter..

This simplifies to 0ayt4axt2yx 222 

To find the envelope of this family, we notice that it is a quadratic in t and
thus the envelope is given by making the discriminant of the quadratic equal to
zero.

Thus, the envelope is   0ax2yx4ya16 2222  .

That is,   0xa2xy 32  .

2.2.3 Characteristics

Non-linear first-order PDE F(Du,u, x) = 0 in U (2.12)

Focused on the boundary condition u = g on  (2.13)

Whereas U and g: R are given. After this assume that F, g are ‘Smooth
Function’.

Let us suppose that it is described parametrically by the function

x(s) = (x1( s),........... xn(s)),

The parameter’s lying in some subinterval of R. Assuming u is a C2 solution
of Equation (2.12), we define also

z(s) : = u(x(s))                                                                                       (2.14)

In addition, set p(s) : = Du(x(s))                                                           (2.15)

i.e., p(x) = (p1(s),.....pn(s))

Where pi(s) = u
x
i (x(s)) (i = 1,.......,n)                                                    (2.16)
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So z(.) gives the values of u along the curve and p(.) records the values of
the gradient Du. We must choose function x(.) in such a way that we can calculate
z(.) and p(.).

For this, first differentiate for an Equation (2.16):

 (2.17)

This expression is not too capable, since it contains the second derivatives
of u.

Now differentiate PDE in Equation (2.12) with respect to x
i
:

        (2.18)

We are able to employ this identity to get rid of the ‘Dangerous’ second
derivative terms in Equation (2.17), provided we first set.

(2.19)

Supposing now in Equation (2.19) holds, we estimate Equation (2.18) at
x =x(s), obtaining thereby from Equations (2.14) and (2.15) the identity is,

Substitute the expression and Equation (2.17) into (2.15): we get

  (2.20)

Finally we differentiate Equation (2.14), we get

                              (2.21)

The second equality holds by Equations (2.16) and (2.19).

We summarize by modifying Equation (2.19) to (2.21) in vector
representation:
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     (2.22)

This essential system of 2n+1 first-order ODE encompasses the
characteristic equations of the non-linear first-order PDE Equation (2.12). The
function p(.) (p1 (.),...... pn(.)), z(.), x(.) = (x1(.),...... xn(.)) is called the
characteristic. We will sometimes refer to x(.) as the projected characteristic: it
is the projection of the full characteristics (p(.), z(.), x(.))R2n+1 onto the physical
region uRn.

CHECK YOUR PROGRESS

1. Give the normal form of non-linear differential equation.

2. When a subset of the phase space is called invariant?

3. State the Lyapunov’s method.

4. Define the complete integral.

5. What do you understand by envelopes?

2.3 HAMILTON - JACOBI EQUATIONS

The initial value problem for the Hamilton-Jacobi equation:

Where as  is the unknown, u=u(x,t) and Du =
D

x
u = (u

x1
,......,u

xn
).

We are assumed the Hamiltonian  and the initial function is
.

2.3.1 Calculus of Variations

Calculus of variations is a field of mathematics that deals with extremizing functionals,
as opposed to ordinary calculus which deals with functions. Basically, a functional
is a mapping from a set of functions to the real numbers. Functionals are often
formed as definite integrals involving unknown functions and their derivatives. The
interest is in extremal functions that make the functional attain a maximum or
minimum value or stationary functions where the rate of change of the functional
is precisely zero. The simplest example of such a problem is to find the curve of



Partial Differential
Equtions-II

NOTES

Self - Learning
80 Material

shortest length or geodesic, connecting two points. If there are no constraints, the
solution is obviously a straight line between the points. However, if the curve is
constrained to lie on a surface in space, then the solution is less obvious and
possibly many solutions may exist. Such solutions are known as geodesics. The
minimal curve problem asks us to find the function y = u(x) that minimizes the arc
length functional among all reasonable functions satisfying the prescribed boundary
conditions.

The calculus of variations and its extensions are used to find the optimum
function that gives the best value of the model and satisfies the constraints of a
system. The first calculus of variations problem, the Brachistochrone problem,
was posed and solved by Johannes Bernoulli in 1696. In this problem the optimum
curve was determined to minimize the time traveled by a particle sliding without
friction between two points. The shape of the curve between two points is to be
determined to minimize the time of a particle sliding along a wire without frictional
resistance. The particle is acted upon only by gravitational forces as it travels
between the two points.

In mathematics, the maximum or minimum of a function was determined to
be an optimal point or set of points. In the calculus of variations the maximum or
minimum value of a functional is determined to be an optimal function. A functional
is a function of a function and depends on the entire path of one or more functions
rather than a number of discrete variables. For the calculus of variations the functional
is an integral, and the function that appears in the integrand of the integral is to be
selected to maximize or minimize the value of the integral. The minimum of this
functional is a function y(x) that gives the shortest distance between two points
[x

0
,y(x

0
)] and [x

1
,y(x

1
)]. Minimization problems that can be analysed by the

calculus of variations to characterize the equilibrium configurations of almost all
continuous physical systems, ranging from elasticity, solid and fluid mechanics,
electro-magnetism, gravitation, quantum mechanics, string theory, etc.

Calculus of Variation

Suppose that  is a given smooth function, then is called the
Lagrangian.

Hence,

And,

Whereas ‘q’ is the name of the variable for which we substitute w(s), and
‘x’ is the variable for which we substitute w(s).
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Now fix two points  and a time t>0, we introduce then the action
functional.

2.3.2 Hamilton’s Ode

The Hamilton-Jacobi equation is a first-order non-linear partial differential
equation of the form H(x,u

x
(x,α,t),t)+ut(x,α,t)=K(α,t) with independent variables

(x,t)n×  and parameters αn  . It has wide applications in optics,
mechanics, and semi-classical quantum theory. Its solutions determine infinite families
of solutions of Hamilton’s ordinary differential equations, which are the equations
of motion of a mechanical system or an optical system in the ray approximation.

Remember that the general form of a planar differential equation (i.e., a
system of two first-order ODEs) is,

(2.23)

Where, in keeping with a tradition in the theory of ODEs, ̇ f denotes the
derivative of a quantity f with respect to the time variable t. The system is called a
Hamiltonian system if there is a function

(called the Hamiltonian associated with the system) such that the functions
F and G are satisfied following equation,

In this case the system has the form,

 (2.24)

The variable p is sometimes called a generalized coordinate, and the variable
q is called the generalized momentum associated to p.

For Equation (2.23) is should be Hamiltonian so we consider that F and G
are continuously differentiable, it is not difficult to see that a necessary condition is
that

(2.25)
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Or,

Since both sides of the equation are equal to  equivalently, this

condition can be written as

                                        

Where V represents the planar vector field V = (F, G) (we understand the
first coordinate of V as the ‘p-coordinate’ and the second coordinate as the ‘q-
coordinate’), and div V denotes the divergence of V. In physics, a vector field
with this property is called divergence-free or solenoidal. Yet another way to write
Equation (2.25) is,

                                    

Where W is the vector field W = (G, –F), and curl is the (2-dimensional

version of the) curl operator, defined by curl(A, B) = . A vector field with

this property is called curl-free or irrotational.

Lemma 1: If the Equation (2.23) is defined on a simply connected domain, the
Equation (2.25) is both necessary and sufficient for the system to be Hamiltonian.

Proof: This is a slight reformulation of a familiar fact from vector calculus that says
that in a simply connected domain, a vector field W = (A, B) is curl-free iff and
only iff it is conservative. A conservative vector field is one for which the line
integral of the field between two points is independent of the contour connecting
them, or equivalently, such that the line integral on any closed contour vanishes.
Such a vector field can always be signified as W = H (the gradient of H) for
some scalar function H; one simply defines H(p, q) as the line integral (which for a
conservative field is independent of the path of integration).

Between some fixed but arbitrary initial point (p
0
, q

0
) and the point (p, q).

The fact that W = H is immediate from the fundamental theorem of calculus. In
this fact, W = (G, –F) so the equation W = H gives exactly the pair of equations

F =  with H serving as the desired Hamiltonian.

Euler-Lagrange Equation

Given a function of three variables L = L(˙q, q, t), the differential equation

(2.26)

is called the Euler-Lagrange equation.
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Note: The notation here may be slightly confusing: for the purpose of computing L

( , q, t) and finding  one must think of  as an independent variable that has no

connection to q. But once  is evaluated, to apply the time-derivative d/dt one

should think of  as the time-derivative of q. This leads to a second-order ordinary

differential equation for the quantity q. The function L is called the ‘Lagrangian’.

Equivalence of the Lagrange and Hamilton Formalisms

We now wish to show that the Euler-Lagrange equation is equivalent to the idea of
a Hamiltonian system. Start with the Equation (2.26).

Denote  . The Hamiltonian will be defined by,,

(2.27)

Where  is again interpreted as a symbol representing an independent

variable, which is extracted from p, q, t by inverting the relation  (i.e., this
relation defines a transformation from the system of variables , q, t to the system
p, q, t). Then, using the chain rule we can calculate

Which shows that we indeed get the Hamiltonian system in Equation (2.24).

Going in the other direction, if we start with a Hamiltonian system, we can
construct a Lagrangian by setting

    (2.28)

Where in this definition p = p(q, , t) is interpreted as a function of the

independent variables q, , t, defined by the implicit equation .

Again computing using the chain rule and the Hamiltonian Equations (2.24),
we now have that

so we have recovered the Euler-Lagrange equation (2.26).

Assume that the 2C  function ( )x   is a critical point of the action functional,
and thus solves the Euler-Lagrange equations. We define a generalized momentum
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( )p   corresponding to the position ( )x   and velocity ( )x   by:

( ) := ( ( ), ( )), 0 .qp s D L x s x s s t 
Regarding this we need to still make one important assumption:

Suppose for all , that the equation

= ( , )can be  solved for 

as a smooth function of and : = ( , ).

n

v

x p

p D L q x q q

p x q q p x

 







Definition
The Hamiltonian H associated with the Lagrangian L  is

( , ) := ( , ) ( ( , ), ), , ,nH p x p q p x L q p x x p x R  

Where the function ( , )q    is defined implicitly by the hypothesis.
Assume for all x, p  Rn  that the equation P = D

q
 L (q, x) can be uniquely

solved for q as a smooth function of P and x, q = q(p, x).

Derivation of Hamilton’s ODE: The functions ( )x   and ( )p   satisfy the coupled

system of 2n  first-order Hamilton’s equations:

( ) = ( ( ), ( ))

( ) = ( ( ), ( ))
x

p

p s D H p s x s

x s D H p s x s








For 0 s t  . Furthermore, the mapping ( ( ), ( ))s H p s x s  is constant.

Proof: Set x(s) = q(p(x), x(s))

We consider as 

Subsequently,

Then,
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To conclude we get that,

Theorem 2.1: The constancy of H  with respect to the parameter s  means that

the trajectories lie on the contour lines ( , ) =H p x C . This can be viewed as the
conservation of energy of the system it describes (time translation invariance).
Thus the equations are particularly useful in identifying conserved quantities for
mechanical systems; this being true even when the problem itself cannot be solved
completely.

Proof: From ( ) = ( ( ), ( )), = ( , )v vp s D L x s x s p D L v x  and = ( , )v v p x , we get

that ( ) = ( ( ), ( ))x s v p s x s . Denote  1( ) = ( ), , ( )nv v v    and compute the partial

derivatives of H  for = 1, ,i n  :

=1

( , ) = ( , ) ( , ) ( , ) ( , ) = ( , )
n

k k
x k x v x x xi i k i i i

k

H p x p v p x L v x v p x L v x L v x  
and

=1

( , ) = ( , ) ( , ) ( , ) ( , ) = ( , ),
n

i k k i
p k p v pi i k i

k

H p x v p x p v p x L v x v p x v p x 
Thus,

( ( ), ( )) = ( ( ), ( )) = ( )i i
pi

H p s x s v p s x s x s
and by the Euler-Lagrange equations

 
( ( ), ( )) = ( ( ( ), ( )), ( ))

= ( ( ), ( )) = ( ( ), ( ))

= ( ).

x xi i

x vi i

i

H p s x s L v p s x s x s

d
L x s x s L x s x s

ds
p s



 



 


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For the last assertion simply take the derivative with respect to s  and use
the identities acquired above;

   
=1 =1

( ( ), ( )) = = = 0.
n n

i i
p x p x x pi i i i i i

i i

d
H p s x s H p H x H H H H

ds
    

2.3.3 Legendre Transform

Assume that the Lagrangian  satisfies these conditions:

The mapping  is convex and .

The convexity implies L is continuous.

Therefore the Legendre transform of L is,

2.3.4 Hopf-Lax formula

Let us update the characteristic equations of the Hamilton-Jacobi is,
for more compatly

 
 
 

( ) ( ), ( )

( ) ( ), ( ) ( )

( ) ( ), ( )

x

p

p

p s D H p s x s

z s D H p s x s p x

x s D H p s x s

 


 
 



 (2.29)

In equation (2.29) since ( , ) = ( )H p x H p , we have that

( ) = 0

( ) = ( ) ( ) ( )

( ) = ( ).
p

p

p s

z s D H p p s H p

x s D H p


  







Inserting x  to the expression for z  and using the Legendre transform further
gives us

= ( ) ( ) = ( ).z x p s H p L x  
The characteristics provide a smooth solution u  for at least short times

> 0t  so that ( ) = ( ( ), )z t u x t t  and therefore by integrating z  we get:

0
( , ) = ( ) ( (0)).

t
u x t L x ds g x 

We have thus turned the characteristic equations of the Hamilton-Jacobi
PDE to a variational problem of the Lagrangian. This however should not come as
a surprise since the calculus of variations problem led to Hamilton’s ODE for the
associated Hamiltonian (those being part of the characteristic equations of the
Hamilton-Jacobi PDE).
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Let us try to to somehow extend the solutions to times further than where

the smoothness ends. Given nx  and > 0t , our goal is to minimize the modified
action

0
( ( )) ( (0))

t
L w s ds g w 

among curves ( )w   satisfying ( ) =w t x . We define

 0
( , ) := inf ( ( )) ( (0)) | ( ) = ,

t
u x t L w s ds g w w t x  (2.30)

where the infimum is taken over all 1C  functions ( )w  . So in what sense
does u  defined by Equation  (2.30) actually solve the Hamilt on-Jacobi PDE.
Recall that we are assuming that H  is smooth, convex and superlinear. Furthermore
we assume that the initial condition satisfies:

: is Lipschitz continuous,n ng  
with

, ,

| ( ) ( ) |
( ) := < .sup

| |nx y x y

g x g y
Lip g

x y 

 
  

The vector p  is constant along the characteristic curve, and so = px D H

is a constant vector, and therefore the projected characteristics ( )x t  are straight

lines. Thus if (0) =x y  and ( ) =x t x , we must have =
x y

x
t

  and as a

consequence:

= ( ) = ( ) = (0) = ( ) .
x y x y x y

z L x L z t z tL g y tL
t t t

              
     



The only unknown term in this expression is y , so the problem turns into

minimizing ( )z t . The intuition behind this is the following: imagine that instead of

starting from time = 0t , we start at say = 1t  . All of our trajectories now start

from = 1t  , pass y  at = 0t , and end at x  at some defined > 0t . The initial

function g  can be thought of tracking the work done from point = 1t   to point

= 0t ; so now the correct trajectory is the one minimizing this work.

Theorem 2.2: (Hopf-Lax formula) If nx  and > 0t , then the solution

= ( , )u u x t  of the minimization problem in Equation (2.30) is

( , ) = ( ) .min
ny

x y
u x t tL g y

t

      
  

(2.31)



Partial Differential
Equtions-II

NOTES

Self - Learning
88 Material

Proof: Fix any ny  and define ( ) := ( )
s

w s y x y
t

  , where 0 s t  . Then

Equation (2.30) implies

0
( , ) ( ) ( ) = ( ),

t x y
u x t L w ds g y tL g y

t

    
  

which implies that

( , ) ( ) .inf
ny

x y
u x t tL g y

t

      
  

For the other direction let ( )w   be any 1C  function satisfying ( ) =w t x .
Since L  is convex, by Jensen’s inequality we have that

0 0

1 1
( ) ( ( )) .

t t
L w s ds L w s ds

t t
   
   

Defining = (0)y w  and adding ( )g y  to both sides, we get

0
( ) ( ( )) ( ).

tx y
tL g y L w s ds g y

t

     
   

Taking infimum on both sides now gives us

( ) ( , ).inf
ny

x y
tL g y u x t

t

       
  

Fix t and x and define function h by,

( ) ( ), .nx y
h y tL g y y

t

     


The final claim is then that in the expression for u , the infimum can be
replaced by an actual minimum. That is:

( , ) = ( ) = ( ) .inf min
y y

x y x y
u x t tL g y tL g y

t t 

               
       

Fix t and x is define the function of h by,

( ) ( ), nx y
h y tL g y y

t

    
 



The function h  is continuous as a sum of continuous functions, and since g
is Lipschitz, we have the estimate:

( ) | | | ( ) |

| ( ) |
=| |

| | | |

Lip

Lip

x y
h y tL g x y g x

t

x y
L

g xtx y g
x y x y

t

     
 

   
      
  

 
 

 

 
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Let | |y   and notice that =
| 1|

|

x y
L

t
x

t

 
 
  
  by superlinearity, with

| ( ) |
= 0

| |

g x

x y  clearly. This implies that ( )h y  , and that there exists an > 0M

such that if | |>y M , then ( ) > ( , )h y u x t  , where > 0  is fixed. Now

by the extreme value theorem h  attains its minimum on (0, )B M  at some point

0y , and so  | | 0( )inf y Mh y h y  . By the definition of the infimum there exists a

(0, )'y B M  such that   < ( , ) / 2h y u x t   . Now:

   0
| |>

( ) ( , ) > ( , ) / 2 > .inf
y M

h y u x t u x t h y h y     

Combining both estimates we have that  0( , )u x t h y , and hence the

minimum is attained for every fixed x  and t .
Remark: In fact the Hopf-Lax Equation (2.31) is describe

( , )
( , ) = ( ) ,min

y B x Rt

x y
u x t tL g y

t

      
  

for = | ( ) |sup nR DH Dg  and *=L H . The minimizer y  is thus always

bounded with respect to the time t , and therefore shows the finite propagation
speed for the Hamilton-Jacobi equations with convex Hamiltonian and Lipschitz
continuous initial function g . This can be proven via the subdifferential of H .

The explicit formula of the Hopf-Lax was possible because of the special
structure in the Hamilton-Jacobi characteristic equations, namely the Hamilton’s
equations, that allowed us to turn the ODE into a variational problem. Because of
this explicitness, the formula has some useful properties. Our ultimate goal is to
show that the formula produces a reasonably defined weak solution of the initial-
value problem for the Hamilton-Jacobi equation, since it does not in general have
a smooth solution u  lasting for all times > 0t .

Lemma 1: (Functional Identity). For each nx  and 0 s t  , we have

( , ) = ( ) ( , ) .min
ny R

x y
u x t t s L u y s

t s

        
Proof omitted.

This identity tells us that to compute ( , )u t  ), we can just calculate u  at time s

and then use ( , ))u s  as the initial condition on the remaining time interval [ , ]s t .
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Lemma 4: The function u  is Lipschitz continuous in [0, )n   , and

= on { = 0}.nu g t
Proof omitted:
Now Rademacher’s theorem says that a Lipschitz function is differentiable almost
everywhere, so u  defined by the Hopf-Lax formula in Equation (2.31) is

differentiable almost everywhere (a.e.), ( , ) (0, )nx t    . Now we are ready

to show that the Hopf-Lax formula actually provides us a solution to the Hamilton-
Jacobi PDE wherever u  is differentiable.

Theorem 2.3: Suppose , > 0nx t , and u  defined by the Hopf-Lax formula

Equation (2.31) is differentiable at a point ( , ) (0, )nx t    . Then

( , ) ( ( , )) = 0.tu x t H Du x t

Proof: Fix , > 0nv h . By Lemma 1 we have

( , ) = ( , ) ( ) ( , ),min
ny

x hv y
u x hv t h hL u y t hL v u x t

h

          
  

where we chose =x y  (not necessarily the minimizer). This gives us the
difference quotient

( , ) ( , )
( ).

u x hv t h u x t
L v

h

  


Let 0h  so that the directional derivative becomes

( , ) ( , ) ( ).tv Du x t u x t L v  

This inequality is valid for all nv , so by *=H L  we have that:

( , ) ( ( , )) = ( , ) { ( , ) ( )} 0.maxt t
nv

u x t H Du x t u x t v Du x t L v


    


For the other direction we choose a nz  such that it is the minimizer of

the Hopf-Lax formula: ( , ) = ( )
x z

u x t tL g z
t

   
 

. Fix > 0h  and set =s t h

and = 1
s s

y x z
t t

   
 

, so that =
x z y z

t s

 
, and thus:

( , ) ( , ) ( ) ( )

= ( ) .

x z y z
u x t u y s tL g z sL g z

t s

x z
t s L

t

                  
   

 
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This again gives us a difference quotient by reorganization:

( , ) 1 ,

.

h h
u x t u x z t h

t t x z
L

h t

              
 

Since 1 =
h h x z

x z x h
t t t

        
   

, we can let 0h  to achieve

( , ) ( , ) ,t

x z x z
Du x t u x t L

t t

      
 

and so

( , ) ( ( , )) = ( , ) { ( , ) ( )}max

( , ) ( , )

0.

t t
nv R

t

u x t H Du x t u x t v Du x t L v

x z x z
u x t Du x t L

t t


   

       
 



This inequality completes the proof.
From this follows a useful lemma for comparing solutions based on their

initial functions. The solution u  depends monotonically on g  : if the initialdata g
is increased pointwise, then so is the solution u .

Lemma 2: L  (Contraction Inequality): Let 1u  and 2u  be two solutions of the
initial value problems

  = 0 a.e.in (0, )

= on { = 0}( = 1,2),

i i n
t

i i n

u H Du

u g t i

   







given by the Hopf-Lax formula. Then we have the following inequality
1 2 1 2( , ) ( , ) , for > 0.sup sup

n n
u t u t g g t    

 

Furthermore if 2 1g g , then 2 1u u .

Proof: By the Hopf-Lax formula we have:

1 1 2 2( , ) ( ) and ( , ) ( ) ,
x y x y

u x t tL g y u x t tL g y
t t

                       

where equalities hold with 1y  and 2y  respectively. Especially we have

 I I2
2( , )

x y
u x t tL g y

t

      
  

 and  2 21
1( , ) .

x y
u x t tL g y

t

      
  

 From

these we have the estimates    1 2 1 2
2 2( , ) ( , )u x t u x t g y g y    and
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   1 2 1 2
1 1( , ) ( , )u x t u x t g y g y   . Taking supremum over both inequalities

gives us the first claim.
The second claim is immediate from our second inequality above combined

with the assumption 2 1g g .

Let us summarize the section with the Hopf-Lax formula theorem.
Theorem 2.4: The function u  defined by the Hopf-Lax formula in Equation (2.31)

is Lipschitz continuous, differentiable a.e. in (0, )n   , and solves the initial-

value problem

( ) = 0 a.e.in (0, )

= on { = 0}.

n
t

n

u H Du

u g t

   







Remark: By using the Legendre transform on L , we can write the Hopf-Lax
formula for Equation (2.31) as,

( , ) = { ( ) ( ) ( )}.maxmin
n ny z

u x t z x y tH z g y
 

   
 

For each fixed ,y z  this function solves the PDE . Thus the Hopf Lax formula
builds a solution of by taking appropriate two parameter envelopes of these functions
using minima and maxima. This is evident since for a fixed pair ,y z  (with the

choices =a z  and = ( )b g y z y   ).

2.3.5 Weak Solution

In this section we show that semi-concavity conditions of the kinds discovered for
the Hopf-Lax solution.

Definition 1: A Lipschitz continuous function  is a weak
solution of the initial value problem:

(2.32)

Provided







For some constant  and all .

Considering at the theorem 2.4, it is tempting to define a suitable weak
solution u in a similar manner. This definition would however produce problems
with uniqueness of the solutions as the Example 2.4 shows.
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Example 2.4: Consider the initial value problem is,

(1)

Besides the trivial solution u
0
(x; t) 0; we have

which is,  Lipschitz continuous and solves the PDE everywhere except on
the lines x = 0;t. There are actually infinitely many Lipschitz functions satisfying
Equation (1) as can be seen from this family of solutions:

Where a.

Hence for uniqueness we must require more than just solvability of the PDE
a.e and Lipschitz continuity of g. The next lemma shows that u will inherit a form of
one-sided second-derivative estimate from the initial function g, granted that g be
semiconcave. Semiconcavity will turn out to be a sufficient condition for the
uniqueness to hold.

Lemma 3 (Semiconcavity): Suppose there exist a constant C such that

(2.33)

For all x, zn. Let u be defined by the Hopf-Lax Equation (2.31).

Then,

For all .

Proof omitted.

A function g is called semiconcave provided that in Equation (2.33) holds.
If we were to assume that g was twice continuously differentiable with

 then the semiconcavity condition would automatically hold
another characterisation would be that g is semiconcave if and only if the mapping

 is concave for some constant C .
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Definition 2: A convex C2 function  is called uniformly convex with
a constant  > 0 if

(2.34)

Without g being semiconcave, the uniform convexity of H will force u to
become semiconcave for t > 0 which is exactly what happened before with g.
This regularizes the Hopf-Lax and provides uniqueness of the solution.

Lemma 4 (Semiconcavity): Suppose that H is uniformly convex with a constant
 and u is defined by the Hopf-Lax formula.

Then,

For all .

Proof omitted. These semiconcavity conditions will ensure unique solutions
from the Hopf-Lax formula.

Definition 3: We say that a Lipschitz continuous function u: n  [0, )   is a
weak solution of the initial-value problem:

(2.35)

Provided







for some constant .

Uniqueness of Weak Solution

Assume H is C2 and H is convex and and satisfies g: Rn R is

Lipschitz continuous. Then there exists at most one weak solution of the initial-
value problem in Equation (2.32).

Proof 1: Suppose that u and u  are two weak solutions of an Equation (2.32) and

write w:= u- u .
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Observe now at any point (y, s) where both u and are differentiable and
solve our PDE, we have

Consequently,

w
t 
+ b. Dw = 0 a.e.                                                                      (2.36)

2. Write  Where   is smooth function

to be selected later, we multiply in Equation (3.36) by  to discover

                (2.37)

3. Now choose >0 and define where  is

the standard mollifier in the x and t variables.

              (2.38)

Or,

(2.39)

Furthermore inequality (c) in the definition of weak solution implies

 (2.40)

For an appropriate constant C and all .

4. Write 
1

0
( , ) : ( ( , ) (1 ) ( )b y s DH rDu g s r Du ys dr   



Consequently,

In Equation (3.37) becomes as follow

Then,
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5. Let

For some constant C, in view of (2.38), (2.40). Here we note that H convex

implies .

6. Fix and 

Define also the cone is,

Then,

So that calculate for a.e. t > 0:

The last term on the right hand side goes to zero as 0, for a.e. t > 0,
according to Equations (2.38) and (2.39) we get the dominated convergence
theorem,

Thus,

      (2.41)

7. Fix   and choose the function (z) to equal zero if

 and to be positive otherwise.
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Subsequently,

Gronwall’s inequality and in Equation (2.42) imply 

Hence,

This inequality is valid for all >0 and  so

Consequently, in particular, .

CHECK YOUR PROGRESS

6. Give the initial value problem for the Hamilton-Jacobi equation.

7. What do you understand by calculus of variation?

8. What is geodesics?

9. Define the Hamilton-Jacobi equation in first-order non-linear PDE.

10. State the weak solution of the initial value problem.

2.4 REPRESENTATION OF SOLUTION

An Ordinary Differential Equation (ODE) is an equation that includes some ordinary
derivatives (as opposed to partial derivatives) of a function. Often, our goal is to
solve an ODE, i.e., determine what function or functions satisfy the equation.

We know that what is derivative of a function and how we can determine the
function itself. We need to determine the antiderivative. For example, if you are
given

then what is the function x(t) Since the antiderivative of cos t is sin t, then
x(t) must be sin t. But there is always an arbitrary constant that we cannot determine
if we only know the derivative. Therefore, all we can detetermine from the above
equation is that

                                                   x(t) = sin t+ C
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for some arbitrary constant C. We can verify that indeed x(t) satisfies the
equation dx/dt=cos t.

In general, solving an ODE is more complicated than simple integration.
Even so, the basic principle is always integration, as we need to go from derivative
to function. Usually, the difficult part is determining what integration we need to
do.

2.4.1 Separation of Variables

The method of separation of variables tries to construct a solution u to a given
partial differential equation as some sort of combination of functions of fewer
variables.

Example 2.5: Let us consider  be a bounded, open set with smooth
boundary. Then find the solution of initial-value problem for the heat equation by
the separation of variables.

(1)

Here  is given.

Solution: Assume there exists a solution having the multiplicative form

(2)

So that,

Consequently,

iff,

(3)

for all xu and t > 0 such that .

Let us suppose that
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So that,

(4)

               (5)

If  is known, the solution of Equation (4) is v = det for an arbitrary constant
d. Consequently we need only investigate equation (5).

Let is an eigen value of the operator -on U provided there exists a
function w, not identically equal to zero, solving

Where w is corresponding Eigen function. Hence if  an Eigen value and w
is corresponding Eigen function then we set above, to find

(6)

Solves

(7)

Thus the function u defined by Equation (6) solves problem Equation (1)
,provided g = dw.

More generally, if  are Eigen values, w
1
,......w

m
 corresponding

Eigen functions and d
1
 ,.......,d

m
 are constants, then

Solves (7) with the initial condition,

If we can find m, ...... w
1
 etc. such that

We can hope generalize further by trying to find a countable sequence,


1
…..

n 
are Eigen values, w

1
,........ w

n
 corresponding Eigen functions and d

1
,...........

d
1
 are constants,
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So that,

Hence,

Will be the solution of the initial-value problem (1). This is an attractive
representation formula for the solution.

2.4.2 Similarity Solution

For linear partial differential equations there are numerous techniques for reducing
the PDE to an ODE (or at least a PDE in a smaller number of independent variables).
These include various integral transforms and Eigen function expansions. Such
techniques are much less predominant in dealing with non-linear PDE’s. However,
there is an approach which identifies equations for which the solution depends on
certain groupings of the independent variables rather than depending on each of
the independent variables separately.

Plane and Traveling Waves

Let us the first a partial differential equation involving the two variables
. A solution u of the form is,

(2.42)

Equation (2.42) is called a ‘Traveling Wave’. More generally, a solution u
of a PDE in the n+1 variables

 having the form

(2.43)

Equation (2.43) is called a ‘Plane Wave’.

Soliton

Exponential Solution: A complex-valued plane wave solutions of the

form                                                             (2.43(a))

Where C and , being the frequency and 

the waves numbers.

Consider the Korteweg-de Vries (KDV) equation in the form is,

(2.44)
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This non-linear dispersive equation being a model for surface waves in water.
A traveling wave solution having the structure

(2.45)

Then u solves the KDV Equation (2.43) ,provided v satisfies the ODE

 (2.46)

Integrate in Equation (2.46) by first stating

(2.47)

a denotes some constant. Multiply this equality by v’ to obtain

And so deduce

(2.48)

Where b is another arbitrary constant. We examine in Equation (2.48) by
observing now only for solutions v which satisfy is,

Then by Equations (2.47) and (2.48) imply a = b = 0. Equation (2.48)
there upon simplifies to read

.

We take the minus sign above for computational convenience, and obtain
then this implicit formula

(2.49)

for some constant c.

Now substitute . It follows that  and

.
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So that Equation (2.49) is become

(2.50)

Where is implicitly given by the relation

(2.51)

We lastly combine (2.50) and (2.51), to calculate

. (2.52)

On the other hand, it is routine to check v so defined actually solves the
ODE in Equation (2.46). The outcome is that

is a solution of the KDV equation for each . A solution of this
form is called a ‘Soliton’.

Traveling Waves: The scalar reaction-diffusion equation is,

(2.53)

Where  has a cubic-like shape.

Similarity under Scaling

Consider porous medium equation is,

(2.54)

Where u 0 and 1 are constant.

From the fundamental solution of the heat equation, a solution u having the
form,

(2.55)

Where the constants and the function  must be determined.

Solution u of Equation (2.54) invariant under the dilation scaling

So that,

for all 

We obtain Equation (2.54) into (2.55),
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(2.56)

.

In order to convert Equation (2.56) into an expression involving the variable
y alone.

Let us assume that,

(2.57)

Then Equation (2.56) reduces to

(2.58)

At this point we have effected a reduction from n+1 to n variables. We
simplify further by supposing v is radial, i.e.

Then Equation (2.58) becomes is,

(2.59)

Whereas,

So that,

(2.60)

Equation (2.59) thereupon simplifies to read

Thus,

for some constant a.

Supposing  , we conclude a=0,

Whereas,

But then,
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Subsequently,

Where b is constant and so that

(2.61)

Where we took the positive part of the right hand side of Equation (2.61) to
ensure w 0. Remembering v(y) = w(r) and Equation (2.55), we obtain

(2.62)

Where from Equations (2.57) and (2.60),

(2.63)

Equations (2.62) and (2.63) are Barenblatt s solution to the porous medium
equation.

2.4.3 Fourier and Laplace Transformation

Laplace Transform

In mathematics, the Laplace transform, named after its inventor Pierre-Simon
Laplace, is an integral transform that converts a function of a real variable t (often
time) to a function of a complex variable s (complex frequency). The transform
has many applications in science and engineering because it is a tool for solving
differential equations. In particular, it transforms linear differential equations into
algebraic equations and convolution into multiplication.

For suitable functions f, the Laplace transform is the integral

Definition of Fourier transform on L1 - If u L1 (Rn), we express its Fourier
transform from Equation (2.64)

(2.64)

And it’s inverse Fourier Transform,

(2.65)
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So that,

Express the Fourier transform on L2 - Choose a sequence is,

By,

This sequence therefore converges to a limit, which we define to be :

The definition of u  does not depend upon the choice of approximating

sequence 1{ }k ku 
 .

Laplace Transform

Let us we define Laplace transform to be

Where, the Fourier transform is most appropriate for functions defined on
all of R (or Rn), the Laplace Transform is useful for functions defined only on R

+
. In

Practice this means that for a Partial differential equation involving time, it may be
useful to perform a Laplace transform in t, holding the space variables x fixed.

2.4.4 Hopf- Cole Transform

The Cole-Hopf transform provides an interesting method to solve the viscous
Burgers’ equation. The viscous Burgers’ equation was presented in 1940 and in
1950 Hopf and in 1951 Cole independently gave the method which is known as
the Cole-Hopf transformation to solve the viscous Burgers’ equation.

Hopf introduced the transformation by first rewriting Burgers’ equation as
below:

2

=
2t x

x

u
u u

 
 

 
(2.66)

He then introduced the dependent variable  = x, t where

1
( , ) = exp

2
x t u x

 
    

 (2.67)

which is inverted to be



Partial Differential
Equtions-II

NOTES

Self - Learning
106 Material

( , ) = 2 xu x t



 (2.68)

Substituting Equations (2.68) into (2.66) and simplifying, we get

22 = 2t xx

x x

  
 

   
    

   
(2.69)

Now, integrating with respect to x and then redefining   as  exp Cdt  
where C (t) is the integration constant with respect to x , then (2.69) can be
rewritten as

=t xx  (2.70)

which is the heat equation.

Hopf Statement

 If u  solves Equation 2.66 in an open rectangle R  of the , x t p  lane and if

, , x xxu u u  are continuous in R  then there exists a positive function   as can be

seen from Equation  2.67 that solves the heat equation in R  and for which

, , , x xx xxx     are continuous in R. One can easily show the converse, i.e., every

positive solution   of Equation  2.70 with the mentioned properties goes over
into a solution of Equation  2.66 of the described general kind. Let u be a regular

solution of Equation  2.66) in an x , t-domain D if , , x xxu u u  (and consequently tu )

are continuous in D.
We can solve the heat equation (2.70) using boundary conditions and initial

conditions either from the original problem with the transformation applied to the
conditions or by solving the equations over an infinite domain assuming that a

solution is known for ( , = 0) = ( )u x t g x  to then solve for all of > 0t .

Hopf proved that ( ), > 0C R t    and the same for u. One can show

uniqueness by assuming that ( , )u x t  is a regular solution of (2.66) in 0 < <t T
and satisfies

00 0
( , ) ( ) as , 0

x a
u t d u d x a t      

where

 2
00
( ) = for | | large

x
u d o x x 

and 0u  is integrable in every finite x -interval, then  = 2 /xu v   . By

discretizing the space into strips and then looking at the sign of the limit as t
approaches 0 by making use of Widder’s theorem on non-negative solutions to

the heat equation, Hopf shows that “ ( , )x t  is uniquely determined by the initial
values u (x, t) is, therefore, completely unique”.
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By choosing 
( , )

( ) = 2
( , )

x x t
f x v

x t





  we can then solve the ODE to get

( )( ,0) = ( ) = F xx h x Ce 

where

0

1
( ) = ( )

2

x
F x f s ds

v 
We can then solve for ( , )x t  to get

2( )

4( , ) = ( )
4

x s
ds

vt

R

C
x t h s e

vt







The solution to ( , )u x t  can then be determined from Eqaution  (2.68).

A parabolic PDE with quadratic non-linearity,

Initial value problem for a quasilinear parabolic equation is,

(2.71)

Where a>0. This kind of non-linear PDE arises in stochastic optimal control
theory.

 Supposing for the moment u is a smooth solution of Equation

(2.71), we set

Where as a smooth function, as yet un-specified. We will try to
choose  so that w solves a linear equation. We have

 and consequently Equation

(2.71) implies

It only if we choose is satisfy . We solve this differential

equation by setting .Thus we see that if u solves Equation (2.71), then

(2.72)
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Solve the initial- value problem for the heat equation (with conductivity a):

 (2.73)

Equation (2.72) is also known as the Cole-Hopf transformation.

Now the unique bounded solution of Equation (2.73) is,

And since Equation (2.72) implies,

We get thereby the explicit formula is,

For a solution of quasi-linear initial-value problem Equation (2.71).

2.4.5 Hodograph and Legendre Transform

Equations of Motion

Consider unsteady, plane, incompressible and viscous electrically conducting fluid
flow through porous medium in the presence of transverse magnetic field. Darcy-
Brinkman-Lapwood equations are

= 0V (2.74)

2= ( )'P
t k

             
V

V V V H H V (2.75)

21
( ) =

e t 


   

H

V H H (2.76)

= 0H (2.77)
 where

V  = fluid velocity,,
  is constant fluid density,,

'P  = fluid pressure,

K  = permeability of porous medium,

H  = magnetic field,
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  = coefficient of viscosity and

e  = magnetic permeability..

Here we consider unsteady flow in ( , )X Y  plane and applied transverse
magnetic field and take

= ( ( , , ), ( , , ),0)U X Y t V X Y tV (2.78)
and

= (0,0, )HH (2.79)
Since

2

=
2

'
e

H
P P 

 
 

 
(2.80)

We get

2= P
t K

         
V

V V V V (2.81)

The above equation can be rewritten in (X,Y)  as under..

= 0
U V

X Y

 


 
(2.82)

2 2

2 2
=

P
U V U U U

t X Y X X Y K

 
                      

(2.83)

2 2

2 2
=

P
U V V V V

t X Y X X Y K

 
                      

(2.84)

Doing the following transformations:

= ( ), = , = , =x X Ct y Y u U C v V  (2.85)
Then we have

= 0
u v

x y

 


  (2.86)

2 2

2 2
=

p
u v u u u

x y x x y K

 
      

             
(2.87)

2 2

2 2
=

p
u v v v v

x y y x y K

 
      

             
(2.88)

and

2 2

2 2
= 0H

H H H H
u v

x y x y


    
       

(2.89)
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where 
1

=H
e


  . Now Introducing the velocity function

=
v u

x y
  


  (2.90)

and eliminating p  we get

2=u v
x y K

    
             

(2.91)

where =

  is kinematical coefficient of viscosity..

Equation in Hodograph plane

Let us consider = ( , )u u x y  and = ( , )v v x y  such that

( , )
= 0.

( , )

u v
J

x y




 (2.92)

In this case we interchange the roles of dependent and independent
variables. Hence we have the following relations:

= , = ,  = ,  =
u y u x v y v x

J J J J
x v y v x u y u

       
 

        (2.93)

and

( , ) ( , ) ( , ) ( , )
= = ,   = =

( , ) ( , ) ( , ) ( , )

g g y g y g g x x g
J J

x x y u v y x y u v

     


      (2.94)

where = ( , ), = ( , )x x u v y y u v  and = ( , ) = ( ( , )g g x y g x u v ,

( , )) = ( , )y u v g u v  is any continuously differentiable function. Thus,

1
( , ) ( , )

= ( , ) = = = ( , )
( , ) ( , )

u v x y
J J x y j u v

x y u v


  
   

(2.95)

Now we can write ( , ) = ( , ), ( , ) = ( , )x y u v H x y H u v  . Then

Equations (2.85) and (2.86) become.

= 0
x y

u v

 


 
(2.96)

=
x y

j
v u

     
(2.97)
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   2 1
2 1

, ,
=

( , ) ( , )

jQ y x jQ
uQ vQ

u v u v K j

 
  

     
(2.98)

   1 2
1 2

, ,
= 0

( , ) ( , )H

jG y x jG
uG vG

u v u v


  
     

(2.99)

where

1 1 2 2

( , ) ( , )
= ( , ) =     = ( , ) =

( , ) ( , )

x y
Q Q u v Q Q u v

u v u v

  
  (2.100)

and

1 1 2 2

( , ) ( , )
= ( , ) =     = ( , ) =

( , ) ( , )

H y x H
G G u v G G u v

u v u v

 
  (2.101)

The hodograph transform is a technique for converting certain quasi-linear
systems of PDE into linear systems, by reversing the roles of the dependent and
independent variables. Equation of steady, two-dimensional fluid flow as fallow
Equation (2.102)

 (2.102)

In R2. The unknown is the velocity field u = (u1 ,u2) and the function
 the local sound speed, is given.

The Equation (2.102) is known as quasi-linear.

Let us now, however, no longer regard u1 and u2 as functions of x
1
 and x

2

(2.103)

But relatively regard x1 and x2 as functions of u
1
 and u

2
;

(2.104)

According to the Inverse Function Theorem, we can locally at least, invert
Equations (2.103) to yield Equation (2.104), provided

(2.105)

In some region of R2.

Assuming now Equation (2.105) holds, we calculate

(2.106)
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We pull-out of Equation (2.106) into (2.102) , to determine

This is a linear system for x = (x1, x2) as a function of u = (u
1
, u

2
).

Equation in Legendre transform function

Equation (2.77) implies the existence of stream function   satisfying

= , =U V
Y X

 


 
(2.107)

and similarly Equation (2.81) implies existence of   such that

= , =u v
y x

  


  (2.108)

and

= ( , , ) = ( )X Y t X Ct CY Constant     (2.109)
In a similar manner the Equation (2.91) implies

= , = ,
L L

y x
u v

 


 
(2.110)

where = ( , )x y   and = ( , )L L u v  are related by

( , ) = ( , )L u v vx uy x y  (2.111)

Introducing ( , )L u v  in (2.91) to (2.94) we see that the Equation (2.91) is
identically satisfied and the remaining equations are as below:

2 2

2 2
=

L L
j

u v


  
   

(2.112)

and

2 1

2 1

, ,
=

( , ) ( , )

L L
jQ jQ

u v uQ vQ
u v u v K j

 

                  
  

  

(2.113)

Again

1 2

1 2

, ,
= 0

( , ) ( , )H

L L
jG jG

u vuG vG
u v u v



                  
  

  

(2.114)
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where

1 1 2 2

, ,
= ( , ) = , = ( , ) =

( , ) ( , )

L L

u vQ Q u v Q Q u v
u v u v

             
 

(2.115)

1 1 2 2

, ,
= ( , ) = , = ( , ) =

( , ) ( , )

L L
H H

u v
G G u v G G u v

u v u v

            
 

(2.116)

and

122 2 2

2 2
=

L L L
j

u v u u


    

        
(2.117)

Summing up above we have the following theorem.

2.4.6 Potential Functions

A mathematical function whose values represent physical potentials is referred to
as a potential function. It also be defined as a function lying in the theory in the
category of function harmonic in nature and is usually studied as a part of the
potential theory.

Another technique is to utilize a potential function to convert a non-linear
system of PDE into a single linear PDE. We consider as an example Euler s
equations for in viscid, incompressible fluid flow in Equation (2.118)

(2.118)

Now the unknown are the velocity field  and the scalar

pressure p; the external force  and the initial velocity

 are given. Here D as usual denotes the gradient in the spatial

variables .

The vector Equation (2.107) means

(2.119)

We will assume div g = 0
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If furthermore there exists a scalar function   such that

F = Dh                                                                                   (2.120)

Now we have to find the solution (u,p) of Equation (2.107) for which the
velocity field u is also derived from a potential, say u=Dv

As curl u=0 flow will be irrotational.

And so v must be harmonic as a function of x, for each time t >0.

Consequently we take,

(2.121)

This is Bernoulli’s law.

Theorem 2.5:  If ( , )L u v  is the Legendre transform of a stream function of the
equation of motion to governing the plane unsteady flow of a finitely conducting

viscous incompressible fluid. Then ( , )L u v  must satisfy the existence of  and H
satisfy the similar manner.
Proof: Then we have

2 2 1= , = tan
v

q u v
u

     
 

(2.122)

and hence

sin cos
= cos , = sin

u q q v q q

  
 

     
 

      (2.123)

Again we define * *( , ), ( , )L q q    and *( , )j q   to be the Legendre

transform function, vorticity function and Jacobean function in ( , )q   plane. Now
using the relations

   * * * *, ,( , ) ( , ) 1
= =

( , ) ( , ) ( , ) ( , )

F G F GF G q

u v q u v q q


 

  
   

(2.124)

where * *( , ) = ( , ), ( , ) = ( , )F u v F q G u v G q   are continuously differentiable

functions.

Corollary:  If *( , )L q   is the Legendre transform function of a stream function of

the equation of motion (2.81) to (2.83) then *( , )L q   must satisfy
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* * * *
* * * *

1 2

cos sin
sin , cos ,

( , ) ( , )

L L L L
j Q j Q

q q q q

q q

  
 


 

                     
  
 
 

 
*

2 * *
1 2*

= sin cos
q

q Q Q
K j

     (2.125)

And if *( , )H q   is Legendre transform of magnetic field, then equation

(2.86) becomes

 * *
1 2cos sinq G G 

* * * *
* * * *

1 2

sin cos
cos , sin ,

= 0
( , ) ( , )

H

L L L L
j G j G

q q q q

q q q

  
 

 

       
               
  
 
 

(2.126)

* * * *
* *

* *
1 2

sin cos
cos , sin ,

1 1
( , ) =       ( , ) =

( , ) ( , )

L L L L
H H

q q q q
G q G q

q q q q

  
 

 
 

                  
 

(2.127)

Corollary: *( , )L q   and *( , )H q   must satisfy Equation (2.116) and

* *
1 2cos sin = 0G G  (2.128)

After figuring out the solution of *( , )L q   of the system of equation (2.116),

(2.117) we employ
* * * *cos sin

= sin , = cos
L L L L

x y
q q q q

  
 

   
 

    (2.129)

and Equation (2.113) to get ( , )u x y  and ( , )v x y  in the physical plane.

Example 2.6:  Let ( , ) = ( ) ( )L u v F u G v
(2.130)

such that first and second derivative of F(u)  and G(v)  are non-zero. Now

putting this value of ( , )L u v  in (2.107), (2.110), (2.111) we get

1 1
= , =

( ) ( ) ( )'' '' ''
j

F u F u G v


1 22 2

( ) ( ) ( ) ( )
= , =

( ) ( )

''' '' ''' ''

'' ''

F u G v G v F u
Q Q

F u G v
(2.131)

1 2= ( ) , = ( )'' ''H H
G F u G F v

v u

 
 
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Now using equations (2.124), (2.125) and (2.92) we get

 
2 2 3 3

1 1
= .

' ' '' ''''' ''' ''' '''

'' '' '' '' '' '' '' ''

G FG F F G
v u

G G F F K F G F G


     

      
     

(2.132)

If Equation (2.125) defines the Legendre transformation function such that

( ) ='''F u  0 and ( ) = 0'''G v  then (2.127) is satisfied only when 2 = 0  or

( ) ( ) ='' ''G v F u  0. Since we have taken the porous media, hence 2 0   so we

must have ( ) ( ) = 0'' ''G v F v . Now 1( ) = ( ) = 0 ( ) =''' ''' ''F u G v F u K  and

2( ) =''G v K , where 1 2,K K  are arbitrary constants. Then,

1 2( ) ( ) = 0 ='' ''G v F u K K    and

2 2
1 2 3 1 2 3( , ) =L u v C u C u C D v D v D     (2.133)

and 1 1=D C . Now using Equation (2.100), we get

   2 2
1 1

1 1
= , =

2 2
u y C v x D

C D
    (2.134)

Again by using Equation (2.98) we get the stream function as

   2 2

2 2

1 1

=
4 4

x D y C

C C


 
 (2.135)

The time dependent stream function is given by

   2 2

2 2

1 1

( , , ) = .
4 4

X Ct D Y C
X Y t

C C

  
  (2.136)

From Equations (2.126), we have

1 1 2 1= 2 , = 2
H H

G C G C
v u

 
 

(2.137)

Further we consider

2 2

2 2 2 2
1 1 1 1

1 1
= 0

2 2H

u H v H H H

C v C u C v C u


    
        

(2.138)

Let ( , ) = ( ) ( )H u v F u G v  then. Putting ( , )H u v  in Equation (2.132), we

get

 2
1 1 1

1
( ) ( ) ( ) ( ) = 0.

2
' ' '' ''

H

u v
G v F u G v F u

C C C


 
    

 
(2.139)

Differentiating twice with respect to u  we get
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(4)
2

1 1

( )
( ) = 0.

2

'''
HF u

v F u
C C


 (2.140)

Now the above equation is true for all v  if 
1

( )
= 0

'''F u

C  and

(4)
2

1

( ) = 0
2

H F u
C


. Hence 

22
3 4( ) =

2

C
F u u C u C

   
 

Now equation (2.134) becomes

2 3
22 2

1 1 1 1 1

= 0
2 2

'
''H HG C v C

u v G C
C C C C C

    
       
   

(2.141)

Now this equation is true for all u , if and only if,

2 3
22 2

1 1 1 1 1

= 0, = 0.
2 2

'
''H HG C v C

v G C
C C C C C

 
    (2.142)

Now solving above equation, we get 
22

5 3( ) = , = 0
2

C
G v v C C

   
 

 and

hence

 2 22
6( , ) = ,

2

C
H u v u v C  (2.143)

where 6 5 4=C C C . Now using equation (2.128), we have

   2 22
2 2 62

1

( , ) = .
8

C
H x y y C x D C

C
      (2.144)

Similarly by using transformations Equation (2.144) magnetic field is as under:

   2 22
2 2 62

1

( , ) = .
8

C
H X Y Y C X Ct D C

C
       (2.145)

Using Equations (2.107),(2.90), we have

= 0.
The total pressure by integrating with respect to x  and y  respectively is:

     2 2

2 2 2 2 3
1 1

= 2
2 2

p xy C x D y x D y C D
C K C

           (2.146)

where 2 2 3, ,D C D  are arbitrary constants.

Here time dependent pressure is given by:

 2 2
1

= 2( ) ( )
2

P X Ct Y C X Ct D Y
C K


   



Partial Differential
Equtions-II

NOTES

Self - Learning
118 Material

   2 2

2 2 3
1

( ) .
2

X Ct D y C D
C

         (2.147)

The fluid pressure can be calculated from.
2

= .
2

' eHP P


 (2.148)

Hence,

 2 2
1

= 2( ) ( )
2

'P X Ct Y C X Ct D Y
C K


   

   2 2

2 2 3
1

( )
2

X Ct D y C D
C

        

   
2

2 22
2 2 62

1

1

2 8e

C
Y C X Ct D C

C

          

(2.149)

Example 2.7: Let ( , ) = ( ) ( ),L u v vF u G u  such that ( ) 0F u  .Also, first and

second derivative of F(u)  and G(v)  are non zero.

Now substituting this value of ( , )L u v  in (2.107), (2.110) we get

 
2 2

1
= , =

'' ''

' '

vF G
j

F F



 

 2

1 2 2

3 3
= , = .

' ''' ' ' ''' '' ''''

'' '

v F F F F G F GF
Q Q

F F

  
 (2.150)

Substituting these values in equation (2.41), we get

3 2

2 3 4 2 3 3 4
10 15 6 4 15

iv ''' '' '' iv ''' '' '' ''' '' ''

' ' ' ' ' ' '

F F F F G G F G F G F
v

F F F F F F F

    

         
    

(2.151)

 '' ''vF G
K


  (2.152)

2

2 2
= 3 3 .

'' ''' ' ''' '' ''

' ' ' ' '

F F F G G F
v uv u

F F F F F

    
        

    
(2.153)

Equation (2.144) gives rise to following differential equations

2 3 41
10 15iv ' ''' '' ' '' '' 'F F F F F F F F

K
      

 3 2 3 3= 3''' ' '' ' '' 'u F F F F F F  (2.154)

and
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2 2 41
6 4 15iv ' ''' '' ' '' ''' ' '' '' '' 'G F G F F G F F G F G F

K
       

 3 2= 3''' ' '' '' 'u G F G F F (2.155)

This system is coupled non-linear partial differential equation in two unknown

F  and G  and quite complex to solve, so we assume ( )F u  as

1
( ) = ln ,

u A
F u

a KA


(2.156)

where A  and a  are constants. Using this value of ( )F u , (2.146) is satisfied

if and only if =A b , where 
1

=b a
Ka

 . So, we must have

1
( ) = ln .

u b
F u

a K b





(2.157)

Using equations (2.147) and (2.149) we can write

2

(6 ) ( 3 )
= 0,

( ) ( )
iv ''' ''a u c a u

G G G
a u b a u b

 
   

 
 

  (2.158)

where 2

1
= 7c

a K
  
 

.

Using ='''G H , we get

2

(6 ) ( 3 )
= 0,

( ) ( )
'' 'a u c a u

H H H
a u b a u b

 
   

 
 

  (2.159)

which is linear differential equation of order two with a regular singular point
at =u b , so using Frobenious method we have solution as below:

1 2( ) = ( ) ( ),H u A u b B u b      (2.160)

where A and B are arbitrary constants.

 22
2 0 1 2( ) = ( ) ( ) ( ) .

r ' ' 'u b u b c c u b c u b           (2.161)

In the above equations 1 2,r r  are roots of Indicial equation.

2 3
5 = 0

b b
r r c

a a
         
   

(2.162)

and 0 1 2 0 1 2, , ; , , ;' ' 'c c c c c c   are arbitrary constants.

2
1

3 1
( ) 5 ( ) = [ 2].m m

b b
c r m r m c c r m

a a a 

                   
(2.163)
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Now after getting ( )H u  as above Equation (2.160), we can get ( )G u

from the relation =''G  H  and hence ( , )L u v  from Equation (2.111). Further we
can get u  and v  from Equation (2.100) and steady state stream function   from
Equation (2.101).

CHECK YOUR PROGRESS

11. What is separation of variables?

12. Define the travelling wave.

13. Give the initial value problem for a quasilinear parabolic equation.

14. Define the hodograph transform.

2.5 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. General systems of non-linear differential equations are considered in the
normal form:

2. A subset of the phase space is called invariant if it consists of complete
trajectories. If a semi trajectory is bounded, then its limit set is connected.

3. An equilibrium point is Lyapunov stable if all solutions of the dynamical
system that start out near an equilibrium point  stay near  forever..
More strongly, if  is Lyapunov stable and all solutions that start out near

 converge to , then  is asymptotically stable.

4. Let us consider an open set A  Rn. Assume that for each parameter =a

 1, , na a A  we have a 2C  solution = ( ; )u u x a  of the partial differential

Equation 2.3.

Definition of Complete Integral: A 2C  function = ( ; )u u x a  is called a

complete integral in U   A provided,

    1. ( ; )u x a  solves the PDE Equation (2.3) for each a A  and

    2.  2, =a xarank D u D u n , where ,x U a A  .

5. Envelope, in mathematics, a curve, i.e., tangential to each one of a family of
curves in a plane or, in three dimensions, a surface, i.e., tangent to each one
of a family of surfaces. For example, two parallel lines are the envelope of
the family of circles of the same radius having centres on a straight line.
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6. The initial value problem for the Hamilton-Jacobi equation:

Where as  is the unknown, u=u(x,t) and Du =
D

x
u = (u

x1
,......,u

xn
).

7. Calculus of variations is a field of mathematics that deals with extremizing
functionals, as opposed to ordinary calculus which deals with functions.
Basically, a functional is a mapping from a set of functions to the real numbers.
Functionals are often formed as definite integrals involving unknown functions
and their derivatives.

8. However, if the curve is constrained to lie on a surface in space, then the
solution is less obvious and possibly many solutions may exist. Such solutions
are known as geodesics.

9. The Hamilton-Jacobi Equation is a first-order non-linear partial differential
equation of the form H(x,u

x
(x,α,t),t)+ut(x,α,t)=K(α,t) with independent

variables (x,t)” n×  and parameters α” n . It has wide applications in
optics, mechanics, and semi-classical quantum theory. Its solutions determine
infinite families of solutions of Hamilton’s ordinary differential equations,
which are the equations of motion of a mechanical system or an optical
system in the ray approximation.

10. A Lipschitz continuous function  is a weak solution
of the initial value problem:

11. The method of separation of variables tries to construct a solution u to a
given partial differential equation as some sort of combination of functions
of fewer variables.

12. Let us the first a partial differential equation involving the two variables
. A solution u of the form is,

is called a ‘Traveling Wave’.

13. Initial value problem for a quasilinear parabolic equation is,
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14. The hodograph transform is a technique for converting certain quasi-linear
systems of PDE into linear systems, by reversing the roles of the dependent
and independent variables.

2.6 SUMMARY

 Qualitative theory of differential equations studies the properties of solutions
of ordinary differential equations without finding the solutions themselves.

 Lyapunov studied the behaviour of solutions in a neighbourhood of an
equilibrium position and founded the modern theory of stability of motion.
The geometric approach of Poincare was developed in the 1920s by George
Birkhoff, who discovered many important facts in the qualitative theory of
higher-dimensional systems of differential equations.

 A subset of the phase space is called invariant if it consists of complete
trajectories. If a semi trajectory is bounded, then its limit set is connected.

 A finite number of equilibrium states and trajectories converging to these
equilibrium states as  .

 In the important particular case when the system has an invariant measure,
the study of general regularity of the behaviour of the solutions has been
carried out in great detail.

 Of special interest for applications are structurally-stable systems, i.e.,
systems which are stable under a perturbation of the right-hand sides which
is small in the sense of  . For , in any bounded part of the plane there
are only a finite number of periodic solutions. For   the behaviour of a
structurally-stable system is considerably more complicated. S. Smale has
given an example of a structurally-stable system having an infinite number of
periodic solutions in a bounded part of the phase space.

 One of the problems in the qualitative theory of differential equations is that
of the existence of periodic solutions. For the proof of the existence of such
solutions use is often made of topological devices, in particular the various
criteria for the existence of a fixed point.

 A complete qualitative study of non-linear systems of differential equations
has only been achieved in very special cases. For example, it has been
proved that the Lienard equation  has, under very
natural hypotheses, a unique periodic solution, while all its other solutions
converge to this periodic one.

 The general study of the stability of solutions of differential equations is
known as stability theory. Lyapunov stability theorems give only sufficient
condition.

 Lyapunov’s realization was that stability can be proven without requiring
knowledge of the true physical energy, providing a Lyapunov function can
be found to satisfy the constraints.
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 Normally non-linear first-order PDE of the form F(Du,u, x) = 0, where
xU and U is an open subset of Rn.

 We are concerning with discovering solution u of the PDE F(Du,u, x) = 0
in U,usually subject to the boundary condition u = g on where is
some given subset of U and g :R is prescribed.

 Envelope, in mathematics, a curve, i.e., tangential to each one of a family
of curves in a plane or, in three dimensions, a surface, i.e., tangent to each
one of a family of surfaces. For example, two parallel lines are the envelope
of the family of circles of the same radius having centres on a straight line.

 Let u = u(x;a) be a C1 function of xU, aA, where URn and ARm

are open sets.

 The equation f(x, y, a) = 0 represents, in general, a curve in the xy plane
for any given value of a. For different values of a, the relation f(x, y, a) =
0 represents a system of curves, called a one-parameter family of curves.
The curve which touches every member of the family is called the envelope
of the family f(x, y, a) = 0 where a is a parameter.

 Although the above two examples are geometrically clear, it is often not
possible to visualize the envelope. We will develop a mathematical way to
obtain the equation of the envelope of the family f(x, y, a) = 0.

 Geometrically, it is the point on the curve f(x, y, a) = 0 approaching the
intersecting point of f(x, y, a) = 0 and f(x, y, a + Da) = 0 as Da  0. To
understand clearly what the limiting position of the point of intersection of
f(x, y, a) = 0 and f(x, y, a + Da) = 0 mean.

 The interest is in extremal functions that make the functional attain a
maximum or minimum value or stationary functions where the rate of
change of the functional is precisely zero.

 The minimal curve problem asks us to find the function y = u(x) that
minimizes the arc length functional among all reasonable functions satisfying
the prescribed boundary conditions.

 The calculus of variations and its extensions are used to find the optimum
function that gives the best value of the model and satisfies the constraints
of a system. The first calculus of variations problem, the Brachistochrone
problem, was posed and solved by Johannes Bernoulli in 1696. In this
problem the optimum curve was determined to minimize the time traveled
by a particle sliding without friction between two points.

 In mathematics, the maximum or minimum of a function was determined
to be an optimal point or set of points. In the calculus of variations the
maximum or minimum value of a functional is determined to be an optimal
function. A functional is a function of a function and depends on the entire
path of one or more functions rather than a number of discrete variables.
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 Hamilton-Jacobi equation has wide applications in optics, mechanics, and
semi-classical quantum theory. Its solutions determine infinite families of
solutions of Hamilton’s ordinary differential equations, which are the
equations of motion of a mechanical system or an optical system in the ray
approximation.

 In physics, a vector field with this property is called divergence-free or
solenoidal.

 Hence for uniqueness we must require more than just solvability of the
PDE a.e and Lipschitz continuity of g. The next lemma shows that u will
inherit a form of one-sided second-derivative estimate from the initial
function g, granted that g be semiconcave. Semiconcavity will turn out to
be a sufficient condition for the uniqueness to hold.

 (Semiconcavity): Suppose that H is uniformly convex with a constant 
and u is defined by the Hopf-Lax formula.

 An Ordinary Differential Equation (ODE) is an equation that includes some
ordinary derivatives (as opposed to partial derivatives) of a function. Often,
our goal is to solve an ODE, i.e., determine what function or functions
satisfy the equation.

 In general, solving an ODE is more complicated than simple integration.
Even so, the basic principle is always integration, as we need to go from
derivative to function. Usually, the difficult part is determining what
integration we need to do.

 For linear partial differential equations there are numerous techniques for
reducing the PDE to an ODE (or at least a PDE in a smaller number of
independent variables). These include various integral transforms and Eigen
function expansions. Such techniques are much less predominant in dealing
with non-linear PDE’s. However, there is an approach which identifies
equations for which the solution depends on certain groupings of the
independent variables rather than depending on each of the independent
variables separately.

 Where, the Fourier transform is most appropriate for functions defined on
all of R (or Rn), the Laplace Transform is useful for functions defined only
on R

+
. In Practice this means that for a Partial differential equation involving

time, it may be useful to perform a Laplace transform in t, holding the
space variables x fixed.

 Another technique is to utilize a potential function to convert a nonlinear
system of PDE into a single linear PDE.
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2.7 KEY TERMS

 Envelope: Envelope, in mathematics, a curve, i.e., tangential to each one
of a family of curves in a plane or, in three dimensions, a surface, i.e.,
tangent to each one of a family of surfaces. For example, two parallel lines
are the envelope of the family of circles of the same radius having centres
on a straight line.

 Calculus of variations: Calculus of variations is a field of mathematics
that deals with extremizing functionals, as opposed to ordinary calculus
which deals with functions. Basically, a functional is a mapping from a set
of functions to the real numbers. Functionals are often formed as definite
integrals involving unknown functions and their derivatives.

 Hamilton-Jacobi equation: It has wide applications in optics, mechanics,
and semi-classical quantum theory. Its solutions determine infinite families
of solutions of Hamilton’s ordinary differential equations, which are the
equations of motion of a mechanical system or an optical system in the ray
approximation.

 Separation of variables: The method of separation of variables tries to
construct a solution u to a given partial differential equation as some sort
of combination of functions of fewer variables.

 Potential function: A mathematical function whose value represent
physical potentials is referred to as a potential function.

2.8 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What is non-linear PDE of the first order?

2. Give the types of bounded semi trajectory.

3. How will you determine the stability for non-linear system?

4. What is complete integral?

5. Define envelopes.

6. Give the derivation of characteristics ODE.

7. What is calculus of variation?

8. Define Hamilton’s ODE.

9. Give the uniqueness of weak solution.

10. State the similarity solution of plane and travelling wave.
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11. What do you understand by Hopf-Cole transform?

12. Define the hodograph.

Long-Answer Questions

1. Discuss about the non-linear PDE of the first order with the help of examples.

2. Elaborate on the complete integral and envelop giving examples.

3. Describe the Hamilton - Jacobi equations in the terms of calculus variable,
Legendre transform and weak solution.

4. Explain in detail about the representation of solution with appropriate
examples.
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3.0 INTRODUCTION

In classical mechanics, analytical dynamics is also known as dynamics or simply
dinamics is, concerned with the relationship between motion of bodies and its
causes, mainly the force ...... on the bodies and the properties of the bodies particular
mass and momentum of inertia. The foundation of modern day dynamic is Newtonian
mechanics and its reformulation as Lagrangian mechanics and Hamiltonian
mechanics.

The term generalized coordinates refers to the parameters that describe the
configuration of the system relative to some reference configuration. These
parameters must uniquely define the configuration of the system relative to the
reference configuration. This is done assuming that can be done with a single
chart. The generalized velocities are the time derivatives of the generalized
coordinates of the system. A holonomic, non-holonomic, scleronomic, and
rheonomic systems depends only on the coordinates and time. It does not depend
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on the velocities. Holonomic system are systems which all constraints are integrable
into positional constraints. Non-holonomic system are system which have constraints
that are non-integrable into positional constraints.

The generalised potential is also known as from Newtonian physics that
apparent forces appear when the motion of masses is described by using a non-
inertial frame of reference. The generalized potential of such forces is rigorously
analysed focusing on their mathematical aspects.

Ordinary second-order differential equations which describe the motions
of mechanical systems under the action of forces applied to them. The equations
were established by J.L. Lagrange in two forms: Lagrange’s equations of the first
kind, or equations in Cartesian coordinates with undetermined Lagrange multipliers,
and of the second kind, or equations in generalized Lagrange coordinates.

Hamiltonian formalism uses iq and p
i 
as dynamical variables, here p

i
 is

generalized momenta and  is additional dynamical variables. Hamilton’s canonical
equations of motion are the differential equations of motion of a mechanical system
in which the variables are the generalized momenta, and other is generalized. The
Hamiltonian formulation is obtain from the Lagrangian function L by replacing the
generalised velocity by the conjugate momentum this is done by Dokin’s theorem.
A cyclic coordinate is one that does not obviously appear in the Lagrangian. The
term cyclic is a natural name when one has cylindrical or spherical symmetry. In
Hamiltonian mechanics a cyclic coordinate often is called an ignorable coordinate.
In classical mechanics, Routh’s method or Routhian mechanics is a hybrid
formulation of Lagrangian mechanics and Hamiltonian mechanics developed by
Edward John Routh. Respectively, the Routhian is the function which replaces
both the Lagrangian and Hamiltonian functions.

In mathematics and classical mechanics, the ‘Poisson Bracket’ is an important
binary operation in Hamiltonian mechanics, playing a central role in Hamilton’s
equations of motion, which govern the time evolution of a Hamiltonian dynamical
system. Jacobi referred to Poisson’s theorem as “one of the most remarkable
theorems of the whole of integral calculus”. In the particular case when H = T–U,
it is the fundamental theorem of analytical mechanics. Of course, the Jacobi–Poisson
theorem does not always supply further first integrals. In some cases the result is
trivial, the Poisson bracket being a constant. In other cases the first integral obtained
is simply a function of the original integrals.

In this unit, you will learn about the basics of generalized coordinates,
holonomic, non-holonomic, scleronomic, and rheonomic systems, generalized
potential, Lagrange’s equations of first and second kind, uniqueness of solution,
energy equation for conservative, Hamilton’s variables, Donkin’s theorem,
Hamilton canonical equation Poission’s bracket, identity and Jacobi-Poisson
theorem.
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3.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the generalized co-ordinates

 Explain the holonomic and non-holonomic systems

 Know about the scleronomic and rheonomic system

 Analyse the generalized potential and Lagrange’s equations of first and second
kind

 Calculate the uniqueness of solution

 Describe the energy equation for conservation fields

 Learn about the Hamilton’s variables

 State the Donkin’s theorem

 Elaborate on the Poisson’s bracket and their identity

 Know about the Jacobi-Poisson theorem

3.2 BASICS OF GENERALIZED COORDINATES

When we try to describe the configuration of a system of particles, we need some
variables. We should choose the least number of possible variables to describe
the configuration satisfactorily. These least number of variables are called
‘Generalized co-ordinates’. These are nothing but a set of minimum co-ordinates
that describe the configuration of a system. Uses of generalized co-ordinates follow
some rules. These are as follows:

(i) The values of generalized co-ordinates (variables) define and determine the
configuration of the system.

(ii) The generalize co-ordinates may be varied (as they are variables): arbitrarily
and independent of each other, irrespective of constraints.

(iii) We can choose generalized co-ordinates at random to simplify the
mathematical methods to describe the configuration of the system.

Notation of Generalized Co-ordinates
A set of generalized co-ordinates of n dimension are denoted by q1, q2,
q3, ....., qn; i.e., by qi, where i = 1, 2, 3, ..... up to n.

If we consider that a particle moves in a plane, we may describe its co-ordinates
by Cartesian or polar co-ordinates as follows:

Let, in a Cartesian co-ordinate system, the position of a particle at an instant be
denoted by P(x, y), whereas in polar co-ordinates system, it is denoted by P(r,
). When we describe the position of the particle at an instant by generalized co-
ordinates, we can write:

= 
1

2

 
 

q x

q y
 in Cartesian co-ordinates
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and

q1 = 2 2[ ( )]r x y 

q2 = 1[ tan / ]y x 

Now, we consider a system of particles in 3N dimensions (i.e., 3D of N particles).
The generalized co-ordinates of a system of particles can be described as:

 

1 1 1 1 1 2 2 2 3 3 3

2 2 1 1 1 2 2 2 3 3 3

( , , ; , , ; , , ;..... , , ; )

( , , ; , , ; , , ;..... , , ; )

....................................................................................

..................




N N N

N N N

q q x y z x y z x y z x y z t

q q x y z x y z x y z x y z t

3 3 1 1 1 2 2 2 3 3 3

...................................................................

( , , ; , , ; , , ;..... , , ; )








 N N N N Nq q x y z x y z x y z x y z t

...(3.1)

The above Equation (3.1) is the transformation equation from Cartesian co-
ordinates to generalized co-ordinates in 3N dimensions.

The transformation equation of Cartesian co-ordinates from generalized co-
ordinates in 3N dimensions is as follows:

 

1 1 1 2 3 3

1 1 1 2 3 3

1 1 1 2 3 3

( , , ;....., ; )

( , , ,....., ; )

.............................................

.............................................

( , , ,....., ; )

N

N

N

x x q q q q t

y y q q q q t

z z q q q q t

 
 




 

...(3.2)

In general, ir  = 1 2 3 3( , , ,....., ; )

i Nr q q q q t = ( ; )


i jr q t  where i = 1, 2, 3, .....N and j

= 1, 2, 3, ..... 3N (degrees of freedom).

Generalized Displacement

Let us consider a system of N particles, which moves an infinitesimally small distance
ri from its original position in the Cartesian co-ordinate system.

The position vector of the system can be defined as:

ir = 1 2 3 3( , , ,....., ; )


i Nr q q q q t  = ( ; )


i jr q t

If we consider that the time is fixed, then



ir = 

3

1

N
i

j
j j

r
q

q







(as t is fixed, t = 0) ...(3.3)

The term qj in the above equation is called generalized displacement.
The derivation has been done according to the Euler’s theorem of partial

derivative. According to the theory, if f = f(x, y, z), then

df = 
f f f

dx dy dz
x y z

  
 

  

or f = f (x1, x2, x3, ...., xj)
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 f = 1 2 3
1 2 3

.....
   

       
    j

j

f f f f
x x x x

x x x x

= j
j j

f
x

x


 

 
 .

Generalized Velocity

Generalized velocity may be described in terms of time derivative of the generalized
displacement qj.

We have 
ir = ( ; )


i jr q t

So,




ir

t
= ir

  = 

3

1

.
N

ji i

j j

qr r

q t t

 


  
 



ir = 

3

1

N
i i

j
j j

r r
q

q t

 


 
 
 ...(3.4)

The term 
 

  
 j

j

q
q

t
 is called generalized velocity.

If the system has K number of constraints, then the number of degrees of freedom
is F = 3N – K. So, the Equation (3.4) has the form:


ir = 

3

1

F N K
i i

j
j j

r r
q

q t

 



 


 

 ...(3.5)

Generalized Acceleration

Again, if we explicitly differentiate the equation of generalized velocity with respect
to time, we will get the equation of generalized acceleration.

Differentiating Equation (3.4), we get
2

2





ir

t
= 

ir  = 

3

1

  
    


 


N
i i

j
j j

r rd
q

dt q t

= 
3 3

1 1

( )
 

             
 

 
 

N N
i i i

j j
j jj j

r r rd d d
q q

dt q q dt dt t

= 
3 3

1 1

N N
i i i

j j
j jj j

r r r
q q

q q t 

  
 

   
    ...(3.6)

The term jq  in the above equation is called generalized acceleration (when
no constraints are present).

Generalized Force

From the equation of generalized displacement Equation (3.3), we can derive the
component of generalized force.
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The generalize displacement equation is



ir = 

3

1

N
i

j
j j

r
q

q







Now, if we consider that a force 

iF  is applied on the i-th particle of the system,

then in equilibrium condition the virtual work due to the force 

iF  is defined by,,

Wi = 
1

.
N

i i
i

F r



 

 = 

3

1
1

.



 
   




N
N

i
i j

i j
j

r
F q

q

= 
3

1

.
N

j j
j

Q q





...(3.7)

where


jQ = 

3

1
1

N
N

i
i

i j
j

r
F

q






...(3.8)

is called the component of generalized force.

Generalised Potential

For conservative forces, potential function

     V = V(q
1
, q

2
 ... q

n
)

Therefore, W = –V

= i
i

V
x

x

 
   

= i
j

V
q

q

 
   

Also    W = Q
j
 q

j
 where Q

i 
are generalized forces.

 Q
j
 q

j
 = j

j

V
q

q

 
   

  Q
j 
=

 
j

V

q





3.2.1 Holonomic and Non-Holonomic Systems

Holonomic system are systems which all constraints are integrable into positional
constraints. Non-holonomic systems are systems which have constraints that are
non-integrable into positional constraints.
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A system of material points, i.e., either not constrained by any constraint or
constrained only by geometric constraints. The latter impose restrictions on the
positions of the points of the system and may be represented by relations of the
type as follow

...(3.9)

Here t is the time, x
i 
are the Cartesian coordinates of the point and N is the

number of points in the system. If f
s
/t a  0, the constraints are said to be

stationary; otherwise they are called non-stationary. Any position of the system
for which the coordinates of the points obey Equations (3.9) is called possible for
the given moment t. The constraints in Equation (3.9) impose restrictions not only
on the positions x

ν
, but also on the velocities v

ν 
and on the accelerations w

ν
 of the

points is,

...(3.10)

The velocities and accelerations satisfying Equations (3.10) are said to be
kinematically possible in a given position x

ν 
of the system for a given moment of

time t. Infinitesimal displacements δr
ν
 which satisfy conditions of the type

 
...(3.11)

For stationary constraints real displacements are found amongst the
possible displacements, while for non-stationary constraints they are not found
among the possible displacements, in general. Possible displacements are useful
for converting a holonomic system from one position of the system, which is
possible for a given t to another infinitely-close position which is possible at the
same moment t.

The number of independent variations of the points of the system is said to
be the number of its degrees of freedom; for a holonomic system this coincides
with the number n=3N–k of independent arbitrary parameters q

i
 with the help of

Equations (3.9) may be represented in the form of relations of the type of,

...(3.12)

The parameters q
i
 are called generalized, or Lagrangian, coordinates of the

system; they are called holonomic coordinates, in distinction from non-holonomic,
or quasi-, coordinates π

s
, introduced by non-integrable relations of the type

 
..(3.13)
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Constraints that can be analytically expressed by Equation (3.9) are said to
be retaining, or two-sided, in distinction from non-retaining, or one-sided,
constraints, which can be expressed by inequalities of the type

f (x, t)  0,

and impose the following conditions on the possible displacements is,

..

The possible displacements of a system with two-sided constraints are
reversible; among the possible displacements of a system with one-sided constraints
there are irreversible ones. The motions of holonomic systems are described by
the Lagrange equations (in mechanics) (of the first and second kinds), by the
Hamilton equations in Lagrangian coordinates has been already discussed.

Non-holonomic System

A non-holonomic system in mathematics is a physical system whose state depends
on the path taken in order to achieve it. Such a system is labelled by a set of
parameters subject to differential constraints, such that when the system evolves
along a path in its parameter space (the parameters varying continuously in values)
but finally returns to the original set of parameter values at the start of the path, the
system itself may not have returned to its original state.

It is probable to model the wheel mathematically with a system of constraint
equations, and then prove that that system is non-holonomic.

First, we define the configuration space. The wheel can change its state in
three ways: having a different rotation about its axle, having a different steering
angle, and being at a different location. We may say that is the rotation about the
axle, is the steering angle relative to the x-axis, and x and y define the spatial
position. Thus, the configuration space is,

[ ]Tu x y  


We must now relate these variables to each other. We notice that as the
wheel changes its rotation into their position. The variation in rotation and position
implying velocities must be present, we try to relate angular velocity and steering
angle to linear velocities by taking simple time-derivatives of the appropriate terms
is,

The velocity in the x direction is equal to the angular velocity times the
radius times the cosine of the steering angle, and the y velocity is similar. Now we
do some algebraic manipulation to transform the equation to Pfaffian form so it is
possible to test whether it is holonomic, starting with as follows
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Then, let it is separate the variables from their coefficients (left side of equation,
derived from above equation). We also understand that we can multiply all terms
by dt so we end up with only the differentials (right side of equation) is,

The right side of the equation is now in Pfaffian form is,

We now use the universal test for holonomic constraints. If this system were
holonomic, we might have to do up to eight tests. Though, we can use mathematical
intuition to try our best to prove that the system is non-holonomic on the first test.
Considering the test equation is:

we can see that if any of the terms A, Aand A were zero, that the part of
the test equation would be trivial to solve and would be equal to zero. Consequently,
it is often best practice to have the first test equation have as many non-zero terms
as possible to maximize the chance of the sum of them not equalling zero. Therefore,
we choose

A = 1

A = 0

A = –r cos 
u = dx

u = d

u = d
We substitute into our test equation is,

and simplify,

r sin  = 0

We can easily realise that this system, as termed, is non-holonomic, because
sin is not always equal to zero.
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A mechanical system is scleronomous if the equations of constraints do not
contain the time as an explicit variable and the equation of constraints can be
described by generalized coordinates. Such constraints are called scleronomic
constraints. The opposite of scleronomous is rheonomous.

Constraints as already discussed, we can solve all the problems of mechanics by
the proper exploitation of the equation below:


i im r = ( )

,

e
ij i

i j i
i j

F F



 
 

...(3.14)

To prove the various theories (i.e., conservation of linear momentum,
conservation of angular momentum, conservation of energy, etc.),
we consider that the internal force between i-th and j-th particles is zero; and also
the distance between the i-th and j-th particles is constant about origin O. This is

also considered for the motion of a rigid body; i.e., | |

ijr  = | |

 
i jr r  = Constant.

So, this is the restriction imposed to the rigid body motion. Another example is
when a particle placed on the surface of a solid sphere is restricted to move only
on the surface of the sphere.

So, the restrictions employed on the motion of a particle or system of particles
are constraints. We can describe constraints as follows: ‘The limitations or
geometrical restrictions on the motion of a particle or system of particles generally
known as Constraints.’ Constraints simplify our mathematical solvation of various
problems in mechanics.

Generally, constraints are classified into the following four groups:
(i) Holonomic Constraints: If the conditions of any constraint can be expressed

by an equation with the co-ordinates of the particles as well as time explicitly
having the form:
f (r1, r2, r3, .....; t) = 0 ...(3.15)

Then the constraints are called holonomic.
For examples:

1. Motion of a rigid body: In this case the distance between any two
particles of a rigid body remains always constant, i.e.,

| |
 
i jr r  = rij (constant)

where i, j = 1, 2, 3, ....., n; i j.
2. Particle moving on the surface of sphere: In this case the particle is

restricted to move on the surface of the sphere, i.e.,
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| |

r = a (constant)

(ii) Non-holonomic Constraints: If the conditions of the constraints cannot be
expressed by an equation, then they are termed as non-holonomic
constraints.

For examples:
1. Particles confined to move within a circle with rigid wall: In this

case the particles can move only in the circle with rigid wall, i.e.,

| |

ir a

where ir  is the radius vector of i-th particle and a is the radius of the
circle with rigid wall.

2. Particle falling under gravity from the top of a sphere: In this case
the condition for radius vector is given by,

| |

ir  a

where a is the radius of the sphere.

3.2.2 Scleronomic  and Rheonomic Systems

Scleronomic System

The scleronomousis is a mechanical system which equations of constraints do not
contain the time as an explicit variable and the equation of constraints can be
explain by ‘Generalized Coordinates’. Such constraints are called scleronomic
constraints. The opposite of scleronomous is rheonomous. Additionally a
mechanical system is rheonomous if its equations of constraints contain the time
as an explicit variable. Such constraints are called rheonomic constraints. The
opposite of rheonomous is scleronomous.
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Generalized Coordinates of Scleronomic System

In three dimensional space, a particle with mass m, velocity v, has kinetic
energy T,

21

2
T mv .

Velocity is the derivative of position r with respect to time t. Use chain rule
for several variables is,

1
i i

dr r r
v q

dt q t

 
  

  

Where iq  are generalized coordinates.

Consequently,
2

1
.

2 i
i i

r r
T m q

q t

  
     

Rearranging the terms carefully,

Where T
0
, T

1
, T

2
 are respectively homogeneous functions of degree 0, 1,

and 2 in generalized velocities. If this system is scleronomous, then the position
does not depend explicitly with time so that,

0.
r

t





Hence, only term of T

2 
does not vanish:

T = T
2

Kinetic energy is a homogeneous function of degree 2 in generalized
velocities.

For example,

The ‘Simple Pendulum’ exhibits Simple Harmonic Motion (SHM) as the
acceleration of the pendulum bob is directly proportional to the displacement from
the mean position and is always directed towards it. The time period (T) of a
simple pendulum for oscillations of small amplitude, is the general express by
Equation (3.16)
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              2 /T L G  ...(3.16)

Whereas L is the length of the pendulum and g is the acceleration of gravity.

As shown in Figure (1), a simple pendulum is a system composed of a
weight and a string. The string is attached at the top end to a pivot and at the
bottom end to a weight. Being inextensible, the string’s length is a constant. Therefore,
this system is scleronomous; it obeys scleronomic constraint so that,

2 2 0,x y L  

Fig. 1  A Simple Pendulum

Where (x, y) is the position of the weight and L is length of the string.

Let us assume the top end of the string is attached to a pivot point undergoing
a simple harmonic motion shown in Figure (2),

Fig. 2 A Simple Pendulum with Oscillating Pivot Point
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So that,

x
t
 = x

0
 cos t,

Here x
0 
is amplitude, is angular frequency, and t is time.

Though the top end of the string is not fixed, the length of this inextensible
string is still a constant. The distance between the top end and the weight must stay
the same. Therefore, this system is rheonomous as it obeys rheonomic constraint
explicitly dependent on time is,

2 2
0( cos ) 0x x t y L     .

Constraints

(iii) Scleronomic Constraints: If the constraints do not explicitly depend on
time, then they are called scleronomic. Holonomic and non-holonomic are
also the examples of scleronomic constraints. So, scleronomic constraints
are the special type of holonomic and non-holonomic constraints.

(iv) Rheonomic Constraints: If the constraints explicitly depend on time, then
they are said to be rheonomic type.

Difficulties of Constraints

In the solution of mechanical problems, the constraints show two types of difficulties:
1. The co-ordinates ri are connected by the equation (3.14) of constraints

conditions; therefore, they are not independent.
2. Generally, the forces associated in a mechanical problem are required to

maintain the constraints in the system. These forces are not known to us
primarily, i.e., the forces associated in a given mechanical problem are not
specified directly.

The first difficulty can be solved by the use of generalized co-ordinates
for holomonic type. The second difficulty can be overcome by eliminating
the forces from the equation of motion of a mechanical problem at an early
stage by the proper exploitation of mechanics.

3.2.3 Generalized Potential

Kinetic Energy

For the kinetic energy iT  of a rigid body iK  with the mass im  the inertial tensor

iI  the absolute center of gravity velocity Miv  and the angular velocity wi , it yields

2

translational rotational

1 1
= w w .

2 2
T

i Mi i i iT m v I
  (3.17)

Kinetic energy consists of the translational and rotational parts. Because
the kinetic energy is independent from the used coordinate system, it is not important
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in which coordinate system the particular energy parts are calculated. On the
other hand it is obvious that the angular velocities have to be specified in the same
system, as those of the inertial tensor.

The kinetic energy of a multi-body system is obtained by the sum of kinetic
energies of the single bodies. Taking the mass midpoint of the single bodies as the
reference point, we get

 2

=1

1
= w w

2

p
T

i Mi i i i
i

T m  v I (3.18)

Potential Energy

If the work obtained by the applied forces is independent from the distance
covered, the forces have a potential and can thus be determined by differentiation.
It gives:

= =e

U

x
U

U
y

U

z

 
  
   

 
   

f
(3.19)

with the potential energy = ( , , )U U x y z  which is a scalar local function.

The potential energy of a multi-body system can be obtained from the sum
of the potential energies of the single bodies

=1

=
p

i
i

U U (3.20)

Forces which in accordance with equation (3.18) can be obtained by
differentiating a potential possess energy and are therefore referred to as
conservative. Non-conservative forces modify their mechanical total energy. If we
specially deal with forces which eliminate energy, we refer to them as dissipative
forces.

Examples of conservative forces are weights

=Gf mg

and spring forces

= .Ff cs

The appropriate potentials are

=GU mgz
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and

21
= .

2FU cs

Potentials can be determined at any arbitrary point except for one additive
constant. If a multi-body system has only conservative forces, the whole system is
referred to as conservative. Therefore, it yields the theorem of conservation of
mechanical energy:

0 0= = constT U T U  constant (3.21)

The given energy expressions are used for the derivation of the equations of
motion. Here, in contrast to the synthetic method the single bodies are not free cut,
but the system will be considered as a whole.

The kinetic energy will be represented subject to the generalized coordinates
and, if necessary, subject to time.

 2

=1

1
( , , ) = ( , ) w ( , ) ( )w ( , )

2

p
T

i Mi i i i
i

T t m t t ty y v y y I y y (3.22)

The generalized forces result from imposed forces and moments.

    
=1 =1

= =

T T
p p

T Te e e ei i
k i i Ti i Ri ik k

i ik k

Q
y y

                
 r s

f I J f J I (3.23)

By means of these quantities we obtain Lagrange’s equation of motion of
second kind

= , = 1, ,k
k k

d T T
Q k f

dt

  
   y y


 (3.24)

Annotation

 The number of equations of motion is same as to the number of degrees of
freedom of the system. ALso, it is not necessary to introduce the reaction
forces as they cannot be calculated.

 In order to write the motion equations, we have to calculate the partial and

total differentiations of the function ( , , )T ty y . Chain rule is required to
perform the total differentiation of T  with respect to time t.

In conservative systems the calculation of generalized forced with respect
to eqution (3.23) can be avoided because these can also be analogous to Equation
(3.19) calculated by finding derivative of the potential energy U  in accordance
with the generalized coordinate. We get,
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= .k
k

U
Q

y



 (3.25)

From Lagrange’s function =L T U , we obtain Lagrange’s motions
equation in classical form

 
( )

= 0, = 1, ,
k k

d L L
k f

dt y y

 


 


 (3.26)

If, in addition to conservative forces, non-conservative forces appear, these
(and only these) are considered by the expression of Equation (3.23) on the right
hand side of Equation (3.29).

For example,

 The kinetic energy of a total system

2 2 2 2
1 2 1 1

1 1 1 1
=

2 2 2 2z zT m m I I   v v

 2 2 2 2 2 2 21 1 1 1
= 4 4 cos( )

2 2 2 2z zml ml I I                  (1)

and the potential energy results into

= (3cos cos )U mgl   

We obtain the following expression for the partial derivation

 2 2 2= 5 2 cos( )z z

L
I ml ml I    




   


 


2 2= 2 cos( ) z

L
ml ml I    




  


 

2= 2 sin( ) 3 sin
L

ml mgl   



  




2= 2 sin( ) sin
L

ml mgl   



 




 2 2 2 2 2= 5 2 cos( ) 2 sin( ) 2 sin( )z

d L
I ml ml ml ml

dt
         




      


   


(2)
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2 2 2 2 2= 2 cos( ) 2 sin( ) 2 sin( ).z

d L
ml ml I ml ml

dt
          




      


    

(3)

If we insert these statements into Lagrange’s Equations (3.26), we obtain
the following required equation of motion

 2 2 2 25 2 cos( ) 2 sin( ) = 3 sinzI ml ml ml ml             

 2 2 2 22 cos( ) 2 sin( ) = sinzml I ml ml mgl             
(4)

In this case we also obtain the motion equations:

2 2

2 2

5 2 cos( )
( , ) = ,

2 cos( )
zI mI ml

t
ml ml

 
 

  
  

M y

2 2

2 2

2 sin( )
( , , ) = ,

2 sin( )

ml
t

ml

  
  

  
   

k y y


 

3 sin
( , , ) = .

sin

mgl
t

mgl




 
  

q y y

Annotation

 The motion equations, which result from Lagrange’s equations, are
completely identical with the equations (with identical generalized
coordinates) calculated in Section, which we obtained by means of
d’Alembert’s principle from Newton-Euler Equations. This is true for the
general case also. Both methods exclusively differ in respect to their
approaches, not in respect to their results.

 In contrast to Newton-Euler’s formalism, Lagrange’s equations (in this form)
allow for the calculation of reaction forces (position forces). Conversely,
the consideration of these forces is not necessary when we set up equations,
which accrues considerable advantages in practice.

CHECK YOUR PROGRESS

1. What do you understand by generalised co-ordinates?

2. Give the rules of generalised co-ordinates.

3. Define the holonomic and non-holonomic system.

4. Differentiate between scleronomic and rheonomic system.
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3.3 LAGRANGE EQUATIONS OF FIRST KIND AND
SECOND KIND

Lagrange Equaton of First Kind

Consider a holonomic system of n material points 1 1 1 1( , , ),...,A x y z
( , , ).n n n nA x y z  Denote the forces acting on the points of the system by 1,..., nP P

and let 1,... ,nm m be the masses of these points. Assuming that the constraints are

bilateral, defined by Equation (3.27)

1 1 1( , , ,... , , , ) 0 ( 1,2,... )j n n nF x y z x y z t j m  (3.27)

The virtual displacement of the system satisfy the equations:

1

0 ( 1,2,..., )
n

j j j
i i i

i i ii

F F F
x y z j m

x y z

   
          

 (3.28)

From D’Alembert’s principle we have,

1

[( – ) ( – ) ( – ) ] 0
x y z i

n

i i i i i i i i zi i i
i

P m x x P m y y P m z


         (3.29)

Equation (3.29) holds for every set of numbers , ,  i i ix y z  satisfying the
system of Equations (3.28). There exist Lagrange’s multipliers 1,..., m  such
that Equation (2.27) are satisfied each moment t where it is necessary to substitute
Pix

 – m
i
 ixfor Pix

,

1

– 0,



  

x

m
j

i i ji
ij

F
P m x

x

1

– 0,



  

y

m
j

i i ji
ij

F
P m y

y
(3.30)

1

– 0, ( 1,2,..., ).



   

z

m
j

i i ji
ij

F
P m z i n

z

The numbers 1,..., , m depend on t and hence are functions of time.
Consequently, 1 1( ),..., ( )     m mt t . From Equation (3.30) we get,

1

,
x

m
j

i i ji
ij

F
m x P

x


  


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1

,



  

 y

m
j

i i ji
ij

F
m y P

y

1


  

 z

m
j

i i ji
ij

F
m z P

z
( 1, 2,..., ).i n

These equations are known as Lagrange's equations of the first kind.

Lagrange Equation of Second  Kind

Let us the place of a mechanical system is defined by n ‘Generalized Coordinates’
q

j 
(j=1,…, n), while its motion is subject to m non-holonomic constraints is,

(3.31)

Here is, ν = 1,..., m and s is the number of degrees of freedom s = n – m ;
i = 1,..., s;

(L)k =  k (L)/tk , where t is time; k  1.

The constraints in Equation (3.31) are of Chaplygin’s type, since q
i
 are

independent coordinates and q
s+v

 are dependent ones.

So that,

   (3.32)

Where L is a Lagrangian of the system and λ
ν 
are unknown Lagrange’s

multipliers. Extending them to the system of N point with variable mass, one
obtains is,

 

(3.33)

Therefore, generalized reactive forces

it is an appear as a consequence of mass variation IM  of Ith point and relative

velocity of their change to be a ( / )I IV d r dt
 

where IV


 is the absolute velocity of
an added or separated particle
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Note: the assumption of the reactive force in this form requires treating mass as a
constant during the differentiation of the Lagrange’s function.

After eliminating the multipliers the Equation (3.33) transformed into as follow,

Where L
*
 denotes the terms obtained after excluding 

( )k

q s v  and 
( 1)k

q s v



from Equation (3.33).

3.3.1 Uniqueness of Solution

Let consider the  .

So that, it will be a follow hypotheses is,

 L (t, x, v)be a regular.

  with α, β > 0;

 (t, x, v) is convex on for any 2 .

Therefore,

has at minimum one solution. In addition, if L (t, x, v) is strictly convex on
2 for any t X, this solution is unique.

Proof: Assume that there is exist 1,
1 2, px x W   such that

and show that this implies is,

1 2x x  .

Let 1 2( )y x x    2, so that 1, py W .

Since L is convex, we can say that y  is also a minimum of  because

We thus obtain,

. 

.

The convexity of L confirms that the integrate is non-negative. As the integral
is null, so the only possibility is,
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.

We now use the strict convexity of L to get that 1 2x x   and 1 2d x d x

dt dt

 


 

on X as asserted.

The proof is complete.

3.3.2 Energy Equation for Conservative Fields

The D’Alembert’s equation may be defined as:

.
 
i i

i

P r = ( ) .
 a
i i

i

F r

 .
 
i i

i

P r = .
 i i i

i

m r r

= 
,

.






 i
i i j

ji j

r
m r q

q

= 
,

. .
                        


  

 i i
i i i i j

j ji j

r rd d
m r m r q

dt q dt q
(3.34)

From the equation of generalized velocity, we have

So,


ir = iv  = ;

      

i i
j

jj

i i

j j

r r
q

q t

v r

q q

     


  
  


 


 



(3.35)

Putting these values in Equation (3.34), we have

.
 
i i

i

P r = 
,

. .
                


  


i i
i i i i j

j ji j

v vd
m v m v q

dt q q

= 2 21 1

2 2

              
        

   i i i i j
j jj i i

d
m v m v q

dt q q
(3.36)

From the equation of generalized force, we have


jQ = 

,




i

i
ji j

r
F

q
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 .


j jQ q = 
,

.





i

i j
ji j

r
F q

q
= .

 
i i

i

F r

[by the equation of generalized displacement

= .
 
i i

i

P r

[by D'Alembert’s equation]

Substituting the value of .
 
i i

i

P r  in Equation (3.36), we have

.


j jQ q = 2 21 1

2 2

              
        

   i i i i j
j ij i i

d
m v m v q

dt q q

= 
                

  j
j jj

d T T
q

dt q q
21

as  (K.E.)
2

 
 

 
 i i

i

m v T

            
                 




 j j
j jj

d T T
Q q

dt q q
= 0


  

     j j

d T T

dt q q
= 


jQ (3.37)

The Equation (3.37) is often termed as Lagrange’s equation, when the system
is conservative, i.e., when the forces are derivable from a scalar function (Potential)
V, which is the potential energy of the system:

i.e.,

iF = 


iV

So, from the generalized force equation, we can write


jQ = .




i

i
ji

r
F

q

= .


 


i

i
ii

r
V

q

= 



 j

V

q

So, Equation (3.37) can be written as

( )   
   i j

d T T V

dt q q
= 0

The potential energy V is the function of position only and hence independent
of generalized velocities. So, we can include the potential energy V in the partial
derivative with respect to jq ; so, the above equation takes the form:

( ) ( )
  

   
    j j

d
T V T V

dt q q
= 0



Analytical Dynamics:
Generalized
Co-ordinates

NOTES

Self - Learning
150 Material


  

     j j

d L L

dt q q
= 0 (3.38)

[for conservative system]
where T – V = L is called Lagrangian and the Equation (3.38) is termed as the
Lagrange’s equation of motion for a conservative system.

For the non-conservative force field, the Lagrange’s equation of motion is termed
as

  
     j j

d L L

dt q q
= Qj (3.39)

[for non-conservative system]
Thus, the Lagrangian of a system is the difference between kinetic energy (T)

and potential energy (V ), i.e., L = T – V.

From the above discussion, we can define L as the functions of qj,  jq  and t [as
L depends on T and V ]; hence we can write

L = ( , ; )j jL q q t (3.40)

Generalized Momentum from Lagrangian

The Lagrange’s equation of motion is defined as 
  

     j j

d L L

dt q q
 = 0 for

conservative system, where L = T – V.

So,

  j

L

q
= ( )




  j

T V
q

 = 
 


  j j

T V

q q
 = 


  j

T

q

[as the potential energy V depends only on position]

= 21

2

  
   

 
 j j

j j

m q
q

 =  j j
j

m q  = Pj          (3.41)

Pj in the above equation is called the generalized momentum.

Conservation of Generalized Momentum

We have, L = ( , ; )j jL q q t

If we consider that the generalized co-ordinate qj is cyclic or ignorable, then
L L(qj).

So,

 j

L

q
= 0

We can write the Lagrange’s equation of motion as

 
    j

d L

dt q
= 0 for conservative system.
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

  j

L

q
= Constant (3.42)

From Equations (3.31) and (3.32), we can write
Pj= Constant; i.e., generalized momentum is conserved.
[If the Lagrangian of a system does not contain generalized co-ordinate qj, then

obviously for such system 
j

L

q




 = 0. Such a co-ordinate is referred to as an ignorable

or cyclic co-ordinate. And for that type of co-ordinate system, the Lagrangian L
has the form L = ( , )jL q t ].

Conservation of Generalized Linear Momentum

We have,
  

     j j

d L L

dt q q
= 0


 
    j

d L

dt q
= 


 j

L

q

 ( )j
d

P
dt

= ( )



 j

T V
q

 = 



 i

V

q

[as 

  j

L

q
 = Pj by Equation (3.31) and K.E. (T) is independent of position]

 
jP = 



 j

V

q
 = Qj [By Equation (3.38)]

where Qj defines generalized force and for a conservative system Qj must vanish.

So, 
jP = 0

 Pj = Constant,

i.e., generalized linear momentum is conserved.

Conservation of Generalized Angular Momentum

From the conservation of generalized linear momentum, we have
Pj = Constant

But we have 


jP = ˆ.


n L, where 

L  denotes the total angular momentum.

So, we can write

ˆ.


n L = Constant

or, 

L  is conserved, i.e., generalized angular momentum is conserved.

[as Pj = 

  j

L

q
 = 


  j

T

q
 (V depends only on Position, qj)
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= . i
i i

ji

r
m v

q





 = ˆ.i i i
i

m v n r  

= ˆ . 


i i i
i

n r P

= ˆ.


n L ; because | |

idr  = AB dqj = ri sin  dqj


| |

| |


i

j

dr

dq
= ri sin  = ˆ 


in r ]

Fig 3.1 Displacement of Position Vectors for a Rotational Motion

Conservation of Generalized Energy

We have L = ( , ; )j jL q q t

= 1 2 1 2( , ,....., ; , ,....., ; )  j jL q q q q q q t

Let us assume that the Lagrangian L does not explicitly depend on time.

So, L = 1 2 1 2( , ,....., ; , ,....., )  j jL q q q q q q

 dL

dt
= 1 2 1 2

1 2 1 2

..... .....j j
j j

L L L L L L
q q q q q q

q q q q q q

     
      

     
     

  

1 2 2
1 2 1 2

..... .....
     

      
     

    
  j j

j j

L L L L L L
q q q q q

q q q q q q
 [as per Euler’s theorem]

= 
 


   

j j
j jj j

L L
q q

q q
(3.43)
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From Lagrange’s equation of motion, we have

 
    j

d L

dt q
= 


 j

L

q
[for conservative system]

Putting the value of 

 j

L

q
 in Equation (3.43), we get

dL

dt
= 

  
    

  
 j j

j jj j

d L L
q q

dt q q

= 
 
   

 
j

jj

d L
q

dt q


 

   
 

j
jj

d L
L q

dt q
= 0





 
j

jj

L
L q

q
= Constant (3.44)

but

  j

L

q
= Pj =  j j

j

m q [by Equation (3.41)]

Putting the value of 

  j

L

q
 =  j jm q  in Equation (3.44), we get

  j j j
j

L q m q = Constant

 2 j j
j

L m q = Constant

 T – V – 2T= Constant [as L = T – V and T = 21

2 j j
j

m q ]

 T + V= Constant (3.45)

i.e., total generalized energy is conserved.

So, conservation of energy states that if the Lagrangian function does not
contain time explicitly, the total generalized energy of the system is conserved.

CHECK YOUR PROGRESS

5. State the first kind of Lagrange equation.

6. Define the Lagrange equation of motion for non-conservative force field.
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3.4 HAMILTON’S VARIABLES

We have already discussed Lagrangian and Lagrange’s equations of motion, which
consist of a set of 2n dimensional second order differential equations. Here, in this
section, we will discuss about a set of 2n dimensional generalized co-ordinate
system of the first order, with a function H (Hamiltonian), which is termed as
‘Hamilton’s canonical equations of motion’. The Hamiltonian is said to be the
foundation of statistical and quantum mechanics.

From the conservation of generalized energy, we have




 
j

jj

L
L q

q
= Constant

 j
jj

d L
L q

dt q

 
 

  
 

 = 0

 j j
j

d
L q P

dt

 
 

  
  = 0          

as Pj = 

  j

L

q




 

 
  
  j j

j

d
q P L

dt
= 0  .   j j

j

q P L  = Constant (3.46)

(Thus, the quantity ( )  j jq P L  is constant in motion with the condition that the
Lagrangian L does not contain time explicitly. This quantity is designated by H
(Hamiltonian function)).

So, H = . ( , )  j j j j
j

q P L q q

= . ( , )j j j j j
j

q m q L q q   

= 2. ( , )  j j j j
j

m q L q q

= 2T – (T – V) 21
as 

2 j j
j

T m q
 

 
  

 

= T + V = Total energy of the system

Hence, the Hamiltonian H is nothing but the total energy of the system.

From the above discussion, we can define H as the function of qj, pj and t.

Therefore, H = H(qj, Pj; t) (3.47)
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3.4.1 Hamilton’s Canonical Equations of Motion

As per the discussions in the previous section by Equation 3.47, the Hamiltonian
H is the function of the position co-ordinates (qj), the momentum co-ordinates (Pj)
and the time (t), i.e.,

H = H(qj, Pj; t);

So, dH = 
  

 
   j j

j jj j

H H H
dq dP dt

q P t

(according to Euler’s theorem) (3.48)

Also, we have

H =   j j
j

q P L

So, dH = j j j j
j j

P dq q dP dL    (3.49)

But, we have Lagrangian L = ( , ; )j jL q q t

So, dL = j j
j jj j

L L L
dq dq dt

q q t

  
 

    


(according to Euler’s theorem)        (3.50)
Putting the value of dL from Equation (3.50) to Equation (3.49), we  get

dH = j j j j j j
j jj j j j

L L L
P dq q dP dq dq dt

q q t

  
   

       


= .j j j j j j j j
j j j

L
P dq q dP P dq P dq dt

t


   

     

L
as  and 
  

     


 j j
j j

L
P P

q q

= 


 
   j j j j

j j

L
q dP P dq dt

t
(3.51)

Comparing the coefficients of Equations (3.48) and (3.49), we get

   

   
   

 
 
 
  





j
j

j
j

H
q

P

H
P

q

L H

t t

(3.52)
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Equation (3.52) is termed as ‘Hamilton’s canonical equations of motion’. And
the equation is a set of 2n dimensional first order differential equations with
generalized coordinates.

Physical Significance of Hamiltonian (H)

   (a) We have, H = H(qj, Pj; t)

 dH

dt
= 

  
 

     j j
j jj j

H H H
q P

q P t

= .


  
   j j j j

j j

L
P q q P

t

[from Equation (3.52)]

= 




L

t
(3.53)

Now, if we consider that Lagrangian L does not contain time (t) explicitly,
then



L

t
= 0

Hence, Equation (3.53) takes the form

dH

dt
= 0

 H = Constant
Thus, we can conclude that if Lagrangian L does not contain time (t) explicitly,
the Hamiltonian H [i.e., total energy (T + V)] is conserved.

(b) Now, if we consider that Lagrangian L does not contain position co-ordinates
(qj), then


 j

L

q
= 0;

    But, we know

 j

L

q
= jP ;

So, we can write


jP = 0

 Pj = Constant

    We know, 
jP = 



 j

H

q
;

If Pj is constant, then


jP = 



 j

H

q
 = 0



 j

H

q
= 0
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Thus, we can conclude that if Lagrangian L does not contain position co-
ordinates (qj) [i.e., if a co-ordinate is cyclic or ignorable in L], then Hamiltonian
H also does not contain position co-ordinates (qj), i.e., the co-ordinates are
also cyclic or ignorable in H.

3.4.2 Donkin’s Theorem

The Hamiltonian formulation is obtained from the Lagrangian function L by replac-
ing the generalized velocity 

.

iq by the conjugate momenta p
i
. This can be done by

using Donkin’s theorem.

Let X(x1, x2, ..., xn) be a function of independent variables x1, x2, ..., xn,
with Hessian,

2

, 1

det 0

n

i j i j

X

x x


 
    

(3.54)

Let there be a transformation of variables generated by X(x1, x2, ..., xn)
given by,

, 1, 2, ...,


 
i

i

X
y i n

x (3.55)

Then there exists a transformation which is inverse of the transformation
given by Equation (3.55) which likewise generates some function Y(y1, y2, ..., yn).
Here y1, y2, ..., yn are also independent, i.e.,

, 1, 2, ...,


 
i

i

Y
x i n

y (3.56)

Then, the following relation exists between the inverse transformation Y and
its generator function X:

1

–



n

i i
i

Y x y X (3.57)

If the function X contains the parameters 1, 2, ..., m, i.e., if
X = X(x1, x2, ..., xn; 1, ..., m,) then Y also contains these parameters, i.e.,
Y = Y(y1, y2, ..., yn; 1, ..., m,) and

, 1, 2, ...,
j j

Y X
j m

 
  

  (3.58)

Proof: It can be clearly seen that the Hessian of X shown in Equation (3.54)
coincides with the Jacobian of the right hand side of Equation (3.55). Therefore,
the condition (3.54) shows that using Equation (3.55), it is possible to express the
variables x1, x2, ... in terms of y1, y2, ..., or
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x1 = fi (y1, y2, ...,yn) i = 1, ..., n (3.59)

If the function Y is defined by Equation (3.57) in which the variables x
i
 are

replaced by the expression given in Equation (3.59), then

1

–


  
     


n

l l
li i

Y
x y X

y y

1 1

– 0 and yields ;
n n

l l l
l i i i i l

l li l i i i

x X x y X
y x x y x y

y x y y x 

     
        

 
= x

i

Hence Equation (3.56) holds true. Now if contains the parameters ’s in
addition to x’s then the parameters occur in the direct transformation given in
Equation (3.55) and in the same way in the inverse also:

1 2 1 2( , ,..., , , ,..., ),   i i n mx f y y y 1,...,i n

The function Y is determined by Equation (3.57) in which now the x
i
’s are

replaced by 1 2 1 2( , ,... ; , ,..., )  i n mf y y y  and so,

1

–
n

i i
ij j

Y
x y X



        


= 
1 1

– –
 

  
    

n n
i i

i
i ij i j j

x xX X
y

x

Now as y’s and ’s are independent, 0





y
 and since 



i

i

X
y

x , we

have –
 


 j j

Y X

This proves Equation (3.58).

3.4.3 Cyclic Coordinates and Routh’s Equations

Generalized coordinates of a certain physical system that do not occur obviously
in the expression of the individual function of this system. When one uses the
corresponding equations of motion, one may obtain at once for every cyclic
coordinate the integral of motion corresponding to it. For example, if the Lagrange

function ( , , )i iL q q t , where the q
i
 are ‘Generalized Coordinates’, the iq  is the

generalized velocities, and t the time, does not contain q
j 
explicitly, then q

j
 is a

cyclic coordinate, and the j-th Lagrange equation has the form (d/dt)

( / ) 0jL q   , which at once gives an integral of motion is,

j

L

q


 

= constant
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The concept of a cyclic coordinate (angle coordinate, angle variable) ties in
with action-angle coordinates in the theory of completely-integrable Hamiltonian
systems. Each such system (with finite degrees of freedom) can be transformed
into one with coordinates (y

k
, x

k
) such that the Hamiltonian has the form H(y

1
,…,y

n
),

i.e. does not contain x
1
,…,x

n
. Then the y

k
 are called the action coordinates and

the x
k
 the angle coordinates.

In classical mechanics, Routh’s procedure or Routhian mechanics is a
hybrid formulation of Lagrangian mechanics and Hamiltonian mechanics developed
by Edward John Routh. Similarly, the Routhian is the function which replaces both
the Lagrangian and Hamiltonian functions. Routhian mechanics is equivalent to
Lagrangian mechanics and Hamiltonian mechanics. It offers an alternative way to
solve mechanical problems.

In the method devised by Routh, the q, q  basis of Lagrange is changed to
q, p basis only for those coordinates which are cyclic and their equations of motion
are obtained in Hamiltonian form, while the remaining coordinates which are not
cyclic are represented by Lagrange’s equations. If 1 2, ,..., sq q q are cyclic
coordinates, then a new function R which is called Routhian is defined by the
following relation:

1 2 1 2 1
1

( , ,..., , , ,..., , ,..., , ) –
s

n a s n i i
i

R q q q p p p q q t p q L


  

Routhian formulation is a path to both the Lagrangian and Hamiltonian
formulations.

Noether’s theorem states that if the coordinate q
j
 is cyclic, and if the Lagrange

multiplier plus generalized force contributions for the jth coordinates are zero,
then the canonical momentum of the cyclic variable, p

j
, is a constant of motion.

Therefore, both (q
j
, p

j
) are constants of motion for cyclic variables, and these

constant (q
j
, p

j
) coordinates can be factored out of the Hamiltonian H(p, q, t).

This reduces the number of degrees of freedom included in the Hamiltonian. For
this reason, cyclic variables are called ignorable variables in Hamiltonian mechanics.
This advantage does not apply to the ( , )j jq q variables used in Lagrangian
mechanics since q  is not a constant of motion for a cyclic coordinate. The ability
to eliminate the cyclic variables as unknowns in the Hamiltonian is a valuable
advantage of Hamiltonian mechanics that is exploited widely for solving problems.

It is advantageous to have the ability to exploit both the Lagrangian and
Hamiltonian formulations simultaneously when handling systems that involve a
mixture of cyclic and non-cyclic coordinates. The equations of motion for each
independent generalized coordinate can be derived independently of the remaining
generalized coordinates. Thus it is possible to select either the Hamiltonian or the
Lagrangian formulations for each generalized coordinate. Routh devised an elegant,
and useful, hybrid technique that separates the cyclic and non-cyclic generalized
coordinates in order to simultaneously exploit the differing advantages of both the
Hamiltonian and Lagrangian formulations of classical mechanics. The Routhian
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reduction approach partitions the 1
n
i i ip q   kinetic energy term in the Hamiltonian

into a cyclic group, plus a non-cyclic group, i.e.

The new function is called Routhian , that include only one of the two
partitions of the kinetic energy terms. This makes the Routhian a Hamiltonian for
the coordinates for which the kinetic energy terms are included, while the Routhian
acts like a negative Lagrangian for the coordinates where the kinetic energy term
is omitted.

R
cyclic 1 1 1( ,..., ; , ..., ; ,..., ; )

m

n s s n i i
cyclic

q q q q p p t p q L    

R
noncyclic 1 1 1( ,..., ; ,... ; ,..., ; )

s

n s s n i i
noncyclic

q q p p q q t p q L    

The first, Routhian, called R
cyclic

, includes the kinetic energy terms only for
the cyclic variables, and behaves like a Hamiltonian for the cyclic variables, and
behaves like a Lagrangian for the non-cyclic variables. The second Routhian,
called R

non-cyclic
, includes the kinetic energy terms for only the non-cyclic variables,

and behaves like a Hamiltonian for the non-cyclic variables, and behaves like a
negative Lagrangian for the cyclic variables. These two Routhians complement
each other in that they make the Routhian either a Hamiltonian for the cyclic variables,
or the converse where the Routhian is a Hamiltonian for the non-cyclic variables.
The Routhians use ( , )i iq q  to denote those coordinates for which the Routhian
behaves like a Lagrangian, and  (q

i,
 p

i
)  for those coordinates where the Routhian

behaves like a Hamiltonian. For uniformity, it is assumed that the degrees of freedom
between 1 i  s are non-cyclic, while those between s +1  i  n are ignorable
cyclic coordinates.

CHECK YOUR PROGRESS

7. Give the Hamiltonian canonical equation of motion.

8. What happen when Lagrangian L does not contain time t?

9. State the Dokin’s theorem.

10. What is cyclic coordinate?

3.5 POISSON BRACKETS

Definition: Let (q, p) be canonical variables and u = u(q, p), v = v(q, p). Then
we define,

{u, v}
q, p

= 
1

n

i i i i i

u v u v

q p p q

    
     


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The Poisson brackets map two functions into a new function. It is a bilinear
antisymmetric product. In symplectic form this becomes,

{u, v} = 
2

, 1

( ) ( )
n

T
ij

i j i j

u v
D u J D v J 



 
 

Particularly,

{q
i
, q

j
}

q, p
= (p

i
, p

j
)

q, p
 = 0

And
{q

i
, p

j
}

q, p
= 

ij

In symplectic notation we write,

{
i
, 

j
} = J

ij

It is more convenient to do it in the symplectic notation, even though it can
easily be verified within the (q, p) notation. Thus for a canonical transformation
(),

{u, v}= (D u)T J(D v) = (D u)T (D)T J(D )(D v)

Note that (D) = (D)–1, the center part is found to be equal to J (the
symplectic condition), and we obtain

{u, v} = (u,  v)
i.e., Poisson brackets are invariant under canonical transformations. Hamilton’s
equations have the property of remaining invariant under canonical transformations.
Similarly, equations expressed in terms of Poisson brackets will be invariant under
such transformations. It is indeed possible to reformulate classical mechanics
completely in terms of Poisson brackets. The remarkable fact is that this
reformulation can be extended with little change into the law of quantum mechanics.
The Poisson bracket can be observed as a product operation between functions
of phase-space and perhaps time. This product along with the vector field
character of functions produces algebra. The algebraic properties of the Poisson
bracket are:

1. Antisymmetry

2. Bilinearity

3. {uv, w} = u{v, w} + (u, w)v from the law of differentiation.

4. Jacobi’s identity, {u, {v, w}} + {w, {u, v}} + {v, {w, u}} = 0.

Note:
2 2

{ ,{ , }} ij kl ij kl

i j k l i j k l k j l

u v w u v w v w
u v w J J J J

          
                   

with summation over repeated indexes. To do this we need to add the cyclic
permutations,

2 2

{ ,{ , }} ij kl

i j k l k j l

v w u w u
v w u J J

     
          
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2 2

{ ,{ , }} ij kl

i j k l k j l

w u v u v
w u v J J

     
          

Consider, for example, all the terms where w is differentiable twice:

2 2

ij kl ij kl

i k j l i j k l

u v w v w u
J J J J

     


       

Since the indexes are all dummy indexes, we may rename them in the second
term, , , andi k l i k j j l   

2 2

0ij kl kl ji

i k j l k l j i

u v w v w u
J J J J

     
 

       

where we have used the antisymmetry of J.

Poisson Bracket Formulation of Mechanics

Let u(q, p, t) be any differentiable function. Its time derivative along a Hamiltonian
trajectory is,

,
1

( ( ), ( ), ) { , }
n

i i
q p

i i i

dq dpd u u u u
u q t p t t u H

dt q dt p dt t t

    
         


This equation, which governs the dynamics of any observable under
Hamiltonian dynamics includes the laws of mechanics. Particularly,

d

dt


= { , }H 

An immediate consequence of this is,

dH

dt
= 

H

t




which is the conservation of the Hamiltonian when it is not explicitly time-dependent.
Additionally, any function u(q, p, t) is a constant of motion iff,

{ u, H}
q, p

= 0
u

t






Moreover, it follows that if both u, v are constants of motion so is
{u, v}. Indeed, by Jacobi’s identity and the antisymmetry of the Poisson bracket,

{H, (u, v)} = { ,( , )} { ,( , )} , , { , }
v u

u v H v H u u v u v
t t t

                 

This may give a means to generate many invariants of motion. In most cases,
however, this process terminates fast, yielding trivial variables. A class of systems
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for which infinitely many conserved quantities can be thus generated are integrable
systems.

3.5.1 Poisson’s Bracket for Hamilton’s Equation Motion

Let us consider an arbitrary function ( , , )f tq p . Then its time evolution is
given by

=1

=
n

i i
i i i

df f f f
q p

dt q p t

   
     

  

=1

=
n

i i i i i

f H f H f

q p p q t

     
       

 (3.60)

where the first equality used the definition of total time derivative together
with the chain rule, and the second equality used Hamilton’s equations of motion.

Let ( , , )f tq p  and ( , , )g tq p  be any two functions; we then define their

Poisson bracket { , }f g  to be

def

=1

{ , } = .
n

i i i i i

f g f g
f g

q p p q

    
     

 (3.61)

The time-evolution Equation (3.60) can then be rewritten in compact form
as

= { , }
df f

f H
dt t





(3.62)

3.5.2 Poission’s Identity

While discussing Poisson brackets, we shall often just consider functions f(q, p)
and g(q, p) and not bother to discuss explicit time-dependence.

Here are some fundamental properties of the Poisson bracket:

• Bilinearity: We have

     1 1 2 2 1 1 2 2, = , ,f f g f g f g     (3.63)

and in a similar way for g .

• Anticommutativity: We have

{ , } = { , }.f g g f (3.64)

In particular it follows that { , } = 0f f .

• Jacobi Identity: For any three functions , ,f g h  we have

{ ,{ , }} { ,{ , }} { ,{ , }} = 0f g h g h f h f g  (3.65)

or equivalently (using anticommutativity)
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{{ , }, } {{ , }, } {{ , }, } = 0f g h g h f h f g  (3.66)

• Product Identity or Leibniz Rule: For any three functions , ,f g h
we have

{ , } = { , } { , }fg h f g h g f h (3.67)

The Poisson bracket { , }f g  involves first derivatives of f  and of g .

• Fundamental Poisson brackets: The Poisson brackets among the

canonical coordinates q  1= , , nq qq   and p  1= , , np pp   are

 , = 0i jq q

 , = 0i jp p

 , =i j ijq p  (3.68)

where ij  is the Kronecker delta, i.e.

1 if =
=

0 ifij

i j

i j



 

 The three properties of bilinearity, anticommutativity and the Jacobi identity
play such a fundamental role in many areas of mathematics that they have been
given a name: an algebraic structure involving a ‘Product’ that is bilinear,
anticommutative and satisfies the Jacobi identity is called a Lie algebra.

We can now prove an important result in Hamiltonian dynamics:

Total Time Derivative of a Poisson Bracket

For any two functions f(q, p, t) and g(q, p, t), we have

{ , } = , , .
d df dg

f g g f
dt dt dt

      
   

(3.69)

Proof: From the fundamental time-evolution Equation (3.62) applied to { , }f g ,
we have

{ , } = {{ , }, } { , }
d

f g f g H f g
dt t





(3.70)

The first term on the right-hand side can be transformed using the Jacobi
identity and anticommutativity:

{{ , }, } = {{ , }, } {{ , }, } = { ,{ , }} {{ , }, }f g H g H f H f g f g H f H g  
(3.71)

And for the second term on the right-hand side, we use the fact that / t 
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commutes with the partial derivatives / iq   and / jp   occurring in the definition

of the Poisson bracket; it therefore follows that

{ , } = , ,
f g

f g g f
t t t

             
(3.72)

If we add (3.71) and (3.72) and use the fundamental time evolution equation

(3.62) for f  and for g , we obtain (3.69).

In particular, if f  and g  are constants of motion, then so is { , }f g . So this
gives us a method to obtain new constants of motion, given old ones. These new
constants of motion are not guaranteed to be nontrivial. (For instance, we might

have { , } = 0f g .)

3.5.3 Jacobi-Poisson Theorem

The following equation is satisfied by the partial derivative of any Poisson bracket:

[ , ] , ,
u v

u v v u
t t t

              
(3.73)

The Jacobi’s identity is given by,

(u, (v, w)) + (v, (w, u)) + (w, (u, v)) = 0 (3.74)

If u and v are any two constants of motion of any given holonomic dynamical
system, then their Poisson bracket [u, v] is also a constant of motion. This is
known as the Jacobi-Poisson’s theorem. It is also called Poisson’s second
theorem on the Poisson bracket relations.

Proof: Consider

( , )
d

u v
dt

= ( , ) (( , ), )u v u v H
t






Using Equations (3.73) and (3.74), we get

( , )
d

u v
dt

= , , (( , ), ) (( , ), )
u v

v u v H u H u v
t t

             

= ( , ), , ( , )
u v

u H v u v H
t t

             

= , ,
du dv

v u
dt dt

      
   

= 0

because both du/dt and dv/dt vanish (since u and v are both constants of motion).
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This theorem finds intense significance in determining new constants of motion.
For example, if we have got any two independent constants of motion, then a third
one can be constructed from the Poisson bracket of these two, which may result
in either a new constant of motion or trivially either of the first two. If the former is
true, then we can make another pair of new Poisson brackets and if we might in
this way generate all the hidden constants of the motion. It should be remembered
that a dynamical system having n degrees of freedom can have at the most 2n – 1
independent constants of motion, which are functions of p

i
 and q

i
’s only, and one

constant of motion that must involve time explicitly.

CHECK YOUR PROGRESS

11. Define the Poisson bracket.

12. Give the algebraic properties of Poisson bracket.

3.6 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. When we try to describe the configuration of a system of particles, we need
some variables. We should choose the least number of possible variables to
describe the configuration satisfactorily. These least number of variables
are called ‘Generalized co-ordinates’. These are nothing but a set of minimum
co-ordinates that describe the configuration of a system.

2. Uses of generalized co-ordinates follow some rules. These are as follows:
(i) The values of generalized co-ordinates (variables) define and determine

the configuration of the system.
(ii) The generalize co-ordinates may be varied (as they are variables):

arbitrarily and independent of each other, irrespective of constraints.
(iii) We can choose generalized co-ordinates at random to simplify the

mathematical methods to describe the configuration of the system.

3. Holonomic system are systems which all constraints are integrable into
positional constraints. Non-holonomic systems are systems which have
constraints that are non-integrable into positional constraints.

4. The scleronomousis is a mechanical system which equations of constraints
do not contain the time as an explicit variable and the equation of constraints
can be explain by 'Generalized Coordinates'. Such constraints are called
scleronomic constraints. The opposite of scleronomous is rheonomous.
Additionally a mechanical system is rheonomous if its equations of constraints
contain the time as an explicit variable. Such constraints are called rheonomic
constraints. The opposite of rheonomous is scleronomous.

5. Consider a holonomic system of n material points 1 1 1 1( , , ),...,A x y z
( , , ).n n n nA x y z  Denote the forces acting on the points of the system by

1,..., nP P  and let 1,... ,nm m be the masses of these points.



Analytical Dynamics:
Generalized

Co-ordinates

NOTES

Self - Learning
Material 167

6. For the non-conservative force field, the Lagrange’s equation of motion is
termed as

  
     j j

d L L

dt q q
= Qj [for non-conservative system]

Thus, the Lagrangian of a system is the difference between kinetic energy
(T) and potential energy (V ), i.e., L = T – V.

7. Comparing the coefficients of equations of H = H (qj, pj, t), we get

   

   
   

 
 
 
  





j
j

j
j

H
q

P

H
P

q

L H

t t

The above equation is termed as ‘Hamilton’s canonical equations of motion’.
And the equation is a set of 2n dimensional first order differential equations
with generalized coordinates.

8. Now, if we consider that Lagrangian L does not contain time (t) explicitly,
then



L

t
= 0

Hence, equation of 
L

t




 takes the form

dH

dt
= 0

 H = Constant
Thus, we can conclude that if Lagrangian L does not contain time (t) explicitly,
the Hamiltonian H [i.e., total energy (T + V)] is conserved.

9. The Hamiltonian formulation is obtained from the Lagrangian function L by
replacing the generalized velocity 

.

iq by the conjugate momenta p
i
. This can

be done by using Donkin’s theorem.

10. The concept of a cyclic coordinate (angle coordinate, angle variable) ties in
with action-angle coordinates in the theory of completely-integrable
Hamiltonian systems. Each such system (with finite degrees of freedom)
can be transformed into one with coordinates (y

k
, x

k
) such that the

Hamiltonian has the form H(y
1
,…,y

n
), i.e. does not contain x

1
,…,x

n
. Then

the y
k
 are called the action coordinates and the x

k
 the angle coordinates.

11. Definition: Let (q, p) be canonical variables and u = u(q, p), v = v(q, p).
Then we define,
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{u, v}
q, p

= 
1

n

i i i i i

u v u v

q p p q

    
     



The Poisson brackets map two functions into a new function. It is a bilinear
antisymmetric product.

12. The algebraic properties of the Poisson bracket are:

(i) Antisymmetry

(ii) Bilinearity

(iii) {uv, w} = u{v, w} + (u, w)v from the law of differentiation.

(iv) Jacobi’s identity, {u, {v, w}} + {w, {u, v}} + {v, {w, u}} = 0.

3.7 SUMMARY

 The values of generalized co-ordinates (variables) define and determine the
configuration of the system.

 The generalize co-ordinates may be varied (as they are variables): arbitrarily
and independent of each other, irrespective of constraints.

 Holonomic system are systems which all constraints are integrable into
positional constraints. Non-holonomic systems are systems which have
constraints that are non-integrable into positional constraints.

 For stationary constraints real displacements are found amongst the possible
displacements, while for non-stationary constraints they are not found among
the possible displacements, in general. Possible displacements are useful
for converting a holonomic system from one position of the system, which is
possible for a given t to another infinitely-close position which is possible at
the same moment t.

 The number of independent variations of the points of the system is said to
be the number of its degrees of freedom.

 The possible displacements of a system with two-sided constraints are
reversible; among the possible displacements of a system with one-sided
constraints there are irreversible ones.

 A non-holonomic system in mathematics is a physical system whose state
depends on the path taken in order to achieve it. Such a system is labelled
by a set of parameters subject to differential constraints, such that when the
system evolves along a path in its parameter space (the parameters varying
continuously in values) but finally returns to the original set of parameter
values at the start of the path, the system itself may not have returned to its
original state.

 A mechanical system is scleronomous if the equations of constraints do not
contain the time as an explicit variable and the equation of constraints can
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be described by generalized coordinates. Such constraints are called
scleronomic constraints. The opposite of scleronomous is rheonomous.

 The scleronomousis is a mechanical system which equations of constraints
do not contain the time as an explicit variable and the equation of constraints
can be explain by ‘Generalized Coordinates’. Such constraints are called
scleronomic constraints. The opposite of scleronomous is rheonomous.

 The ‘Simple Pendulum’ exhibits Simple Harmonic Motion (SHM) as the
acceleration of the pendulum bob is directly proportional to the displacement
from the mean position and is always directed towards it.

 The forces associated in a mechanical problem are required to maintain the
constraints in the system. These forces are not known to us primarily, i.e.,
the forces associated in a given mechanical problem are not specified directly.

 The kinetic energy of a multi-body system is obtained by the sum of kinetic
energies of the single bodies.

 If the work obtained by the applied forces is independent from the distance
covered, the forces have a potential and can thus be determined by
differentiation.

 Non-conservative forces modify their mechanical total energy. If we specially
deal with forces which eliminate energy, we refer to them as dissipative
forces.

 The number of equations of motion is same as to the number of degrees of
freedom of the system. Also, it is not necessary to introduce the reaction
forces as they cannot be calculated.

 In order to write the motion equations, we have to calculate the partial and

total differentiations of the function ( , , )T ty y . Chain rule is required to
perform the total differentiation of T  with respect to time t.

 In contrast to Newton-Euler’s formalism, Lagrange’s equations (in this form)
allow for the calculation of reaction forces (position forces). Conversely,
the consideration of these forces is not necessary when we set up equations,
which accrues considerable advantages in practice.

 The Lagrange’s equations of the first kind are 
1

,



  

 x

m
j

i i ji
ij

F
m x P

z

1

,



  

 y

m
j

i i ji
ij

F
m y P

y  and 
1


  

 z

m
j

i i ji
ij

F
m z P

z  for ( 1, 2,..., ).i n

 Lagrange’s equation of motion for a conservative system is 
  

     j j

d L L

dt q q .

 Where T – V = L is called Lagrangian and the equation for conservative is
termed as the Lagrange’s equation of motion for a conservative system.

 Thus, the Lagrangian of a system is the difference between kinetic energy
(T) and potential energy (V ), i.e., L = T – V.
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 So, conservation of energy states that if the Lagrangian function does not
contain time explicitly, the total generalized energy of the system is conserved.

 Thus, the quantity ( )  j jq P L  is constant in motion with the condition that
the Lagrangian L does not contain time explicitly. This quantity is designated
by H (Hamiltonian function).

 We can conclude that if Lagrangian L does not contain time (t) explicitly,
the Hamiltonian H [i.e., total energy (T + V)] is conserved.

 We can conclude that if Lagrangian L does not contain position co-ordinates
(qj) [i.e., if a co-ordinate is cyclic or ignorable in L], then Hamiltonian H
also does not contain position co-ordinates (qj), i.e., the co-ordinates are
also cyclic or ignorable in H.

 The Hamiltonian formulation is obtained from the Lagrangian function L by
replacing the generalized velocity 

.

iq by the conjugate momenta p
i
. This can

be done by using Donkin’s theorem.

 In the method devised by Routh, the q, q  basis of Lagrange is changed to
q, p basis only for those coordinates which are cyclic and their equations of
motion are obtained in Hamiltonian form, while the remaining coordinates
which are not cyclic are represented by Lagrange’s equations.

 Routhian formulation is a path to both the Lagrangian and Hamiltonian
formulations.

 Poisson brackets are invariant under canonical transformations. Hamilton’s
equations have the property of remaining invariant under canonical
transformations. Similarly, equations expressed in terms of Poisson brackets
will be invariant under such transformations. It is indeed possible to
reformulate classical mechanics completely in terms of Poisson brackets.

 The Poisson bracket can be observed as a product operation between
functions of phase-space and perhaps time. This product along with the
vector field character of functions produces algebra.

 If u and v are any two constants of motion of any given holonomic dynamical
system, then their Poisson bracket [u, v] is also a constant of motion. This
is known as the Jacobi-Poisson’s theorem. It is also called Poisson’s second
theorem on the Poisson bracket relations.

 If the former is true, then we can make another pair of new Poisson brackets
and if we might in this way generate all the hidden constants of the motion.
It should be remembered that a dynamical system having n degrees of
freedom can have at the most 2n – 1 independent constants of motion,
which are functions of p

i
 and q

i
’s only, and one constant of motion that must

involve time explicitly.
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3.8 KEY TERMS

 Generalized Co-Ordinates: These are nothing but a set of minimum co-
ordinates that describe the configuration of a system.

 Non-Holonomic Constraints: Non-holonomic constraints is the conditions
of the constraints that cannot be expressed by an equation, then they are
termed as non-holonomic constraints.

 Scleronomic Constraints: There are the constraints that do not explicitly
depend on time, then they are called scleronomic.

 Rheonomic Constraints: Rheonomic constraints is the constraints that
explicitly depend on time, then they are said to be rheonomic type.

 Cyclic coordinate: The concept of a cyclic coordinate (angle coordinate,
angle variable) ties in with action-angle coordinates in the theory of
completely-integrable Hamiltonian systems.

 Routhian mechanics: In classical mechanics, Routh’s procedure or
Routhian mechanics is a hybrid formulation of Lagrangian mechanics and
Hamiltonian mechanics developed by Edward John Routh.

3.9 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Define the terms generalized co-ordinates and generalized displacement.

2. Differentiate between holonomic and non-holonomic systems.

3. Give the notation of generalized co-ordinates.

4. What is Scleronomic system?

5. Define kinetic and potential energy.

6. How will you define the Lagrange’s equations of first and second kind?

7. What are Lagrange’s multipliers?

8. Give the Lagrange’s equations of motion for a energy conservative system.

8. What do you understand by uniqueness of solution.

9. How will you define the Hamilton’s variables?

10. State the is Donkin’s theorem?

11. Define the Poission’s bracket.

12. State the Jacobi-Poisson Theorem.
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Long-Answer Questions

1. Explain in detail about the generalized co-ordinates with the help of their
notations and examples.

2. Describe the advantages of using generalized co-ordinates with the help of
examples.

3. Elaborate on the holonomic and non-honlonomic systems with examples.

4. What are constraints? Define various constraints with examples. How do
they affect the motion of a system of particles?

5. Analyse the Lagrange’s equations of first and second kind with the help of
examples.

6. Discuss the detail about the Lagrange’s equation of motion from D’Alembert’s
principle for conservative and non-conservative systems.

7. What is Hamilton’s variables? Discuss the Hamilton’s canonical equations
of motion with the help of  examples.

8. Analyse the Donkin’s theorem. Give appropriate examples.

9. What do you understand by the Poission’s identity? Give appropriate
examples.
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UNIT 4 ANALYTICAL DYNAMICS:
HAMILTON’S PRINCIPLE
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4.2 Introduction to Hamilton’s Principle
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4.2.2 Poincaré-Cartan Integral Invariant
4.2.3 Whittaker’s Equations

4.3 Lee Hwa Chung’s Theorem
4.4 Hamilton - Jacobi Equation

4.4.1 Jacobi’s Theorem
4.4.2 Method of Separation of Variables in Hamilton-Jacobi Equation

4.5 Lagrange Brackets
4.5.1 Canonical Transformation in Terms of Lagrange’s and Poisson Bracket
4.5.2 Invariance of Lagrange and Poisson Bracket under Canonical Transform

4.6 Answers ‘Check Your Progress’
4.7 Summary
4.8 Key Terms
4.9 Self-Assessment Questions and Exercises

4.10 Further Reading

4.0 INTRODUCTION

The Hamilton’s Principle is state that the dynamics of a physical system are determine
by avariatinal problem for a functional based on a single function.

Least action refers to the absolute value of the action functional being
minimized. The principle can be used to derive Newtonian, Lagrangian and
Hamiltonian equations of motion, and even general relativity. The canonical formalism
for constrained systems with a finite number of degrees of freedom by making use
of the Poincare-Cartan integral invariant method. In mathematics, a Whittaker
function is a special solution of Whittaker’s equation, a modified form of the confluent
hypergeometric equation introduced by Whittaker (1903) to make the formulas
involving the solutions more symmetric. The Lee Hwa Chung state that any other
universal integral invariant differ from one of the enumerated integral by constant
factor.

In mathematics, the Hamilton–Jacobi equation is a necessary condition
describing extremal geometry in generalizations of problems from the calculus of
variations. It can be understood as a special case of the Hamilton–Jacobi–Bellman
equation from dynamic programming. On other hand Jacobi’s theorem states the
Hamilton partial differential equation for a given Hamiltonian determines in a simple
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way all the trajectories of the Hamiltonian flow. It is usually proved by appealing to
the theory of canonical transformations.

Lagrange brackets are certain expressions closely related to Poisson
brackets that were introduced by Joseph Louis Lagrange in 1808–1810 for the
purposes of mathematical formulation of classical mechanics, but unlike the Poisson
brackets, have fallen out of use.

In mathematics and classical mechanics, the Poisson bracket is an important
binary operation in Hamiltonian mechanics, playing a central role in Hamilton’s
equations of motion, which govern the time evolution of a Hamiltonian dynamical
system. The Poisson bracket also distinguishes a certain class of coordinate
transformations, called canonical transformations, which map canonical coordinate
systems into canonical coordinate systems. A ‘Canonical coordinate system’
consists of canonical position and momentum variables.

In this unit, you will learn about the introduction to Hamilton’s principle and
principle of least action,Poincare-Cartan integral invariant and Whittaker’s
equation, Lee Hwa Chung’s theorem, Hamilton - Jacobi equation, canonical
transformation interm of Lagranege and Poisson bracket, invariance of Lagrange
and Poisson baracket under canonical transformation.

4.1 OBJECTIVES

After going through this unit, you will be able to:

 Introduce the Hamilton’s principle and principle of least action.

 State the Poincare-Cartan integral invariant and Whittaker’s equations

 Define the Lee Hwa Chung’s theorem.

 Explain about the Hamilton-Jacobi equation

 Elaborate on the Jacobi’s theorem and method of separation of variables

 Describe the Lagrange brackets and canonical transformation of Lagrange
and Poisson bracket

 Discuss invariance of Lagrange and Poisson brackets under canonical
transformations

4.2 INTRODUCTION TO HAMILTON’S PRINCIPLE

Hamilton’s principle is an integral principle. This means that it considers the entire
motion of a system between time t

1
 and t

2
 . The instantaneous configuration of the

system is described by the values of n generalized coordinates q
1
,..., q

n
, and

corresponds to a particular point in a Cartesian hyperspace where the q’s form
the n coordinate axes. This n-dimensional space is called the configuration space.
With time, the system point moves in this configuration space, tracing out a curve
which describes the path of motion of the system. The configuration space can be
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very different from the physical 3-dimensional space, where only three coordinates
are needed to describe a position at any given time. Hamilton’s principle considers
the motion of a mechanical system, described by a scalar potential that may be a
function of the coordinates, velocities and time. The integral, which is frequently
also referred to as the action in an essential 1-dimensional form from t

1
 to t

2
, is

  
2

1

( , , )
t

t
A x x t dt    (4.1)

where T V   is the Lagrangian, T and V being respectively the kinetic
and potential energy. The dot indicates derivative with respect to time. The
dependence of x on t is not fixed, i.e., although the integral is from t

1
 to t

2
, the

exact path of integration is not known. The correct path of motion of the system is
such that the action has a stationary value which means that the integral along the
given path has the same value to within first-order infinitesimals as that along all
neighbouring paths. The difference between two paths for a given value of t, x ,
is termed as the variation of x and is usually described by introducing a new
function (t) to define the arbitrary deformation of the path and a scale factor  to
give the magnitude of the variation. The function (t) is arbitrary although it must
satisfy the boundary values, (t

1
) = (t

2
) = 0 and it must be twice differentiable.

The paths can then be described as

( , ) ( ,0) ( ,0) ( )x t x t x x t t       (4.2)

We have a stationary value of the action when the derivative of A with respect
to the scale factor  is zero, i.e.,

  
0

0
A



    
(4.3)

The -dependence of the integral is contained in x(t, ) and ( , )x t   , and
therefore

2

1

t

t

A x x
dt

x x

            



 

(4.4)

By inserting Equation (4.2) and integrating the second term by parts, we
obtain

  
2

2

1
1

( ) . ( )
t

t

t
t

A d
t dt t

x dt x x

                     
  

(4.5)

The integrated part vanishes because the end-points are fixed. The condition
for stationary values, Equation (4.3), is therefore given by

  
2

1

( ). 0
t

t

d
t dt

x dt x

        
 

(4.6)

From the fundamental theorem of variational calculus, if the integral in Equation
(4.6) vanishes for every (t) continuously differentiable in the interval (t

1
, t

2
), then
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the content of the brackets in the Equation (4.6) must identically disappear in the
same interval. It therefore follows that A can have stationary values only if,

0
d

x dt x

 
 

  
 

(4.7)

which is the Euler-Lagrange differential equation.

4.2.1 Principle of Least Action

The stationary-action principle is also known as the principle of least action is a
variational principle that give state us when applied to the action of a mechanical
system, yields the equations of motion for that system. The principle states that the
trajectories (i.e. the solutions of the equations of motion) are stationary points of
the system’s action functional. The term ‘Least Action’ is a historical misnomer
since the principle has no minimality requirement: the value of the action functional
need not be minimal (even locally) on the trajectories. Least action refers to the
absolute value of the action functional being minimized. The principle can be used
to derive Newtonian, Lagrangian and Hamiltonian equations of motion, and even
general relativity. According to a relativity, the different action must be minimized
or maximized.

Statement

The starting point is the action, denoted S, of a physical system. It is defined as the
integral of the Lagrangian L between two instants of time t

1
 and t

2
 – technically a

functional of the N generalized coordinates q = (q
1
, q

2
, ... , q

N
) which are functions

of time and define the configuration of the system,

Here is dot denotes the time derivative, and t is time.

Mathematically the principle is,

Where δ (lowercase Greek delta) means a small change. The path taken by
the system between times t

1
 and t

2
 and configurations q

1
 and q

2
 is the one for

which the action is stationary (no change) to first order.

Stationary action is not always a minimum, despite the historical name of
least action. It is a minimum principle for sufficiently short, finite segments in the
path. In applications the statement and definition of action are taken together
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The action and Lagrangian both contain the dynamics of the system for all
times. The term ‘Path’ simply refers to a curve traced out by the system in terms of
the coordinates in the configuration space, i.e. the curve q(t), parameterized by
time.

Action of a dynamical system over an interval t
1
 < t < t

2
 is

Where T = K.E.

This principle states that the variation of action along the actual path between
given time interval is least, i.e.,

Now we know that T + V = E (constant)

V = P.E. and L = T–V

By Hamilton’s principle, we have

4.2.2 Poincaré-Cartan Integral Invariant

Henri Poincaré has shown that for any Hamiltonian system the form  i iw dp dqi

possesses the property that  W
D  over any two-dimensional manifold D in
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1 1( ,..., , ,... )n np p q q -space is independent of t. A differential form with such a

property is called a Poincaré integral invariant. If 1 1,( ,..., , , ..., )k kF x x t dk dx  is a

Poincaré integral invariant of a system in which derivatives are identified with

functions of the variables and t, then 1 , 1( ,..., , – ,..., – )k kF x x t dx A dt dx A dt is

an invariant form of the system expressible in terms of differentials and the functions
A

k 
and is called the related Cartan form. The associated Cartan form of

i i idp dq can therefore be expressed in terms of the differentials of H. It  is not

only an invariant of the system in associated differential form but also actually
determines the system, which is the first associated characteristic system of w’.

4.2.3 Whittaker’s Equations

Consider an arbitrary system for which the function H is not explicitly dependent
on the time in which case we have generalized integral of energy,

( , ) i iH q p h (4.8)

This integral is equivalent to the integral of conservation of momentum, i.e.,

1 p c . We obtain 1 p c  when q
1 
is the cyclic coordinate, i.e., when

1
0





H

q

Also from the analogy between the variable of time t and a cyclic coordinate,
we can reduce the order of the set of differential equation of motion with the help
of integral of energy given in Equation (4.8). For this, consider a non-extended 2n

dimensional phase space in which , ( 1,..., )i iq p i n are the coordinates of points.

Consider here only those points of the phase space whose coordinates satisfy
Equation (4.8) with fixed value of constant h

0
, i.e.,

( , ) o o
i i oH H q p h (4.9)

The Poincare-Cartan integral invariant is

1
1

 
n

i i
i

I p q (4.10)

From Equations (4.8) and (4.9),

0     oH t h t

as t is not variable on a closed curve and initial as well as terminal points are
same. On solving Equation (4.8) for p

1
, we get

1 1 2– ( ,... , , ,..., , ) n n n op K q q p p p h
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Putting the above value in Equation (4.10), we get

1 1
2

–


 
   
  

n

j j
j

I p q K q

This integral also has the form of Poincare-Cartan integral, where the basic
coordinates and momenta are q

j
 and p

j
 (j = 2, …, n) and the variable is q

1
. This

implies that the motion of the generalized conservative system should satisfy the
system of (2n–2) differential equations given by,

1 1
, – , ( 2,..., )

  
  
 

j j

j j

q dpK K
j n

dq p dq q

These equations are termed as Whittaker’s equations.

Lagrangian and the Action

For every mechanical system, there exists a function of the generalized coordinates

(and velocities) called the Lagrangian ( , ) i iL L q q  which, when integrated over

a period of time, defines the action, A, associated with the system,

2

1
( , )  t

i it
A L q q dt

We can apply the calculus of variations to derive the Euler-Lagrange equations
of motion,

– 0 1,...,
  

     i i

L d L
i N

q dt q

to find the unique trajectory defined by the coordinates q
i
. The Lagrangian,

as defined, is very general and in this form, applies even to quantum mechanics.
For all known classical systems, the Lagrangian can be written as the difference
between the total kinetic energy, T, of the system and the potential energy, U, i.e.,
for the classical systems, L = T – U.

4.3 LEE HWA CHUNG’S THEOREM

Lee Hwa Chung stated that any other universal integral invariant differs from one
of the enumerated integrals by a constant factor. This refers as Lee Hwa Chung
theorem. Therefore if,

   '

1

, , , ,
n

i i i i
i

L R t qk pk q S t qk pk p 


   
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Fig. 4.1 Position of Contour at Two Different Times in a Phase Plane

It is an universal relative integral invariant, then

'
1L cL (4.11)

Where 1L is Poincare integral and c is any constant.

Solving this theorem for arbitrary  1n n  , i.e., integral invariant of the

first order.

Assume that for 1n 

   ' , , , ,L R t qk pk q S t qk pk p     (4.12)

Be the universal integral invariant, the integration will be performed in the

phase plane  ,q p  along a closed contour. Towards this direction, assume that

there be some Hamiltonian system of differential equations with the function

 , ,H t q p is as follows:

,
dq H

dt p



  ,

dp H

dt q




 (4.13)

The general solution of these equations is of the arrangement

 0 0, ,q q t q p and   0 0, ,p p t q p (4.14)

Where 0q and 0p be the initial values of q and p at 0t t

Further, let

   
       

0 0

0 0 0 0

, ,0

0 , 0

q q p p

q q p p

   

 

     
 

   
(4.15)
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Be the equations of closed contour 0A in the phase plane. The points at

which at were located on with form the contour A at some arbitrary instant of time
t. This is depicted as shown in Figure 4.1.

From equations (4.14) and (4.15) the parametric equation of this contour A
is given by,

 ,q q t  ,     ,p p t  ,   0   

Putting these values of q and p in the integral given by equation (4.12),

We have

So is invariant

Hence, differentiating under the integral sign by parts,

By using the  for a closed contour, integrating the last

two terms by parts, then we get the equation is as follows:

* , 

, 

Replacing 
dR

dt
, 

dS

d t
, R and, we have
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0
dR dS dp R dS dR dq S

q p
dp dq dt t dq dp dt t

 
       

                  


H R H S
Z q Z p

q t p t
 

      
              


Now, from equation (4.13) and 
R S

Z
p q

 
 
  .

The equation under the sign of integral must be a perfect differential with
regard to q and p because the integral is equal to zero for any value of the variable
t taken as a parameter and for any arbitrary path of integration. Therefore, we will
have

H R H S
Z Z

p q t q p t

        
               

Hence

2 2 2 2Z H H R Z H H S
Z Z

p q p q p t q p p q q t

       
      
           

It implies that,

0
Z H Z H R S

p q q p t p q

       
            

Or

0
Z H Z H Z

p q q p t

    
   
    

So, the choice of H is arbitrary, we can choose

0
Z Z Z

p q t

  
  

  

Further,

R S
Z

p q

 
  
  any constant=c (say)

Therefore,

  0
R S

cp
p q p

  
  

  
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Or  R cp S
p q

 
 

 

Hence, it is clear that there exists a function  , ,t p q such that (t being a

parameter)

 R cp q S p q p
q p

      
    

 

So, R q S p cp q     

Therefore

   'L R q S p cp q        
c p q 

1cL

Since 0  as the contour is closed.

Hence the proof.

4.4 HAMILTON - JACOBI EQUATION

In mathematics, the Hamilton-Jacobi equation is a essential condition which explain
extremal geometry in generalization of problems from the calculus of variation. It
can be understood as special case of the Hamilton-Jacobi-Bellman equation from
dynamic programming.

Let q, p be canonical variables. Their time evolution satisfies the Hamilton’s
equations,

i i

i i

dq dpH H

dt p dt q

 
 
 

Let the initial data be q(0) = Q and p(0) = P. Hamilton’s equation induce a
time-dependent mapping,

( , ) ( ( ), ( ))Q P q t p t

such that,

q = q(Q, P, t) and p = p (Q, P, t)

The Hamiltonian dynamics define a flow in phase space. We can also refer
to the inverse mapping,
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Q = Q(q, p, t) and P = P (q, p, t)

This mapping is canonical. We will find this mapping, i.e., we will express
the coordinates and momenta at time t given their values at time zero. The aim of
Hamilton-Jacobi theory is to find this mapping. Since this mapping is canonical, so
it has a certain structure that its Jacobian must satisfy. Besides, the transformed
variables satisfy Hamiltonian dynamics with a transformed Hamiltonian. In the
present case, we want the new variables (Q, P) to be stationary in time, since we
want

q(t) = q(Q(t), P(t), t) = q(Q(0), P(0), t)

A way to impose it is to require the transformed Hamiltonian K to be, say,
zero (could be any function of time only). Suppose furthermore that we try to
generate this transformation using a generating function of the form F

2
(q, P, t)

(here again, the choice of generating function is somewhat arbitrary). Then,

2( , , ) ( , , ) 0
F

K H q p t q P t
t


  



And

2 2
i i

i i

F F
p Q

q p

 
 
 

Using the first of the canonical relations and substituting it into the Hamiltonian
transformation, we obtain

2 2( , , ) , ( , , ), 0
F F

q P t H q q P t t
t q

  
    

(4.16)

This is the Hamilton-Jacobi equation. Fixing P, the initial data for the
momentum, and defining

S(q, t) = F
2
 (q, P, t)

Equation (4.16) takes the form

, , 0
S S

H q t
t q

  
    

It is a first order partial differential equation in (n + 1) variables. Its solution
is a generating function with P as a parameter which we can use in order to find the
mapping between the coordinates at time 0 and time t.

Note: A partial differential equation in n + 1 variables is by no means simpler
than a system of 2n ordinary differential equations. The transition from first-order
partial differential equations and system of ordinary differential equations is standard
in the analysis of hyperbolic partial differential equations.
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Now, suppose we wish to solve the equation for S. Since it is a first-order
equation in n + 1 variables, the solution involves n + 1 integration constant. Note
however that S is only defined up to an additive constant, which will not affect the
generating function anyways. Thus, without loss of generality, S depends on n
integration constants ,

S = S(q, , t)

Since these constants are arbitrary, we are free to identify them with the
momenta P, i.e., set

F
2
(q, P, t) = S(q, P, t)

Note that the way of writing a solution with n integration constants is not
unique. Now we can proceed,

( , , )i

i

S
p q P t

q



  and ( , , )i

i

S
Q q P t

P





Inverting these equations provides the required solution.

Let us take the example of a harmonic oscillator,

2 2 2 21
( , ) ( )

2
H q p p m q

m
  

The Hamilton-Jacobi equation for S(q, t) is,

2

2 2 21
0

2

S S
m q

t m q

   
         

We have to find a solution of the form,

S(q, t) = A(q) – t

Substituting we get,

2 2 2 21
[( '( )) ]

2
A q m q

m
   

i.e.,

2 2 2

0
( , ) 2

q

S q t m m r dr t    
We can now identify the constant of integration  with the initial momentum

P. The transformation equations are,

2 2 22
S

p mP m q
q


   


And
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2 2 20

1

2

qS
Q t m dr

P mP m r


   
  

The last integral can be easily solved,

2
1

20
2

1 1
sin

2 2
1

2

qm m
Q t dr t q

P Pm
r

P


 

          


 2

2
sin[ ( )]

P
q t Q

m
  



or,

2 cos[ ( )]p mP t Q  

Q, P can be any pair of variables referring to time 0.

4.4.1 Jacobi’s Theorem

Let 1 2 1 2( , ... , , ,..., , )  n nS q q q t , i.e., ( , , ), 1, 2,..., , i iS q t i n  be any integral

of the equation,

, , 0
  

    i
i

S S
H q t

t q

Then 


 
i

i

S

a
 and 



i

i

S
p

q
.

These 2n equations link p
i
, q

i
 to 

i
’s and 

i
’s, and hence they provide the general

solution to the original canonical equations. The crux of the first form of Jacobi’s
theorem is that 

i
’s and 

i
’s are constants of motion which we have to prove.

Proof: Fix 1 1 2 2, – ,...  P P  and consider the function, 2 1 1( ,... ; ,... , )n nF q q P P t

1 1 1( ,... , ,..., ,... , )n nS q q P P P t .

Such function generates a contact transformation. Hence,

Q
i
 = 2 


 i i

F S

P P

P
i 
= 2 


 i i

F S

q q
...(4.17)

And
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0


  

S

K H
t

Since K is 0, the equations of motion are

– 0


 
i

i

K
P

Q
 and – 0


 

i
i

K
Q

P

Solving these equations, we get

constant , 1, 2,...,

contant , 1, 2,...,

    
    

i i

i i

P i n

Q i n
...(4.18)

Hence we have,


  

i i
i

S
Q

So it is established that 
i
 and 

i
 are constants of motion and S is a solution

of the equation, 2
 


F

K H
t

 such that 0K

Here, S is known as Hamilton’s principle or special function.

4.4.2 Method of Separation of Variables in Hamilton-Jacobi Equation

The Hamilton-Jacobi Equation (HJE) is of most use when it can be solved
via additive separation of variables, which directly identifies constants of motion.
For example, the time t can be separated if the Hamiltonian does not depend on
time explicitly. In that case, the time derivative / s t  in the HJE must be a constant,
usually denoted by –E, providing the separated solution,

 S = W (q1, q2 .... qn) – Et

Where the time-independent function W(q) is sometimes called Hamilton's
characteristic function. The reduced Hamilton-Jacobi equation can now be
expressed as,

,
 

  

S
H q E

q

To illustrate separability for other variables, we assume that a

certain generalized coordinate q
k
 and its derivative /  kS q  appear together as a

single function,

,
 
  

k
k

S
ψ q

q
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in the Hamiltonian,

1 2 –1 1 1 2 –1 1( , , ; , , ; ; )     k k N k k NH H q q q q q p p p p p t

In that case, the function S can be partitioned into two functions, one that
depends only on q

k
 and another that depends only on the remaining generalized

coordinates

1 –1 1( ) ( , , )   k k rem k k NS S q S q q q q t

Substitution of these formulae into the Hamilton-Jacobi equation shows that
the function  must be a constant (denoted here as x

k
), yielding a first-

order ordinary differential equation for S
k
(q

k
).

,
 

   
 

k
k

k

dS
qk

dq

In many cases, the function S can be separated completely
into N functions S

m
(q

m
),

S = S
1
(q

1
) + S

2
(q

2
) +  ... + S

N
(q

N
) – Et

In such a case, the problem devolves to N ordinary differential equations.

Check Your Progress
1. State the Hamilton’s Principle.

2. What do you understand by Whittaker's equations?

3. Give the statement of Lee Hwa Chung's

4. What is the Hamilton-Jacobi equation?

4.5 LAGRANGE BRACKETS

Lagrange brackets are certain expressions closely related to Poisson brackets
that were introduced by Joseph Louis Lagrange in 1808–1810 for the purposes
of mathematical formulation of classical mechanics. Let (q

1
,...q

n
, p

1
,...p

n
) be any

functions of two variables (u, v). Then the expression given by,

1

[ , ]


          
n

r r r r

r

q p p q
u v

u v u v ...(4.19)

is called a Lagrange bracket.

The Lagrange brackets are anticommutative, i.e.,

[ , ] –[ , ]l m m lu u u u ...(4.20)
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If 1 1( ,... , ,... )n nq q p p  are any functions of variables 1 1( ,... , ,... )n nQ Q Q Q , then

1

( – ) [ , ] ( – ).


     
n

r r r r k l j k k
r kl

d p q p d q u u du u uj du

...(4.21)

Here the summation on the right hand side is taken over all pairs of variables

(u
k
, u

l
) in the set 1 1( ,... , ,..., )n nQ Q P P . But if the transformation from

1 1( ,... , ,... )n nq q p p  to 1 1( ,... , ,... )n nQ Q P P  is a contact transformation, then

1 1

( ) ( – )
 

    
n n

r r r r r r r
r r

d p q dq d P Q P d Q ...(4.22)

that gives

[ , ] 0 for , 1,2,..., i kP P i k n (4.23)

[ , ] 0 for , 1,2,..., i kQ Q i k n (4.24)

[ , ] 0 for , 1, 2,..., ,  i kQ P i k n i k (4.25)

[ , ] 0 for 1, 2,..., . i iQ P i n (4.26)

Additionally, these can be regarded as partial differential equations which must be

satisfied by 1 1( ,... , ,... )n nq q p P , considered as function of  1 1( ,... , ,... )n nQ Q P P  in

order that the transformation from one set of variables to the other may be a
contact transformation.

Let 1 2( ,... )nu u  be 2n  independent functions of the variables 1 1( ,... , ,... )n nq q p p .

Then the Poisson bracket ( , )r su u  is connected with the Lagrange bracket ( , )r su u

by the relation,

2

1

( , ) [ , ]


 
n

t r t s rs
t

u u u u (4.27)

where 
rs
 is the Kronecker delta.

4.5.1 Canonical Transformation in Terms of Lagrange’s and Poisson
Bracket

The canonical transformations are those transformations of canonical variables,

( –1) ( –1) ( –1)
/ / / ,( , ), ( , ),Q m m

km k m k m km k mQk F qk p t P G qk P t
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that maintain the shape of the generalized Hamilton’s equations invariant and may
be solved with respect to the old canonical variables. The necessary and sufficient
condition for this transformation to be canonical is,

( –1) ( –1)
/ /– ( – )  m m

k m k k m
k m k m

P dq H dt c P d Qk Kdt dG

where K is the new Hamiltonian and G is the corresponding generating function.
This condition for the canonical transformation can also be expressed by primary
variables as,

( –1)
( –1)

| | ( –1)
– –




   
   

   
      

   
m

mk
k m k m k k mm

k m k m k m k mk

Q
p c P dq c P

q

–1 –1)

| |
|

– – .
   
 

 
 

       


m m
k k

k m k m
k mk m

Q Q
dp c K H c P dt dG

p t

Using generalized Lagrange bracket,

 
( –1) ( –1)

| |, –
   

      


m m
k m k mk k

k m

p pq q
u v

u v v u

We get,

   ( –1) –1
| | ,,

( –1)
|

, 0, , 0,

1
{ , } ,

 



   


m n
k l k m l n Q PQ P

m
k l n kl mn

q q p p

q p Q P
c

(4.28)

The relation between Poisson and Lagrange brackets is,

 
2

1

, ,


    
rs

l i l j ij
l

u u u u

Here u
l
 are the arbitrary functions of the canonical variables. On the basis

of this relation and Equation (4.28) can also be obtained for Poisson brackets as,

( –1) ( –1)
, | | ,

( –1)

[ , ] 0,[ , ] 0,

[ , | ] ,

  


   

m n
k l Q P k m l n Q P

m
k kl mn

q q p p

q pl n Q P c

4.5.2 Invariance of Lagrange and Poisson Bracket under Canonical
Transform

Lagrange Bracket

Lagrange brackets, with respect to variables u and v
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There is, a sum of the form is,

(4.29)

Here is, q=(q
1
…q

n
) and p=(p

1
…p

n
) are certain functions of u and v.

If q = (q
1
…q

n
) and p = (p

1
…p

n
) are canonical variables and Q = Q(q,p), P

= P(q,p) are canonical transformations, then the Lagrange bracket is an invariant
of this transformation,

For this purpose the indices q,p on the right-hand side of Equation (4.29)
are often omitted. The Lagrange bracket is said to be fundamental when the variables
u and v coincide with some pair of the 2n variables q,p. From them one can form
three matrices:

The first two of which are the zero, and the last one is the unit matrix. There
is a definite connection between Lagrange brackets and Poisson brackets.
Specifically, if the functions u

i 
= u

i
(q,p), 1  i  n, induce a diffeomorphism

R2nR2n, then the matrices formed from the elements [u
i
,u

j
] and (u

i
,u

j
) are

inverse to each other.

Poisson Bracket

The definition of Poisson bracket of two functions is,

(4.30)

Computing the Poisson bracket needs knowing of ω and σ as functions of
the coordinate’s q

i
 and momenta p

i
 in the particular coordinate system which we

are use. On the other hand, we have seen that the Euler-Lagrange and Hamilton’s
equations are invariant under a canonical transformation and since the Poisson
bracket is a fundamental quantity in classical mechanics, in specific because the
time derivative of a function ω is the Poisson bracket {ω,H} with the Hamiltonian,
it’s natural to ask how the Poisson bracket of two functions transforms under a
canonical transformation. The simplest way of finding out is to write the canonical
transformation as:

(4.31)
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We can then write the Poisson bracket in the new coordinates as follow

(4.32)

Supposing that the transformation is invertible, we can use the chain rule to
compute the derivatives with respect to the barred coordinates. This gives the
following (we have used the summation convention in which any index repeated
twice in a product is summed; thus in the following, there are implied sums over i,
j and k):

 (4.33)

              (4.34)

              (4.35)

For a canonical transformation, the Poisson brackets in the last equation
satisfy

(4.36)

Applying these conditions in Equation (4.35), we find that
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(4.37)

Thus the Poisson bracket is invariant under a canonical transformation.

Check Your Progress
5. Define the Lagrange brackets.

6. What is Kronecker delta?

7. Define the poisson bracket of two function.

4.6 ANSWERS ‘CHECK YOUR PROGRESS’

1. Hamilton’s principle is an integral principle. This means that it considers the
entire motion of a system between time t

1
 and t

2
 . The instantaneous

configuration of the system is described by the values of n generalized
coordinates q

1
,..., q

n
, and corresponds to a particular point in a Cartesian

hyperspace where the q’s form the n coordinate axes. This n-dimensional
space is called the configuration space.

2. Whittaker’s equations are given by

1 1
, – , ( 2,..., )

  
  
 

j j

j j

q dpK K
j n

dq p dq q

3. Lee Hwa Chung stated that any other universal integral invariant differs
from one of the enumerated integrals by a constant factor. This refers as
Lee Hwa Chung theorem.

4. The Hamilton-Jacobi equation is given by

2 2( , , ) , ( , , ), 0
F F

q P t H q q P t t
t q

  
    

5. Lagrange brackets are certain expressions closely related to Poisson
brackets that were introduced by Joseph Louis Lagrange in 1808–1810
for the purposes of mathematical formulation of classical mechanics. Let
(q

1
,...q

n
, p

1
,...p

n
) be any functions of two variables (u, v).

1

[ , ]


          
n

r r r r

r

q p p q
u v

u v u v

is called a Lagrange bracket.
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6. Let 1 2( ,... )nu u  be 2n  independent functions of the variables

1 1( ,... , ,... )n nq q p p . Then the Poisson bracket ( , )r su u  is connected with the

Lagrange bracket ( , )r su u  by the relation,

2

1

( , ) [ , ]


 
n

t r t s rs
t

u u u u

where 
rs
 is the Kronecker delta.

7. The definition of Poisson bracket of two functions is,

Computing the Poisson bracket needs knowing of ω and σ as functions of
the coordinate’s q

i
 and momenta p

i
 in the particular coordinate system which

we are use.

4.7 SUMMARY

 Hamilton’s principle is an integral principle. This means that it considers the
entire motion of a system between time t

1
 and t

2
 . The instantaneous

configuration of the system is described by the values of n generalized
coordinates q

1
,..., q

n
, and corresponds to a particular point in a Cartesian

hyperspace where the q’s form the n coordinate axes. This n-dimensional
space is called the configuration space.

 The correct path of motion of the system is such that the action has a stationary
value which means that the integral along the given path has the same value
to within first-order infinitesimals as that along all neighbouring paths.

 The function (t) is arbitrary although it must satisfy the boundary values,
(t

1
) = (t

2
) = 0 and it must be twice differentiable.

 Henri Poincaré has shown that for any Hamiltonian system the form

 i iw dp dqi  possesses the property that  W
D  over any two-dimensional

manifold D in 1 1( ,..., , ,... )n np p q q -space is independent of t. A differential

form with such a property is called a Poincaré integral invariant.

 If 1 1,( ,..., , , ..., )k kF x x t dk dx  is a Poincaré integral invariant of a system in

which derivatives are identified with functions of the variables and t, then

1 , 1( ,..., , – ,..., – )k kF x x t dx A dt dx A dt is an invariant form of the system

expressible in terms of differentials and the functions A
k 
and is called the

related Cartan form.
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 The Lagrangian, as defined, is very general and in this form, applies even to
quantum mechanics. For all known classical systems, the Lagrangian can
be written as the difference between the total kinetic energy, T, of the system
and the potential energy, U, i.e., for the classical systems, L = T – U.

 Lee Hwa Chung stated that any other universal integral invariant differs
from one of the enumerated integrals by a constant factor. This refers as
Lee Hwa Chung theorem.

 Be the universal integral invariant, the integration will be performed in the

phase plane  ,q p  along a closed contour..

 The equation under the sign of integral must be a perfect differential with
regard to q and p because the integral is equal to zero for any value of the
variable t taken as a parameter and for any arbitrary path of integration.

 In mathematics, the Hamilton-Jacobi equation is a essential condition which
explain extremal geometry in generalization of problems from the calculus
of variation. It can be understood as special case of the Hamilton-Jacobi-
Bellman equation from dynamic programming.

 The aim of Hamilton-Jacobi theory is to find this mapping. Since this mapping
is canonical, so it has a certain structure that its Jacobian must satisfy. Besides,
the transformed variables satisfy Hamiltonian dynamics with a transformed
Hamiltonian.

 A way to impose it is to require the transformed Hamiltonian K to be, say,
zero (could be any function of time only). Suppose furthermore that we try
to generate this transformation using a generating function of the form F

2
(q,

P, t) (here again, the choice of generating function is somewhat arbitrary).

 A partial differential equation in n + 1 variables is by no means simpler than
a system of 2n ordinary differential equations. The transition from first-
order partial differential equations and system of ordinary differential
equations is standard in the analysis of hyperbolic partial differential
equations.

 The Hamilton-Jacobi Equation (HJE) is of most use when it can be solved
via additive separation of variables, which directly identifies constants of
motion. For example, the time t can be separated if the Hamiltonian does
not depend on time explicitly.

 Where the time-independent function W(q) is sometimes called Hamilton's
characteristic function.

 Lagrange brackets are certain expressions closely related to Poisson
brackets that were introduced by Joseph Louis Lagrange in 1808–1810
for the purposes of mathematical formulation of classical mechanics. Let
(q

1
,...q

n
, p

1
,...p

n
) be any functions of two variables (u, v).
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 Additionally, these can be regarded as partial differential equations which

must be satisfied by 1 1( ,... , ,... )n nq q p P , considered as function of

1 1( ,... , ,... )n nQ Q P P  in order that the transformation from one set of variables

to the other may be a contact transformation.

4.8 KEY TERMS

 Hamilton’s principle: Hamilton’s principle is an integral principle. This
means that it considers the entire motion of a system between time t

1
 and t

2
.

The instantaneous configuration of the system is described by the values
of n generalized coordinates q

1
,..., q

n
, and corresponds to a particular point

in a Cartesian hyperspace where the q’s form the n coordinate axes.

 Principle of least action: The stationary-action principle is also known as
the principle of least action is a variational principle that give state us when
applied to the action of a mechanical system, yields the equations of motion
for that system. The principle states that the trajectories (i.e. the solutions of
the equations of motion) are stationary points of the system’s action functional.

 Lagrangian: For every mechanical system, there exists a function of the
generalized coordinates (and velocities) called the Lagrangian.

 Hamilton-Jacobi Equation (HJE): The Hamilton-Jacobi Equation (HJE)
is of most use when it can be solved via additive separation of variables,
which directly identifies constants of motion.

4.9 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. State Hamilton’s principle.

2. Give the principle of least action.

3. What do you mean by the Lee Hwa Chung theorem?

4. Give statement of Jacobi’s theorem.

5. What do you understand canonical transformation in terms of Poisson’s
brackets?

6. Define the Lagrange bracket.

Long-Answer Questions

1. Explain in detail about the Hamilton’s principle with the help of examples.

2. Describe the Lee Hwa chung theorem with appropriate examples.
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3. Elaborate on the Jacobi theorem and method of separtion variables giving
examples.

4. Discuss Lagrange’s brackets and canonical transformation in terms of
Lagrange’s and Poisson brackets.

5. Analyse the invariance of Lagrange and Poisson bracket under canonical
transformation giving examples.
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UNIT 5 GRAVITATION

Structure

5.0 Introduction
5.1 Objectives
5.2 Basic Concept of Gravitation
5.3 Attraction and Potential

5.3.1 Attraction and Potential of Rod
5.3.2 Attraction and Potential of Disc
5.3.3 Attraction and Potential of a Spherical Shell
5.3.4 Attraction and Potential of a Sphere

5.4 Surface Integral of Normal Attraction
5.4.1 Gauss Theorem
5.4.2 Applications

5.5 Laplace Equations
5.5.1 Laplace Equation for Attraction and Potential

5.6 Poisson Equations
5.6.1 Poisson Equation for Attraction and Potential

5.7 Work Done by Self-Attracting Systems
5.8 Distributions for a Given Potential
5.9 Equipotential Surfaces

5.10 Harmonic Functions
5.10.1 Surface and Solid Harmonics
5.10.2 Surface Density in Terms of Surface Harmonics

5.11 Answers ‘Check Your Progress’
5.12 Summary
5.13 Key terms
5.14 Self-Assessment Questions and Exercises
5.15 Further Reading

5.0 INTRODUCTION

Gravity, also called gravitation, in mechanics, the universal force of attraction acting
between all matters. It is by far the weakest known force in nature and thus plays
no role in determining the internal properties of everyday matter. The force of
attraction between all masses in the universe; especially the attraction of the earth’s
mass for bodies near its surface. The energy stored in a body due to the gravitational
force between the body and the earth is called the gravitational potential energy.

In mathematics, particularly multivariable calculus, a surface integral is a
generalisation of multiple integrals to integration over surfaces. Come to the Gauss
Divergence theorem, the surface integral of a vector field A over a closed surface
is equal to the volume integral of the divergence of a vector field A over the Volume
(V) enclosed by the closed surface. Surface Integrals are used to determine pressure
and gravitational force otherwise the Gauss’ Law of Electro statistics, it is used to
compute the electric field.
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Laplace’s Equation, which is the single most important equation in potential
theory. Therefore the gravitational potential at any point outside a uniform shell is
equivalent to that of a point source of the same mass located at the centre. On the
other hand Poisson’s Equation is states that the Laplacian of the electric potential
field is equal to the volume charge density divided by the permittivity, with a change
of sign.

The self-attracting systems exhibit gravitational or collapse-like transition.
As the fermionic. Degeneracy or the softness radius increases, the gravitational
phase transition crosses over to a normal first-order phase transition, becomes
second-order at a critical point, and finally disappears. However the potential-
distribution theorem is state that under the exact statistical mechanical. Expression
for the excess chemical potential at a point in a fluid at equilibrium.

An equipotential surface is the collection of points in space that are all at the
same potential. Equipotential lines are the two-dimensional representation of
equipotential surfaces. Equipotential surfaces are always perpendicular to electric
field lines. For an additionally in mathematics and physical science, spherical
harmonics are special functions defined on the surface of a sphere. They are often
employed in solving partial differential equations in many scientific fields.

In this unit, you will learn about the gravitation, attraction and potential of
rod, disc, spherical shells and sphere, surface integral of normal attraction, Gauss
theorem and their applications, Laplace and Poisson equation for attraction and
potential, work done by self-attracting system, distribution for given potential,
equipotential surface, solid harmonic surface and density in term of surface harmonic.

5.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the gravitation

 Determine the attraction and potential of rod, disc, spherical shells and
sphere

 Give the Gauss theorem and their applications

 Explain about the surface integral of normal attraction

 Elaborate on the Laplace equations for attraction and potential

 Discuss about the Poisson equation for attraction and potential

 Analyse the work done by self-attracting systems

 Learn about the distributions for a given potential

 Describe on the equipotential surfaces

 Interpret the density in term of surface harmonics

 Know about the harmonic surface and solid harmonic surface

 Explain the surface and solid harmonics

 Discuss the surface density in terms of surface harmonics
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5.2 BASIC CONCEPT OF GRAVITATION

Gravity is also known as ‘Gravitation’, according to mechanics, the universal
force of attraction acting between all matters. It is by far the weakest known
force in nature and thus plays no role in determining the internal properties of
everyday matter. Alternatively, through its long reach and universal action, it
controls the trajectories of bodies in the solar system and to another place in the
universe and the structures and evolution of stars, galaxies, and the whole cosmos.
On Earth all bodies have a weight, or downward force of gravity, proportional
to their mass, which Earth’s mass exerts on them. Gravity is measured by the
acceleration that it gives to freely falling objects. At Earth’s surface the
acceleration of gravity is about 9.8 metres (32 feet) per second. Thus, for every
second an object is in free fall, its speed increases by about 9.8 metres per
second. At the surface of the Moon the acceleration of a freely falling body is
about 1.6 metres per second per second.

Gravity word is also came from the Latin gravitas which means that is
‘Weight’. The gravitation, is a natural occurrence by which all things with
mass or energy, including planets, stars, galaxies and even light, are attracted
to (or gravitate toward) one another. On Earth, gravity gives weight to physical
objects, and the Moon’s gravity causes the tides of the oceans. The gravitational
attraction of the original gaseous matter present in the Universe caused it to
begin coalescing and forming stars and caused the stars to group together into
galaxies, so gravity is responsible for many of the large-scale structures in the
universe. Gravity has an infinite range, while its effects become weaker as
objects get farther away.

Gravity is most accurately described by the general ‘Theory of Relativity’
which proposed by Albert Einstein in 1915, the statement of theory is, gravity not
as a force, but as the curvature of space-time, caused by the uneven distribution of
mass, and causing masses to move along geodesic lines. The most extreme example
of this curvature of space time is a black hole, from which nothing not even light
can escape once past the black hole’s event horizon. However, for most
applications, gravity is well approximated by Newton’s law of universal gravitation,
which describes gravity as a force causing any two bodies to be attracted toward
each other, with magnitude proportional to the product of their masses and inversely
proportional to the square of the distance between them.

Current models of particle physics imply that the earliest instance of gravity
in the universe, possibly in the form of quantum gravity, supergravity or a gravitational
singularity, along with ordinary space and time, developed during the Planck epoch
(up to 10–43 seconds after the birth of the universe), possibly from a primeval
state, such as a false vacuum, quantum vacuum or virtual particle, in a currently
unknown manner.
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Newton’s Theory of Gravitation

According to Newton’s law “any particle of matter in the universe attracts any
other with a force varying directly as the product of the masses and inversely
as the square of the distance between them”. We can represent by following
formula,

1 2
2

m m
F G

r


Here F is the force, m
1
 and m

2
 are the masses of the objects interacting, r

is the distance between the centres of the masses and G is the gravitational constant.

General Relativity

In general relativity, the effects of gravitation are ascribed to space time curvature
instead of a force. The starting point for general relativity is the equivalence
principle, which equates free fall with inertial motion and describes free-falling
inertial objects as being accelerated relative to non-inertial observers on the
ground. Einstein proposed that space time is curved by matter, and that free-
falling objects are moving along locally straight paths in curved space time. These
straight paths are called geodesics. Like Newton’s first law of motion, Einstein’s
theory states that if a force is applied on an object, it would deviate from a
geodesic. For example, we are no longer following geodesics while standing
because the mechanical resistance of the Earth exerts an upward force on us,
and we are non-inertial on the ground as a result. Einstein discovered the field
equations of general relativity, which relate the presence of matter and the
curvature of space time and are named after him. The Einstein field equations
are a set of 10 simultaneous, non-linear, differential equations. The solutions of
the field equations are the components of the metric tensor of space time. A
metric tensor describes a geometry of space time. The geodesic paths for a
space time are calculated from the metric tensor.

Gravity and Quantum Mechanics

General relativity describes large-scale bulk properties whereas quantum mechanics
is the framework to describe the smallest scale interactions of matter. One path is
to describe gravity in the outline of quantum field theory, which has been successful
to accurately describe the other fundamental interactions. The electromagnetic
force arises from an exchange of virtual photons, where the QFT (Quantum Field
Theory) explanation of gravity is that there is an exchange of virtual gravitons. This
explanation reproduces general relativity in the classical limit. However, this
approach fails at short distances of the order of the Planck length, where a more
complete theory of quantum gravity.

Earth’s Gravity

Every planetary body (including the Earth) is surrounded by its own gravitational
field, which can be hypothesised with Newtonian physics as exerting an attractive
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force on all objects. Assuming a spherically symmetrical planet, the strength of this
field at any given point above the surface is proportional to the planetary body’s
mass and inversely proportional to the square of the distance from the centre of
the body.

The strength of the gravitational field is numerically equal to the acceleration
of objects under its influence. The rate of acceleration of falling objects near the
Earth’s surface varies very slightly depending on latitude, surface features such as
mountains and ridges, and perhaps unusually high or low sub-surface densities.
For purposes of weights and measures, a standard gravity value is defined by the
International Bureau of Weights and Measures, under the International System of
Units (SI).

That value, denoted g, is g = 9.80665 m/s2 (32.1740 ft/s2).

The standard value of 9.80665 m/s2 is the one originally adopted by the
International Committee on Weights and Measures in 1901 for 45° latitude,
even though it has been shown to be too high by about five parts in ten thousand.
This value has persisted in meteorology and in some standard atmospheres as
the value for 45° latitude even though it applies more precisely to latitude of
45°32’33".

Every object in the universe attract every other object with a force which is
directly proportional to the product of their masses and inversely proportional to
the square of the distance between their centres. The direction of the force is along
the line joining the centre of two object.

F  M × m ...(5.1)

F 
2

1
d

...(5.2)

For Equations (5.1) and (5.2)

F  2

M m

d



F = 2

M m
G

d



Whereas G is gravitation constant.

Consider a mass distribution with density ρ(x). There is a corresponding
gravitational field F(x) which we may express in terms of a gravitational potential
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Φ(x). Consider an arbitrary fixed volume V with surface S containing a total mass

M
V
 = ( ) .V x dV   

Gauss showed that the flux of the gravitational field through S is equal to
–4πGM

V
.

Hence,

This is true for all volumes V, so we must have

2 .( ) 4 G       

5.3 ATTRACTION AND POTENTIAL

Attraction is a force between two or more dissimilar or unlike charges. Two charges
of dissimilar characteristics pull towards each other. On the other hand in classical
mechanics, the gravitational potential at a location is equal to the work (energy
transferred) per unit mass that would be needed to move an object to that location
from a fixed reference location. It is analogous to the electric potential with mass
playing the role of charge. The reference location, where the potential is zero, is by
convention infinitely far away from any mass, resulting in a negative potential at
any finite distance. In mathematics, the gravitational potential is also known as the
Newtonian potential and is fundamental in the study of potential theory. It may
also be used for solving the electrostatic and magneto static fields generated by
uniformly charged or polarized ellipsoidal bodies. The scalar quantity characteristic
of a point in a gravitational field whose gradient equals the intensity of the field and
equal to the work required to move a body of unit mass from given point to a point
infinitely remote.

5.3.1 Attraction and Potential of Rod

Attraction of Rod

AB be a rod

APB = α – β Show in Figure 5.1 as follow
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Fig. 5.1 Mathematical Representation of Rod

Let us consider m is the mass per unit length of a uniform rod AB.

It is essential to find the components of attraction of the rod AB at an external
point P.

MP = p

Consider an element QQ´ of the rod where

MQ = x

QQ = dx

MPQ = 
In Δ MPQ,

tan tan
MQ x

x p
MP p

      ...(5.3)

cos
MP p

PQ pQ
  


cos

p
PQ 


PQ = p sec  ...(5.4)

Mass of element QQ of rod = mdx

= mp sec2 d

The attraction at P of the element QQ is,

= 
2

2 2

mass sec
along

(distance) ( )

mp d
PQ

PQ




So that, force of attraction at P of the element QQ´ is,

= 
2

2 2

sec

sec

mp d

p g

 


= 
m

d
p

 along PQ ...(5.5)



Gravitation

NOTES

Self - Learning
206 Material

Let assuming that  MPA =  and  MPB = 

 

Let consider X and Y be the components of attraction of the rod parallel
and perpendicular to rod, then

And,

 
...(5.6)

Therefore,

...(5.7)

Subsequent force of Attraction R is given by,

 By Equations (5.6) and (5.7))

Resultant R makes angle tan–1 X

Y
.

Or,

i.e., it acts along bisector of angle  APB.
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Therefore,

m m
X=

PB PA


p p
cos ,cos

PB PA
       (By Using Equation 5.6)

Corollary: If the rod is infinitely long, the angle APB is two right angles and

resultant attraction is r

2m

p
   to the rod.

Potential of Rod

By definition, the potential at P is given by,

 

5.3.2 Attraction and Potential of Disc

Attraction of Disc

Here radius of disc = a

So that,

OP = r, PQ = 2 2x r

OQ = x

We consider two element of masses dm at the two opposite position Q and
Q as Shown in Figure 5.2. Now element dm at Q causes attraction on unit mass
at P in the direction PQ. Similarly other mass dm at Q causes attraction on same
unit mass at P in the direction PQ and the force of attraction is same in magnitude.
These two attraction forces when resolved into two direction one along the axes
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PO and other at right angle PO. Components along PO are additive and component
along perpendicular to PO cancelling each other

Mass of Ring = xdxρ

Therefore, the resultant attraction at P due to the whole disc along PO is
given by,

             
        Assume that M = mass of disc of radius a



Where α is the angle which any radius of disc subtends at P.

Example 5.1: If radius of disc becomes infinite.

Solution: Let assume that  α = π/2

Therefore,


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2

2M

a
   constant [here, it is independent of position of P]

Example 5.2: when P is at a very large distance from the disc.

Solution: Therefore then α  0

So that,

 
2

2M
(1 cos 0)

a
 

    = 0.

Potential of Disc

Let us the uniform circular disc of radius ‘a’ and P is a plate. on the axis of disc and

plate. P is at a distance r from the centre 0, i.e., OP = r, OQ = x, PQ = 2 2r x
let us divide the disc into a number of concentric rings and assuming a ring which
have radius ‘x’ and width dx

Now, Mass of ring is = xdxρ

Here ρ is density of material of disc ρ = Mass/Area

So that,

Potential at P due to this ring is given by,

2 2

2 xdx
dv

r x

 




 

Fig. 5.2 Uniform Circular Disc

Therefore, the potential at P due to the whole disc is represented by,
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Let Mass of disc = M



So that,

is required potential at any plate P which lies on the axis of disc.

5.3.3 Attraction and Potential of a Spherical Shell

Attraction of a Spherical Shell

Let suppose for that consider a slice BBCC at point P, the attraction due to this
slice is,

The resultant attraction directed along PO is given by,

                                    
We know that

 
In ΔBDP,

We distinguish that,
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So that,

 

 
 

Hence the attraction for the whole spherical shell is obtained by integration

Subsequently,

Now we consider the following cases depending upon the position of P.

Example 5.3: When point P is inside the shell.

Solution: The limits of integration are x = (r – a) to(r + a)

Example 5.4:  When plate P is on the shell.

Solution: Let consider the limit of integration are x = 0 to 2a

 

Here integration is not possible (due to second term is becoming
indeterminant), because when P is on the shell, so that

r = a; x = 0

Hence to evaluate the integral, we consider that plate P is situated not on
the surface but very near to the surface
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Let r = a + δ, where δ is very small

Then attraction is,

 

Example 5.5: Point P is inside the shell.

Solution: Supposing that limits are x = a – r to a + r

So, there is no resultant attraction inside the shell.

Potential of a Spherical Shell

We suppose that a thin spherical shell of radius ‘a’ and surface density ‘ρ’ let P be
a point at a distance ‘r’ from the centre O of the shell. We consider a slice show in
Figure 5.3 BB C C in the form of ring with two planes close to each other and
perpendicular to OP.

Area of Ring (slice) BBC C is,

= 2BD × BB

Here is radius of ring, BD = a sinθ

Width of ring, BB= a dθ

Consequently, Mass of slice (ring) is,

= 2Π a sinθ adθ ρ

= 2Πa2 ρ sinθ dθ
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Therefore, Potential at P due to slice (ring) is,

...(5.8)

Fig. 5.3 Thin Spherical Shell

Now, from ΔBOP,

BP2 = OP2 + OB2 – 2OP . OB cos

x2 = r2 + a2 – 2ar cos

Differentiating,

  

Above equation putting in Equation 5.8 so we will get,

...(5.9)

Therefore, Potential for the whole spherical shell is obtained by integrating
Equation (5.9), we get
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Example 5.6: The point P is outside the shell.

Solution: In this case, the limit of integration extends from is,

x = (r – a) to x = (r + a)

Therefore,

Whereas, Mass of spherical shall = 4Πa2ρ

Hence,

M
V

r


Example 5.7: When P is on the spherical shell, then limits are from x = 0 to
x = 2a. (Given r = a)

Solution: we know that,

2a

0

2 a
V dx

a

 
 

So that,

             = 
24 a M

a a

 


Example 5.8: When P is inside the spherical shell.

Solution: Supposing that limit are from x = (a – r) to (a + r).

M
V 4 a

a
   

5.3.4 Attraction and Potential of a Sphere

Attraction for a Sphere

Condition I: At an external point

1 2
2 2

m m
F ....

r r
  

1 22

M
F , M m m ...

r
   
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Fig. 5.4  Uniform Solid Sphere

M = Mass of sphere and m
1
, m

2
…. are masses of concentric spherical

shells.

Condition II: At a point on the sphere,

Here we put r = a in above result

We found that,

2

M
F

a


Condition III: At a point inside the sphere.

The point P is external to the solid sphere of radius r and it is internal to thick
spherical shell of radii r and a. And we know that attraction (forces of attraction)
at an internal point in case of spherical shell is zero. Hence the resultant attraction
at P is only due to solid sphere of radius r and is given by

iff and only iff,

Hence,

.

Potential of a Sphere

 A uniform solid sphere may be supposed to be made up of a number of thin
uniform concentric spherical shells. The masses of spherical shells may be supposed
to be concentric at centre O.
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Example 5.9: Show that P is an external point.

                              

Solution: Therefore the potential due to all such shells at an external point P is
given by,

Where m
1
, m

2
 … etc. are the masses of shells.

Here M is the mass of solid sphere.

Example 5.10: The point P is on the sphere.

Solution: In Example 5.9, put r = a

Then,

M
V

a


Where a = radius of sphere.

Example 5.11: When P at an internal point.

Solution: Here point P is considered to be external to solid sphere of radius r and
internal to the shell of internal radius r, external radius = a in following figure.

Let V
1
 = potential due to solid sphere of radius r

    V
2
 = potential due to thick shell of internal radius r and external

radius a

So that,
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Calculation of V
2

We consider a thin concentration shell of radius ‘x’ and thickness dx. The potential
at P due to thin spherical shell under consideration is given by,

Hence for the thick shell of radius r and a, the potential is given by,

So, the potential at P due to given solid sphere.

Where M = Mass of given solid sphere .

.

CHECK YOUR PROGRESS

1. What is gravitational potential?

2. State the Newton’s theory of gravitation.

3. Define the attraction.

4. What do you understand by potential?

5.4 SURFACE INTEGRAL OF NORMAL
ATTRACTION

In mathematics, particularly multivariable calculus, a surface integral is a
generalization of multiple integrals to integration over surfaces. It can be thought of
as the double integral analogue of the line integral. Given a surface, one may integrate
a scalar field (that is, a function of position which returns a scalar as a value) over
the surface, or a vector field (that is, a function which returns a vector as value). If
a region R is not flat, then it is called a surface. Surface integrals have applications
in physics, particularly with the theories of classical electromagnetism.
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In vector calculus, the divergence theorem, also known as Gauss’s theorem
or Ostrogradsky’s theorem, is a theorem which relates the flux of a vector field
through a closed surface to the divergence of the field in the volume enclosed.
Moreover, the divergence theorem states that the surface integral of a vector field
over a closed surface, which is called the flux through the surface, is equal to the
‘Volume Integral’ of the divergence over the region inside the surface. Naturally, it
states that the sum of all sources of the field in a region (with sinks regarded as
negative sources) gives the net flux out of the region. The divergence theorem is an
important result for the mathematics of physics and engineering, particularly in
electrostatics and fluid dynamics. In these fields, it is usually applied in three
dimensions. However, it generalises to any number of dimensions. In one dimension,
it is equivalent to integration by parts. In two dimensions, it is equivalent to Green’s
theorem.

Suppose for that m be a mass at a point (x
0
, y

0
, z

0
) outside the surface S

show in Figure 5.5.

Fig. 5.5  Applied Gravitational Force

Then the force of attraction between the surface S and the mass m is
given by,

Here is,

G is gravitational constant and (x, y, z) is the density function.

5.4.1 Gauss Theorem

The surface integral of the normal component of a vector function F


 over a simple
closed surface S enclosing a volume V is equal to the volume integral of the

divergence of F


 taken throughout V.

i.e., ˆ
S

F ndS 


= ( )
V

F dV   


Where n̂  is the unit normal drawn outwards to the surface S.
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O

Rx

y

z S2

S1

Fig 5.6 Volume Integral and Divergence

Let S be a simple closed surface. Any line parallel to the axes will cut the surface
only at two points. Let R be the projection of S on the xy plane. The cylinder on R
with generators parallel to the z-axis will touch S along a curve and thus divide S
into two parts S

1
 and S

2
, S

2
 being the upper part.

Let the equation of S
1
 and S

2
 be,

Let, z = f
1
(x, y) and f

2
(x, y)

F


= 1 2 3F i F j F k 

( )
V

F dV   


=
1

V

F
dV

x

 
  

   = 
1

V

F
dxdydz

x

 
  

 

Consider , 3

V

F
dV

z


   = 3

V

F
dx dy dz

z

 
      = 2

13( )z
z

R

F dx dy 

Where z
1
 and z

2
 are the coordinates of the points of intersection of the line parallel

to z- axis through (x, y, 0) on xy plane with surfaces S
1
 and S

2
.

= 3 2 3 1( , , ) ( , , )
R

F x y z F x y z dxdy 

= 3 2 3 1( , , ) ( , , )
R

F x y f F x y f dxdy 

Consider, 3 ˆ( , , )
S

F x y z k ndS 

= 
2 1

3 2 2 2 3 1 1 1ˆ ˆ( , , ) ( , , )
S S

F x y f k n dS F x y f k n dS     

2 2ˆk n dS  is the projection of the area element dS
2
 on the surface S

2
 on the xy plane

and 1 1ˆk n dS  is the negative of the projection of the area element dS
1
 on the surface

S
1
 on the xy plane.

   3 ˆ( , , )
S

F x y z k ndS 
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= 3 2 3 1( , , ) ( , , )
R

F x y f F x y f dxdy   = 3

V

F
dV

z


  

Similarly, 1

V

F
dV

x


   = 1 ˆ( , , )

S

F x y z i ndS 

2

V

F
dV

y


   = 2 ˆ( , , )

S

F x y z j ndS 

 31 2

V

FF F
dV

x y z

  
     

    = 1 2 3 ˆ( )
S

F i F j F k ndS   

i.e., ( )
V

F dV   


= ˆ
S

F ndS 


Corollary: 31 2

V

FF F
dxdydz

x y z

  
     

    = 1 2 3( )
S

F dydz F dzdx F dxdy  

Green’s Identities

Let,  F


 = , where  and  are scalar point functions.

F


 = () = + 2

Using this in Gauss Theorem, we get

ˆ( )
S

ndS    =  2.
V

dV         (5.10)

Interchanging  and  we get,

ˆ( )
S

ndS    =  2.
V

dV         (5.11)

From Equations (5.10) and (5.11) we get,

ˆ( )
S

ndS         = 2 2( )
V

dV        (5.12)

 The Equations (5.10), (5.11) and (5.12) are called Green’s identities.

Note: n   = .
n




 Using this notation, Equation (5.12) can be written as,

S

ds
n n

          =  2 2

V

dV       

5.4.2 Applications

 Surface Integrals are used to determine pressure and gravitational force. In
Gauss’ Law of Electro statistics, it is used to compute the electric field. It is
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also use the find mass of the shell. It analysed the how to calculate the
moment of inertia and the centre of mass of the shell.

 One of the most common applications of the divergence theorem is to
electrostatic fields. An important result in this subject is Gauss’ law. This
law states that if S is a closed surface in electrostatic field E, then the flux of
E across S is the total charge enclosed by S (divided by an electric constant).

 As per the conclusion of the divergence theorem, a host of physical laws
can be written in both a differential form (where one quantity is the divergence
of another) and an integral form (where the flux of one quantity through a
closed surface is equal to another quantity). Three examples are Gauss’s
law (in electrostatics), Gauss’s law for magnetism, and Gauss’s law for
gravity.

 Continuity equations offer more examples of laws with both differential
and integral forms, related to each other by the divergence theorem. In fluid
dynamics, electromagnetism, quantum mechanics, relativity theory, and a
number of other fields, there are continuity equations that describe the
conservation of mass, momentum, energy, probability, or other quantities.
Generically, these equations state that the divergence of the flow of the
conserved quantity is equal to the distribution of sources or sinks of that
quantity. The divergence theorem states that any such continuity equation
can be written in a differential form (in terms of a divergence) and an integral
form (in terms of a flux).

 Any inverse-square law can instead be written in a Gauss’s law-type form
(with a differential and integral form). Two examples are Gauss’s law (in
electrostatics), which follows from the inverse-square Coulomb’s law, and
Gauss’s law for gravity, which follows from the inverse-square Newton’s
law of universal gravitation.

 The divergence theorem has many uses in physics and engineering; in
particular, the divergence theorem is used in the field of partial differential
equations to derive equations modeling heat flow and conservation of mass.
We use the theorem to calculate flux integrals and apply it to electrostatic
fields.

Example 5.12: Evaluate ˆ
S

a ndS  , where a  = lxi myj nzk   and S is a closed

surface whose volume is V.

Solution: ˆ
S

a ndS  = ( )
V

a dV   

= ( )
V

l m n dV     = (l + m + n)V

Where V is the volume enclosed by S.
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Example 5.13: Verify Gauss divergence theorem for F


 = 24xzi y j yzk   over
the cube x = 0, x =  1, y = 0, y = 1,  z = 0, z = 1.

Solution: F


 = (4z – 2y + y) = (4z – y)

( )
V

F dV   


=
1 1 1

0 0 0

(4 )z y dx dy dz    = 
1 1

1
0

0 0

(4 )zx xy dy dz 

=
1 1

0 0

(4 )z y dy dz   =  
11 2

0 0

4
2

y
zy dz

 
 

 


=
1

0

1
4

2
z dz  

   = 
1

2

0

2
2

z
z

  
 

 = 
3

2

Surface of the cube consists of six square faces. Unit normals and surface elements
on these faces are tabulated below to facilitate evaluation of the surface integral

ˆ
S

F ndS


A

B

y

z

x

B'

C'O'

O
C

A'

Surface Equation n̂ dS

OABC(S
1
) z = 0 k dxdy

OABC(S
2
) z = 1 k dxdy

OOAA(S
3
) y = 0 j dxdz

BCCB(S
4
) y = 1 j dxdz

OCCO(S
5
) x = 0 i dydz

ABBA(S
6
) x = 1 i dydz

1

ˆ
S

F ndS 


=
1 1

2

0 0

( ) ( )y j k dx dy     = 0

2

ˆ
S

F ndS 


=
1 1

2

0 0

(4 )xi y j yk k dx dy     = 
1 1

0 0

y dx dy   = 1/2
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3

ˆ
S

F ndS 


=
1 1

0 0

(4 ) ( )xi j dx dz    = 0

4

ˆ
S

F ndS 


=
1 1

0 0

(4 )xzi j zk j dx dz     = 
1 1

0 0

dx dz  = – 1

5

ˆ
S

F ndS 


=
1 1

2

0 0

( ) ( )y j yzk i dy dz     = 0

6

1 1
2

0 0

ˆ. (4 ) ( )
S

F ndS zi y j yzk i dydz       


 = 
1 1

0 0

4z dy dz   = 2

Adding we get,

ˆ
S

F ndS 


= 3/2 = ( . )
V

F dV  

Hence, Gauss divergence theorem is verified.

Example 5.14: If F


 = g a , where a  is an arbitrary constant vector, prove that

ˆ
S

n gdS   = ( )
V

g dV   .

Solution: We know that,

( )U V  = . curl curlV U U V 

 ( )g a   = ( ) ( )a g g a     

= ( )a g  (as a  is a constant vector, , a  = 0)

 ˆ
S

F ndS 


= .
V

FdV    gives,

ˆ ( )
S

n g a dS   = .( )
V

g a dV   

ˆ( )
S

a n g dS   = ( )
V

a g dV   

or, ˆ( ) ( )
S V

a n g dS g dV
 
    
 
      = 0

As a  is arbitrary vector a   0  we get, ˆ( )
S

n g dS   = ( )
V

g dV  
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5.5 LAPLACE  EQUATIONS

In mathematics, Laplace equation is a second order partial differential equation. It is
named after Pierre-Simon Laplace and is written as,

2 0  

Here 2 is the Laplace operator and  is a scalar function of 3 variables. Laplace

equation and Poisson equation are examples of elliptic partial differential equations.
The universal theory of solutions to Laplace equation is termed as potential theory.
The solutions of Laplace equation are harmonic functions and have great important
in many fields of science.

Twice differentiable real-valued functions f of real variables x, y and z are found
using the following notations.

In Cartesian coordinates:

2 2 2

2 2 2
0

f f f

x y z

  
  

  

In Cylindrical coordinates:

2 2

2 2 2

1 1
0

f f f

z

    
          

In Spherical coordinates:

2
2

2 2 2 2

1 1 1
sin 0

sin sin 2

f f f
r

r r r r r

                      

The Laplace equation 2 0   can also be written as . 0   .

It is also sometimes written using the notation  0  , where  is also the Laplace
operator.

Solutions of Laplace equation are harmonic functions. If the right-hand side is specified
as a given function, f(x, y, z) then the whole equation can be written as,

f 

This is the Poisson equation. The Laplace equation is also considered as a special
type of the Helmholtz equation.

5.5.1 Laplace Equation for Attraction and Potential

Let V be the potential of the system of attracting particles at a point P(x, y, z)
(Refer Figure 5.7) not in contact with the particles so that
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Fig. 5.7 System Potential of Attracting Particles

m
V

r
 ...(5.13)

Where m is the mass of particle at position of P
0
 (a,b,c) r = distance of P

from the P
0,

So that,

r2 = (X – a)2 + (y – b)2 + (Z – c)2 ...(5.14)

Therefore,
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Which is, Laplace equation.

V  potential

dv = small volume

 dm =  dv

Consequently,

5.6 POISSON EQUATIONS

In mathematics, Poisson equation is a partial differential equation. It is named after
the French mathematician, geometer and physicist Siméon-Denis Poisson. The Poisson
equation is,

Here  is the Laplace operator and f and  are real or complex-valued functions on
a manifold. If the manifold is Euclidean space, then the Laplace operator is denoted
as 2 and hence Poisson equation can be written as,

In three dimensional Cartesian coordinates, it takes the form:

For disappearing f, this equation becomes Laplace equation and is denoted as,

The Poisson equation may be solved using a Green’s function; a general exposition
of the Green’s function for the Poisson equation is given in the article on the screened
Poisson equation. There are various methods for numerical solution. The relaxation
method, an iterative algorithm, is one example.

A second order partial differential equation is of the form, 2   = – 4.
If  = 0, then it reduces to Laplace equation. It can also be considered as Helmholtz
differential equation of the form,

2 0k     

5.6.1 Poisson Equation for Attraction and Potential

Let the point P(x, y, z) be in contact (inside) the attracting matter (Refer Figure
5.8). We describe a sphere of small radius R and centre (a, b, c) contains the
point P.
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Fig 5.8 Sphere with Small Radius

ρ = density of material (sphere)

Since the sphere we describe is very small, therefore we consider the matter
inside this sphere is of uniform density ρ.

So potential at P may be due to

(i) The matter inside the sphere

(ii) The matter outside the sphere.

V
1
 = contribution towards potential at P by the matter outside the sphere

V
2
 = contribution towards potential at P by the matter inside the sphere.

Since the point P is not in contact with the matter outside the sphere.
Therefore by Laplace equation 2V

1
 = 0.

Here V
2
 = potential at P(x, y, z) inside the sphere of radius R.

Whereas,

Correspondingly,
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Since total potential is

V = V
1
 + V

2

This equation is known as Poisson’s equation.

CHECK YOUR PROGRESS

5. What is surface integral?

6. State the Gauss divergence theorem.

7. Give the uses of surface integral.

8. What do you mean by Laplace equation?

9. Define the Poisson equation.

5.7 WORK DONE BY SELF-ATTRACTING
SYSTEMS

Calculating the work done by the mutual attractive forces of particles in a self-
attracting system as they are transported from an unlimited distance to the places

they occupy in the supplied system consists of particles of masses 1m , 2m …. at

1A , 2A …. etc., in the given system A.A.
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Start with from infinity to the position . Then the work done in this process
is zero. Since there is no particle in the system to exact attraction on it next  is
brought from infinity to its position. Therefore, the work done on it by m

1
 is =

potential of m
2
 at

2A  × 2m  1
2

12

m
m

r
  1 2

12

m m

r


where  = distances between m
1
 and m

2  2 12 21m   r r

Then these two particles  and attracts the third particle. Work done on  by
m

1
 and m

2
 is,

when m
4
 is brought from infinity to its position

As a result, the total work process of collecting all the particles from infinity
to their places in system A.

 , where summation extends to every pair of particles.

Let 

V
1 
= Potential at A

1
 of m

2
, m

3 
...s

1

 V
2 
= Potential at A

2
 of m

1
, m

3
, m

4
, ….

= 
31

21 23

mm
....

r r
 

V
3
 = 

1 2 4

13 23 23

m m m

r r r
 

 = 
s 1

1 1 2 2 3 3
st

m m 1
[V m V m ... V m ]

r 2
   

Total work done = 
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This depicts the work done by the system of particles’ mutual attraction. If
the system from a contable body, then work done will be

Conversely (if particle is scattered) the work done by the mutual attraction
forces of the system as its particles are scattered at infinite distance from
configuration A,

then work done 

As the body shifts from one configuration A to another, we can see the
work that has been done. the work done to change it from A to infinite state +
work done to collect particles in infinity state to configuration B

 

A  B

Example 5.15: A self-attracting sphere of uniform density ρ and radius ‘a’ change
to one of uniform density and radius ‘b’. Demonstrate that the work carried out by
its mutually attracting forces is provided by

where M is mass of sphere.

Solution: Here the work done by mutual attractive forces of the system. As the
particle which constitute the sphere of radius ‘a’ are scattered to infinite distance

We consider a point within the system at a distance x. The potential at this
point within the spheres

   

Let us now consider at this point, a spherical shell of radius x & thickness
dx, then dm = 4x2dx



Gravitation

NOTES

Self - Learning
Material 231

M = Mass of sphere of radius a

Similarly, if  is work done in bringing the particle  to the second configuration
(a sphere of radius b)

Then 

Total work done is given by
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5.8 DISTRIBUTIONS FOR A GIVEN POTENTIAL

We can find the corresponding distribution if the potential of a distribution is supplied

over all space. If V be known, we can find 2V for every point of the space and

when 2 0V  the corresponding density of the distribution is zero by Poisson’ss
equation which in other words mean that there is no attracting mass at all such

points. But when  is not equal to zero then we know by Gauss theorem that

 density

So, the density is 

If the potential function inside any surface S differs from the potential function

outside and if there be an abrupt charge in the value of  as we pass across the

surface, then the surface distribution  on S is given by

Where the  and  are the small lengths of the normals drawn outward

from each of the two faces .

Thus  is in the direction of the outward normal to the given surface S

and  in the opposite direction.

Hence, we have

If  be an element of outward normal at any point of the given surface S,
then above equation becomes in limit

As a result, we get the formula for surface density of attracting matter.
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5.9 EQUIPOTENTIAL SURFACES

The potential V of a given attracting system is a function of coordinates .

The equation  constant

Represents a surface over which the potential is constant in nature. Such surfaces
are known as equipotential surfaces. Condition that a family of given surfaces is
a possible family of equipotential surfaces in a free space. To obtain the condition
that the equation

 constant

may represent the family of equipotential surface.

If the potential V is constant whenever  is constant, then there

must be a functional relation between V and  say

On adding

But in free space, 
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 a function of f

 (say) (5.15)

This is the necessary condition and when it is satisfied, the potential V can

be stated in terms of .

Then , where 

Integrating, 

Again integrating,

(5.16)

 which is required expression in terms of  for V..

Example 5.16: Show that a family of right circular cones with a common axis &
vertex is a possible family of equipotential surfaces & find the potential function.

Solution: Taking z axis as common axis. The equation of family of cones is

 constant (5.17)

,        

,         
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Therefore Equation (1) becomes

 function of f

 [It f  0 Equation (1) is satisfied]
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Integrating,

Putting 

Therefore,

 is the required potential function. So, V is

constant when  is constant.
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5.10 HARMONIC FUNCTIONS

Any solution of Laplace equation  in x, y, z is called Harmonic function or

spherical harmonic.

If V is a Harmonic function of degree n, then

  is a harmonic function of degree .

Now  [Laplace equation]

p times w.r.t. x

q times w.r.t. y

t times w.r.t. z

So, 

5.10.1 Surface and Solid Harmonics

 In spherical polar coordinates (r, , ) Laplace equation is

2
2

2 2

V 1 V 1 V
sin 0

sin sin
r

r r


    
                   

(5.18)

Let V=rn
nS  where nS  is independent of r or  ,nS   .

 2 2V n
nr r r S

r r r r

               

2 1n
nr S nr

r
    

 1 1n n
n nS nr nS r

r r
      

 1 n
nn n r S 

 
2

2 2

S S1 1
1 sin . 0

sin sin
n n nn n

nn n r S r r
    

          
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 
2

2 2

S S
1 sin . 0

sin sin

n n
n n n

n

r r
n n r S 

    
          

 
2

2 2

S S1 1
1 sin . 0

sin sin
n n

nn n S 
    

          

 
2 2

2 2 2

S S S1
1 cot 0

sin
n n n

nn n S 
   

  
    

   (5.19)

If cos 

   
2

2
2 2

S S1
N 1 1 0

1
n n

nn S 
   

  
         

(5.20)

A solution nS  of equation (5.19) is called a Laplace function or a surface harmonic

of order n. Since n(n+1) remains unaffected when we write –(n +1) for n. So,
there are two solutions of Equation (5.19) of which  is a factor namely rnS

n
 and

r–n–1S
n
. These are known as solid Harmonic of degree n and –(n +1) respectively.

Remark 1: If U  is a Harmonic function of degreen , then 2 1

U
nr   is also Harmonic

function.   U=rn
nS

So that  1

2 1 2 1 1

U n
nn n

nn n n

r S S
S r

r r r
 

    

which is Harmonic.

Let xyz   3rd degree is a solution of Laplace equation, then 7

xyz

r
 is also

Harmonic.

2. If  is a Harmonic function of degree –(n +1), then 2 1n
rU   is also a Harmonic

function, may write
U = r–n–1 S

n

so that  which is Harmonic.

5.10.2 Surface Density in Terms of Surface Harmonics

The potential at any point P due to several particles situated on the surface of
sphere of radius ‘a’ can be ut  in the form

1 1
0

V U
n

nn
n

r

a






 , When r a (5.21)
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1 1
V U

n

nn

r

a   , When r a (5.22)

where Un  denotes the sum of several surface Harmonics (for each particle)

and therefore itself a surface harmonic. We assume Equations (5.21) and (5.22)
to represent potential of a certain distribution of mass and want to find it (density)
on the surface.

Here 1U  is Harmonic

 2
1V =0 , 2

2V =0

Here on the surface of sphere, density is given by
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if potential is given by Equations (5.20) and (5.21), then surface density is given
by Equation (5.22).

CHECK YOUR PROGRESS

10. What happens when m
4
 is brought from infinity to its position?

11. When potential function is inside any surface S.

12. Define the harmonic function.
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5.11 ANSWERS ‘CHECK YOUR PROGRESS’

1. Gravity is also known as ‘Gravitation’, according to mechanics, the universal
force of attraction acting between all matters. It is by far the weakest known
force in nature and thus plays no role in determining the internal properties
of everyday matter. Alternatively, through its long reach and universal action,
it controls the trajectories of bodies in the solar system and to another place
in the universe and the structures and evolution of stars, galaxies, and the
whole cosmos.

2. According to Newton’s law “any particle of matter in the universe attracts
any other with a force varying directly as the product of the masses and
inversely as the square of the distance between them”. We can represent by
following formula,

1 2
2

m m
F G

r


Here F is the force, m
1
 and m

2
 are the masses of the objects interacting, r

is the distance between the centres of the masses and G is the gravitational
constant.

3. Attraction is a force between two or more dissimilar or unlike charges. Two
charges of dissimilar characteristics pull towards each other.

4. In classical mechanics, the gravitational potential at a location is equal to the
work (energy transferred) per unit mass that would be needed to move an
object to that location from a fixed reference location. It is analogous to the
electric potential with mass playing the role of charge.

5. In mathematics, particularly multivariable calculus, a surface integral is a
generalization of multiple integrals to integration over surfaces. It can be
thought of as the double integral analogue of the line integral.

6. The surface integral of a vector field over a closed surface, which is called
the flux through the surface, is equal to the ‘Volume Integral’ of the divergence
over the region inside the surface.

7. Surface Integrals are used to determine pressure and gravitational force. In
Gauss’ Law of Electro statistics, it is used to compute the electric field. It is
also use the find mass of the shell. It analysed the how to calculate the
moment of inertia and the centre of mass of the shell.

8. In mathematics, Laplace equation is a second order partial differential
equation. It is named after Pierre-Simon Laplace and is written as,

2 0  

Here 2 is the Laplace operator and  is a scalar function of 3 variables.
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9. In mathematics, Poisson equation is a partial differential equation. It is named
after the French mathematician, geometer and physicist Siméon-Denis
Poisson. The Poisson equation is,

 = f

Here is the Laplace operator and f and  are real or complex-valued
functions on a manifold.

10. When 4m  is brought from infinity to its position

3 41 4 2 4
4

14 24 34

m mm m m m
A

r r r
  

As a result, the total work process of collecting all the particles from infinity
to their places in system A.

11. If the potential function inside any surface S differs from the potential function

outside and if there be an abrupt charge in the value of 
V

n




as we pass

across the surface, then the surface distribution  on S is given by

 1 2

1 2

V V
4 .s s s

n n
    

 
  

 

1 2

1 2

V V
4

n n


 
  

 

Where the 1n and 2n are the small lengths of the normals drawn outward

from each of the two faces s .

12. Any solution of Laplace equation 2V=0  in x, y, z is called Harmonic

function or spherical harmonic.

5.12 SUMMARY

 Gravity word is also came from the Latin gravitas which means that is
‘Weight’. The gravitation, is a natural occurrence by which all things with
mass or energy, including planets, stars, galaxies and even light, are attracted
to (or gravitate toward) one another.

 In general relativity, the effects of gravitation are ascribed to space time
curvature instead of a force. The starting point for general relativity is the
equivalence principle, which equates free fall with inertial motion and
describes free-falling inertial objects as being accelerated relative to non-
inertial observers on the ground.
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 General relativity describes large-scale bulk properties whereas quantum
mechanics is the framework to describe the smallest scale interactions of
matter. One path is to describe gravity in the outline of quantum field theory,
which has been successful to accurately describe the other fundamental
interactions.

 Every planetary body (including the Earth) is surrounded by its own
gravitational field, which can be hypothesised with Newtonian physics as
exerting an attractive force on all objects. Assuming a spherically symmetrical
planet, the strength of this field at any given point above the surface is
proportional to the planetary body’s mass and inversely proportional to the
square of the distance from the centre of the body.

 Attraction is a force between two or more dissimilar or unlike charges. Two
charges of dissimilar characteristics pull towards each other.

 On the other hand in classical mechanics, the gravitational potential at a
location is equal to the work (energy transferred) per unit mass that would
be needed to move an object to that location from a fixed reference location.

 In mathematics, the gravitational potential is also known as the Newtonian
potential and is fundamental in the study of potential theory. It may also be
used for solving the electrostatic and magneto static fields generated by
uniformly charged or polarized ellipsoidal bodies.

 The scalar quantity characteristic of a point in a gravitational field whose
gradient equals the intensity of the field and equal to the work required to
move a body of unit mass from given point to a point infinitely remote.

 If the rod is infinitely long, the angle APB is two right angles and resultant

attraction is  r

2m

p
   to the rod.

 A uniform solid sphere may be supposed to be made up of a number of thin
uniform concentric spherical shells. The masses of spherical shells may be
supposed to be concentric at centre O.

 In mathematics, particularly multivariable calculus, a surface integral is a
generalization of multiple integrals to integration over surfaces. It can be
thought of as the double integral analogue of the line integral. Given a surface,
one may integrate a scalar field (that is, a function of position which returns
a scalar as a value) over the surface, or a vector field (that is, a function
which returns a vector as value).

 In vector calculus, the divergence theorem, also known as Gauss’s theorem
or Ostrogradsky’s theorem, is a theorem which relates the flux of a vector
field through a closed surface to the divergence of the field in the volume
enclosed.
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 The sum of all sources of the field in a region (with sinks regarded as negative
sources) gives the net flux out of the region.

 The divergence theorem is an important result for the mathematics of physics
and engineering, particularly in electrostatics and fluid dynamics. In these
fields, it is usually applied in three dimensions. However, it generalises to
any number of dimensions. In one dimension, it is equivalent to integration
by parts. In two dimensions, it is equivalent to Green’s theorem.

 Laplace equation and Poisson equation are examples of elliptic partial
differential equations. The universal theory of solutions to Laplace equation
is termed as potential theory. The solutions of Laplace equation are harmonic
functions and have great important in many fields of science.

 Conversely (if particle is scattered) the work done by the mutual attraction
forces of the system as its particles are scattered at infinite distance from

configuration A, then work done 
1 1

mv vdm
2 2

     .

 Thus n
2
 is in the direction of the outward normal to the given surface S and

n
1
 in the opposite direction.

 U
n
 denotes the sum of several surface Harmonics (for each particle) &

therefore itself a surface harmonic.

5.13 KEY TERMS

 Gravitation: Gravity is also known as ‘Gravitation’, according to mechanics,
the universal force of attraction acting between all matters.

 Attraction: Attraction is a force between two or more dissimilar or unlike
charges. Two charges of dissimilar characteristics pull towards each other.

 Gravitational potential: In classical mechanics, the gravitational potential
at a location is equal to the work (energy transferred) per unit mass that
would be needed to move an object to that location from a fixed reference
location. It is analogous to the electric potential with mass playing the role
of charge.

 Gauss divergence theorem: The Gauss divergence theorem states that
the surface integral of a vector field over a closed surface, which is called
the flux through the surface, is equal to the ‘Volume Integral’ of the divergence
over the region inside the surface.

 Poisson equation: The Poisson equation may be solved using a Green’s
function; a general exposition of the Green’s function for the Poisson equation.

 Spherical harmonic: Any solution of Laplace equation 2V = 0 in x, y, z
is called Harmonic function or spherical harmonic.
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5.14 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Define gravitation.

2. What do you understand by attraction and potential?

3. State the Gauss divergence theorem.

4. What is a Laplace equation?

5. Give the Poisson equation.

6. What is distributions potential?

7. Give a short note on equipotential surfaces.

8. Define harmonic function.

Long-Answer Questions

1. Elaborate on the gravitation with relevent examples.

2. Calculate the attraction and potential of rod, disc, spherical shell and sphere
with examples.

3. Discuss briefly about the Gauss divergence theorem with the help of
examples.

4. Explain briefly about the Laplace equations for attraction and potential with
the help of examples.

5. Briefly explain the Poisson equation for attraction and potential. Give
appropriate examples.

6. Analyse the work done by self-attracting system with the help of examples.

7. What do you understand by the distribution potential for a given potential?
Give appropriate examples.

8. Describe the equipotential surfaces with the help of examples.

9. Explain the surface and solid harmonic surface density in terms of surface
harmonic with relevent examples.
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