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INTRODUCTION

A computer is an electronic device for storing and processing data, typically in
binary form, according to instructions given to it in a variable program. In computer
engineering, computer architecture is a set of rules and methods that describe the
functionality, organization, and implementation of computer systems. The
architecture of a system refers to its structure in terms of separately specified
components of that system and their interrelationships.

Computer organization helps optimize performance-based products, such
as the processing power of processors. Computer organization also helps plan the
selection of a processor for a particular project. Multimedia projects may need
very rapid data access, while virtual machines may need fast interrupts. Sometimes
certain tasks need additional components as well. Computer organization and
features also affect power consumption and processor cost.

Fundamentally, the computer architecture involves Instruction Set Architecture
(ISA) design, microarchitecture design, logic design, and its implementation.

The discipline of computer architecture includes three main subcategories,
namely the Instruction Set Architecture (ISA), the microarchitecture and the systems
design. The term ISA refers to the machine code that a processor reads and acts
upon as well as the word size, memory address modes, processor registers, and
data type. Microarchitecture is also known as ‘Computer Organization’, as it
describes how a particular processor will implement the ISA. Systems design
includes all of the other hardware components within a computing system, such as
data processing other than the CPU, for example Direct Memory Access (DMA),
virtualization, and multiprocessing.

Instruction sets have shifted over the years, from initially very simple to
sometimes very complex in various respects. A Complex Instruction Set Computer
or CISC is a computer where single instructions can execute several low level
operations and/or are capable of multi-step operations or addressing modes within
single instructions. The term was retroactively coined in contrast to Reduced
Instruction Set Computer (RISC). However, the choice of instruction set
architecture may greatly affect the complexity of implementing high performance
devices. The prominent strategy, used to develop the first RISC processors, was
to simplify instructions to a minimum of individual semantic complexity combined
with high encoding regularity and simplicity.

This book is divided into five units that attempt to give the students a fair
idea of basic computer organization and design, information representation, logic
gates, basic building blocks and circuits, computer organization and design
concepts, basic computer programming,  micro-programming, CPU organization,
input-output organization, memory organization, pipeline and vector processing,
and multiprocessing The book follows the Self-Instructional Mode or SIM format
wherein each unit begins with an ‘Introduction’ to the topic followed by an outline
of the ‘Objectives’. The detailed content is then presented in a simple and structured
manner interspersed with Answers to ‘Check Your Progress’ questions. A list of
‘Key Terms’, a ‘Summary’ and a set of ‘Self-Assessment Questions and Exercises’
is also provided at the end of each unit for effective recapitulation.
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UNIT 1 INFORMATION
REPRESENTATION, LOGIC
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1.0 INTRODUCTION

A number system that uses only two digits, 0 and 1, is called the binary number
system.  A binary fraction can be represented by a series of 1 and 0 to the right of
a binary point. In digital computers, the binary numbers are represented by a set
of binary storage devices such as flip flops. A binary number can be converted
into decimal number by multiplying the binary 1 or 0 by the weight corresponding
to its position and adding all the values.

Floating point representation has a fractional part and is known as the floating-
point number. Floating point number are those numbers, which include ‘Decimals’
or ‘Fractional Parts’ and ‘Integer Values’. In integer representation the sign
information has to be encoded along with the magnitude to represent the integers
completely.

A logic gate is a device that performs Boolean logic on one or more binary
inputs before producing a single binary output. Computers often output more than
a single binary digit and conduct more than simple Boolean logic operations on
supplied data and a combinational circuit is a digital logic circuit in which the
output is determined by the combination of inputs at any given time, regardless of
the condition of the inputs previously. Combinational circuits are built around the
digital logic gate.

Arithmetic circuits in computers and calculators perform arithmetic and
logical operations. All arithmetic operations take place in the arithmetic unit of a
computer. A register is a group of flip-flops used to store or manipulated data or
both. Each flip-flop is capable of storing one bit of information.

In this unit, you will study about the number system, floating point
representation, integer representation, character codes, logic gates, Boolean
algebra, Boolean expression simplification, combinational circuits, arithmetic circuits,
combinational circuits and sequential circuits, registers and counters.
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1.1 OBJECTIVES

After going through this unit, you will be able to:

 Discuss about the different types of number system

 Explain the floating point representation

 Analyse the techniques of integer representation

 Describe the various character codes of computer

 Elaborate on the different types of logic gates

 Discuss about the Boolean algebra

 Describe the simplification techniques of Boolean Expression

 Define combinational circuits

 Understand the significance of the arithmetic circuits

 Differentiate between combinational circuits and sequential circuits

 Explain the term registers

 Discuss the basic features of counters

1.2 NUMBER SYSTEM

A number is an idea that is used to refer amounts of things. People use number
words, number gestures and number symbols. Number words are said out loud.
Number gestures are made with some part of the body, usually the hands. Number
symbols are marked or written down. A number symbol is called a numeral. The
number is the idea we think of when we see the numeral or when we see or hear
the word.

On hearing the word number, we immediately think of the familiar decimal
number system with its 10 digits; 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. These numerals are
called Arabic numerals. Our present number system provides modern
mathematicians and scientists with great advantages over those of previous
civilisations, and is an important factor in our advancement. Since fingers are the
most convenient tools nature has provided, human beings use them in counting. So
the decimal number system followed naturally from this usage.

A number of base, or radix, r is a system that uses distinct symbols of r
digits. Numbers are represented by a string of digit symbols. To determine the
quantity that the number represents, it is necessary to multiply each digit by an
integer power of r, and then form the sum of all the weighted digits. It is possible to
use any whole number greater than one as a base in building a numeration system.
The number of digits used is always equal to the base.

There are four systems of arithmetic, which are often used in digital systems.
These systems are:
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1. Decimal

2. Binary

3. Hexadecimal

4. Octal

In any number system, there is an ordered set of symbols known as digits.
Collection of these digits makes a number which is general has two parts, integer
and fractional, and are set apart by a radix point (.). Hence, a number system can
be represented as

b̂
N = 1 2 3 1 0 1 2 3 –

Integer portion Fractional portion

......
n n n ma a a a a a a a a      

where N = a number

b = radix or base of the number system

n = number of digits in integer portion

m = number of digits in fractional portion

an – 1 = Most Significant Digit (MSD)

a– m = Least Significant Digit (LSD)

and 0  (ai or af) b–1

Base or Radix: The base or radix of a number is defined as the number of
different digits which can occur in each position in the number system.

1.2.1 Decimal Number System

The number system which utilizes ten distinct digits, i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8
and 9 is known as decimal number system. It represents numbers in terms of
groups of tens (as shown in Figure 1.1).

We would be forced to stop at 9 or to invent more symbols if it were not for
the use of positional notation. It is necessary to learn only 10 basic numbers and
positional notational system in order to count any desired figure.

Fig. 1.1  Decimal Position Values as Powers of 10

The decimal number system has a base or radix of 10. Each of the ten decimal
digits 0 through 9, has a place value or weight depending on its position. The weights
are units, tens, hundreds and so on. The same can be written as the power of its
base as [100, 101, 102, 103,...], etc. Thus, the number 1993 represents quantity
equal to 1000 + 900 + 90 + 3. Actually, this should be written as {1 × 103 + 9 × 102

+ 9
× 101 + 3 × 100}. Hence, 1993 is the sum of all digits multiplied by their weights.
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Each position has a value 10 times greater than the position to its right.

Example 1.1: The number 379 actually stands for the following representation:

Solution: 100 10 1
102 101 100

3 7 9
3 × 100 + 7 × 10 + 9 × 1

 37910  =  3 × 100 + 7 × 10 + 9 × 1
   =  3 × 102 + 7 × 101 + 9 × 100

In this example, 9 is the Least Significant Digit (LSD) and 3 is the Most Significant
Digit (MSD).

Example 1.2: The number 1936.469 can be written as

Solution: 1936.469
10

 = 1 × 103  + 9 × 102 + 3 × 101 + 6 × 100 + 4 × 10–1

 + 6 × 10–2 + 9 × 10–3

= 1000 + 900 + 30 + 6 + 0.4 + 0.06 + 0.009 = 1936.469

It is seen that powers are numbered to the left of the decimal point starting
with 0 and to the right of decimal point starting with –1.

The general rule for representing numbers in the decimal system by using
positional notation is as follows:

anan – 1 ... a2a1a0 = an10n + an – 110n–1 + ... a2102 + a1101 + a0100

where n is the number of digits to the left of the decimal point.

1.2.2 Binary Number System

A number system that uses only two digits, 0 and 1 is called the binary number
system. The binary number system is also called a base two system. The two
symbols 0 and 1 are known as bits (binary digits).

The binary system groups numbers by two’s and by powers of two (as
shown in Figure 1.2). The word binary comes from a Latin word meaning two at
a time.

Fig. 1.2  Binary Position Values as a Power of 2.

The weight or place value of each position can be expressed in terms of 2,
and as 20, 21, 22, etc. The least significant digit has a weight of 20 (= 1). The
second position to the left of the least significant digit is multiplied by 21 (= 2). The
third position has weight equal to 22 (= 4). Thus, the weights are in the ascending
powers of 2 or 1, 2, 4, 8, 16, 32, 64, 128, etc.

The numeral 10
2
 (one, zero, base two) stands for two, the base of the system.

In bianry counting, single digits are used for none and one. Two-digit numbers
are used for 10

2
 and 11

2
 [2 and 3 in decimal numerals]. For the next counting
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number, 100
2
 (4 in decimal numerals) three digits are necessary. After 111

2
 (7 in

decimal numerals) four digit numerals are used until 1111
2
 (15 in decimal numerals)

is reached, and so on. In a binary numeral every position has a value 2 times the
value of the position to its right.

A binary number with 4 bits, is called a nibble and binary number with 8
bits is known as a byte.

Example 1.3: The number 1011
2
 actually stands for the following representation:

Solution: 10112 = 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20

= 1 × 8 + 0 × 4 + 1 × 2 + 1 × 1

 10112 = 8 + 0 + 2 + 1 = 1110

In general,

[bnbn – 1 ... b2, b1, b0]2 = bn2n + bn – 12n–1 + ... + b222 + b121 + b020

Example 1.4: The binary number 10101.011 can be written as

Solution: 1 0 1 0 1 . 0 1 1

24 23 22 21 20 . 2– 1 2– 2 2– 3

(MSD) (LSD)

 10101.0112 = 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20

+ 0 × 2–1 + 1 × 2–2 + 1 × 2–3

= 16 + 0 + 4 + 0 + 1 + 0 + 0.25 + 0.125 = 21.37510

In each binary digit, the value increases in powers of two starting with 0 to
the left of the binary point and decreases to the right of the bianry point starting
with power –1.

Why Binary Number System is Used

Binary number system is used in digital computers because all electrical and electronic
circuits can be made to respond to the two states concept. For instance: a switch
can be either opened or closed, only two possible states exist. A transistor can be
made to operate either in cut-off or saturation; a magnetic tape can be either magnetised
or non-magnetised; a signal can be either HIGH or LOW; a punched tape can have
a hole or no hole. In all of the above illustrations, each device is operated in any one
of the two possible states and the intermediate condition does not exist. Thus, 0 can
represent one of the states and 1 can represent the other. Hence, binary numbers
are convenient to use in analysing or designing digital circuits.

Binary Fraction

A binary fraction can be represented by a series of 1 and 0 to the right of a binary
point. The weights of digit positions to the right of the binary point are given by
2–1, 2–2, 2–3 and so on.

Example 1.5: The binary fraction 0.1011 can be written as

Solution: 0.1011 = 1 × 2–1 + 0 × 2–2 + 1 × 2–3 + 1 × 2– 4

= 1 × 0.5 + 0 × 0.25 + 1 × 0.125 + 1 × 0.0625

0.10112 = 0.687510
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Mixed Numbers

Mixed numbers contain both integer and fractional parts. The weights of mixed
numbers are

23 22 21 . 2–1 2–2 2–3 etc.


Binary Point

Example 1.6: A mixed binary numbers1011.101 can be written as

Solution: 1011.1012 = 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20 + 1 × 2–1 + 0 × 2–2

 + 1 × 2–3

= 1 × 8 + 0 × 4 + 1 × 2 + 1 × 1 + 1 × 0.5 + 0 × 0.25 + 1

 × 0.125

 [1011.101]2 = [11.625]10

When different number systems are used, it is customary to enclose the
number within big brackets and the subscripts indicate the type of the number
system.

1.3 FLOATING POINT REPRESENTATION

In floating point representation integers can be represented on a computer.
However, there is another type of number, which has a fractional part and is known
as the floating-point number. Floating-point numbers are those numbers, which
include ‘Decimals’ or ‘Fractional Parts’ and ‘Integer Values’, for example,
representation of  decimal 5.25 can be given as 101.01 in binary. The problem is
how to show the decimal point since you are limited to using only 0 or 1 in a binary
system. The most widely used presentation is the IEEE 754 floating-point
presentation, which presents standards for both 32-bit and 64-bit floating-point
numbers.

According to the IEEE standard, the leftmost bit represents the sign of the
number. Sign bit 0 is used for the positive sign and 1 for the negative sign. Then the
rest is divided into two parts, namely, exponent and mantissa. Since this presentation
does not want to ‘Waste’ a sign bit for the exponent, it decides to use the lower
half of the exponential value as negative and the upper half as positive. This will
become clearer later with examples.

The 32-bit presentation in the IEEE floating-point standard will be as follows:

31 30 23 22 0

FES

Here S = Sign bit, in the leftmost position; S = 1 for –ve number and 0 for +ve
number.

 E = The ‘Exponent’ in the next 8-bits.

 F = The normalized fractional part in the last 23-bits.



Information
Representation, Logic
Gates, Boolean Algebra,
Circuits, Registers and
Counters

NOTES

Self - Learning
10 Material

An example of this might look like 0 00101011 10000000000000000000000.

For converting the above to a decimal value, we have to use the following formula:

V = (– 1)S × 2E–127 × 1.F

It is to be noted that there is 127 in the exponent term. Why? Since E is

made up of 8-bits, it ranges from 00000000 = 0 to 11111111 = 255 and 
1

2
 of

255 is 127.5 or simply 127. In this way, E = 127 will give the exponent 0; anything
above 127 will result in a positive exponent and anything below 127 will result in
a negative exponent. The above is known as excess 127 presentations.

For example, if a 32-bit word contains the floating-point number
0 10000000 10000000000000000000000, this means S = 0, E = 128 and
F = 0.5. Therefore, this is representing the decimal value,

V= (– 1)0 × 2128–127 × 1.5 = 1 × 21 × 1.5 = 3.0

For example,

Represent – 2.5 in the IEEE754 32-bit floating-point standard.

Since its negative number, S = 1. Then convert 2.5 to binary, which comes
out to be 10.1. Normalize this to 1.01 × 21. To fit this into V = (– 1)S × 2E–127 × 1.F,
E = 128 and F = 01000...0. Therefore, the representation of – 2.5 is,

1 10000000
01000000000000000000000

For example,

Represent 0.875 in IEEE 32-bit presentation. Since this is a positive number, S =
0. Convert 0.875 to binary, which comes out to be 0.111 that normalizes to 1.11
× 2–1. This means E = 126 (binary 01111110) and F = 1100000...0. Therefore,
the binary representation of 0.875 is 0 01111110 11000000000000000000000.

The IEEE standard for 64-bit floating-point representation is similar to the 32-bit
standard. The format is shown along with its conversion formula.

63 62 52 51 0

FES

V = (– 1)S × 2E–1023 × 1.F

Since the integer value 1 is assumed to be invisibly stored with each number
in both the 32- and 64-bit representations, you may wonder how the number 0.0
can be represented.

For this, there is an exception. Whenever both E and F are all 0s, V = 0.0.

That is 0 00000000 00000000000000000000000 represents 0.0.

How do you add or subtract floating-point values? Obviously, the adders
you have learned earlier will not work here. This is similar to when you add or
subtract numbers with decimal points where you have to first line up the decimals.
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Likewise, to add or subtract floating-point numbers, you will have to first modify
the F of one of the two numbers by shifting left or right to make it equal to the E of
the other number. Then and only then can you add the two F’s.

1.3.1 Integer Representation

The integers that were discussed so far are unsigned integers; signed integers have
been ignored till now. However, the problem with signed integers is how to present
a sign. The sign information has to be encoded along with the magnitude to represent
the integers completely. The following are the three possible techniques for
representing signed integers:

 Signed Magnitude Representation

 Diminished Radix-Complement Representation

 Radix-Complement Representation

Signed Magnitude Representation

In the Signed Magnitude (SM) representation, the Most Significant Bit (MSB) is
used to represent the sign as follows:

 ‘1’ is used for a ‘–’ (Negative Sign)

 ‘0’ is used for a ‘+’ (Positive Sign)

Format of SM Representation

SM number in 8-bits looks like smmmmmmm, where ‘s’ at the MSB location
represents sign and the other 7-bits represent the magnitude.

Note: For positive numbers, this presentation is the same as the unsigned binary
representation for any number.

Signed Magnitude Examples (8-Bits)

The following examples show the SM (Signed Magnitude) representation and
their corresponding hex numbers:

–5 = (10000101)
2

= (85)
16

+5 = (00000101)
2

= (05)
16

+127 = (01111111)
2

= (7F)
16

–127 = (11111111)
2

= (FF)
16

+ 0 = (00000000)
2

= (00)
16

– 0 = (10000000)
2

= (80)
16

With N-bits, you can represent the signed integers that range from,

–{2(N–1) – 1} to {2(N–1) – 1}.

For example, with 8-bits, you can represent the signed integers ranging from –127
to +127. Signed magnitude is easy to understand and can be encoded easily and
hence, finds its application in digital electronics.
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Problems with Signed Magnitude Representation

One problem with signed magnitude representation is that it has two ways of
representing 0 (– 0 and + 0). Another problem is that addition of N + (– N) does
not give result as zero. For example,

– 5 + 5 = (85)
16

 + (05)
16

 = (8A) 
16

 = – 10

In order to remove this ambiguity, new representations are proposed. They
are one’s complement (1’s) representation and two’s complement (2’s)
representation for signed integers. These complements are used to represent only
the signed integers and for the positive numbers, this representation is same as that
of simple binary representation.

1.3.2 1’s Complement Representation

1’s complement is another way to represent signed integers. In this presentation,
for the case of a negative number, first get the binary representation of its magnitude,
and then complement each bit, i.e., replace 1 with 0 and vice versa.

Example 1.7 Represent – 5 in 1’s complement in 8-bits.

Solution:
Step 1: First, find the magnitude 5 in 8-bits.

(00000101)
2

= (05)
16

Step 2: Then complement each bit as per rule.

(11111010)
2

= (FA)
16

Hence, (FA)
16

 is the 8-bit one’s complement representation of – 5.

Examples

The following examples show 1’s complement representation and their
corresponding hex for some numbers:

– 5 = (11111010)
2

 = (FA)
16

+ 5 = (00000101)
2
 = (05)

16

+ 127 = (01111111)
2

 = (7F)
16

– 127 = (10000000)
2
 = (80)

16

+ 0 = (00000000)
2
 = (00)

16

– 0 = (11111111)
2

 = (FF)
16

In N-bits representation, you can represent the signed integers ranging from
– {2(N–1) – 1} to {2(N–1) – 1}. In 8-bits, you can represent the signed integers from
–127 to +127. However, the above representation has a problem in presenting 0,
since there will be two ways of representing 0 like – 0 and + 0. However, addition
of N + (– N) now gives the result as zero.

– 5 + 5 = (FA)
16

 + (05)
16

= (FF)
16 

= – 0

Some more observations for using 1’s complement are given as follows:
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For example, K + 0 = K will work if you use + 0 and it will not satisfy the
result if you use – 0, in place of 0.

5 + (+ 0) = (05)
16

 + (00)
16

 = (05)
16

 = 5 (Correct)

5 + (– 0) = (05)
16

 + (FF)
16 

= (04)
16

 = 4 (Wrong)

So, the two’s complement representation comes into the picture.

1.3.3 2’s Complement Representation

2’s complement is used to represent signed integers, especially negative integers.
Whenever you need to encode a negative number, first get the binary representation
of its magnitude, complement each bit and then add 1. For example, 2’s complement
of –5 in 8-bits can be obtained as follows:

Step 1: The magnitude 5 in 8-bits

(00000101)
2

= (05)
16

Step 2: Taking complement of each bit

(11111010)
2

= (FA)
16

Step 3: Adding one will result 2’s complement

11111011 = (FA)
16

 + 1 = (FB)
16

So, (11111011)
2
 in binary and (FB)

16
 in Hex is the 8-bit two’s complement

representation of –5.

The following examples show 2’s complement representation and their
corresponding Hex number.

– 5 = (11111011) = (FB)
16

+ 5 = (00000101) = (05)
16

+ 127 = (01111111) = (7F)
16

– 127 = (10000001) = (81)
16

– 128 = (10000000) = (80)
16

+ 0 = (00000000) = (00)
16

– 0 = (00000000) = (00)
16

In N-bits, you can represent the signed integers ranging from –2(N–1) to 2(N–1) – 1.
It is to be noted that the negative range extends one more than the positive range.
For example, in 8-bits, you can represent the signed integers from –128 to +127.

It is to be noted that the 2’s complement representation of any signed number
has none of the drawbacks like the signed magnitude or one’s complement
representation, since there is only one representation for zero, i.e., for + 0 and – 0,
and N + (– N) = 0.

For example, – 5 + 5 = (FB)
16

 + (05)
16

 = (00)
16

 = 0

1.3.4 Complements

Complements are used in digital computers for simplifying the subtraction operation
and for logic manipulations. There are two types of complements for each base R
system, which are as follows:
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 Diminished Radix-Complement Representation [(R – 1)’s Complement]

 Radix-Complement Representation [R’s Complement]

(R – 1)’s Complement Representation

For positive numbers, you need to represent by sign and magnitude and for negative
numbers – N, you need to represent it by Ñ, the (R – 1)’s complement where,

Ñ = (Rn – R–m) – N

n = Total number of digits in integer part of the number N

m = Total number of digits in fractional part of the number N

For example,

9’s complements of (52520)
10 

= (105 – 100 – 52520) = (105 – 1 – 52520) = 47479

9’s complements of (0.3267)
10

 = (100 – 10–4 – 0.3267) = (0.9999 – 0.3267) =
0.6732

R’s Complement Representation

For positive numbers, you need to represent by sign and magnitude and for negative
numbers – N, you need to represent it by Ñ, the (R)’s complement where

Ñ = Rn – N

n = Total number of digits in the integer part of the number N

For example,

10’s complements of (52520)
10

 = (105 – 52520) = 47480

10’s complements of (0.3267)
10

 = (100 – 0.3267) = (1.0 – 0.3267) =
0.6733

1.4 CHARACTER CODES

Most of the processing in computers and other digital circuits are done in the
binary formats. Various binary codes are used to represent data, which may be
numerals, alphabets or special characters. A user must be very careful about the
code being used while interpreting information available in the binary format. For
example,

1000001 represents (65)
10

 in straight binary.

1000001 represents (41)
10

 in BCD.

1000001 represents A in ASCII code.

Some commonly used codes are as follows:

 Straight Binary Codes

 Natural BCD Codes

 Excess-3 Codes

 Gray Codes

 Alphanumeric Codes

 Error Codes
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1. Straight Binary Codes

One binary digit (one bit) can take on values 0 and 1. This is used to represent
numbers using a natural (straight) binary form as discussed earlier. For example,
(65)

10 
in straight binary is represented by 1000001. Examples of other binary

representations are: {Black = 0, White = 1}, {True = 1, False = 0}, {On = 1,
Off = 0}.

Similarly, two binary digits (two bits) can represent four different values like
00, 01, 10 and 11.

In general, N-bits (or N binary digits) can represent 2N different values.

For example, 4-bits can represent 24 or 16 different values. N-bits can take
on unsigned decimal values from 0 to 2N – 1.

2. Natural BCD Codes

BCD stands for Binary Coded Decimal. In BCD codes, decimal digits 0 through 9
are represented by their natural binary equivalents using four bits, and each decimal
digit of a decimal number is represented by this four bits code individually. It is also
known as 8, 4, 2, 1 codes where 8, 4, 2, 1 are the weights of the four bits of the
decimal digits similar to the straight binary number system. The given Table 1.1
shows the BCD representation for the decimal number:

Table 1.1 BCD Representation for Decimal Number

Decimal  
Number 

BCD Codes 

0 0000 
1 0001 
2 0010 
3 0011 
4 0100 
5 0101 
6 0110 
7 0111 
8 1000 
9 1001 

From the table, it is clear that BCD codes are only valid for decimal numbers
less than 10. So, if the need arises to represent a decimal value greater than 9 in
the BCD format, then each digit in the decimal number is to be represented
individually by the corresponding BCD code.

For example,

 (23)
10

 is represented by 0010 0011 in BCD

 (08)
10

 is represented by 0000 1000 in BCD

 (921)
10

 is represented by 1001 0010 0001 in BCD

Similarly, if you have a BCD number presentation and you have to find its
equivalent integer value, then you have to make a group of 4-bits starting from the
LSB bit to the MSB bit. If the last group does not have 4-bits, then pad with
zeros.
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For example,

01010010 represents 52
10

01110011 represents 73
10

3. Excess-3 Codes

This is another form of BCD code in which each decimal digit is coded into a 4-bit
binary code. The code for each decimal digit is obtained by adding decimal 3 to
the corresponding BCD code. For example, decimal 2 is coded as 0010 + 0011=
0101 in the excess-3 code.

It is not a weighted code like straight binary or BCD code. Also, it is a self-
complementing code, which means that 1’s complement of the coded number
yields 9’s complement of the number itself. For example, the excess-3 code of
decimal 2 is 0101 and its 1’s complement is 1010, which is excess-3 code for
decimal 7. It also represents the 9’s complement of 2.

This property helps in performing subtraction operation in digital systems.
The complete Table 1.2 is as follows:

Table 1.2 Excess-3 Codes

Decimal 
Number 

BCD 
Codes 

Excess-3 
Code 

0 0000 0011 
1 0001 0100 
2 0010 0101 
3 0011 0110 
4 0100 0111 
5 0101 1000 
6 0110 1001 
7 0111 1010 
8 1000 1011 
9 1001 1100 

4. Gray Codes

It is a very useful code in which a decimal number is represented in the binary form
in such a way that each Gray code differs from the preceding and the succeeding
numbers by a single bit. It is not a weighted code. It is also known as reflected
code.

Construction of Gray Code

A 1-bit Gray code has two codes 0 and 1 representing decimal numbers 0 and 1.
An n-bit (n >=2) Gray code will have first 2n–1 Gray codes with n – 1 bits  (Least
Significant Bits or LSB) written in order with a leading 0 appended; and the last
2n–1 Gray codes with n – 1 bits (LSB) written in the reverse order (mirror image)
with a leading 1 appended.



Information
Representation, Logic

Gates, Boolean Algebra,
Circuits, Registers and

Counters

NOTES

Self - Learning
Material 17

For example,

1-Bit Gray Code

Decimal Number Gray Code

0 0

1 1

2-Bit Gray Code
Decimal Number Gray Code

0 00
1 01
2 11
3 10

3-Bit Gray Code
Decimal Number Gray Code

0 0 0 0
1 0 0 1
2 0 1 1
3 0 1 0
4 1 1 0
5 1 1 1
6 1 0 1
7 1 0 0

Conversion from Binary to Gray

The MSB of Gray code is the same as the MSB of the corresponding binary
code. EXOR is the MSB to the next bit of the binary number. This will give the
next bit of the Gray code number. Continue the EXOR operation on each bit of
the binary to the next bit to its right to get the Gray code for that position shown as
follows:

 

Binary 1 1 0 1 0 0 1

1 0 1 1 1 0 1Gray

+ + – + + +

Conversion from Gray to Binary

The MSB of binary code is the same as the MSB of the corresponding Gray
code. EXOR is the result of the binary code to the next bit of the Gray code
number to get the next bit of the binary code number. Continue the EXOR operation
on the result bit of the binary code to the next bit of the Gray code to get the binary
code for that position as follows:
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Gray 1 1 0 0 1

10001

X–OR

Binary

5. Alphanumeric Codes

Sometimes, digital systems are required to handle data that may consist of numerals,
letters and special symbols. If you use an n-bit binary code, you can represent 2n

elements using this code. Therefore, to represent 10 digits 0 through 9 and 26
alphabets A through Z, you need a minimum of 6-bits.

In some applications, sometimes it is required to represent more than 64
characters including the lower-case letters and the special control characters for
the transmission of the digital information. For this reason, make use of the new
codes, namely:

 Extended BCD Interchange Code (EBCDIC)

 American Standard Code for Information Interchange (ASCII)

American Standard Code for Information Interchange (ASCII)

This is required for representing more than 64 characters. It is a 7-bit code, so a
maximum of 128 different characters can be represented by this code. For
example, 1000001 is the ASCII representation of alphabet A.

Extended BCD Interchange Code (EBCDIC)

It is also used to represent more than 64 characters and it is an 8-bit code. The 8-
bit (Most Significant Bit or MSB) is invariably added for parity. A maximum of
128 different characters can be represented by this code. A parity bit is an extra
bit included with the message to make the total number of 1’s either odd or even,
depending on the parity need either even or odd. Odd parity makes the total
number of 1’s odd including parity bit and even parity makes the total number of
1’s even, including parity bit. For example, 11000001 is the EBCDIC representation
of alphabet A.

The table for the EBCDIC is as follows:

Character 6-bit 8-bit
Internal Code EBCDIC

A 010001 11000001
B 010010 11000010
C 010011 11000011
D 010100 11000100
E 010101 11000111
F 010110 11000110
H 011000 11001000
I 011001 11001001
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J 100001 11010001
K 100010 11010010
L 100011 11010011
M 100100 11010100
N 100101 11010101
O 100110 11010110
P 100111 11010111
Q 101000 11011000
R 101001 11011001
S 110010 11100010
T 110011 11100011
U 110100 11100100
V 110101 11100101
W 110110 11100110
X 110111 11100111
Y 111000 11101000
Z 111001 11101001
0 000000 11110000
1 000001 11110001
2 000010 11110010
3 000011 11110011
4 000100 11110100
5 000101 11110101
6 000110 11110110
7 000111 11110111
8 001000 11111000
9 001001 11111001

blank 110000 01000000

· 011011 01001011
( 111100 01001101
+ 010000 01001110
$ 101011 01011011
* 101100 01011100
, 011100 01011101
_ 100000 01100000
 110001 01101011
’ 111011 01101011
= 001011 01111110

Check Your Progress

1. What is binary number system?

2. Define mixed numbers.

3. How do you add or subtract floating-point values?

4. What are the three possible techniques for representing signed integers?

5. State the character codes of computers.
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1.5 LOGIC GATES

A logic gate is an idealized model of computation or physical electronic device
implementing a Boolean function, a logical operation performed on one or more
binary inputs that produces a single binary output. Depending on the context, the
term may refer to an ideal logic gate, one that has for instance zero rise time and
unlimited fan-out, or it may refer to a non-ideal physical device.

Logic gates are primarily implemented using diodes or transistors acting as
electronic switches, but can also be constructed using vacuum tubes, electromagnetic
relays (relay logic), fluidic logic, pneumatic logic, optics, molecules, or even
mechanical elements. With amplification, logic gates can be cascaded in the same
way that Boolean functions can be composed, allowing the construction of a physical
model of all of Boolean logic, and therefore, all of the algorithms and mathematics
that can be described with Boolean logic.

Logic circuits include such devices as multiplexers, registers, Arithmetic Logic
Units (ALUs), and computer memory, all the way up through complete
microprocessors, which may contain more than 100 million gates. In modern
practice, most gates are made from MOSFETs (Metal–Oxide–Semiconductor
Field-Effect Transistors).

Compound logic gates AND-OR-Invert (AOI) and OR-AND-Invert (OAI)
are often employed in circuit design because their construction using MOSFETs is
simpler and more efficient than the sum of the individual gates.

1.5.1 NOT Gate

The basic NOT gate has only one input and one output. The output is always the
opposite or negation of the input. The following is the truth table for NOT gate:

Table 1.3 Truth Table for NOT Gate

A F

0 1

1 0

Symbol: F = A

The following is the figure of NOT gate representation:
 

A F 

Fig. 1.3 NOT Gate

1.5.2 AND Gate

A basic AND gate consists of two inputs and an output. In the AND gate, the
output is ‘High’ or gate is ‘On’ only if both the inputs are ‘High’. The relationship
between the input signals and the output signals is often represented in the form of
a truth table. It is nothing but a tabulation of all possible input combinations and
the resulting outputs. For the AND gate, there are four possible combinations of
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input states: {A = 0, B = 0}; {A = 0, B = 1}; {A = 1, B = 0}; and {A = 1, B = 1}.
In the truth table, these are listed as follows:

 Table 1.4 Truth Table for AND Gate

A B F

0 0 0

0 1 0

1 0 0

1 1 1

In Table 1.4, F represents the output of two inputs in the AND gate with input
signals A and B.

Symbol: F = A.B (where ‘.’ implies AND operation)

The following figure represents the AND gate:

A 
 
 

B 

F

Fig. 1.4 AND Gate

1.5.3 OR Gate

A basic OR gate is a two input, single output gate. Unlike the AND gate, the
output is 1 when any one of the input signals is 1. The OR gate output is 0 only
when both the inputs are 0. The truth table for the OR gate is as follows:

 Table 1.5 Truth Table for OR Gate

 

A B F

0 0 0

0 1 1

1 0 1

1 1 1

Symbol: F = A + B (where ‘+’ implies OR operation)

The following figure represents OR gate:

A 
 
 

B 

F 

Fig. 1.5 OR Gate

1.5.4 XOR Gate

A gate related to the OR gate is the XOR gate or exclusive OR gate in which the
output is 1 when one, and only one, of the inputs is 1. In other words, the XOR
output is 1 if the inputs are different. The truth table for the XOR gate is as follows:
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 Table 1.6 Truth Table for XOR Gate

A B F

0 0 0

0 1 1

1 0 1

1 1 0

Symbol: F = A  B (where ‘’ implies XOR operation)

The following figure represents XOR gate:

A 
 
 

B 

F 

Fig. 1.6 XOR Gate

1.6 BOOLEAN ALGEBRA

Basic logic functions and operations are the AND function (logical multiplication),
the OR function (logical addition) and the NOT operation (logical complementation).

1.6.1 Logical AND Operation

The logical AND operation between two Boolean variables, A and B, is written as
Y = A . B. The common symbol for this operation is the multiplication sign (.).
Table 1.7 shows that the result of logically ANDing the variables A and B is logical
0 for all cases except when both A and B are logical 1. Normally, the dot denoting
the AND function is omitted and A . B is written as AB.

1.6.2 Logical OR Operation

The logical OR operation between two Boolean variables, A and B, is written as
Y = A + B and can be represented by a truth table. Table 1.8 shows that the result
of ORing the variables A and B is logical 1 when either A or B (or both) are logical
1. The common symbol for logical addition is the plus sign (+).

Table 1.7 Logical AND Operation  Table 1.8 Logical OR Operation

A B Y = A . B A B Y = A + B

0 0 0 0 0 0

0 1 0 0 1 1

1 0 0 1 0 1

1 1 1 1 1 1

1.6.3 Logical Complementation (Inversion)
The logical inverse operation changes logical 1 to logical 0 and vice versa. It is
also called the NOT operation. The common symbol for this operation is a bar
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over the function or variable. Several notations are used to indicate the NOT
operation, such as adding asterisks, stars, primes, etc., ‘NOT A’ or the ‘Complement
of A’ will be written as A  or A.

A Boolean function is an algebraic expression formed with binary variables,
the logic operation symbols, parentheses and equal sign. A Boolean function can
be transformed from an algebraic expression into a logic diagram composed of
AND, OR, NOT (inverter) gates.

The purpose of Boolean algebra is to facilitate the analysis and design of
digital circuits. It provides a convenient tool to:

(i) Express in algebraic form a truth table relationship between variables.

(ii) Express in algebraic form the input-output relationship of logic diagram.

(iii) Find simpler circuits for the same function.

1.6.4 Basic Laws of Boolean Algebra
Three logic functions (AND, OR and NOT or complement) provide the foundation
for all digital systems analysis and design. Logic operations can be expressed and
minimized mathematically using, laws and theorems of Boolean algebra. It is a
convenient and systematic method of expressing and analysing the operation of
digital circuits and systems. The following are the basic laws of Boolean algebra.

Boolean addition: The basic rules of Boolean addition are given as follows:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1

Boolean addition is same as the logical OR addition.

Boolean Multiplication: The basic rules of Boolean multiplication method are
given as follows:

0.0 = 0
0.1 = 0
1.0 = 0
1.1 = 1

Boolean multiplication is same as the logical AND operation.

Properties of Boolean Algebra: Boolean algebra is a mathematical system
consisting of a set of two or more distinct elements, two binary operators denoted
by the symbols (+) and (.), and one unary operator denoted by the symbol either
bar (–) or prime (). This satisfies the commutative, associative, distributive,
absorption, consensus and idempotency properties of the Boolean algebra.
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Commutative Laws: Boolean addition is commutative and is given by,

A + B = B + A ...(1.1)

A . B = B . A ...(1.2)

These laws indicate that the order in which we OR or AND two variables is not
important; the result is the same.

Associative Laws:

A + (B + C) = (A + B) + C ...(1.3)

A . (B . C) = (A . B) . C ...(1.4)

These laws state that we can group the variables in an AND expression or OR
expression any way we want.

Distributive Laws:

A . (B + C) = A . B + A . C ...(1.5)

A + B . C = (A + B) . (A + C)

These laws state that an expression can be expanded by multiplying term by term
just the same as in ordinary algebra.

This theorem also indicates that you can factor an expression. That is, if you
have a sum of two (or more) terms, each of which contains a common variable.
The common variable can be factored out just as in ordinary algebra.

A + (B . C) = (A + B) . (A + C) ...(1.6)

Proof: A + B . C = A . 1 + B . C ( A . 1 = A)

= A . (1 + B) + BC ( 1 + B = 1)

= A . 1 + A . B + BC ( A(B + C) = AB + AC)

= A . (1 + C) + AB + BC ( 1 + C = 1)

= A . 1 + AC + AB + BC

= A . A + AC + AB + BC ( A . A = A)

= A(A + C) + B(A + C)

 A + (B . C) = (A + B).(A + C)

Absorption Laws:

(i) A + AB =A ...(1.7)

Proof: A + AB =A . 1 + AB = A(1 + B)

 A + AB = A . 1 = A

(ii) A . (A + B) = A ...(1.8)

Proof: A . (A + B) = A . A + A . B

= A + AB = A(1 + B) = A . 1

 A . (A + B) = A

(iii) A A B. = A + B ...(1.9)
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Proof: A A B. = ( )( )A A A B [ A + B.C = (A + B).(A + C)]

= 1 . (A + B) ( A A 1)

 A A B. = A + B

(iv) A A B. ( ) = AB ...(1.10)

Proof: A A B. ( ) = ( . ) ( . )A A A B

 A A B. ( ) = AB ( A A. 0)

Consensus Laws:

(i) AB AC BC = AB AC ...(1.11)

Proof: AB AC BC = AB AC BC .1

= AB AC BC A A( ) ( A A  = 1)

= AB AC ABC ABC

= AB C AC B( ) ( )1 1

 AB AC BC = AB AC ( 1 + C = 1)

(ii) ( )( )( )A B A C B C = ( )( )A B A C ...(1.12)

Proof: ( )( )( )A B A C B C = ( )( )( 0)A B A C B C   

= ( )( )( )A B A C B C AA

= ( )( )( )( )A B A C B C A B C A

[ A + BC = (A + B)(A + C)]

= ( )( )( )( )A B A B C A C A C B

 ( )( )( )A B A C B C = ( )( )A B A C [ A(A + B) = A]

The other basic laws of Boolean algebra are given in Table 1.9.

Truth Table 1.9 Laws of Boolean Algebra

Boolean laws

2.13 (a) A + 0 = A (b) A . 1 = A

2.14 (a) A + 1 = 1 (b) A . 0 = 0

2.15 (a) A + A = A (b) A . A = A Idempotency

2.16 (a) A A  = 1 (b) A A.  = 0 Full set, null set

2.17 (a) 0  = 1 (b) 1  = 0

2.18 (a) A A (b) A A Double inversion or involution

Principle of Duality: From the above properties and laws of Boolean algebra, it
is seen that they are grouped in pairs as (a) and (b). One expression can be
obtained from the other by replacing every 0 with 1, every 1 with 0, every (+) with
(.) and every (.) with (+). Any pair of expression satisfying this property is called
dual expression. This characteristic of Boolean algebra is called the principle of
duality.
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1.6.5 De Morgan’s Theorems

A great mathematician De Morgan has contributed with two of the most important
theorems of Boolean algebra. De Morgan’s theorems are extremely useful in
simplifying expression in which product or sum of variables are complemented.
The two theorems are:

Theorem I: A B C  .......... = A B C. .  ..........

Theorem II: A B C. .  .......... = A B C  ..........

The complement of an OR sum equals the AND product of the complements.

The complement of an AND product is equal to the OR sum of the
complements.

These two theorems can be easily proved by checking each one for all
values of A, B, C, etc.

The complement of any Boolean expression, a part of any expression, may
be found by means of these theorems. In these rules, two steps are used to form
a complement.

1. The + symbols are replaced with  symbols and  symbols with + symbols.

2. Each of the term in the expression is complemented.

Implications of De Morgan’s Theorems

Consider Theorem I, A B  = A B.

The equation in the left can be seen as the output of a NOR gate whose inputs are
A and B. The right-hand side of the equation is the result of the first inverting both
A and B and then putting them through an AND gate. These two representations
are equivalent and are illustrated in Figure 1.7. Hence, an AND gate with inverters
on each of its inputs is equivalent to a NOR gate.

A

B

Y = A + B

=
A

B

Y = A  B

(a) (b)

Fig. 1.7 De Morgan’s Theorems

Consider Theorem II, A B A B  

The left-hand side of the equation can be implemented by a NAND gate
with inputs A and B. The right-hand side can be implemented by first inverting
inputs A and B and then putting them through an OR gate. These two equivalent
representations are shown in Figure. 1.7(a). The OR gate with inverters on each
of its inputs is equivalent to the NAND gate. When the OR gate with inverted
inputs is used to represent the NAND function, it is usually drawn as shown in
Figure 1.7(b).
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A

B

Y = AB

=
A

B

Y = A + B

(a) (b)

Fig. 1.8 OR Gate used to Represent the NAND Function

De Morgan’s theorems can be proved for any number of variables and proof of
these two theorems for 2-input variables is shown in Table 1.10.

Table 1.10 De Morgan’s Theorems

A B A B A + B A . B A B AB A B .A B

0 0 1 1 0 0 1 1 1 1
0 1 1 0 1 0 0 1 1 0
1 0 0 1 1 0 0 1 1 0

1 1 0 0 1 1 0 0 0 0

1.6.6 Realization of Expression using Gates
Some examples of realization of expression using gates are given below:

Example 1.8: Simplify ( )  AB ABC A B AB

Solution: ( )  AB ABC A B AB = )  AB ABC AB AAB

= ( )A B BC AB AB  

= ( )A B C AB AB  

= ( )  AB AC A B B

= .1 AB AC A

=  AB AC A

= ( ) ( ) AB AC A

= ( ) ( )   A B A C A

=    A AC AB BC A

= ( 1 )   A C B BC A

= 1   A BC A BC

= 1  = 0

Example 1.9: Show that Y =  ABC ABC ABC  can be simplified to Y = A (B +
C)

Solution: Y =  ABC ABC ABC

= ( ) = .1  AC B B ABC AC ABC

Y = ( ) = ( )A C BC A C B 
= A (B + C)
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Example 1.10: Using Boolean algebra simplify the following expression:

Y =   ABC ABC ABC ABC
Realize the simplified expression for the above equation using basic logic gates.

Solution: Y =   ABC ABC ABC ABC

= ( )  BC A A ABC ABC

= .1BC ABC ABC  ( 1) A A

=  BC ABC ABC

= ( ) B C AC ABC

= ( ) B C A ABC ( )   C AC C A

=  BC AB ABC

= ( ) BC A B BC

= ( ) BC A B C

= =BC AB AC  AB + BC + CA

The logic circuit for the above simplified expression is given in the figure.

A B C

Y =  +  +  A C A  B B C

Example 1.11: Expand the term S = A B C using Boolean theorems. Realize
the above expression using basic logic gates.
Solution: S = A B C

= ( ) AB BA C

= ( ) ( )    AB BA C C AB BA

= ( ) ( ).  AB BA C ABC ABC

= [( ) ( )]    A B B A C ABC ABC

= [( ) ( )]    A B B A C ABC ABC

= ( )     AB AA BB BA C ABC ABC

= ( )AB BA C ABC ABC   ( = 0) AA

S = ABC + ABC + ABC + ABC
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The logic circuit for the simplified expression is shown in the figure.

A B C

AB C

ABC  

A CB  

ABC  

S = C + A  + B  + ABCAB BC A C        

Example 1.12: Simplify the following Boolean expression and realize using the

basic logic gates:   ABC ABC ABC ABC

Solution: Y =   ABC ABC ABC ABC

= ( )  AC B B ABC ABC

= .1 AC ABC ABC ( 1)  B B

= ( ) A C BC ABC

= ( ) A C B ABC ( )   C BC C B

=  AC AB ABC

= ( ) AC B A AC

= ( ) AC B A C

= = AC AB BC AB + BC + CA

The above Boolean expression is realized using the basic logic gates as shown in
the figure.

A B C

Y = AB + BC + CA



Information
Representation, Logic
Gates, Boolean Algebra,
Circuits, Registers and
Counters

NOTES

Self - Learning
30 Material

Example 1.13: Apply De Morgan’s theorems to each of the following
expressions:

(i)  A B C (ii)  A B CD (iii) ( )A B CD E F  

Solution: (i)  A B C = ( ) ( ) A B C

= (A + B) . C = AC + BC

(ii)       A B CD = ( ) .A B CD

= ( ) AB CD

= ( . ) . =A B CD ABCD

(iii) ( )A B CD E F   = ( ) ( )A B C D E F   

= ( )AC AD BC BD E F    

= ( ) ( ) ( ) ( ) ( ) ( )AC AD BC BD E F

= ( ) ( ) ( ) ( ) ( ) ( )   A C A D B C B D E F

= [ ] ( )     AA AD CA CD BB BD CB CD EF

= ( ) ( )     A AD CA CD B BD CB CD EF

( )AA A

= [ (1 ) ] [ (1 ) ( ]     A D CA CD B D CB CD EF

= [ ] [ ]   A CA CD B CB CD EF ( 1 1)  A

= [ (1 ) ][ (1 ) ]   A C CD B C CD EF

= [ ][ ] A CD B CD EF

= [ . ]  AB ACD BCD CD CD EF

= [ ( ) ]  AB CD A B CD EF

= [ ( 1)  AB CD A B EF

= [ ]AB + CD EF

Example 1.14: Simplify the following functions using relevant theorems. Mention
the theorems used.

(i)  AB AC BC (ii) ( ) ( ) A BC AB C

(iii) ( ) ( ) ( )  A B A C B C (iv)   AB ABC AB ABC

Solution: (i)  AB AC BC = ( ) AB C A B

= AB C AB

= AB C AB (By De Morgan’s theorem

                                                         = AB A B )
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Let AB = X, you have AB C AB = X CX

= X C

= AB + C

(ii) ( ) ( ) A BC AB C =   AAB AC ABBC BCC

=   AB AC ACB BC ( . )A A A

= (1 )  AB AC B BC

= AB + AC + BC ( 1 1)  B

(iii) ( ) ( ) ( )  A B A C B C = ( . ) ( ) ( ) A B A C B C

= ( ) ( )  AB AB AC CB CC

= . . 0AB AB AB AC AB CB   ( = 0) CC

=  AB ABC ABC ( . = and = ) AB AB AB BB B

= (1 ) AB C ABC

= AB ABC ( 1 = 1) C

= (1 )AB C ( 1 =1) C

= AB

(iv)   AB ABC AB ABC = (1 )  AB C AB ABC

=  AB AB ABC ( 1 = 1) C

= ( ) B A A ABC

= B + ABC ( = 1) A A

Example 1.15: Write the truth tables of the following Boolean expressions and
draw their logic diagrams:

(i) Y =  ABC ABC AB (ii) Y = AB AC

Solution: (i) Y =  ABC ABC AB

Truth Table

Inputs Output

A B C A B ABC ABC AB Y =

 ABC ABC AB

0 0 0 1 1 0 0 0 0
0 0 1 1 1 1 0 0 1
0 1 0 1 0 0 0 0 0
0 1 1 1 0 0 1 0 1
1 0 0 0 1 0 0 1 1
1 0 1 0 1 0 0 1 1
1 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0
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Logic Diagram

A B C

AB C 

ABC  

AB  

Y = C +  + AAB   A BBC

(ii) Y = AB AC

Truth Table

Inputs Output

A B C A B AB AC Y = AB AC

0 0 0 1 1 0 0 0

0 0 1 1 1 0 1 1

0 1 0 1 0 0 0 0

0 1 1 1 0 0 1 1

1 0 0 0 1 1 0 1

1 0 1 0 1 1 0 1

1 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0

Logic Diagram

A B C

AB 

AC 

Y = A  + CB A  

Example 1.16: Simplify and realize using only NAND gates the following Boolean
expressions:

(i)   XYZ XYZ YZ Z (ii) ( ) ( ) ( )    A B C A B C A B
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Solution: (i) Output =   XYZ XYZ YZ Z ( 1) A A

=  XYZ YZ Z

= ( 1) YZ X Z

= YZ + Z = YZ .Z ( 1 + A = 1)

Logic Diagram

Y

Z

YZ

O = Z = YZ + YZ Z
Z

(ii) ( ) ( ) ( )    A B C A B C A B

 = ( ) ( )AA AB AC BA BB BC CA CB CC A B        

 = (0 0 0) ( )        AB AC BA BC CA CB A B ( 0) AA

=           AAB AAC ABA ABC ACA ACB BAB BAC BBA BBC BCA BCB

 = 0 0 0 0          AB AC ABC ABC BAC BA BC BCA

 = (1 ) (1 ) ( 1)      AB AC B BA C BC A ABC

 = = (1 )       AB AC BA BC ABC AB C AC BA BC

Y= .AB + AC + AB + BC = AB.AC AB.BC

Logic Diagram

A B C

F

AB

AC

AB 

BC 

Example 1.17: Find the complement and simplify:

(i) AB AB (ii) 1 A B (iii) 0AB

Solution: (i) Y = AB AB

Y = AB AB

= ( ) ( )AB AB
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= ( ) ( ) A B A B

= = 0 + 0    AA AB BA BB AB BA

= = AB BA A B

(ii) Y = 1 A B

Y = 1 A B

= 1 = 1A ( 1 = 1) B

= 0

(iii) Y = AB + 0

Y = 0AB

= ( ) (0) = ( ) (1) =AB A B A + B

Example 1.18: Simplify and realize using only NOR gates:

Y =   ABC ABC BC AC

Solution: Y =   ABC ABC BC AC

= ( )  BC A A BC AC

=  BC BC AC ( = 1)A A

= BC AC ( = 1)A A

= C (B + A)

Logic diagram using NOR gates.

Y Y Y = = ( ) ( )A B C A B C   

A

B

C

B

C

(  + )A B

Y

Example 1.19: Simplify the following Boolean expression: f (Y) =  AB AC BC

Solution: f (Y) =  AB AC BC

= .1 AB AC BC

= ( )  AB AC BC A A ( = 1) A A

=   AB AC BCA BCA

= (1 ) (1 )  AB C AC B

= AB + AC ( 1 = 1 = 1 + ) B C
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1.6.7 Combinational Logic
Combinational logic deals with the techniques of ‘Combining’ the basic gates into
circuits that perform some desired functions. In combinational logic circuits, at any
time, the logic level at the output depends on the combination of logic levels present
at the inputs. A combinational circuit has no memory characteristic, so its output
depends only on the current value of its inputs. A combinational logic digital function
is completely specified by a truth table. Truth table shows output of the function
corresponding to each and every possible combination of input variables. So, a
truth table has number of columns equal to number of inputs plus one column for
the output. If there are more than one outputs, then, only one output is considered
at a time for designing the function. If there are n-input variables, since each variable
can have two values 0 or 1, so there are 2n possible combinations. Thus, the truth
table has 2n rows. Hence, a three variable combination logic function truth table
has 4 columns and 8 rows. Thus, the truth table specifies the complete requirement
of the digital function.

An arbitrary logic function can be understood in the following terms:

(i) Sum of Products (SOP) (ii) Product of Sums (POS)

Product Term: The AND function is referred to as a product. In Boolean algebra,
the word ‘Product’ loses its original meaning but serves to indicate an AND function.
The logical product of several variables, on which a function depends, is considered
to be a product term. The variables in a product term appear in a complemented
or uncomplemented form. For example, ABC  is a product term.

Sum Term: An OR function is generally referred to as a sum. The logical sum of
variables on which a function depends is considered to be a sum term. Variables
in a sum term can appear either in complemented or uncomplemented form. For
example, A B C  is a sum term.

(a) Sum of Products

Sum of Products (SOP) is the logical sum of two or more logical product terms is
called a sum of products expression. It is logical OR of multiple product terms.
Each product term is the AND of binary literals. This is an ORing of ANDed
variables such as:

(i) Y = AB + BC + AC (ii) Y = AB BC AC 

(b) Product of Sums

A product of sums is the logical AND of multiple OR terms. Each sum term is the
OR of binary literals. This is an ANDing of ORed variables such as:

(i) Y = (A + B)(B + C)(A C ) (ii) Y = ( )( )( )A B B C A C

Minterm: A minterm is a special case product (AND) term. A minterm is a
product term that contains all of the input variables that make up a Boolean
expression. A two variable function has four possible combinations, viz.,

AB AB AB, ,  and AB.
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Maxterm: A maxterm is a special case sum (OR) term. A maxterm is a sum
(OR) term that contains all of the input variables that make up a Boolean expression.

A two variable function has four possible combinations, viz.  A + B, A B A B,

and A B .

Table 1.11 shows the complement nature of minterms and maxterms. Note
that an input variable is complemented when it has a value of 0, if you are writing
minterms. The input variables are complemented when they have a value of 1, if
you are writing maxterms. Minterms represent output variable 1s and maxterms
represent output variable 0s. Lower case m is used to denote a minterm and
upper case M is used to denote a maxterm. The number subscript indicates the
decimal value of the term.

Output equations can be written directly from the truth table using either
minterms or maxterms. When an output equation is written in minterms or maxterms,
it is a canonical expression.

Table 1.11 Minterm and Maxterm Designations for Three Variables

Input variables Minterm Maxterm

A B C Term Designation Term Designation

0 0 0 A B C m0 A + B + C M0

0 0 1 A B C m1 A B C M1

0 1 0 A BC m2 A B C M2

0 1 1 A BC m3 A B C M3

1 0 0 A B C m4 A B C M4

1 0 1 A B C m5 A B C M5

1 1 0 A BC m6 A B C M6

1 1 1 ABC m7 A B C M7

Canonical Forms

Canonical is a word used to describe a condition of a switching equation. In
normal use, the word means ‘Conforming to a General Rule’. The ‘Rule’ for
switching logic, is that each term is used in a switching equation which must contain
all of the available input variables. Two formats generally exist for expressing
switching equations in a canonical form : (i) Sums of Minterms, and (ii) Products
of Maxterms.

I. To place a SOP equation into canonical form using Boolean algebra, you
can do the following:
1. Identify the missing variable(s) in each AND term.
2. AND the missing term(s) and its complement with the original AND

term, AB( )C C . Because C + C  = 1, the original AND term value is
not changed.

3. Expand the term by application of the property of the distribution,

ABC ABC .

II. To place a POS equation into canonical form using Boolean algebra, we do
the following:
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1. Identify the missing variable(s) in each OR term.
2. OR the missing term(s) and its complement with the original OR term,

A B CC . Because CC  = 0, the original OR term value is not changed.

3. Expand the term by application of distributive property, ( )A B C

( )A B C .

Example 1.20: Convert A + B to minterms.

Solution: A + B = A . 1 + B . 1 ( A . 1 = A)

= A B B B A A( ) ( )

= AB AB BA BA (Commutative)

 Y = A + B = AB AB BA (AB is Redundant)

This general form obtained is called the minterm canonical form,
sometimes also referred to as the standard sum.

Example 1.21: Convert (A + BC) to minterms.

Solution:       A + BC = A . 1 + BC . 1

= A B B BC A A( ) ( )

= AB AB ABC BCA

= AB AB ABC BCA. .1 1

= AB C C AB C C ABC BCA( ) ( )

= ABC ABC ABC ABC ABC BCA

Y = A + BC = ABC ABC ABC ABC ABC

Example 1.22: Find the minterms for AB + ACD.

Solution: ABXX generates ABCD ABCD ABCD ABCD, , ,

AXCD generates ABCD and ABCD

 Y = AB + ACD

= ABCD ABCD ABCD ABCD ABCD

Example 1.23: Find the minterm designation of ABC D .

Solution: Substituting 1’s for nonbarred letters and 0’s for barred letters we have

ABC D = 1000 = m8

Example 1.24: Express the function Y = A BC  in canonical SOP and POS
forms.

Solution: (i) Sum of Products (SOP)

Y = A BC = A B B B C A A. ( ) . ( ) ( A A  = 1)

= AB AB ABC ABC

= AB C C AB C C ABC ABC( ) ( )
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= ABC ABC ABC ABC ABC ABC

= ABC ABC ABC ABC ABC

Y = m7 + m6 + m5 + m4 + m1

The S sign is generally used to write the canonical SOP form of an expression,

 Y = (1, 4, 5, 6, 7)

(ii) Product of Sums (POS)

Y = A BC A B A C( )( )

[ A BC A B A C( )( )]

= ( )( )( )( )A B C A B C A B C A B C

[ ( )( )A B A B A]

 Y = ( )( )( )A B C A B C A B C

or Y = M2 . M3 . M0 = M0M2M3

In this case  symbol is used to represent a product of maxterms. Then,

Y =(0, 2, 3)

Deriving Sum of Product Expression from a Truth Table

The sum of product (SOP) expression for a Boolean function can be derived from
its truth table by summing (OR operation) the product terms that correspond to
the combinations containing a function value. In the product term, the input variable
appears either in uncomplemented form if it possesses the value 1, or in complement
form if it contains the value 0.

Truth Table 1.12

Inputs Output Product

A B C Y terms

0 0 0 0 –
0 0 1 0 –

0 1 0 1 A BC

0 1 1 1 A BC
1 0 0 0 –
1 0 1 0 –

1 1 0 1 A BC

1 1 1 1 ABC

Consider the Truth Table 1.12, for a three input circuit. Here, the output (Y)
value is 1 for the input combinations 010, 011, 110 and 111 and their corresponding

proudct terms are ABC , ABC , ABC  and ABC respectively..

The final expression for the output Y is obtained by ORing the four AND
terms. Thus,

Y = ABC ABC ABC ABC

The general expression for obtaining the output expression from a truth
table in SOP can be summarized as follows:
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1. Write a product term for each case in the table where the output is 1.
2. Each product term contains input variable in either complemented or

uncomp-lemented form. If the input variable is 0, then it appears in
complemented form, if the input variable is 1, it appears then in
uncomplemented form.

3. All the product terms are then added (ORed) together to produce the
final expression of the output.

Deriving Product of Sum Expression from a Truth Table

The Product of Sum (POS) expression for a Boolean function can also be obtained
from a truth table by multiplying (AND operation) of the sum terms corresponding
to the combinations for which the function assumes the value 0. In the sum term,
the input variable appears in an uncomplemented form if it has the value 0 in the
corresponding combination, and in the complemented form if it has the value 1.

Consider the Truth Table 1.13, for a 3-input circuit. From the table it is
observed that the Y value is 0 or the input combinations 001, 010, 100 and 110.

The corresponding sum terms are ( ), ( )A B C A B C    , ( )A B C   and

( )A B C   respectively..

The final POS expression for the output Y is obtained by multiplying (AND
operation) the four sum terms as follows:

Y = ( )( )( )( )A B C A B C A B C A B C

Truth Table 1.13

Inputs Output Sum Product

A B C Y terms Y Y terms

0 0 0 1
__

ABC 0
__

0 0 1 0 ( )A B C
__

1 ABC

0 1 0 0 ( )A B C
__

1 ABC
0 1 1 1

__
ABC 0

__

1 0 0 0 ( )A B C
__

1 ABC

1 0 1 1
__

ABC 0
__

1 1 0 0 ( )A B C 
__

1 ABC

1 1 1 1
__

ABC 0
__

The procedure for obtaining the output expression in POS form that from a
truth table can be summarized as follows:

1. Write a sum term for each input combination in the table, which has an
output value of 0.

2. Each sum term contains all its input variables in complemented or
uncomplemented form. If the input variable is 0, then it appears in an
uncomplemented form; if the input variable is 1, it appears in the
complemented form.

3. All the sum terms are multiplied (ANDed) together to obtain the final
POS expression of the output.
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The POS expression for a Boolean function can also be obtained form its
SOP expression using the fact that POS expression is complement of SOP.

Consider a function,

Y = ABC ABC ABC ABC , in SOP..

Y  will be in POS form, which is:

ABC ABC ABC ABC  

= ( )( )( )( )A B C A B C A B C A B C       

This expression is in the desired POS form.

Check Your Progress

6. What do you mean by NOT gate?

7. Define the term truth table?

8. State the rules of Boolean addition.

9. What are De Morgan’s laws?

1.7 BOOLEAN EXPRESSION SIMPLIFICATION

Sometimes, you need to simplify the Boolean expression. The main advantage in
doing so is that, it then uses less logic gates and less power to realize and thus, it is
considered sometimes cheaper and faster.

There are basically two types of simplification techniques:

 Algebraic Simplification

 Karnaugh Maps (K-map)

1.7.1 Algebraic Simplification

This involves simplifications using Boolean theorems. Algebraic simplification aims
to minimize the number of literals and terms.

For example, to reduce the Boolean expression F = (x+y).(x+y).(x+z)

(6 Literals)
F = (x.x + x.y + x.y + y.y).(x+z) (Associative)

= (x+x.(y+y)+0).(x+z) (Idempotency, Associative,
Complement)

= (x+x.(1)+0).(x+z) (Complement)

= (x+x+0).(x+z) (Identity 1)

= (x).(x+z) (Idempotency, Identity 0)

= (x.x+x.z) (Associative)

= (0+x.z) (Complement)

= x. z (Identity 0)

Number of literals reduced from 6 to 2.
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For example,

1. Finding the minimal SOP and POS expressions of :
F(x,y,z) = x.y.(z + y.x) + y.z

= x.y.z + x.y.y.x + y.z (Distributive)

= x.y.z + 0 + y.z (Complement, Null element 0)

= x.y.z + y.z (Identity 0)

= x.z + y.z (Absorption)

= (x + y).z (Distributive)

Minimal SOP of F = x.z + y.z (Two 2-input AND gates and one 2-input
OR gate)

Minimal POS of F = (x + y).z (One 2-input OR gate and one 2-input
AND gate)

2. Finding the minimal SOP expression of:
 F(a,b,c,d)= a.b.c + a.b.d + a.b.c + c.d + b.d

= a.b.c + a.b.d + a.b.c + c.d + b.d (Absorption on underlined
terms)

= a.b.c + a.b + a.b.c + c.d + b.d (Absorption on underlined
terms)

= a.b.c + a.b + b.c + c.d + b.d (Absorption on underlined
terms)

= a.b + b.c + c.d + b.d (Distributivity on underlined
terms)

= a.b + c.d + b.(c + d) (De Morgan on underlined
terms)

= a.b + c.d + b.(c.d) (Absorption on underlined
terms)

= a.b + c.d + b (Absorption on underlined
terms)

= b + c.d

Number of literals is reduced from 13 to 3.

However, the difficulty with this method is that it needs good algebraic
manipulation skills.

1.7.2 Karnaugh Map

It is a diagram-based simplification technique. It is easy for the circuit designer and
involves pattern-matching skills. It gives simplified Boolean expressions in standard
forms. However, this can be effectively utilized for reducing Boolean expressions
with input variables less than 6.

It is a systematic method to obtain simplified Sum-Of-Products (SOP)
Boolean expressions with the objective of fewest possible terms/literals. It is a
diagrammatic technique based on a special form of Venn diagram. Here, Venn
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diagrams represent the space of Minterms. An example of a 2 variable (4 Minterms)
Venn diagram is shown in Figure 1.9:

ab' a'b 

a'b' 

ab 
a 

b 

Fig. 1.9 Venn Diagram (4 Minterms)

Each set of Minterms represents a Boolean function. For example,

{a.b, a.b }  a.b + a.b = a.(b+b) = a

{a.b, a.b }  a.b + a.b = (a+a).b = b

{a.b }  a.b

{a.b, a.b, a.b }  a.b + a.b + a.b = a + b

{ }  0

{ a.b,a.b,a.b,a.b }  1

2-Variable K-Map

A Karnaugh map (K-map) is an abstract form of Venn diagram, organized as a
matrix of squares, where each square represents a Minterm. Also, adjacent squares
always differ by just one literal (so that the unifying theorem may apply: a + a =
1). For 2-variable case (e.g., variables a, b), assuming that a is the MSB and b is
the LSB, the map can be drawn as follows:

Alternative 1:

{–symbol implies that corresponding literal is in normal form.

Alternative 2:

{–symbol implies that corresponding literal is in normal form.
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Equivalent Labelling:

a 

b 

Equivalent to: 

a 
b 

0       1 

0 
   

1 

b 

a 

Equivalent to: 

b 
a 

1       0 

0 
   

1 

The K-map for a function, which is the sum of Minterms, is specified by putting:

 ‘1’ in the square corresponding to a Minterm

 ‘0’ otherwise

For example, if F
1
 = a.b and F

2
= a.b + a.b, then the K-map entry for F

1
 and F

2

will be as follows:

0 0 

0 1 a 

b 

0 1 

1 0 a 

b 

F1 = ab F2 = ab' + a'b 

Here 1 is entered to the locations of Minterms of Boolean expression.

3-Variable K-Map

There are 8 Minterms for 3 variables (a, b, c). Therefore, there are 8 cells in a 3-
variable K-map.

It is to be noted that the above arrangement ensures that Minterms of adjacent
cells differ by only one literal.
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00 01 11 10

0

1

a

b

c

bc

m1 m2m3

m4 m5 m6m7

m0

a

It is to be noted that there is wrap-around in the K-map:

 a.b.c (m
0
) is adjacent to a.b.c(m

2
) since only one literal b is different.

 a.b.c (m
4
) is adjacent to a.b.c (m

6
) since only one literal b is different.

Each cell in a 3-variable K-map has 3 adjacent neighbours. In general,
each cell in an n-variable K-map has n adjacent neighbours. For example, m

0
 has

3 adjacent neighbours m
1
, m

2
 and m

4
.

4-Variable K-Map
There are 16 cells in a 4-variable (w, x, y, z) K-map. The K-map for the same is
given as follows:

 

m4  m5  

w 

y

m7  m6  

m0  m1  m3  m2  00  
   

01  
 

11  
 

10  

00             01             11             10  

z 

wx  
yz  

m12  m13  m15  m14  

m8  m9  m11  m10  

Every cell thus has 4 neighbours. For example, the cell corresponding to Minterm
m

0
 has neighbours m

1
, m

2
, m

4
 and m

8
.

1.7.3 Steps for Forming Karnaugh Map

The K-map of a function is easily drawn when the function is given in canonical
Sum-of-Products form or Sum-of-Minterms form. When the function is not in the
Sum-of-Minterms form, then first convert it to Sum-Of-Products (SOP) form.
Expand the SOP expression into Sum-of-Minterms expression or fill in the K-
map directly based on the SOP expression.

To Summarize:

 Find all the Minterms of the function using the method already discussed.

 Fill ‘1’ for the Minterms in the appropriate location.

 Fill ‘0’Otherwise.
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Example 1.25: Draw the K-map for the function F:

F(a, b, c) = a.b + b.c + a.b.c

Solution: Find all the Minterms.

F(a, b, c) = a.b(c + c) + b.c(a + a) + a.b.c
= a.b.c + a.b.c + b.c.a + b.c.a + a.b.c

Rearranging the terms with the MSB first and then the next bit up to the
LSB, and removing repeated Minterms, you get,

F(a, b, c)= a.b.c + a.b.c + ab.c + a.b.c =  m(1,2,6,7)

0 0a

b 

1 1

0  1  0  1  0  
1

00               01               11               10 

c  

a
bc

Example 1.26: The K-map of a 3-variable function F is as follows.

0  1  a 

b 

0  0  

1  0  0  1  0  

   
1  

00               01               11              10 

c 

a 
bc  

What is the sum-of-Minterms expression of F?

Solution: Assuming that a is the MSB and c is the LSB and function is of the form
F (a, b, c), then by seeing the entry of 1, you can say that Minterms are m

0
, m

2
 and

m
5
. So,

F =  m (0, 2, 5) = a.b.c + a.b.c + a.b.c

1.7.4 Simplification of Expressions using Karnaugh Map

Once the K-map for any Boolean expression is known, it can be used to find the
minimized expression, which consists of less number of literals. The main advantage
of reduction is that it needs less hardware in terms of logic gate. Less number of
literals gives realization based on logic gate with less input pin.

The K-map based Boolean reduction is based on the following Unifying Theorem:

A + A = 1
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In a K-map, each cell containing a ‘1’ corresponds to a Minterm of a given function
F. Each group of adjacent cells containing ‘1’ (a group must have size in powers
of twos: 1, 2, 4, 8, …) then corresponds to a simpler product term of F.

 Grouping 2 adjacent squares eliminates 1 variable, grouping 4 squares
eliminates 2 variables, grouping 8 squares eliminates 3 variables, and so on.
In general, grouping 2n squares eliminates n variables.

 Group as many squares as possible. The larger the group, the fewer the
number of literals in the resulting product term.

 Select as few groups as possible to cover all the squares (Minterms) of the
function. The fewer the groups, the fewer the number of product terms in
the minimized function.

Example 1.27 Find the reduced expression for the function given by:

F(w,x,y,z) = w.x.y.z + w.x.y.z + w.x.y.z + w.x.y.z + w.x.y.z + w.x.y.z

=  m(4, 5, 10, 11, 14, 15)

Solution: First draw the K-map. Cells with ‘0’ are not shown for clarity.

1  1  

w 

y 

00  

   
01  

 
11  

 
10

 

00              01             11             10  
wx 

yz  

1  1  

1  1  

x  

Each group of adjacent Minterms (group size in powers of twos) corresponds to
a possible product term of the given function.

1 1

w

00

01

11

10

00          01          11         10

z

wx
yz

1 1

1 1

x

A

B

y
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There are 2 groups of Minterms: A and B, where:

A = w.x.y.z + w.x.y.z
= w.x.y.(z + z)

= w.x.y

B = w.x.y.z + w.x.y.z + w.x.y.z + w.x.y.z

= w.x.y.(z + z) + w.x.y.(z + z)

= w.x.y + w.x.y

= w.(x+ x).y

= w.y

Each product term of a group, w.x.y and w.y, represents the Sum-of-
Minterms in that group. The Boolean function is, therefore, the Sum-Of-Product
(SOP) terms, which represents all groups of the Minterms of the function.

F(w,x,y,z) = A + B = w.x.y + w.y

Another way of getting the expression for the groups A and B is based on the
intersection area concept. For example, take a look at four variables of K-map
given as follows:

The notation w pointed to by an arrow shows that the complete region has Minterms
in which w is 1. The region above w shows w region. Similarly, the notation x
pointed by the arrow shows that the complete region is having Minterms in which
x is 1 and the region above and below x is termed as x. The same is true for y and
z. Using this technique, the K-map shown in the previous example can be solved
directly.
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1 1

w

00

01

11

10

00          01          11         10

z

wx
yz

1 1

1 1

x

A

B

y

The intersection area A shows intersection of w, x and y. So, the Boolean
expression for the region A can be written as w.x .y. Similarly, region B is the
intersection of y, w and the Boolean expression for B = w.y; so the overall expression
can be written as follows:

F(w,x,y,z) = A + B = w.x.y + w.y.

Larger groups correspond to product terms of fewer literals. In the case of a 4-
variable K-map, if you have 1 cell, then you have 4 literals; if you have 2 cells,
then 3 literals; if 4 cells, then 2 literals; if 8 cells, then 1 literal and at last, if 16 cells,
then no literal. Also, some other possible valid groupings of a 4-variable K-map
are shown as follows:

1

11

1

1

1

1

1 1

11

1 1

111

1

11

1

1.7.5 Simplification using Karnaugh Map

Groups of Minterms must be rectangular and must have size in powers of 2s.
Otherwise, they are invalid groups. Some examples of invalid groups are as follows:

 

1  

1  1  

1  1  

1  1  1  

1  

1  1  

1  

1 

1  

1  

1  
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The K-map grouping shown above is invalid, since it is not satisfying the rectangular
rule or the power of 2 rule.

Example 1.28: Find the grouping for the F(A,B,C, D) = A(C+D)(B+D) +
C(B+C+AD)

Solution:

Step 1: Find the SOP expression for the function.

F(A,B,C,D) = A(C+D)(B+D) + C(B+C+AD)

= A(CD). (B+D) + BC + CC + ACD

= ABCD + ACD + BC + ACD

Step 2: Find all the Minterms by inserting missing variable technique.

  ABCD + ACD + BC + ACD

= ABCD + ACD(B+B) + BC + ACD

= ABCD + ABCD + ABCD + BC. (A+A) + ACD

After removing the repeated term ABCD
= ABCD + ABCD + ABC + ABC + ACD

= ABCD + ABCD + ABC. (D+D) + ABC.
(D+D)  + ACD. (B+B)

After removing the repeated term ABCD,

= ABCD + ABCD + ABCD + ABCD+ ABCD
+  ABCD + ABCD

=  m (8, 12, 15, 14, 7, 6, 3)

After rearranging = m (3, 6, 7, 8, 12, 14, 15)

Step 3: Draw K-map entries.

C  

A 

00  
   

01  

 
11  

 
10  

00        01         11         10 

B  

CD 
AB  

D  
1  1  1  

1 1 

1  1  

Step 4: Make grouping.

C 

A 

00

01

11

10

00        01         11        10

B

CD
AB

D
1 1 1

1 1

11
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Using the area intersection concept, the Boolean expression can be written as
follows:

F(A, B, C, D) = A.C.D + B.C + A.C.D

1.7.6 Simplest SOP Expressions

To find the simplest possible Sum-Of-Products (SOP) expression from a
K-map, you need to obtain:

 Minimum number of literals per product term.

 Minimum number of product terms.

This is achieved in K-map using:

 Bigger groupings of Minterms (prime implicants) where possible.

 No redundant groupings (look for essential prime implicants).

Before learning the definition of prime implicants and essential prime
implicants, you need to learn the definition implicant. An implicant is a product
term that could be used to cover Minterms of the function.
A prime implicant is a product term obtained by combining the maximum possible
number of Minterms from adjacent squares in the map. You should use bigger
groupings (prime implicants) wherever possible.

As an example, take the following K-maps and the groupings:

1  1  1  

1  1  1  


1  1  1  

1  1  1  
(Correct)(Wrong)

The first K-map is one group of four 1’s and the other is a group of two,
1’s. Since there are two more cells adjacent to that of group 2 cell, so the best
covering for the implicant will be the second K-map covering.

An essential prime implicant is a prime implicant that includes at least one Minterm
that is not covered by any other prime implicant.

 

1  

1  

1  

1  1  

1  


1  

1  

1

1

1

11

1


1

1

Essential Prime Implicants

(Correct)(Wrong)
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In the first K-map covering, there are three prime implicants shown by the
covering of 4 cells out of which elements of one implicant are covered by either of
the two other implicants. This is known as redundant prime implicant.

The prime implicant, which has at least one element that is not present in any
other implicant is known as essential prime implicant.

Example 1.29: Identify the prime implicants and the essential prime implicants of
the following K-map:

 

0 1 a 

b 

0 0 

1 0 1 0 
   

1 

00       01      11       10 

c 

a 
bc 

1 

Solution: Prime implicants are the covering of Minterms {m
0
, m

1
}, {m

1
, m

5
} and

{m
2
, m

0
}

The prime implicants formed by {m
0
, m

1
} are redundant since both the

Minterms are present in other implicants. So, you have only two essential prime
implicants, which are formed by covering {m

1
, m

5
} and {m

2
, m

0
}.

How to find the Simplest SOP expression?

The following steps are used for obtaining a simplified SOP expression:

(i) Circle all prime implicants on the K-map.

(ii) Identify and select all essential prime implicants for the cover.

(iii) Select a minimum subset of the remaining prime implicants to complete the
cover, that is, to cover those Minterms not covered by the essential prime
implicants.

Example 1.30: Reduce the following Boolean expression:

F(A,B,C,D) = m(2, 3, 4, 5, 7, 8, 10, 13, 15)

Solution:

Step 1: First draw the K-map.

1

1

C

A

00

01

11

10

00      01      11      10

B

CD
AB

1

1

1

1

D

1

1

1
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Step 2: Find prime implicants.

1

1

C

A

00

01

11

10

00         01        11        10

B

CD
AB

1

1

1

D

1

1

1

1

They are the coverings of {m
2
, m

3
}, {m

4
, m

5
}, {m

3
, m

7
}, {m

5
, m

7
, m

13
, m

15
}, {m

8
,

m
10

}, {m
10

, m
2
}.

Some of the prime implicants are redundant. They can be removed after
finding the essential prime implicant.

Step 3: Find essential prime implicants.

1  

1  

C 

A 

00  

   
01  

 

11  

 

00        01         11        10 

B  

CD 
AB  

1  

1  

1  

1

D  

1  

1  

1  

Essential Prime 
Implicants

Step 4: Find minimum cover. After identifying the essential prime implicant, you
have to find the prime implicant necessary for covering all the remaining 1s.

1

1

C

A

0
0

0
1

1
1

 

00       01       11      10
 

B

CD
AB

1

1

1

1

D

1

1  

1

Minimum Cover
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Step 5: Write the expression:

1

1

C  

A

00

01

11

10

00        01         11        10

B

CD
 

AB

1

1

1

1

D

1

1  

1

BD

AB'D'

A'BC' 

A'B'C 
 F(A,B,C,D) = B.D + A.B.C + A.B.D + A.B.C

Example 1.31: For the function F(A,B,C,D) = m(2,3,4,5,7,8,10), find the
reduced expression using K-map.

Solution: It can have more than one solution. Two are as follows:

(i) F = A.B.C + A.B.D + A.B.D + A.B.C

(ii) F = A.B.C + A.C.D + A.B.D + A.B.C

Example 1.32: F(A,B,C,D) = A.B.C + B.C.D + A.D + B.C.D, find the
reduced expression using K-map.

Solution: F(A,B,C,D) = A.D + A.C + B.D

1.7.7 Getting POS Expressions

Simplified Product of Sum (POS) expressions can be obtained by grouping the
Maxterms (i.e., 0s) of the given function. As far as covering of 0s is concerned, it
is done in the same fashion as was used for covering 1s. However, during writing
the expression for the essential prime implicant or prime implicant, a different method
is followed. Using the area intersection concept, the grouping for the 4-variable
K-map for Maxterms will be as follows:

w

00

01

11

10

00             01              11             10

z  

wx
yz

x

y

w'

y 

x 

z 

x

z
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The notation w pointed to by an arrow shows that the complete region is having
Maxterm in which w is 0. The region above w shows w region. The same is true
for x, y and z also. During writing expression for the covering of 0s, the intersection
area is written as sum term as opposite to the product term that was used during
grouping of 1s.

Example 1.33: Given F = m (4, 6, 12, 13, 14, 15), draw the K-map, and
write reduced Maxterm expression. The grouping of 0s is as follows:

Solution:

The two terms, namely, X and Y can be written using the area intersection concept
as X = A + B and Y = B + D; So, overall expression can be written as F= X.Y=
(A + B ).(B + D).

Another method for getting the minimized expression in the Maxterm form
is to find the reduced Minterms expression first and then take the complement for
getting the Maxterm expression.

Find the expression for the F(complement of F) by using K-map of F.

0

0

C

A

00

01

11

10

00        01        11       10

B

CD
AB

0

1

0

0

D

0

0

0 0

01

11

1 1
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This gives the SOP of F to be: F = B.D + A.B

To get POS of F, you have to take complement of F:
F = (F) = (B.D + A.B)

= (B.D). (A.B)
= (B+D). (A+B)

Example 1.34: Find the simplest POS expression for the following function:

F (A,B,C,D) = A.B.C + B.C.D + A.D + B.C.D

Solution:    F(A,B,C,D) = (A+B).(A+D).(B+C+D)

Hint: Draw the K-map of the complement of F, F and then using De Morgan
theorem, find the POS.

Check Your Progress

10. What is Boolean expression simplification techniques?

11. How the combinational circuits can be defined?

12.  Define the term Binary addition.

1.8 COMBINATIONAL CIRCUITS

Combinational Circuits (CC) are those circuits where output depends on the
present value of the inputs. If input values are changed, the information about the
previous inputs is lost because combinational logic circuits have no memory. In
such cases, sequential logic circuits are used to overcome this problem. In a
combinational logic circuit the outputs depend on their current inputs.
Combinational circuits are used to realize Boolean expressions.

1.8.1 Half-Adder

An electronic (combinational) circuit which performs the arithmetic addition of
two binary digits is called a half-adder.

The half-adder has two inputs (augend and addend) and two outputs (sum and
carry). The logic symbol for a half-adder is shown in the Figure 1.10(a). The logic
diagram that consists of an XOR gate and an AND gate is shown in the Figure
1.10(b).

The half-adder functions is according to the Truth Table. You know that the AND
gate produces a high output only when both inputs are high and the exclusive OR
gate produces a high output if either input, but not both half-adder is high. From
the Truth Table, the sum output corresponds to a logic EXOR function, while the
carry output corresponds to AND function.
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Inputs Outputs

A

B

S

C

Half-
adder

A

B

Sum = A + B

Carry = AB

A

B

Carry = AB

Sum = A + B
=   +  AB BA

( ) Symbol of half-addera

( ) Logic diagramb

( ) Half-adder using NAND gatesc

Fig. 1.10 Half-Adder Logic Symbol and Diagram

Truth Table 1.14 Half-Adder

Inputs Outputs

Addend Augend Sum Carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Examine each entry in the Truth Table 1.14. Half-adder does electronically what
you do mentally, when we add two bits.

First Entry: Input : A = 0 and B = 0
Human response : 0 plus 0 is 0 with a carry of 0
Half-adder response : SUM = 0 and CARRY = 0
Second Entry: Input : A = 1 and B = 0
Human response : 1 plus 0 is 1 with a carry of 0.
Half-adder response : SUM = 1 and CARRY = 0
Third Entry: Input : A = 1 and B = 1
Human response : 0 plus 1 is 1 with a carry of 0.
Half-adder response : SUM = 1 and CARRY = 0
Fourth Entry: Input : A = 1 and B = 1
Human response : 1 plus 1 is 0 with a carry of 1.

Half-adder response : SUM = 0 and CARRY = 1

The SUM output represents the Least Significant Bit (LSB) of the sum. The Boolean
expression for the two outputs can be obtained directly from the Truth Table 1.14.

S(sum) = AB A B  = ( )( )A B A B   = A A  B

C(carry) = AB = (A + B)( )( )A B A B 
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The implementation of the half-adder circuit using basic gates is shown in the
Figure 1.11.

S AB AB =  + 

C AB = 

A B

AB

AB

Fig. 1.11 Half-Adder Circuit

1.8.2 Full-Adder

A half-adder has only two inputs and there is no provision to add a carry coming
from the lower order bits when multibit addition is performed. For this purpose, a
third input terminal is added and this circuit is used to add A, B and Cin.

Truth Table 1.15 Full-Adder

Inputs Outputs

Augend Bit Addend Bit Carry Bit Sum Bit Carry Bit

A B Cin S Output Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

The logic expression of exclusive ORing of three variables A, B and Cin is as
follows:

A  B  C = ( )A B AB C  in

= in in( ) ( )AB AB C C AB AB  

=      in inAB AB C C AB AB  

= ( ) ( ) ( )A B A B C C A B AB    in in

SUM = A  B  Cin = A B C A BC AB C ABCin in in in  

For A = 1, B = 0 and Cin = 1,

S = 1 0 1 1 0 1 1 0 1 1 0 1. . . . . . . .  

= 0 . 1 . 1 + 0 . 0 . 0 + 1 . 1 . 0 + 1 . 0 . 1 = 0
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The sum of products for,

Cout = A BC AB C ABC ABC ABC ABCin in in in in in    

= A BC ABC AB C ABC ABC ABCin in in in in in    

= BC A A AC B B AB C Cin in in in[ ] [ ] [ ]    

Cout = BCin + ACin + AB = AB + BCin + CinA

For A = 1, B = 0 and Cin = 1, Cout = 1.0 + 0.1 + 1.1 = 1

1.8.3 Parallel Binary Adder

In most logic designs, more than one bit words are added. The addition of multibit
numbers is accomplished by using several full-adders. Figure 1.12 shows the block
diagram of a 5-bit parallel adder using 5 full-adder circuits connected in series,
i.e., the carry output of each adder is connected to the carry input of the next
higher order adder. Let the 5-bit words to be added be represented by A4 A3 A2
A1 A0 = 11111 and B4B3B2B1B0 = 00011.

A full-adder is a combinational circuit that performs the arithmetic sum of
three input bits and producing a sum and a carry.

It consists of three inputs and two outputs. Two inputs variables denoted by
A and B, represent the carry from the previous lower significant position. Two
outputs are necessary because the arithmetic sum of three binary digits ranges
from 0 to 3 and binary 2 or 3 needs two digits. The outputs are designed by the
symbol S (for sum) and Cout (for carry). The binary variable S gives the value of
the LSB of the sum. The binary variable Cout gives the output carry.

The symbolic diagram for full-adder is shown in Figure 1.12 (a). A full-
adder is formed by using two half-adder circuits and an OR gate as shown in
Figure 1.12 (b). Note the symbol  (sigma) for the sum. The full-adder circuit
which consists of three AND gates, an OR gate and 3-input exclusive OR gate is
shown in Figure 1.12 (c).

Truth Table 1.15 shows the Truth Table of a full-adder. There are several
possible cases for the three inputs and for each case the desired output values are
listed. For example, consider the case A = 1, B = 0 and Cin = 1. The full-adder
must add these bits to produce a sum (S) of 0 and carry (Cout) of 1. The reader
should check the other cases to understand them. The full-adder can do more
than a million additions per second.

A S  

Cout Cout

B

Cin

Full
Adder

( ) Logic Symbol of Full-Addera

A   

CoutB

A

B

  

Cout ( ) A  B C  in

A

B

A B   

S A B C = (   )    in 

CoutCin

C AB A B Cout in =  + (   )  

( ) Full-Adder using Two Half-Addersb
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A B Cin

Carry
BCin

CinA

S A B C =        

AB

( ) Logic Circuit of Full-Adderc

A

B

Half-adder Half-adder

Cin Sum

Cout

( ) Full-Adder using Two Half-Adders and an OR Gated

Fig. 1.12 Block Diagram of a 5-Bit Parallel Adder

C5 C4

24

B4 A4

C4 C3

23

B3 A3

C3 C2

22

B2 A2

C2 C1

21

B1 A1

C1 C0

20

B0 A0

CinCarry 2  out5

Sum output

Fig. 1.13 A Parallel 5-Bit Binary Adder

Significant place : 5 4 3 2 1 0

Input carry : 1 1 1 1 0

Augend word A : 1 1 1 1 1

Addend word B : 0 0 0 1 1

Sum : 0 0 0 1 0

Output carry : 1 1 1 1 1 1

In this circuit, the output carry of the lower order is the input carry for the
next higher order. Hence, this type of adder is called ripple carry adder. Since all
the bits of the augend and addend are fed into the adder circuits simultaneously,
this circuit is known as parallel adder circuit. This means that additions in each
position are taking place at the same time.

The same basic configuration illustrated above may be extended to any
number of binary bits.
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It should be noted that either a half-adder can be used for the least significant
position or the carry input of a full-adder is made 0 because there is no carry into
the least significant bit position.

4-Bit Parallel Binary Adder

IC manufacturers produce several adders one elementary arithmetic IC is the
TTL 7483, a 4-bit binary full-adder. A logic symbol for the 7483 IC is shown in
Figure 1.14. It has two 4-bit inputs A3A2A1A0 and B3B2B1B0 and a carry input
Cin in the LSB stage. The outputs are a 4-bit sum S3S2S1S0 and a carry output
Cout from the most significant bit stage. For adding just two 4-bit numbers, the
Cin input is held at 0. The carry output Cout is attached to the 16s output indicator.
This binary adder can indicate a sum as high as 11110 (decimal 30) when adding
binary 1111 to 1111.

The 7483 IC adder can be cascaded by connecting Cout output of the first IC
to the carry input Cin of the next 7483 IC. With two 7483 IC adders cascadded, an
8-bit binary adder is produced. The 7483 IC can also be used as a 4-bit subtractor.

A3 A2 A1 A0 B3 B2 B1 B0 Cin

+ 5 V VCC GND GND

16s 8s 4s 2s 1s

Cout S3 S2 S1 S0

Fig. 1.14 The 7483 4-Bit Binary Adder IC
Serial Adder

Though the parallel adder performs the addition of two binary numbers at a relatively
fast rate, the disadvantage of the parallel addition is that it requires a large amount
of logic circuitry. This increases indirect proportion to the number of bits in the
numbers being added. In serial addition, the addition process is carried out in a
manner in which you perform addition on paper, that is one position at a time. This
results in much simpler circuitry than parallel addition but results in a much smaller
speed of operation.

A3 A2 A1 A0

B3 B2 B1 B0

A

B

Cin Cout

Full 
adder

S3 S2 S1 S0

Cout

Initial 
clear pulse

CLK CLR
DFF

Q
D

B Register

A Register

Sum Register

Fig. 1.15 4-Bit Serial Adder



Information
Representation, Logic

Gates, Boolean Algebra,
Circuits, Registers and

Counters

NOTES

Self - Learning
Material 61

The diagram of a 4-bit serial adder is shown in Figure 1.15. The registers A and B
are used to store the numbers to be added. The D flip-flop is required for storage
of a possible carry to the next cycle. However, in the serial adder these registers
are shift registers whose binary values shift from left to right upon application of
each clock pulse. The outputs (LSBs) A0 and B0 are fed into a single full-adder
along with the output of the carry FF. The carry FF is a separate FF used to store
the carry output of the FA so that it can be added to the next significant position of
the numbers in the registers.

The SUM output, A3, of the FA is fed to the D input of the MSB of the A
register. As soon as the clock pulse is occurred the SUM values is transferred into
A3. The output B0 is connected to the D input of B3, so B3 takes on the value of B0
when a clock pulse occurs. In this way the contents of B register will be unchanged
after all the shifting operations are completed.

Understand the operation of serial adder by following through a complete
cycle. Let the augend by 0111 and the addend be 0010 in registers A and B
respectively. Also, you will assume that the carry FF has been initially cleared to
the 0 state, so CARRY-IN. Refer to the first entry in Figure 1.16 which shows the
various logic levels before the first clock pulse is applied.

First Clock Pulse

Since A0 = 1, B0 = 0 and CARRY-IN = 0, the full-adder outputs will be SUM =
1 and CARRY-OUT = 0. These levels are present at the full-adder outputs before
the first clock pulse occurs. When the first Clock Pulse occurs, the values in the A
register shift from left to right one bit, as do the values in the B register. In addition,
the SUM level is transferred into A3, the B0 level is transferred into B3, and the
CARRY-OUT level is transferred to the carry FF, whose output becomes CARRY-
IN = 0.

Second Clock Pulse

At this point, A0 and B0 contain the bits (1 and 1) that were in the second position
of the original augend and added. These are fed to the full-adder along with
CARRY-IN (0) from CARRY-OUT = 1. When the second Clock Pulse occurs,
the A and B registers again shift right, SUM = 0 is transferred to A3, and CARRY-
OUT = 1 is transferred to the CARRY FF.

Third Clock Pulse

The values of A0 and B0 are now 1 and 0 respectively and CARRY-IN is 1. These
values produce SUM = 0 and CARRY-OUT = 1 at the full-adder outputs. On the
occurrence of the third Clock Pulse, the A and B registers again shift right,
SUM = 0 goes to A3, and CARRY-OUT = 1 goes to the carry FF.

Fourth Clock Pulse

A0 and B0 are now both 0 and CARRY-IN = 1, the FA produces SUM = 1 and
CARRY-OUT = 0. The fourth Clock Pulse transfers SUM = 1 into A3 and initiates
all the other transfers. At the completion of this fourth Clock Pulse the A register
holds the number 1001, which of course, is the SUM of the original augend and
addend. In addition, the B register holds the original addend 0010. The addition
process is now complete.
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There are presently six complex function adder packages in the series SN54/
74 logic for 1, 2 and 4 bits. The SN54/7480 is a single bit gate full-adder with

gated complementary inputs and complementary sum ( and  ) outputs. The
inverted carry output is designed for medium and high speed multiple bit parallel
adder for serial carry applications. It is designed specifically for multibit addition
or subtraction operations without external gates or inverters.

The SN54/77482 and SN7483 are 2- and 4-bit binary adders respectively
that perform parallel addition with internally connected ripple though (serial) carry.
The basic logic configuration for the sum and carry is the same as for the SN7480,
but there is no gating for inputs on the SN7482 and SN7483 adders. The
complement of the carry out is used for the carry input of high order bits. The
consequence is that for even numbered bits, it is required to invert the inputs and
for even numbered sum outputs, an inverter is not required. Table 1.16 summarizes
the differences between parallel adder and serial adder.

Table 1.16 Comparison of Parallel Adder and Serial Adder

Serial Adder Parallel Adder 

1. Serial adder is less faster. 1. Parallel adder is generally faster. 

2. It requires more components. 2. It requires less components compared to 
serial adder. 

3. Only the right most FFs of these 
registers can be added at one time. 

3. All the outputs of the register are 
available for addition at the same time. 

4.   The bit positions are processed one at a 
time. 

4. All the bit positions are processed 
simultaneously. 

5. It would require 36 clock pulses to add 
two 36-bit numbers. It takes nearly 36 
× 50 = 1800 ns to perform addition. 

5. It produces the desired output only after 
a short delay. A parallel adder can add 
two 56-bit numbers in about 100 ns. 

6. It requires only one full-adder for any 
number of bits. 

6. It requires 36 full-adders to add two 36-
bit numbers. 

 
Look Ahead Carry Generator

In the case of parallel adder, the speed with which an addition can be performed is
limited by the time required for the carries to propagate or ripple through all of the
stages of the adder. One method of speeding up this process by eliminating the
ripple carry delay is called look ahead carry addition. This method is based on
two functions of the full-adder called the carry generate and the carry propagate
functions.

The carry generate (Gi) function indicates when an output carry is generated
by the full-adder. We know that a carry is generated only when both inputs are 1s.
This condition is expressed as the AND function of the two inputs, A and B, i.e.,

Gi = AB

A carry input may be propagated by the full adder when either or both r0 the input
bits are 1s. This condition is expressed as the OR function of the input bits:

Pi = A + B

Consider the circuit of full-adder shown in Figure 1.16. The carry generate and
carry propagate are given by,

Pi = Ai  Bi

and Gi = AiBi
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The output sum and carry can be expressed as,

Si = Pi  Ci = Ai + Bi  Ci

and Ci + 1 = Gi + PiCi

Ai

Bi

Ci

Gi

Pi

P Ci i

Si

C  P C  = Gi i i i+1 = 

Fig. 1.16 Full-Adder Circuit

Consider the addition of two 4-bit binary numbers A3A2A1A0 and B3B2B1B0. For
each full-adder, the output carry is dependent on its carry generate (Gi), its carry
propagate (Pi) and its carry input (Ci). The Gi and Pi functions for each stage are
immediately available as soon as the input bits Ai and Bi and the input carry to the
LSB adder are applied, because they are dependent only on these bits. The carry
input to each stage is the carry output of the previous stage.

A B Ci

A3 B3

FA 3



A B Ci

A2 B2

FA 2



A B Ci

A1 B1

FA 1



A B Ci

A0 B0

FA 0

Co Co Co

Co3
Co2

Co1
Co0

Ci3
Ci2

Ci1
Ci0

Fig. 1.17 Carry Generate and Carry Propagate Functions in Terms of the
Input Bits to a 4-Bit Adder

For Full-Adder 0: C
0
= G

0
 + P

0
C

i0
 where G

0
 = A

0
B

0
, P

0
 = A

0
  B

0
 and C

i
 = 0

...(1.13)
For Full-Adder 1: C

i1
=C

00

Ci1
= G1 + P1Ci1

 + G1 + P1C00

= G1 + P1(G0 + P0Ci0
)

C01
= G1 + P1G0 + P1P0Ci0

...(1.14)

where, G1 = A1B1 and P1 = A1  B1

For Full-Adder 2: Ci2
= C01

C02
= G2 + P2C01

= G2 + P2(G1 + P1G0 + P1P0Ci0
)

C02
= G2 + P2G1 + P2P1G0 + P2P1P0Ci0

...(1.15)

where, G2 = A2B2 and P2 = A2  B2

For Full-Adder 3: Ci3
= C02

C03
= G3 + P3C02
= G3 + P3(G2 + P2G1 + P2P1G0 + P2P1P0Ci0)

C03
= G3 + P3G2 + P3P2G1 + P3P2P1G0 +

P3P2P1P0C01
...(1.16)
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where, G3 = A3B3 and P3 = A3  B3

The sum of A and B is given by,
S = C03

S3S2S1S0  ...(1.17)

where, Si = Ai  BiCi–1 for i = 0, 1, 2, 3

i.e., S0 = A0  B0  Ci0
S1 = A1  B1  C01
S2 = A2  B2  C02
S3 = A3  B3  C03

From the above equations, it is seen that the carry output for each full-
adder stage is dependent only on the initial input carry, its generate and propagate
functions and the generate and propagate functions of the preceding stage.

Equations (1.13) through (1.17) can be implemented with logic gates as
shown in Figure 1.18. From the diagram one can easily understand that the addition
of two 4-bit numbers can be done by a carry look ahead adder in a four gate
propagation time. Note that the addition of n-bit binary numbers also takes the
same four gate propagation delay.

Fig. 1.18 Logic Diagram of 4-Bit Carry Look Ahead Adder
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1.8.4 Subtractors

Half-Subtractor

Just like adders there can be single bit half-subtractors,  full-subtractors and parallel
subtractors. Binary subtraction tables are shown in Figure 1.19(a). Converting
these rules to Truth Table form gives the Truth Table 1.17. B is subtracted from A
to give output D difference. If B is larger than A, such as in line 2 they need a
borrow, which is shown in the column labeled B0 (Borrow out).

0 0 1 1 1

– 0 – 1 borrow 1 – 0 – 1

0 1 1 0

(a) Binary Subtraction Table

A

B

D (Difference)

B0 (Borrow)
(outputs)

Half
subtractor

(Inputs)

A

B
D

B0

(b) Logic Symbol (c) Logic Diagram

Fig. 1.19 Half-Subtractor

A half-subtractor is a combinational circuit that subtracts two binary bits
and produces their difference.

A logic symbol of a half-subtractor is shown in Figure. 1.19(b). It has two
inputs (minuend A and subtrahend B) and two outputs (difference) D and B0
(borrow). The subtraction of two binary numbers may be accomplished by taking
the complement of the subtrahend and adding to the minuend. By this procedure
the subtraction becomes an addition operation. By looking at the Truth table, you
can determine the Boolean expressions for the half-subtractor. The expression for
the D (difference column) is A  B = D. Boolean expression for the B (borrow

column) is A B  = B0. Combining these two expressions, the half-subtractor can
be implemented using an XOR gate, a NOT gate and an AND gate as shown in
Figure 1.19(c).

Truth Table 1.17 Half-Subtractor

Inputs Outputs

A B D B0

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0
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Full-Subtractor

A full-subtractor is a combinational circuit that performs a subtraction involving
three bits namely minuend bit, subtrahend bit and borrow from the previous stage.

The logic symbol for  full-subtractor is shown in Figure 1.20(a). It has three
inputs and two outputs. The three inputs are A (minuend), B (subtrahend) and Bin
(borrow from previous stage). The two outputs are D (difference) and Bout (borrow
out). A Truth Table that considers all the possible combinations in binary subtraction
is shown in the next Truth Table. Like the full-adder, the full-subtractor can be
wired using two half-subtractors and an OR gate, shown in Figure 1.20(b). A
logic diagram for a full-subtractor using XOR, AND and NOT gates is shown in
Figure 1.20(c). This circuit performs as a full-subtractor as specified in the Truth
Table 1.18.

A

B

D

Full
subtractor

Bin Bout

(a) Logic symbol

A

Half
subtractor

B

A1

B1 B0

Half
subtractor

A2

B2 B0

DBinC D

Bout

(b) Full-subtractor using two half-subtractors

A

B

D

B0

Bin D

B0

D

Bout

Half-subtractor

Half-subtractor

(c) Full-subtractor

Fig. 1.20 Full-Subtractor

From Truth Table 1.18, the sum of product expression for the difference (D)
output can be written as,

D = A B B AB B A BB ABBin in in in  

Simplifying, we have

D = ( ) ( )A B AB B A B AB B  in in

= ( ) ( )A B B A B B  in in

D = A  B  Bin

Similarly, the sum of product expression for Bout can be written as,

Bout = A B B A BB A BB ABBin in in in  

The above equation can be simplified using K-map as shown in Figure 1.21.
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Truth Table 1.18 Full-Subtractor

Inputs Outputs

A B Bin D Bout

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

A-B-Bin D Bout

With the simplified Boolean expressions, the full-subtractor can be implemented
as shown in Figure 1.22.

0 1 0 0

1 1 1 0

AB
Bin 00 01 11 10

0

1

A
B
Bin

BBin

ABin

AB

Bout
A

B

Bin

Bin

B

D

A

Fig. 1.21 K-Map for B
out

Fig. 1.22 Implementation of Full-Subtractor

1.8.5 Decoders

Many digital systems require the decoding of data. Decoding is necessary in such
applications as data multiplexing, rate multiplying, digital display, digital-to-analog
converters and memory addressing. It is accomplished by matrix systems that can
be constructed from such devices as magnetic cores, diodes, resistors, transistors
and FETs.

A decoder is a combinational logic circuit, which converts binary information
from n input lines to a maximum of 2n unique output lines such that each output line
will be activated for only one of the possible combinations of inputs. If the n-bit
decoded information has unused or don’t care combinations, the decoder output
will have fewer than 2n outputs.

A decoder is similar to demultiplexer, with one exception there is no data
input.

A single binary word n digits in length can represent 2n different elements of
information.

An AND gate can be used as the basic decoding element because its output
is HIGH only when all of its inputs are HIGH. For example, the input binary is
1011. In order to make sure that all of the inputs to the AND gate are HIGH when
binary number 1011 occurs, then the third bit (0) must be inverted.
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If a NAND gate is used in place of the AND gate, a LOW output will
indicate the presence of the proper binary code.

3-Line-to-8-Line Decoder

Figure shows the reference matrix for decoding a binary word of 3 bits. In this
case, 3-inputs are decoded into eight outputs. Each output represents one of the
minterms of the 3-input variables. A 3-bit binary decoder whose control equations
are implemented in Figure 1.23. The operation of this circuit is listed in Table
1.19.

Table 1.19 Truth Table for 3-to-8 Line Decoder

Inputs Outputs

A B C D0 D1 D2 D3 D4 D5 D6 D7

0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1

Figure 1.23 shows the diagram of 3-line-to-8-line decoder.

CBA

A B C

D  = ABC0

D  = ABC1

D  = ABC2

D  = ABC3

D  = ABC4

D  = ABC5

D  = ABC6

D  = ABC7

Fig. 1.23 A 3-Line-to-8-Line Decoder
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1.8.6 Multiplexer

Multiplexer means ‘Many Into One’. Multiplexing is the process of transmitting a
large number of information units over a small number of channels or lines.

A digital multiplexer or a data selector (MUX) is a combinational circuit that
accepts several digital data inputs and selects one of them and transmits information
on a single output line.

Control lines are used to make the selection. The basic multiplexer has
several data input lines and a single output line. The selection of a particular line is
controlled by a set of selection lines. The block diagram of a multiplexer with n
input lines, m control signals and one output line is shown in Figure 1.24. A
multiplexer is also called a data selector since it selects one of many inputs and
steers the data to the output line.

The multiplexer acts like a digitally controlled multiplexer switch where the
digital code applied to the SELECT input controls which data inputs will be
switched to the output. A digital multiplexer has N inputs and only one output.

Multiplexer
n-input
signals

Output
signal

m-controls signals

Fig. 1.24 Block Diagram of Multiplexer

Basic Two-Input Multiplexer

Figure 1.25 shows the basic 2 × 1 MUX. This MUX has two input lines A and B
and one ouput line Y. There is one select input lines. When the select input S = 0,
data from A is selected to the output line Y. If S = 1, data from B will be selected to
the output Y. The logic circuitry for a two-input MUX with data inputs A and B and
select input S is shown in Figure 1.25(b). It consists of two AND gates G1 and
G2, a NOT gate G3 and an OR gate G4. The Boolean expression for the output is
given by:

Y = AS BS

When the select line input S = 0, the expression becomes

Y = A .1 + B . 0 (Gate G1 is enabled)

which indicates that output Y will be identical to input signal A.

Similarly, when S = 1, the expression becomes

Y = A . 0 + B . 1 = B (Gate G2 is enabled)

showing that output Y will be identical to input signal B.
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In many situations a strobe or enable input E is added to the select line S, as
shown in Figure 1.25. The multiplexer becomes operative only when the strobe
line E = 0.

Input lines
Output line

A

B

Y

Data select line

2 × 1
MUX

(a) Block Diagram of 2 × 1 MUX

A

B

G4 Y

S (Select line)

G3

G1

G2
BS

Output

AS

Input
lines

(b) Logic Diagram

Y  AS + BS=

Fig. 1.25 Basic 2-Input Multiplexer

Figure 1.26 shows the logic diagram of 2-input multiplexer with strobe input.

A

B

G4 Y

G3
G1

G2

Input
lines

G5

S
Select Strobe or Enable

E

Fig. 1.26 Logic Diagram of 2-Input Multiplexer with Strobe Input

When the strobe input E is at logic 0, the NOT gate G
5
 is 1 and all AND gates G

1

and G
2
 are enabled. Accordingly, when S = 0 and 1, inputs A and B are selected

as before. When the strobe input E = 1, all lines are disabled and the circuit will
not function.

Four-Input Multiplexer

A logic symbol and diagram of a 4-input multiplexer are shown in Figure 1.27. It
has two data select lines S

0
 and S

1
 and four data input lines. Each of the four data

input lines is applied to one input of an AND gate.

Depending on S
0
 and S

1
 being 00, 01, 10 or 11, data from input lines A to

D are selected in that order. The Boolean expression for the output is given by the
Table 1.20.

Table 1.20 Truth Table for Function Table

Select Lines Output

S1 S0 Y

0 0 A

0 1 B

1 0 C

1 1 D
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Output

A

B
Y

Data select lines

4 × 1
MUXC

D

Input
lines

S1 S0

(a) Block Diagram of 4 × 1 Multiplexer

G5 G6

G1

G2

G3

G4

G7

Y

S1 S0

(b) Logic Diagram

A

B

C

D

Fig. 1.27 Four-Input Multiplexer

Y = AS S BS S CS S DS S0 1 0 1 0 1 0 1  

If S0S1 = 00 (binary 0) is applied to data select lines, the data on input A appears
on the data output line.

Y = A . 1 . 1 + B . 0 . 1 + C . 1 . 0 + D . 0 . 0

= A (Gate G1 is enabled)

Similarly, Y = BS S0 1  = B . 1 . 1 = B when S1S0 = 01 (Gate G2 is enabled)

Y = CS S0 1 = C . 1 . 1 = C when S1S0 = 10 (Gate G3 is enabled)

Y = DS0S1 = D . 1 . 1 = D when S1S0 = 11 (Gate G4 is enabled)

In a similar style, we can construct 8 × 1 MUXes, 16 × 1 MUXes, etc. Nowadays
two-, four-, eight- and 16-input multiplexes are readily available in the TTL and
CMOS logic families. These basic ICs can be combined for multiplexing a larger
number of inputs.

Multiplexer Applications: Multiplexer circuits find numerous applications in digital
systems. These applications include data selection, data rating, operation
sequencing, parallel to several conversion, waveform generation and logic function
generation.

1.8.7 Code Converters

A code converter is a logic circuit that changes data presented in one type of
binary code to another type of binary code.

The BCD to 7-segment decode/driver is a code converter. The following are the
some of the most commonly used code converters:

(i) BCD to 7-segment

(ii) BCD to binary

(iii) Binary to BCD
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(iv) Binary to Gray code

(v) Gray code to binary

(vi) ASCII to EBCDIC

(vii) EBCDIC to ASCII

BCD-to-Binary Converters
The basic conversion process is as follows:

1. The value of each bit in the BCD number is represented by a binary number.

2. All the binary representation of the bits those are 1’s in the BCD are added.

3. The result of this addition is the binary equivalent of the BCD number.

Two-digit decimal values ranging from 00 to 99 can be represented in BCD by
two 4-bit code groups. For example, 1910 is represented as:

1 9
0001 1001
3 4

The left most four-bit groups represents 10 and right most four-bit groups represents
9. That is, the left most group has a weight of 10 and the right most group has a
weight of 10º = 1. The straight binary representation for decimal 19 is 1910 =
100112.

(BCD)
0000001 1

0    1    1    0    0    1    1    1

0000010
0000100
0000100

+ 0101000

1000011

2
4
20
40

(67)

(BCD)
0000001
0001000

+ 0010100

0011101

1
8
20

(binary for 29)

0    0    1    0    1    0    0    1

Circuit Implementation

Two 74LS83 four-bit parallel binary adders are wired to perform the conversion
process is shown in Figure 1.27. From Figure 1.28, it is seen that A0 is the only
BCD bit that contributes to the LSB, b0, of the binary equivalent. Since there is no
carry into this bit position, A0 is connected directly as output b0. BCD bits B0 and
A1 contribute to bit b1 of the binary output. These two bits are combined in the
upper adder to produce output b1. Similarly, BCD bits D0, A1 and C1 contribute
to bit b3. The upper adder combines D0 and A1 to generate 2, which is connected
to the lower adder, where C1 is added to it to produce b3.
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3 2 1 0

C4 74 LS 83 C0

3 2 1 0

C4 74 LS 83 C0

D1 C1 B1 A1 D0 C0 B0 A0

b1b2b3b4b5b6 b0

BCD representation

Binary equivalent

Fig. 1.28 BCD-to-Binary Converted Implemented with 74LS83
Four-Bit Parallel Adders

Example 1.35: The BCD representation for decimal 56 is applied to the converter
of Figure 1.29. Determine the  outputs from each adder and the final binary
output.

Solution: Let 01010110 be the BCD representation on the circuit diagram. Since
A0 = 0, the b0 bit of the output is 0. Let 0011 and 0101 be the inputs of the upper
and lower adders. Adding these two we have,

0011

+ 0101

1000 = 3210 outputs of the upper adder.

The top inputs of the lower adder are 0010 because 1 and 0 bits become
binary outputs b2 and b1. The bottom inputs are 0101. The adder adds these two,
we get

0010

+ 0101

 b6b5b4b3  = 0111 = 3210 outputs of the lower adder.

Hence, b6b5b4b3b2b1b0 = 0111000 as the correct binary equivalent for decimal
56.

Binary-to-Gray Code Converters

The Gray code is often used in digital systems because it has the advantage that
only one bit in the numerical representation changes between successive numbers.
The block diagram of a 4-bit binary-to-gray code converter is shown in Figure
1.28. It has four inputs (B3B2B1B0) representing 4-bit binary numbers and four
outputs (G3G2G1G0) representing 4-bit gray code. Truth Table 1.21 shows decimal
to binary codes and corresponding gray code.

B3

B2

B1

B0

Binary
to

Gray code
converter

G3

G2

G1

G0

4-bit
binary
input

4-bit
gray code

input

Fig. 1.29 Logic Symbol of 4-Bit Binary-to-Gray Code
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Truth Table 1.21 Binary-to-Gray Code Converter

Decimal Binary Code Inputs Gray Code Outputs

B3 B2 B1 B0 G3 G2 G1 G0

0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1
2 0 0 1 0 0 0 1 1
3 0 0 1 1 0 0 1 0
4 0 1 0 0 0 1 1 0
5 0 1 0 1 0 1 1 1
6 0 1 1 0 0 1 0 1
7 0 1 1 1 0 1 0 0
8 1 0 0 0 1 1 0 0
9 1 0 0 1 1 1 0 1
10 1 0 1 0 1 1 1 1
11 1 0 1 1 1 1 1 0
12 1 1 0 0 1 0 1 0
13 1 1 0 1 1 0 1 1

14 1 1 1 0 1 0 0 1

15 1 1 1 1 1 0 0 0

From the Truth Table 1.21, the logic expressions for the gray code outputs can be
written as:

G3 = m(8, 9, 10, 11, 12, 13, 14, 15)

G2 = m(4, 5, 6, 7, 8, 9, 10, 11)

G1 = m(2, 3, 4, 5, 10, 11, 12, 13)

G0 = m(1, 2, 5, 6, 9, 10, 13, 14)

The above expression can be simplified using K-map method as shown in
Figure 1.29.

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

00 01 11 10

00

01

11

10

B B3 2
B B1 0

( ) K-map for Ga 0

From the K-map,  =  +  =  + G B B B B B B0 1 0 1 0 1 0

0

0

1

1

1

1

0

0

1

1

0

0

0

0

1

1

00 01 11 10

00

01

11

10

B B3 2
B B1 0

( ) K-map for b G1

From the K-map,  =  + + =  + G B B B B G B B1 2 1 2 1 1 2 1

0

0

0
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1

1

1
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1
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00 01 11 10
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11
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B B3 2
B B1 0

( ) K-map for Gc 2

From the K-map,  =  +  =   G B B B B B B2 3 2 2 3 3 2   

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

00 01 11 10

00

01

11

10

B B3 2
B B1 0

( ) K-map for Gd 3

From the K-map,  = G B3 3 

Fig. 1.30 K-Map Simplification for Binary-to-Gray Code Converter
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The logic diagram of 4-bit binary-to-gray code converter using XOR gates is
shown in Figure 1.30.

Binary code
B0

B1

B2

B3

G0  (LSB)

G1

G2

G3  (MSB)

Gray code

Fig. 1.31 Logic Diagram of 4-Bit Binary-to-Gray Code Converter

Gray Code-to-Binary Converter

The block diagram of a 4-bit gray-code-to-binary converter is shown in Figure
1.32. It has four inputs G3G2G1G0 representing 4-bit gray code and four outputs
B3B2B1B0 representing 4-bit binary numbers. Table 1.22 shows the Truth Table
for gray code-to-binary code converter.

Table 1.22 Truth Table of Gray Code-to-Binary Code Converter

Gray Code Inputs Binary Code Outputs

G3 G2 G1 G0 B3 B2 B1 B0

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 0 0
0 1 1 1 0 1 0 1
1 0 0 0 1 1 1 1
1 0 0 1 1 1 1 0
1 0 1 0 1 1 0 0
1 0 1 1 1 1 0 1
1 1 0 0 1 0 0 0
1 1 0 1 1 0 0 1
1 1 1 0 1 0 1 1

1 1 1 1 1 0 1 0

From the Truth Table 1.22, the logic expressions for the binary output can be
written as:

B3 = m(8, 9, 10, 11, 12, 13, 14, 15)

B2 = m(4, 5, 6, 7, 8, 9, 10, 11)

B1 = m(2, 3, 4, 5, 8, 9, 14, 15)

B0 = m(1, 2, 4, 7, 8, 11, 13, 14)
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These expressions can be simplified using Karnaugh map as shown in Figure 1.32.

B3

B2

B1

B0

Gray-to-
binary

converter

G3

G2

G1

G0

4-bit
gray code

input

4-bit
binary
output

Fig. 1.32 Block Diagram of 4-Bit Gray Code-to-Binary Code Converter

From the K-map shown in Figure 1.33(a), we have

B0 = G G G G G G G G G G G G G G G G G G G G8 2 1 0 3 2 1 0 2 2 1 0 3 2 1 0 3 2 1 0   

                  G G G G G G G G G G G G3 2 1 0 3 2 1 0 3 2 1 0

= G G G G G G G G G G G G G G G G G G3 2 1 0 1 0 3 2 1 0 1 0 1 0 3 2 3 2( ) ( ) ( )    

                   G G G G G G1 0 3 2 3 2( )

= G G G G G G G G G G G G G G G G3 2 0 1 3 2 0 1 1 0 2 3 1 0 2 3( ) ( ) ( ) ( )      

= G G G G G G G G G G G G0 1 3 2 3 2 2 3 1 0 1 0    ( ) ( )( )

B0 = G0  G1  G2  G3 = G0  B1
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Fig. 1.33 K-map Simplification for Gray Code-to-Binary Code Converter

From the K-map shown in Figure 1.33(b), we have

B1 = G G G G G G G G G G G G3 2 1 3 2 1 3 2 1 3 2 1  

= G G G G G G G G G G3 2 1 2 1 3 2 1 2 1( ) ( )  

= G G G G G G3 2 1 3 2 1( ) ( )  

B1 = G3  G2  G1 = B2  G1

From the K-map shown in Figure 1.33(c), we have

B2 = G G G G3 2 3 2  = G3  G2 = B3  G2
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From the K-map shown in Figure 1.33(d), we have
B3 = G3

The simplified expressions can be implemented using XOR gates as shown in
Figure 1.34.

Gray
G0

G1

G2

G3

B0  (LSB)

B1

B2

B   (MSB)3

Binary

Fig. 1.34 Logic Diagram of 4-Bit Gray Code-to-Binary Code Converter

1.9 ARITHMETIC CIRCUITS

Arithmetic operations are performed in computers not by using decimal numbers,
as we do normally, but by using binary numbers. Arithmetic circuits in computers
and calculators perform arithmetic and logic operations. All arithmetic operations
take place in the arithmetic unit of a computer. The electronic circuit is capable of
doing addition of two or three binary digits at a time and the binary addition alone
is sufficient to do subtraction. Thus, a single circuit of a binary adder with suitable
shift register can perform all the arithmetic operations.

Arithmetic operations, such as addition, subtraction, multiplication and
division can be performed on binary numbers.

1.91 Binary Addition

Binary addition is performed in the same manner as decimal addition. Binary addition
is the key to binary subtraction, multiplication and division. There are only four
cases that occur in adding the two binary digits in any position. This is shown in
Table 1.23.

(i)  1 + 1 + 1 = 11 (i.e., 1 carry of 1 into next position)

(ii) 1 + 1 + 1 + 1 = 100

(iii) 10 + 1 = 11

The rules of (1), (2) and (3) in Table 1.23 are just decimal addition. The rule
(4) states that adding 1 and 1 gives one 0 (meaning decimal 2 and not decimal 10).

There is a carry from the previous position. ‘Carry overs’ are performed in the
same manner as in decimal arithmetic. Since, 1 is the larger digit in the binary
system, any sum greater than 1 requires that a digit be carried out.
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Table 1.23  Binary Addition

Sl. No. Augend Addend Carry Sum Result
(A) + (B) (C) (S)

1 0 + 0 0 0 0

2 0 + 1 0 1 1

3 1 + 0 0 1 1

4 1 + 1 1 0 10

Example 1.36:  Add the binary numbers (i) 011 and 101, (ii) 1011 and 1110,
(iii) 10.001 and 11.110, (iv) 1111 and 10010, and (v) 11.01 and 101.0111.

Solution: (i) Binary number Equivalent Decimal Number

11  Carry

011 3

+ 101 5

Sum = 1000 8
(ii) Binary Decimal (iii) Binary Decimal

   11  Carry 1  Carry

   1011      11    10.001 2.125

+ 1110   + 14 + 11.110 + 3.750

Sum =  11001      25 Sum =   101.111 5.875

(iv) Binary Decimal (v) Binary Decimal

   11  Carry   11 1  Carry

   1111    15     11.01 3.25

+ 10010 + 18   101.0111 + 5.4375

Sum = 100001    33 Sum = 1000.1011 8.6875

Since, the circuit in all digital systems actually performs addition that can handle
only two numbers at a time, it is not necessary to consider the addition of more
than two binary  numbers. When more than two numbers are to be added, the first
two are added together and then their sum is added to the third number, and so
on. Almost all modern digital machines can perform addition operation in less than
1 s.

Logic equations representing the sum is also known as the exclusive OR function
and can be represented also in Boolean ring algebra as S = AB BA  = A   B.

1.9.2 Binary Subtraction

Subtraction is the inverse operation of addition. To subtract, it is necessary to
establish  a procedure for subtracting a large digit from a small digit. The only case
in which this occurs with binary numbers is when 1 is subtracted from 0. The
remainder is 1, but it is necessary to borrow 1 from the next column to the left.
The rules of binary subtraction are shown in Table 1.24.

1. 0 – 0 = 0

2. 1 – 0 = 1
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3. 1 – 1 = 0

4. 0 – 1 = 0 with a borrow of 1

5. 10 – 1 = 01

Table 1.24 Binary Subtraction

Sl. No. Minuend _ Subtrahend Result
A B

1 0 – 0 0
2 0 – 1 0 with a borrow of 1
3 1 – 0 1

4 1 – 1 0

Example 1.37: (i) Binary Decimal (ii) Binary Decimal

Solution: 1001 9 10000 16

– 101 – 5 – 011 –3

Difference = 100 4 1101 13

(iii) Binary Decimal (iv) Binary Decimal

110.01 6.25 1101 13

– 100.1 – 4.5 – 1010 – 10

1.11 1.75 0011 3

Example 1.38: Show the binary subtraction of 12810 from 21010.

Solution: Converting the given decimal numbers into the corresponding
hexadecimal number we have,

210  D 2 H  1101 0010

128  8 0 H  1000 0000

1101 0010 D 2 H

– 1000 0000 – 8 0 H

0101 0010 5 2 H

1.9.3 Binary Multiplication
Multiplication of binary numbers is performed in the same manner as the
multiplication of decimal numbers. The following are the four basic rules for
multiplying binary digits:

1. 0 × 0 = 0
2. 0 ×1 = 0
3. 1 × 0 = 0
4. 1 × 1 = 1
In a computer, the multiplication operation is performed by repeated additions,

in much the same manner as the addition of all partial products to obtain the full
product. Since the multiplier digits are either 0 or 1, we always multiply by 0 or 1
and no other digit.
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Example 1.39: Multiply the binary numbers 1011 and 1101.

Solution: 1011  Multiplicant = 1110
× 1101  Multiplier = ×1310

14310

10

10

143 product  Final10001111

1011

1011

143 product  Partial0000

1011





1.9.4 Binary Division

The processes of dividing one binary number (the dividend) by another (the divisor)
is the same as that which is followed for decimal numbers which we usually refer
to as the method of ‘Long Division’. The rules for binary division are as follows:

1. 0 1 = 0

2. 1 1 = 1

3. 0 0 = No meaning as in decimal system

4. 1 0 = No meaning

In considering division, we will assume that the dividend is larger than the
divisor. The following are the steps for binary division:

1. Start from the left or the dividend.

2. Perform a series of subtractions in which the divisor is subtracted from the
dividend.

3. If subtraction is possible, put a 1 in the quotient and subtract the divisor
from the corresponding digits of the dividend.

4. If subtraction is not possible (divisor greater than remainder), record a zero
in the quotient. Bring down the next digit to add to the remainder digits.
Proceed as before in a manner similar to long division.

1.10 COMBINATIONAL CIRCUITS AND
SEQUENTIAL CIRCUITS

In digital electronics, we have two broad categories of logic circuits. They are as
follows:

 Combinational Circuit

 Sequential Circuit

Combinational Circuit: In a combinational circuit, each output depends
entirely on the immediate (present) inputs to the circuit. The block diagram of a
combinational circuit is shown in Figure 1.35.
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Combinational
Logic OutputsInputs

Fig. 1.35 Block Diagram of a Combinational Circuit

Sequential Circuit: In this type of circuit, the output depends on both the present
and the past inputs. It means that this type of circuit involves the memory elements
for storing past input conditions. The block diagram of a sequential circuit is shown
in Figure 1.36.

Combinational
Logic OutputsInputs

M
E
M
O
R
Y

Fig. 1.36 Block Diagram of a Sequential Circuit

1.10.1 Analysis of a Combinational Circuit

An analysis of the function of a combinational circuit is shown in Figure 1.37.

A
B F1

F2

Fig. 1.36 A Simple Combinational Circuit

The steps for analysis are as follows:

 Label the inputs and outputs

 Obtain the functions of intermediate points and the outputs

 Draw the truth table

 Deduce the functionality of the circuit

In the circuit shown in Figure 1.38, we have the following:

Fig. 1.38 A Combinational Circuit with Label
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Then we form the truth table for the system.

Table 1.25 Truth Table for the Circuit shown in Figure 1.38

A B (A + B) (A + B) F
1

F
2

0 0 0 1 0 0

0 1 1 1 1 0

1 0 1 1 1 0

1 1 1 0 0 1

1.11 REGISTERS AND COUNTERS

A register is a group of flip-flops used to store or manipulate data or both. Each
flip-flop is capable of storing one bit of information. An n-bit register has n flip-
flop and is capable of storing any binary information containing n bits.

The register is a type of sequential circuit and an important building block
that is used in digital system like multipliers, dividers, memories, microprocessors,
etc.

A register stores a sequence of 0’s and l’s. The registers that are used to
store information are known as memory registers. When used to process
information, they are called shift registers.

A shift register is a group of FFs arranged so that the binary numbers stored
in the FFs are shifted from one FF to the next for every clock pulse.

Shift registers often are used to store data momentarily. Figure 1.39 shows
a typical example of where shift registers might be used in a digital system
(calculator). Shift registers are used to hold information from the encoder for the
processing unit. A shift register is also being used for temporary storage between
the processing unit and the decoder. Shift registers are also used at other locations
within a digital system.
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Fig. 1.39 Block Diagram of a Digital System using Shift Registers

There are two modes of operation for registers. The first operation is series
or serial operation. The second type of operation is parallel shifting. Input
and output functions associated with registers  include (1) Serial input/serial output
(2) Serial input/parallel output (3) Parallel input/parallel output (4) Parallel input/
serial output.

Hence, input data is presented to registers in either a parallel or a serial
format.
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All the flip-flops to be affected (set or reset) to input parallel data to a
register, requires that at the same time. To output parallel data, it requires that the
flip-flop Q outputs be accessible. Serial input data loading requires that one data
bit at a time is presented to either the most or least significant flip-flop. Data are
shifted form the flip-flop initially are loaded to the next one in series. Serial output
data are taken from a single flip-flop, one bit at a time.

Serial data input or output operations require multiple clock pulses. Parallel
data operations only take one clock pulse. Data can be loaded in one format and
removed in another. Two functional parts are required by all shift registers: (1)
Data storage flip-flops and (2) Logic to load, unload and shift the stored information.

The block diagrams of four basic register types is shown in Figure 1.40.
Registers can be designed using discrete flip-flops (S-R J-K and D-type). Registers
are also available as MSI (Medium-Scale Integration).

n-bit
Serial
data
input

Serial
data

output

n-bit
Serial
data
input

MSB LSB

Parallel data outputs

(a) Serial in/Serial out (b) Serial in/Parallel out

n-bit
Serial data

output

Parallel in/Serial out

Parallel data inputs

n-bit

Parallel data inputs

Parallel data outputs

(c) Parallel in/Serial out (d) Parallel in/parallel out

Fig. 1.40 Register Types

1.11.1 Serial-in-Serial-out Shift Registers

This type of shift register accepts data serially in a numerical order bit at a time on
a single line. It produces the stored information on its output also in serial form.
Data may be shifted left (from low-to high order bits)  using shift-left register or
shifted right (from high to low order bits) using a shift right register.

Shift-Left Register

A shift left register can be built using D FFs or J-K  FFs as shown in Figure 1.41.
A J-K FF register requires connection of both J and K inputs, input data are
connected to the right most (lowest order) stage with data being shifted bit-by-bit
to the left.



Information
Representation, Logic
Gates, Boolean Algebra,
Circuits, Registers and
Counters

NOTES

Self - Learning
84 Material

D

D

Q J

Q K

Q J

Q K

Q J

Q K

Q J

Q K

C

C

B

B

A

A

Input
data

Shift pulses (four)

(a) J-K Type

D
Q D

Q

Q D

Q

Q D

Q

Q D

Q

C B A
Serial
Input 
dataSerial

output
data

Shift pulses

(b) D-Type

Fig. 1.41 Shift-Left Registers (a) J-K, (b) D-Type

For register of Figure 1.41 (b) using D FFs, a single data line is connected
between states, again, 4 shift pulse are required to shift a 4-bit word into the 4-
stage register.

The shift pulse is applied to each stage, operating each simultaneously. When
the shift pulse occurs, the date input is shifted into that stage. Each stage is set or
reset corresponding to the input data at the time of shift pulse occurs. Thus, the
input data bit is shifted into stage A by the first shift pulse. At the same time the
data of stage A is shifted into stage B, and so on for the following stages. For each
shift pulse, data stored in the register stages shift left by one stage. New data are
shifted into stage A, where as the data present in stage D are shifted out (to the
left) for use by some other shift register or computer unit.

Consider starting with all stages reset and applying a steady logical 1 input
a data input to stage A. The data in each stage after each of four shift pulses is
shown in Truth Table 1.26. The logical 1 input shifts into stage A and the shifts left
to stage D after four shift pulses.

Another example, that could be considered is shifting of alternate 0 and 1
data into stage A, starting from all logical 1. Truth Table 1.26 shows the data in
each stage after each of four shift pulses.

Truth Table 1.26 Operation of Shift-Left Register

Shift Pulse D C B A

0 0 0 0 0

1 0 0 0 1

2 0 0 1 1

3 0 1 1 1

4 1 1 1 1

As a third example of shift register operation, consider starting with the
count in step 4 of Truth Table 1.27 and applying four more shift pulses while
placing a steady logical-0 input as data input to stage A. This is shown in Truth
Table 1.28.
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Truth Table 1.27          Truth Table 1.28

Shift pulse D C B A Shift pulse D C B A

0 1 1 1 1 0 0 1 0 1

1 1 1 1 0 1 1 0 1 0

2 1 1 0 1 2 0 1 0 0

3 1 0 1 0 3 1 0 0 0

4 0 1 0 1 4 0 0 0 0

Shift Right Register

A shift right register can also be built using D FFs or J-K FFs as shown in Figure
1.42. Let us illustrate the entry of the 4-bit binary number 1101 into the register,
beginning with the right most bit. The 1 is put into the date input line, making
D = 1 for stage D. When the first clock pulse is applied, FF A is SET, thus storing
the 1. Next the 0 is applied to the date input, making D = 0 for FF B because D
(input) of FF B is connected to the Q

A
 output.

D Q

Q

Data
input

D Q

Q

D Q

Q

CLK

QD

Q

Data
output

QA QB QC QD

(a)

J Q

Q

Serial
data
input

J Q

K

J Q

Q

CLK

J Q

Q

QA QB

K Q K

QC

K

QD

(b)

Fig. 1.42 Shift-Right Registers (a) J-K Types (b) D Type

When the second clock pulse occurs, the 0 on the data input is ‘Shifted’
into the FF

A
 because FF

A
 RESETs, and the 1 that was in FF

A
 is ‘Shifted’ into FF

B
.

The next 1 in the binary number is now put onto the data-input line, and a clock
pulse is applied. The l is entered into FF

A
, the 0 stored in FF

A
 is shifted into FF

B
,

and the l  stored in FF
B
 is shifted into FF

C
. The last bit in the binary number, a l, is

now applied to the data input, and a clock pulse is applied. This time the l is
entered into FF

A
, the l stored in FF

A
 is shifted into FF

B
, the 0 stored in FF

B
 is

shifted into FF
C
, and the l stored in FF

C
 is shifted into FF

D
. This completes the

serial entry of the 4-bit binary number into the shift register, where it can be stored
for any amount of time. Truth Table 1.29 shows the action of shifting all logical-l
inputs into an initially reset shift register. Truth Table 1.30 shows the register operation
for the entry of 1101.
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  Truth Table 1.29                                Truth Table 1.30

Shift pulse QA QB QC QD Shift pulse QA QB QC QD

0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 1 1 0 0 0

2 0 1 0 0 2 1 1 0 0

3 1 0 1 0 3 1 1 1 0

4 1 1 0 1 4 1 1 1 1

The waveforms shown in Figure 1.43 illustrate the entry of 4-bit number
0100. For a J-K  FF, the data bit to be shifted into the FF must be present at the
J and K inputs when the clock transitions (low or high). Since, the data bit is either
a l or a 0, there are two cases:

1. To shift a 0 into the FF, J = 0 and K = 1,
2. To shift a l into the FF, J = 1 and K = 0,

At time A : All the FFs are reset. The FF output just after time A are
QRST = 0000.

At time B : The FFs all contain 0s, the FF outputs are QRST = 0000.
At time C : The FFs still all contain 0s. The FF output after time C are QRST =

1000.
At time D : The FF output are QRST = 0100.

A B C D
Time

Clock 0

0

0

0

0

0

0

J

K

Q

R

S

T 0

0

1

0

Serial
data
input

Fig. 1.43 Waveforms of 4-Bit Serial Input Shift Register
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1.11.2 Serial-in-Parallel-out Shift Registers

The logic diagram of a 4-bit serial-in-parallel-out shift register is shown in Figure
1.44. It has one input and the number of output pins is equivalent to the order of
FFs in the register. In this register, data is entered serially but shifted out in parallel.
In order to shift the data out in parallel, it is necessary to have all the data available
at the outputs at the same time. On storing the data, every bit surfaces on its
relevant output and all bits are available simultaneously, rather than on a bit-by-bit
basis as with the serial output.

D QA

A

QBD

B

QCD

C

QDD

D

QA QB QC QD

Data

input

CLK input

(a) Logic Diagram

Data input

CLK

QA QB QC QD

D SRG 4

(b) Logic Symbol

Fig. 1.44 A Serial-In-Parallel-Out Shift Register

1.11.3 Parallel-in-Serial-out Shift Registers

For a register with parallel data inputs, the bits are entered simultaneously into
their respective stages on parallel lines rather than on a bit-by-bit basis on one line.

A 4-bit parallel-in-serial-out shift register is illustrated in Figure 1.45. It has

four data-input lines A, B, C and D and a SHIFT/LOAD  input. SHIFT/LOAD  is
a control input that allows four bits of data to enter the register in parallel or shift
the data in serial.

When SHIFT/LOAD  is LOW, AND gates G
1
 through G

3
 are enabled,

allowing each data bit to be applied to the D input of its respective FF. When a
clock pulse is applied, the FFs with D = 1 will SET and those with D = 0 will
RESET, thereby storing all four bits simultaneously.

When SHIFT/LOAD  is HIGH, AND gates through G
1
 through G

3
 are

disabled and AND gates G
4
 through G

6
 are enabled, allowing the data bits to shift

right from one stage to the next. The OR gates allow either the normal shifting
operation or the parallel data entry operation, depending on which AND gates are

enabled by the level on the SHIFT/LOAD  input.
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(a) Logic Diagram

CLK

SRG 4

SHIFT/LOAD

A B C D

Data in

Data out

(b) Logic Symbol

Fig. 1.45 A 4-Bit Parallel-in-Serial-Out Shift Register

1.11.4 Parallel-in-Parallel-out Registers

In this type of register, data inputs can be shifted either in or out of the register in
parallel. It has four inputs and four outputs. In this register, there is no interconnection
between successive FFs since no serial shifting is required. Therefore, the moment
the parallel entry of the input data is accomplished, the respective bits will appear
at the parallel outputs.

The logic diagram of a 4-bit parallel-in-parallel-out shift register is shown in
Figure 1.46. Let A, B, C and D be the inputs applied directly to delay (D) inputs
of respective FFs. Now, on applying a clock pulse, these inputs are entered into
the register and are immediately available at the outputs Q

A
, Q

B
, Q

C
 and Q

D
.
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Fig. 1.46 Logic Diagram of a 4-Bit Parallel-in-Parallel-Out Shift Register

1.11.5 Bidirectional Shift Registers

A register which is capable of shifting data on either side is known as a bidirectional
shift register. A register that can shift in only one direction is called a unidirectional
shift register. If the register has shift and parallel load capabilities, then it is called
a shift register with parallel load or universal shift register.

Shift registers can be used for transforming serial data to parallel data, and
vice versa. If a parallel load capability is added to a shift register, then data entered
in parallel can be taken out in a serial manner by shifting the data stored in the
register. The most general shift register has the following capabilities:

1. A clear control to clear the register to 0.

2. A CLK input for clock pulses to synchronize all operations.

3. A shift-right control to enable the shift-right operation and serial input
and output lines associated with the shift right.

4. A shift-left control to enable the shift-left operation and the serial input
and output lines associated with the shift left.

5. A parallel-load control to enable a parallel transfer and the n input lines
associated with the parallel transfer.

6. n parallel output lines.

7. A control line that leaves the information in the register unchanged even
though clock pulses are continuously applied.

The logic diagram of a 4-bit bidirectional shift register is shown in Figure

1.47(b). A HIGH on the RIGHT / LEFT  control input allows data to be shifted to

the right, and a LOW enables a left-shift of data. When the RIGHT / LEFT  control
is HIGH, AND gates through G

1
 through G

4
 are enabled, and the state of the Q

input of each FF is passed through to the D input of the following FF. When the

RIGHT / LEFT  control is LOW, AND gates G
5
 through G

8
 are enabled, and the

Q output of each FF is passed through to the D-input of the preceding FF. When
a clock pulse occurs, the data are then effectively shifted one place to the left.
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1.11.6 Applications of Shift Registers

Shift registers find an endless array of applications.

1. Time Delay: The serial-in-serial-out shift register can be used to provide
a time delay from input to output that is a function of both the number of
stages (n) in the register and the clock frequency.

When a data pulse is applied to the serial input, it enters the first stage on
the triggering edge of the clock pulse. It is then shifted from one stage to
another on each successive clock pulse till it appears on the serial output n
clock periods later. The time can be adjusted up or down by changing the
clock frequency. The time delay can also be increased by cascading shift
registers and decreased by taking the output from successively lower stages
in the register.

7491 A

SRG 8A

B

CLK
1 MHz

QH

QH

Data in Data out

Fig. 1.47(a) The Shift Register as a Time-Delay Device

2. Ring Counter: If the output is connected back to the serial input, a shift
register can be used as a ring counter. This application is illustrated in Figure
1.48 using a 74195IC 4-bit shift-register.

Initially, For example, a 1000
2
 bit pattern can be synchronously preset into

the counter by applying the bit pattern to the parallel data inputs and taking
the SH / LD input LOW. After initialization, the 1 continues to circulate
through the counter as shown in the diagram in Figure 1.49.

QA QB QC QD

CLK
CLR

H/LD

A B C D

LOW
HIGH

SRG 4

74195 IC

O

Fig. 1.48 IG74195 Connected as a Ring Counter
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CLK

QA

QB

QC

QD

Fig. 1.49 Timing Diagram Showing Two Complete Cycles of the Ring Counter
when it is Initially Preset to 1000

2

3. Serial-to-Parallel Data Converter: Serial data transmission from one
digital system to another is commonly used to reduce the number of wires
in the transmission line. For example, eight bits can be sent serially over one
wire, but it takes eight wires to send the same data in parallel.

A parallel format is a requisite for a computer or microprocessor based
system because of incoming data to be in parallel format which is the
requirement for serial-to-parallel conversion.

Check Your Progress

13. What are the broad categories of logic circuits?

14. Define registers.

15. What are two modes of operation for registers?

1.12 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. A number system that uses only two digits, 0 and 1 is called the Binary
number system.

2. Mixed numbers are those numbers which contain both integer and fractional
parts.

3. When you add or subtract numbers with decimal points where you have to
first line up the decimals. Likewise, to add or subtract floating-point numbers,
you will have to first modify the F of one of the two numbers by shifting left
or right to make it equal to the E of the other number.

4. The following are the three possible techniques for representing signed
integers:

 Signed Magnitude Representation

 Diminished Radix-Complement Representation

 Radix-Complement Representation
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5. Most of the processing in computers and other digital circuits are done in
the binary formats. Various binary codes are used to represent data, which
may be numerals, alphabets or special characters. A user must be very
careful about the code being used while interpreting information available in
the binary format. For example,

1000001 represents (65)
10

 in straight binary.

1000001 represents (41)
10

 in BCD.

1000001 represents A in ASCII code.

Some commonly used codes are as follows:

 Straight Binary Codes

 Natural BCD Codes

 Excess-3 Codes

 Gray Codes

 Alphanumeric Codes

 Error Codes

6. The basic NOT gate has only one input and one output. The output is
always the opposite or negation of the input. The following is the truth table
for NOT gate:

A F

0 1

1 0

Symbol: F = A

The following is the figure of NOT gate representation:
 

A F 

7. A truth table is a mathematical table that gives output of all combinations of
inputs. These are used to compute the functional values of logical expressions.
Every logical operation can be represented by its truth value. A truth table
has number of columns equal to number of inputs plus one column for the
output. If there are n-input variables, then there are 2n possible combinations
since each variable can have two values 0 or 1.

8. Boolean addition: The basic rules of Boolean addition are given as follows:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1

Boolean addition is same as the logical OR addition.
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9. De Morgan’s two theorems are:

Theorem I: (A + B) = A.B.
Theorem II: (A.B) = A + B

10. The main advantage in doing so is that, it then uses less logic gates and less
power to realize and thus, it is considered sometimes cheaper and faster.

There are basically two types of simplification techniques:

 Algebraic Simplification

 Karnaugh Maps (K-map)

11. Combinational Circuits (CC) are those circuits where output depends on
the present value of the inputs. If input values are changed, the information
about the previous inputs is lost because combinational logic circuits have
no memory. In such cases, sequential logic circuits are used to overcome
this problem. In a combinational logic circuit the outputs depend on their
current inputs. Combinational circuits are used to realize Boolean
expressions.

12. Binary addition is performed in the same manner as decimal addition. Binary
addition is the key to binary subtraction, multiplication and division.

13. In digital electronics, we have two broad categories of logic circuits. They
are as follows:

 Combinational Circuit

 Sequential Circuit

Combinational Circuit: In a combinational circuit, each output depends
entirely on the immediate (present) inputs to the circuit.

Sequential Circuit: In this type of circuit, the output depends on both the
present and the past inputs. It means that this type of circuit involves the
memory elements for storing past input conditions.

14. A register is a group of flip-flops used to store or manipulate data or both.
Each flip-flop is capable of storing one bit of information. An n-bit register
has n flip-flop and is capable of storing any binary information containing n
bits.

The register is a type of sequential circuit and an important building block
that is used in digital system like multipliers, dividers, memories,
microprocessors, etc.

15. The first operation is series or serial operation. The second type of operation
is parallel shifting. Input and output functions associated with registers
include (1) Serial input/serial output (2) Serial input/parallel output (3) Parallel
input/parallel output (4) Parallel input/serial output.

1.13 SUMMARY

 A number is an idea that is used to refer amounts of things. People use
number words, number gestures and number symbols. Number words are
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said out loud. Number gestures are made with some part of the body, usually
the hands. Number symbols are marked or written down. A number symbol
is called a numeral.

 On hearing the word number, we immediately think of the familiar decimal
number system with its 10 digits; 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. These
numerals are called Arabic numerals.

 The number system which utilizes ten distinct digits, i.e., 0, 1, 2, 3, 4, 5, 6,
7, 8 and 9 is known as decimal number system. It represents numbers in
terms of groups of tens

 A number system that uses only two digits, 0 and 1 is called the binary
number system. The binary number system is also called a base two system.

 A binary number with 4 bits, is called a nibble and binary number with 8 bits
is known as a byte.

 A binary fraction can be represented by a series of 1 and 0 to the right of a
binary point. The weights of digit positions to the right of the binary point
are given by 2–1, 2–2, 2–3 and so on.

 Mixed Numbers: Mixed numbers contain both integer and fractional parts.
The weights of mixed numbers are

23 22 21 . 2–1 2–2 2–3 etc.



Binary Point

 When you add or subtract numbers with decimal points where you have to
first line up the decimals. Likewise, to add or subtract floating-point numbers,
you will have to first modify the F of one of the two numbers by shifting left
or right to make it equal to the E of the other number.

 For positive numbers, this presentation is the same as the unsigned binary
representation for any number.

 Most of the processing in computers and other digital circuits are done in
the binary formats. Various binary codes are used to represent data, which
may be numerals, alphabets or special characters. A user must be very
careful about the code being used while interpreting information available in
the binary format.

 Gray code is a very useful code in which a decimal number is represented in
the binary form in such a way that each Gray code differs from the preceding
and the succeeding numbers by a single bit. It is not a weighted code. It is
also known as reflected code.

 The MSB of binary code is the same as the MSB of the corresponding
Gray code.

 A basic AND gate consists of two inputs and an output. In the AND gate,
the output is ‘High’ or gate is ‘On’ only if both the inputs are ‘High’. The
relationship between the input signals and the output signals is often
represented in the form of a truth table.
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 A basic OR gate is a two input, single output gate. Unlike the AND gate,
the output is 1 when any one of the input signals is 1. The OR gate output is
0 only when both the inputs are 0.

 Basic logic functions and operations are the AND function (logical
multiplication), the OR function (logical addition) and the NOT operation
(logical complementation).

 The logical inverse operation changes logical 1 to logical 0 and vice versa.
It is also called the NOT operation.

 A Boolean function is an algebraic expression formed using binary constants,
binary variables and basic logic operation symbols.

 A great mathematician De Morgan has contributed with two of the most
important theorems of Boolean algebra. De Morgan’s theorems are extremely
useful in simplifying expression in which product or sum of variables are
complemented.

 Combinational logic deals with the techniques of ‘Combining’ the basic
gates into circuits that perform some desired functions. In combinational
logic circuits, at any time, the logic level at the output depends on the
combination of logic levels present at the inputs. A combinational circuit has
no memory characteristic, so its output depends only on the current value
of its inputs.

 The AND function is referred to as a product. In Boolean algebra, the
word ‘Product’ loses its original meaning but serves to indicate an AND
function. The logical product of several variables, on which a function
depends, is considered to be a product term. The variables in a product
term appear in a complemented or uncomplemented form. For example,
ABC  is a product term.

 An OR function is generally referred to as a sum. The logical sum of variables
on which a function depends is considered to be a sum term. Variables in a
sum term can appear either in complemented or uncomplemented form.
For example, A B C  is a sum term.

 A minterm is a special case product (AND) term. A minterm is a product
term that contains all of the input variables that make up a Boolean expression.

A two variable function has four possible combinations, viz., AB AB AB, ,

and AB.

 A maxterm is a special case sum (OR) term. A maxterm is a sum (OR) term
that contains all of the input variables that make up a Boolean expression. A
two variable function has four possible combinations, viz.  A + B,

A B A B,  and A B .

 There are basically two types of simplification techniques:
o Algebraic Simplification
o Karnaugh Maps (K-map)
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 Combinational Circuits (CC) are those circuits where output depends on
the present value of the inputs. If input values are changed, the information
about the previous inputs is lost because combinational logic circuits have
no memory. In such cases, sequential logic circuits are used to overcome
this problem. In a combinational logic circuit the outputs depend on their
current inputs. Combinational circuits are used to realize Boolean
expressions.

 An electronic (combinational) circuit which performs the arithmetic addition
of two binary digits is called a half-adder.

 Binary addition is performed in the same manner as decimal addition. Binary
addition is the key to binary subtraction, multiplication and division.

 In digital electronics, we have two broad categories of logic circuits. They
are as follows:

o Combinational Circuit
o Sequential Circuit

 Combinational Circuit: In a combinational circuit, each output depends
entirely on the immediate (present) inputs to the circuit.

 Sequential Circuit: In this type of circuit, the output depends on both the
present and the past inputs. It means that this type of circuit involves the
memory elements for storing past input conditions.

 Time Delay: The serial-in-serial-out shift register can be used to provide a
time delay from input to output that is a function of both the number of
stages (n) in the register and the clock frequency.

1.17 KEY TERMS

 Arabic Numerals: On hearing the word number, we immediately think of
the familiar decimal number system with its 10 digits; 0, 1, 2, 3, 4, 5, 6, 7,
8 and 9. These numerals are called Arabic numerals.

 Binary System: A number system that uses only two digits, 0 and 1 is
called the binary number system. The binary number system is also called a
base two system.

 Binary Fraction: A binary fraction can be represented by a series of 1 and
0 to the right of a binary point. The weights of digit positions to the right of
the binary point are given by 2–1, 2–2, 2–3 and so on.

 Mixed Numbers: Mixed numbers contain both integer and fractional parts.
The weights of mixed numbers are

23 22 21 . 2–1 2–2 2–3 etc.

Binary Point

 Gray Codes: It is a very useful code in which a decimal number is
represented in the binary form in such a way that each Gray code differs
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from the preceding and the succeeding numbers by a single bit. It is not a
weighted code. It is also known as reflected code.

 Truth Table:  A basic AND gate consists of two inputs and an output. In
the AND gate, the output is ‘High’ or gate is ‘On’ only if both the inputs are
‘High’. The relationship between the input signals and the output signals is
often represented in the form of a truth table.

 Product Term: The AND function is referred to as a product. In Boolean
algebra, the word ‘Product’ loses its original meaning but serves to indicate
an AND function. The logical product of several variables, on which a
function depends, is considered to be a product term. The variables in a
product term appear in a complemented or uncomplemented form. For
example, ABC  is a product term.

 Minterm: A minterm is a special case product (AND) term. A minterm is
a product term that contains all of the input variables that make up a Boolean
expression. A two variable function has four possible combinations, viz.,

AB AB AB, ,  and AB.

 Maxterm: A maxterm is a special case sum (OR) term. A maxterm is a
sum (OR) term that contains all of the input variables that make up a Boolean
expression. A two variable function has four possible combinations, viz.  A

+ B, A B A B,  and A B .

 Half-Adder: An electronic (combinational) circuit which performs the
arithmetic addition of two binary digits is called a half-adder.

 Combinational Circuit: In a combinational circuit, each output depends
entirely on the immediate (present) inputs to the circuit.

 Sequential Circuit: In this type of circuit, the output depends on both the
present and the past inputs. It means that this type of circuit involves the
memory elements for storing past input conditions.

 Time Delay: The serial-in-serial-out shift register can be used to provide
a time delay from input to output that is a function of both the number of
stages (n) in the register and the clock frequency.

1.15 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What is a number system?

2. Write basic features of floating point representation.

3. Define the integer representation.

4. What are the different types of character codes?
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5. What is a logic gate?

6. Define OR/AND operation.

7. Write the Boolean expression for a five-input OR gate.

8. What do you mean by combinational circuit?

9. What is a registers?

10. Give the features of counters.

Long-Answer Questions

1. Write explanatory notes on the four systems of arithmetic.

2. Explain floating-point arithmetic operations.

3. Briefly discuss the concept of decimal arithmetic operations giving examples.

4. Write explanatory notes on:
(a) Signed magnitude representation
(b) Radix-complement representation

5. Write a note on character codes. Explain with the help of examples.

6. What is a logic gate? Explain the basic logic operations of Boolean algebra.

7. Explain half-adder using XOR and AND gates with the help of logic diagram.
Write its truth tables.

8. Discuss the applications of boolean algebra.

9. Describe De Morgan's theorems.

10. Explain the two types of simplification techniques of Boolean expression.

11. What is an arithmetic circuit? Explain in detail with the help of examples.

12.  Differentiate between the combinational circuits and sequential circuits.

13. Discuss the significance and application of registers giving details of each
types.

14. Explain the two modes of operation for registers.
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UNIT 2 REGISTER, MICRO-
OPERATIONS AND DESIGN
CONCEPTS

Structure
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2.2 Register Transfer
2.3 Bus System

2.3.1 Bus Organization
2.3.2 Multiple Bus Organization

2.4 Micro-Operations
2.4.1 Arithmetic Micro-Operations
2.4.2 Logic Micro-Operations
2.4.3 Shift Micro-Operations

2.5 Instruction and Instruction Code
2.5.1 Instruction Execution
2.5.2 Binary Coded Decimal (BCD) Code
2.5.3 Excess-3 Code
2.5.4 Gray Code
2.2.5 Alphanumeric Codes
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2.5.8 Hamming Codes

2.6 Computer Instruction
2.6.1 Instruction Representation

2.7 Timing and Controls
2.7.1 Functions of Control Unit
2.7.2 Instruction Cycle

2.8 Memory Reference Instructions
2.8.1 Memory Reference Format

2.9 Input/Output and Interrupts
2.10 Complete Computer Description

2.10.1 Basic Anatomy of the Computer
2.10.2 Data Representation within the Computer
2.10.3 Design of a Basic Computer
2.10.4 Components of a Computer System
2.10.5 Machine Language

2.11 Answers to ‘Check Your Progress’
2.12 Summary
2.13 Key Terms
2.14 Self-Assessment Questions and Exercises
2.15 Further Reading

2.0 INTRODUCTION

In hardwired control which includes gates, flip-fops, decoders, multiplexers and
other digital circuits. A complete processor includes global and local descriptor
tables which are found in the memory systems. Microprogrammed unit includes
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the fundamental components to perform the microinstructions. Basically,
microinstructions are the inputs to the hardwired control unit.

The fundamental concept of bus structure, a shared communication path
consisting of one or more connection lines is known as a bus and the transfer of
data through this bus is known as bus transfer. The CPU communicates with the
other components via a bus. Data bus, address bus and control bus are the types
of bus. A set of instructions is called a program in a computer. These instructions
are decoded and executed in Arithmetic Logic Unit (ALU) with the help of registers.
A computer is defined on the set of registers used and operations that are performed
on the data stored in them. The operations executed on the data stored in registers
are called micro-operations. Micro-operations are considered fundamental or
primitive (usually atomic) operations carried out in the computer.  An instruction is
a command given to a computer to perform a specified operation on some given
data. A code on the other hand is a symbol or a group of symbols that stands for
something. The Central Processing Unit (CPU), acts as the brain of computer,
and controls other peripherals and interfaces.

In this unit, you will study about the register transfer, bus system, micro-
operations, instruction and instruction code, computer instruction, timing and
controls, instruction cycle, memory reference instruction, input/output and interrupts,
complete computer description, machine language and design of basic computer.

2.1 OBJECTIVES

After going through this unit, you will be able to:

 Explain the organization of registers in different computers and register
transfers

 Elaborate on the bus structure

 Know about micro-operations

 Understand instruction and instruction code

 Know computer instructions

 Describe instruction cycle

 Explain memory reference instructions

 Learn about the input/output and interrupts

 Define the term machine language

 Understand about the design of a Computer System

2.2 REGISTER TRANSFER

A digital system is a sequential logic system in which flip-flops and gates are
constructed. The register transfer logic methods focus on how adders, decoders
and registers use expressions and statements which resembles the statements used
in programming language. High level language C supports register transfer technique
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for executing applications. It encompasses all types of registers such as shift registers,
counters and memory units. Here, a counter is incremented by one and the memory
unit is considered as a collection of storage registers.

In register transfer operations, the straight forward register transfers the
data from register to another register temporarily. For example, the data is transferred
from register R3 to register R1. It is shown symbolically as follows:

R1  R3

The left arrow () is used to show that data from the right is going to move to the
left side register. In the digital system, registers are attached to each other which
makes it possible that more than one register can be transferred simultaneously.
More registers are separated by comma but they are kept on the same line. It is
done in the following way:

R1  R3, R2  R5

The above statement shows that the contents of register R3 are transferred to
register R1 and the contents of register R5 are transferred to register R2 at the
same time.

Sometimes, register transfer operation depends on certain conditions. For
example, register R1  R3 takes place only if Boolean variable k = 1 is satisfied.
In a programming language, it is coded as follows:

if (k=1) then R1  R3

Inter-register microoperations do not change the information content if the binary
data and information moves from one register to another register. The characteristics
of microoperations are as follows:

 Arithmetic microoperations perform arithmetic or number operations; logic
performs AND, OR, XOR operation; and shift microoperations perform
shift register.

 The register is designated by capital letters and sometimes followed by
numerals, such as R1, R2, IR, etc. The flip-flops of an n-bit register are
numbered from 1 to n (or from 0 to n-1) starting either from the left or from
the right.

Simple digital system contains the combinational and sequential circuits. They are
characterized as follows:

 The type of registers they contain.

 The operations they perform.

Typically, register transfer focuses on the operations of data which are passed into
different registers. These operations are called microoperations. The main functions
which take place in the register are as follows: Shift, Load, Clear and Increment.

During one clock pulse, the information which is operated and stored in different
registers is performed under elementary operation. Table 2.1 shows the transfer
functions that are used in transferring registers:
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Table 2.1 Transfer Functions that are used in Transferring Registers

Function Name Purpose Prototype 
__gpr_to_d64 
 

Transfer from general purpose register to 
floating point register 

_Decimal64 
__gpr_to_d64 
(long long); 

__gprs_to_d128 
 

Transfer from general purpose register to 
floating point register. Transfers a value from 
a pair of general purpose registers (64-bit 
mode) or four general purpose registers (32-
bit mode). 

_Decimal128 
__gprs_to_d128 
(unsigned long 
long*upper, 
unsigned long 
long*lower); 

 
__d64_to_gpr 
 

Transfer from floating point register to 
general purpose register. Transfers a value 
from a floating point register to a general 
purpose register (64-bit mode) or a general 
purpose register pair (32-bit mode). 

long long 
__d64_to_gpr 
(_Decimal64); 

 
__d128_to_gprs 
 

Transfer from floating point register to 
general purpose register. Transfers a value 
from a pair of floating point registers to a 
pair of general purpose registers (64-bit 
mode) or four general purpose registers (32-
bit mode). 

void 
__d128_to_gprs 
(_Decimal128, 
unsigned long 
long*upper, 
unsigned long 
long*lower); 

In Figure 2.1, f(R,R) function has two parameters which denotes different functions
as follows:

f: shift, load, clear, increment, add, subtract, complement, AND, OR, XOR.

 
 

 

 
Registers

(R)
ALU

1 clock cycle

Fig. 2.1 One Clock Cycle of R  f (R, R)

Organization of a Digital System

Digital systems contain the set of registers and their functions in the internal
organization of the computer. The main function is that they control signals to
initiate the sequence of microoperations to perform the functions. It maintains the
way of register transfer on any digital system and therefore it is called register
transfer level. The characteristics are as follows:

 It depends on system registers.

 Information/data is transferred on different registers.
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Designation of Resistors

Designation of resistors is interrelated with the register transfer facility. It enhances
the transferring rate of data which is stored in registers. The characteristics of
designation of resistors are as follows:

 Registers are represented by capital letters, such as A, R13, IR.

 The variable names indicate the functions which are used as follows:

o MAR indicates Memory Address Register

o PC indicates Program Counter

o IR indicates Instruction Register

Contents of registers are viewed and designated in various ways. Basically, a
register is viewed as a single entity and processes the bits of data it contains.

 
R1 

 Register  

Numbering of bits 

Showing individual bits 

Subfields 

PC(H) PC(L) 
15 8 7 0 

7     6     5     4     3     2     1     0 

R2 
15 0 

Fig. 2.2 Block Diagram of a Register

In Figure 2.2, R2  R1 depicts that the contents of register R2 are copied and
loaded into register R1. It transfers simultaneously from the source register R1 to
the destination register R2 during one clock pulse. This is called non-destructive
method. In this method, the contents of register R1 are not altered during the
operation of copying or loading to register R2. It performs step by step. It first
copies the contents of one register and then transfers to another register. Let us
take another example. A statement is written as follows:

R3  R5

It implies that the data lines move from the source register R5 to the destination
register R3. It loads parallel in the destination register R3. The control lines are
used to perform the operation.

Control Functions of Register Transfer

The control functions of register transfer are as follows:

 If a certain condition is true, microoperation is activated as per requirement.

 In register transfer, control function is similar as ‘if’ statement in a
programming language.

 Control functions use control signal to perform microoperations. If the
control signal comes as 1, the operation takes place.

The statement is represented as follows:

P: R2  R1

The above statement tells that if P=1, then load the contents of register R1 into
register R2. This statement is written in programming language as follows:

if (P=1) then (R2  R1)
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Implementation of Controlled Transfer

The control transfer passes the functions via control circuit. It is represented as
follows:

P: R2  R1
   

Clock

Transfer occurs here  

R2  

R1 

Control  
Circuit  

 
 

Load  P  

n  

Clock  

Load  

t  t+1  

Fig. 2.3 Block and Timing Diagram

Figure 2.3 shows that the same clock controls the circuits that generate the control
function. It is incremented by one such as t, t+1 and so on and then reaches to the
destination register. The transfer occurs in Load process. Registers are assumed
to use positive edge triggered flip flops.

There are four types of connections or links between components, such as
bus, control, Boolean and miscellaneous. The bus is a general purpose data and
control connection passing synchronized information between components. Control
connections are used to link the control components and also to invoke activity in
other components. Boolean connections are special purpose signals aiding the
execution flow by connecting conditions with decision making control components.
Finally, there exist miscellaneous connections to connect these register transfer
components with external devices.

Table 2.2 Working Registers

Name Function Bits States

W W-Register 32 –

X X-Register 32 –

Y Y-Register 32 –

A Address Register 12 4096

C Command Instruction Register 6 64

PSN Program Step Number 8 256

ID Information Decoder 10 1024

OSP Output Start Point (Index Register) 5 32
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Table 2.2 shows the working registers and their functions.

Following are the properties of register transfer:
 Information transfer from one register to another (transfer of the content of

register R1 into register R2). The content of the source register R1 does
not changes after the transfer.

 The transfer occurs only under a predetermined control condition. The
transfer operation is executed by the hardware only if P=1.

 A comma is used to separate two or more operations (executed at the
same time) 21, 12.

2.3 BUS SYSTEM

A shared communication path consisting of one or more connection lines is known
as a bus and the transfer of data through this bus is known as bus transfer. When
data is read from or stored in memory, it is referred to as memory transfer.

The functional components of a computer must be connected in order to
make a system operational. The CPU (Control Processing Unit) communicates with
the other components via a bus. A bus is a set of wires that acts as a shared but
common data path to connect multiple subsystems within the computer system. It
consists of multiple lines, allowing the parallel movement of bits. Buses are low cost
but very versatile and help connect devices with each other as well as the system. At
any given point in  time, only one device (be it a register, the ALU, memory or some
other component) may use the bus. However, this sharing often results in a
communications bottleneck. The speed of the bus is affected by its length as well as
by the number of devices sharing it. Following are the types of bus:

 Data Bus: It is used for the transmission of data. Data lines and the number
of bits in a word are similar.

 Address Bus: It carries the address of the main memory location from
where  data can be accessed.

 Control Bus: It is used to indicate the direction of data transfer and to
coordinate the timing of events during the transfer.

A digital computer consists of many processor registers and the transfer of
information from one register to another is often required. Hence, paths must be
provided so that such transfer operations can take place. Figure 2.4 shows the
transfer among three registers R1, R2 and R3 through six data paths.

R1 R2 R3

Fig. 2.4 Transfer among Three Registers

If different lines are used involving each register, the number of wires will increase
considerably. Hence, a pair of common lines, one line for each bit of the register, is
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used for the transfer. This set of common lines through which binary data is transferred,
one at a time, among registers is known as a bus. A common bus system is constructed
with the help of multiplexers and decoders. The multiplexer selects the source register
whose binary information is then placed on the bus and the decoder selects one
destination register to transfer the information to, from the bus. The construction of a
bus system for four registers is shown in Figure 2.5. Two multiplexers have been
used, one for the low order significant bit and one for the high order significant bit. If
the register is of n bits, n multiplexers are required to produce n bus lines. These n
lines in the bus are connected to n inputs of all the registers.

Load
Register A

Load
Register B

A1An S0 S1

B1Bn

0
1
2
3

4 × 1
MUX
No. 1

0
1
2
3

4 × 1
MUX
No. 1

Load

Load

C1Cn

Register C

Dn D1

Register D

Line No. n
Line No. 1

n common bus lines

Select

Enable
Destination
  Decoder

0 1 2 3

Fig. 2.5 Bus System for Four Registers

S
1
 and S

0
 are selection lines connected to selection inputs of all n multiplexers.

The selection lines choose n bits of one register and transfers these to the common
bus n lines. When S

1
 and S

0 
= 00, the 0 data inputs of all n multiplexers are

selected and cause the n bits from register A to transfer to the n-line common bus,
since the output of this register is connected to 0 data inputs of each multiplexer.
Similarly, when S

1
 and S

0 
= 01, the content of register B is transferred into the n-

line common bus and so on. The register that is selected for the four possible
binary values is shown in Table 2.3.

Table 2.3 Function Table for Bus in Figure 2.5

S
1

S
0

Register Selected

0 0 A

0 1 B

1 0 C

1 1 D
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The shifting of data from a bus to one of the targeted registers is done with the help
of the load control of that register. The load control of the particular register is
activated by the outputs of the decoder when enabled. If the decoder is not enabled
then no information from the bus will be transferred to the register although the
multiplexers place the information of the source register onto the bus.

In general, for registers of n bits, n multiplexers are needed to construct a
bus of n lines. The size of a multiplexer depends on the number of registers in the
system. If there are K registers, the multiplexer’s size will be K × 1 since it
multiplexes K data lines. To take an example, a general bus of 16 registers of 16
bits each needs 16 multiplexers of size 16 × 1. Four selection lines are required.
Also, the size of the destination decoder will be 4 × 16.

Consider the following statement:

C  B

The control function that enables this transfer must select register B as the source
and register C as the destination registers. The content of register B is located on
the bus and the content of the bus is then transferred to register C by starting its
load control input.

2.3.1 Bus Organization

A bidirectional bus for carrying data between two units is called a data bus. A
unidirectional bus used to carry memory addresses is called memory bus.

The manner in which different buses are connected to form a common bus
so that the CPU, memory and I/O devices can use the common bus, when required,
is called bus organization.

A basic computer consists of a memory unit, a control unit and registers.
There must be a path that can be used to transfer information between the memory
and the registers or among registers. Using a common bus is the most efficient way
of transferring information from source to destination in a system with multiple
registers. Figure 2.6 shows the connection of eight registers and a 4096 × 16
memory unit of a common bus system. The eight registers are the Address Register
(AR), Program Counter (PC), Data Register (DR), Accumulator (AC), Instruction
Register (IR), Temporary Register (TR), Input Register (INPR) and Output Register
(OUTR). Here, a 16-bit common bus has been used.

The outputs of seven registers and memory are linked to the common bus.
The definite output chosen for the bus lines at any time is finalized by the binary
value of the selected lines S

2
, S

1
 and S

0
 as shown in Table 2.4. The numbers along

each output line shows the decimal equivalent of the required binary selection.
When S

2
S

1
S

0
 = 011, the 16-bit outputs of DR are placed on the bus lines.

The lines from the common bus are linked to the input of each register and
the data inputs of the memory. The specific register whose LD (load) input is
allowed gets the information from the bus. The memory gets the information from
the bus when ‘A write Input’ is allowed.

The memory puts its results on to the bus when the ‘Read Input’ is on and
S

2
S

1
S

0
 = 111.
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The registers DR, AC, IR and TR are of 16-bits. Two registers, PC and
AR, have 12 bits since they store addresses.

When the contents of AR and PC are placed on the bus, the four most
significant bits are set to 0. When AR and PC receive data from the common bus,
only the 12 least significant bits are transferred to the register.

The input registers INPR and OUTR have 8 bits because they communicate
only with the 8 least significant bits in the bus. INPR is connected to the bus for
providing information. However, OUTR is connected to the bus only for receiving
information from the bus. INPR receives a character from the I/O device which is
transferred to AC and OUTR receives a character from AC and delivers it to an
output device. No transfer takes place from OUTR to any of the other registers.

S0

S1
S2

Memory Unit
4096 × 16

BUS

7

Write Read

AR 1

2

3

4

5

6

LD INR CLR

LD INR CLR

PC

DR

LD INR CLR

AC

16-bit Common Bus

ClockLD

LD

INRCLR

Adder
and

Logic

E

INPR

IR

LD

LD INR CLR

TR

OUTR

Fig. 2.6 Common Bus Organization

The 16-bit common bus receives information from six registers and the memory
unit. In addition, the 16-bit common bus is linked to the inputs of six registers and
the memory unit. Five registers have three control signals—LD (load), INR
(increment) and CLR (clear). Two registers have only LD (load) control signal
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connected to the common bus. AR is also connected to the memory address.
Thus, AR always specifies the memory address. During a memory write operation,
the content of any register can be specified for the memory data and similarly
during a memory read operation, any register except AC can receive data from
the memory. The 16-bit AC receives inputs from the adder and logic circuit, which
receives input from three registers. These three registers are 16-bit AC, 16-bit
data register DRand 8-bit inputs, which come from input register INPR. The inputs
from DR and AC are used for arithmetic and logic micro-operations. Table 2.4
shows the binary value of selection line S

2
S

1
S

0
 that selects one of the registers.

Table 2.4 Function Table

S
2

S
1

S
0

Register

0 0 1 AR

0 1 0 PC

0 1 1 DR

1 0 0 AC

1 0 1 IR

1 1 0 TR

1 1 1 Memory

For example, in order to transfer the contents of PC to AR (Address Register),
the computer requires the following instructions:

 Set the selection variables S
2
S

1
S

0
 = 010.

 Transfer the contents of PC to the bus.

 Enable LD input of AR.

 Transfer contents of bus into AR.

2.3.2 Multiple Bus Organization

A two bus structure used to connect the registers and the ALU of a processor is
shown in Figure 2.7. All general purpose registers are connected to both buses A
and B to form a two bus organization. The two operands required by the ALU are
routed in one clock cycle hence, the execution of instruction becomes faster since
the ALU does not wait for the second operand, as is the case with single bus
organization. Information passed on to the bus may be from general purpose
registers or special purpose registers. In addition, the special purpose registers
are divided into two groups—one group at the left of the ALU connected to bus
A and the other group is at the right of the ALU connected to bus B. The data
from two special purpose registers belonging to the same group cannot be
transferred to the ALU at the same time.

The output of the ALU may be routed to either general purpose registers or
special purpose registers. The ALU does not have any input buffer register and
hence, both buses will be busy in carrying the operands during the binary operations.
Therefore, the output of ALU is first stored in the output register. Transfer of the
required operands and loading of the ALU output buffer register take place in one
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clock cycle. The content of the ALU output register is routed to the destination
with the help of either bus A or bus B in the second clock cycle.

Bus A

R0

R1

R2

R4

R5

R3

General
Purpose

Registers

Bus B

Special
Purpose
Register
Group 1

Special
Purpose
Register
Group 2

ALU

PC

Buffer
Register

MBR

Bus A

R0

R1

R2

R4

R5

R3

General
Purpose

Registers

Bus B

Special
Purpose
Register
Group 1

Special
Purpose
Register
Group 2

ALU

PC

Buffer
Register

MBR

Fig. 2.7 Two Bus Organization of the Data Path

The performance of a two bus organization can be further improved by adding a
third bus C at the output of ALU. The three bus structure is shown in Figure 2.8.
The addition of a third bus allows the system to perform operation, such as
R3  R1 + R2 in one clock cycle as there are three separate buses in the system.

Bus A

R0

R1

R2

R4

R5

R3

General
Purpose

Registers

Bus B

Special
Purpose
Register
Group 1

Special
Purpose
Register
Group 2

ALU

PC

MBR

Bus C

Fig. 2.8 Three Bus Organization of the Data Path

2.4 MICRO-OPERATIONS

An instruction constitutes a set of micro-operations. You can define a micro-
operation as an elementary operation that is performed on the information stored
in one or more registers during one clock pulse.

The result of the operation may replace the previous binary information of a
register or may be transferred to another register. A micro-operation requires only
one clock pulse for execution if the operation is done in parallel.
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The micro-operations most often encountered in digital computers are
classified into the following four categories:

1. Register Transfer Micro-Operation: A micro-operation that transfers
binary information from one register to another.

2. Arithmetic Micro-Operation: A micro-operation that performs arithmetic
operations on numeric data stored in registers.

3. Logical Micro-Operation: A micro-operation that performs bit
manipulation operations on non-numeric data stored in registers.

4. Shift Micro-Operation: A micro-operation that performs shift operations
on data stored in registers.

Arithmetic, logical and shift operations are usually performed by the ALU
unit. Apart from arithmetic and logical operations, the computer has to implement
some more micro-operations on the registers. These include the following:

 Refresh volatile data
 Load (Store) data
 Clear storages (change all bits to 0)
 Increment (and decrement) storages binarily
 Complement storages
 Select individual storage bits
 Counter with parallel load is capable of performing the micro-

operations increment and load.
 A bidirectional shift register is capable of performing the shift right and

shift left micro-operations.

In order to execute these operations, the register, which is basically a set of
flip-flops, has some additional combinational circuits that enable it to execute the
listed operations.

Another possible microperation that changes the information content of the
registers can be shown by the following example in the following  micro-operation:

R1 R1 + R2

The content of R1 and R2 registers are provided as an input of Adder
circuit in ALU and the result is transferred to R1. Note that the result will overwrite
the previous value of R1. However, the register transfer micro-operation will not
change the content but just transfer information from source to destination register.

2.4.1 Arithmetic Micro-Operations

The basic arithmetic micro-operations are addition, subtraction, increment,
decrement, complement of register content, arithmetic shift addition with carry-
over subtraction, etc.

Let us describe the following arithmetic operation
R1  R2 + R3

This instruction specifies an addition operation and states that the contents
of register R2 are added to the contents of register R3 and the resultant sum is
transferred to register R1 while the content of R2 and R3 remain unchanged. To
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implement this statement with hardware we need three registers and the digital
component that performs the addition operation.

The basic arithmetic operations are listed in the Table 2.5:

Table 2.5 Basic Arithmetic Operations

Symbolic 
Designation 

Description 

R3  R1 + R2 Contents of R1 plus R2 transferred to R3 

R3  R1 – R2 Contents of R1 minus R2 transferred to R3 

   R2  R2’ 1’s complement of the contents of R2 

R2  R2’ + 1 2’s complement of the contents of R2 (Negate) 

R3 R1 + R2’ +1 R1 plus the 2’s complement of R2 (Subtraction) 

R1  R1 +1 Increment the contents of R1 by one 

R1  R1 – 1 Decrement the contents of R1 by one 

Although multiplication and division are also valid arithmetic operations they
are not included in the basic set of micro-operations. This is so, because, in most
computers, the multiplication operation is implemented with a repeated addition.
Shift micro-operations and division are implemented with a sequence of subtractions
and shift micro-operations. To specify the hardware in such a case requires a list
of statements that use the basic micro-operations, add, subtract and shift.

Hardware for Implementing the Arithmetic Operations

Various arithmetic operations can be computed by adder and subtractor circuits.
Multiplication and division can be implemented through successive additions and
subtractions respectively. For arithmetic operations a n bits input comes from one
register A and the n bits input come from another register B. The output is transferred
to a third register or to one of the source registers replacing its previous content.

Binary Adder (for Addition)

The digital circuit that gives the arithmetic sum of two binary numbers (of any
length ) is called a binary adder. The binary adder is constructed by cascading full-
adder circuits. An n-bit binary adder requires n full adders.  For example, to
design a four-bit binary adder we need four full adders which are connected such
that  the output carry from one full-adder is connected as the input of the next full
adder. A 4-bit full adder circuit is shown in Figure 2.9. This also called ripple
adder.

 

C2 
C0 C1 C3  

FA 

  B3     A3                        B2     A2                      B1    A1                     B0      

 

FA 
 

FA 
 

FA 

C4                  S3                                  S2                                S1                                S0 

Fig. 2.9 4-Bit Binary Adder
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Binary Adder (For Subtraction)

Negative numbers are represented in complement notation. Hence the subtraction
process is also preformed by complement method. Binary numbers can be
subtracted by adding the complements of subtractor. 1’s complement can be
obtained by inverting all bits  and adding 1 to the sum through the input carry. The
addition and subtraction operations can be combined into one common circuit by
including an exclusive OR gate with each full adder (Refer Figure 2.10).

Fig. 2.10 Binary Adder Subtractor

As A 0 is A and
A  1 is A’

So, if control  = 0 the circuit acts as an adder circuit and for control =1 it acts as
a subtractor circuit.

Binary Incrementer

The incrementer circuit adds 1 to a number in a register. This operation can be
easily implemented with a binary counter. Every time the count enable is active,
the clock pulse transition increments the content of the register by 1. Often, it is
required to perform the increment micro-operation with a combinational circuit
independent of a particular register. This can be accomplished by means of half-
adders.

        C4        S3                               S2                                S1                                S0 

 x       y 
 
 
   HA 
 
C      S            

 x       y 
 
 
   HA 
 
C      S            

 x       y 
 
 
   HA 
 
C      S            

 x       y 
 
 
   HA 
 
C      S            

        A3                               A2                               A1                               A0         1  

Fig. 2.11 Bit Binary Incrementer Using Half Adders

Arithmetic Circuit
All possible operations related to binary addition and subtraction can be implemented
in one circuit by controlling input to parallel adder circuit as shown in Figure 2.11.
The arithmetic output of binary adder is calculated to the following expression:

Sum = A+ B + C
in
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Where A and B are inputs and C
in
 is an input carry, which can have two

possible values 0 or 1. We can obtain various possible combinations of output by
taking various possible value of input B. In the circuit in Figure 2.12, four possible
values of B namely B, B’(B complement) , 0 and 1 have been taken. In order to
decide what value of B should be input, use 4 × 1 multiplexer,  i.e., with two
control lines, and an output of multiplexer is input of the binary adder. By controlling
the value of B with two selection inputs S

0
 and S

1
 and two possible values of C

in
,

it is possible to generate the eight arithmetic micro-operations as  given in Table
2.6.

cin
S1
S0

A0

B0

B1

B1

A2

B2

B3

A4

0

s1
s0
s
1
2
3

4 × 1
MUX

s1
s0
s
1
2
3

4 × 1
MUX

s1
s0
s
1
2
3

4 × 1
MUX

s1
s0
s
1
2
3

4 × 1
MUX

4-Bit Arithmetic Circuit

X0 C0

C1Y0

D0FA

C1X1

C2Y2

FA D1

C2X2

FA D2

C3Y2

C3X2

C4Y3

D3

Cout

Fig. 2.12 A 4-bit Adder Circuit

When the values of S
1
 and S

0
 is 00, input B is applied to the input to adder

and the output of the circuit will be A+B or A+B+1 depending on whether C
in
 is

0 or 1. When S
1
 and S

0
 is 01, input B’ is applied to input to adder and output of

circuit will be A-B with borrow or A–B depending on whether C
in
 is 0 or 1. When

S
1
 and S

0
 is 10 input 0 is applied to input to adder and output of circuit will be A

or A+1 depending on whether C
in
 is 0 or 1.  When S

1
 and S

0
 is 11as control signal

1 is applied to input to adder and output of circuit will be A–1 or A depending on
whether Cin is 0 or 1.

Table 2.6 Arithmetic Circuit Function Table

Select Input Output

S  S1 0 Cin Y D = A + Y + Cin
Micro-operation

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

B
B
B
B
0
0
1
1

D = A + B
D = A + B + 1
D = A + B
D = A + B + 1
D = A
D = A + 1
D = A – 1
D = A

Add
Add with carry
Subtract with borrow (A – B – 1)
Subtract
Transfer A
Increment A
Decrement A
Transfer A

For example, when
subtracting A(2n)
from B(2n) use the 
circuit twice (for 2
instances hooked up)

Ignore B and just give 0s
Ignore B and just give 0s
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2.4.2 Logic Micro-Operations

A logic circuit performs logical binary operations on strings of bits stored in registers.
These operations consider each bit of the register separately and treat them as
binary variables. Thus, they can manipulate individual bits or a portion of a word
stored in a register. Logic micro-operations are very frequently used for making
logical decisions, such as testing equality condition, and so on. They are used for
changing some bit values, deleting a group of bits or inserting new bit values into
the register. With two inputs sixteen different combinations of output are possible
as given in Table 2.7. In general, to design any logic circuit we use the four basic
logic gates,  namely AND, OR, XOR and NOT. Although there are sixteen logic
micro-operations, the other operations can be derived using these four logical
operations. Table 2.8 shows how using these gates makes it possible to get, sixteen
outputs with two binary variables. The complement micro-operation is the same
as 1’s complement and is denoted by a AND on the top of the symbol or as AA,
where A is the register name. The symbol is used to denote an OR micro-operation
which will be used to denote AND micro-operation. is used to denote XOR
operation.

Table 2.7 Truth Table for Sixteen Functions of Two Variables

Input  
A B 

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F 
10 

F 
11 

F 
12 

F 
13 

F 
14 

F 
15 

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
 

Table 2.8 Sixteen Outputs with two Variables

 

 
B o o lea n  F u n c tio n  M ic ro  o pe ra tio n  N am e  

F 0  F  < - 0  C LE A R  
F 1  F  < - A   ^  B  A N D  
F 2  F < -  A   ^   B ’  
F 3  F  < - A  T R A N S F E R  A   
F 4  F  < - A ’ ^  B   
F 5  F  < - B  T R A N S F E R  B  
F 6  F  =  A  B  E xc lus ive  –  O R  
F 7  F < -A   V  B  O R  
F 8  F < - A ’^    B ’ N O R  
F 9  F  <- (A   B )’ E xc lus ive  –  N O R  

F1 0  F < - B ’ C om p lem en t B  
F1 1  F  < - A  V  B ’  
F1 2  F < - A ’ C om p lem en t A  
F1 3  F < - A ’ V  B   
F1 4  F  < - A ’V   B ’ N A N D  
F1 5  F < -1  S e t to  a ll 1  

  

For example, P+Q: R4 R1 + R2,  R3R1R3

In the above expression, the variable on the left-hand side of the colon are
control signals. Thus,  + between P and Q is an OR operation between two binary
variables of a control function. The right hand side of the colon is the mathematical
expression and both logical and arithmetic expressions exist. In the above
expression, the content of R1 and R2 is added and stored in R4 denoted by +
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between R1 and R2, specifying an add micro-operation and the symbol between
registers R1 and R3 show the OR operation between variable R1 and R3 and
stored in R3.

Hardware Implementation

2

Bi

Ai

S2

S1

4 × 1
MUX

1

2

3

4

Ei2

Fig. 2.13 One Stage Logic Circuit

Figure 2.13 shows the hardware implementation of logic operations.

Table 2.9 Function Table for Logic Micro-operation

1 0 Operation

0 0 AND

0 1 OR

1 0 XOR

1 1 Complement

iS S E

E A B

E AV B

E A B

E A

 

 


Using combination of two micro-operations like AND and OR it is possible
to have various operations like selective set (setting 1 to those bits in register A
where there are corresponding 1’s in B register). For example,

1010   A Before

1100   B (Logic Operand)

1110   A After

 Similarly, selective complement where those bits in A are complemented
corresponding to 1’s in B can be implemented with the XOR circuit.  Other common
operations are selective clear where those bits in A are set to 0 corresponding to
1’s in B. This can be implemented with logic operation of AND with B’ .

Logic operations allow us to manipulate individual bits which we could not
do otherwise. Various logic applications are as follows:

 Selective set
 Selective complement
 Select clear
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 Mask
 Insert
 Clear

You will now study these logic operations with examples:

Selective-Set

‘Selective-Set’ sets to 1 the bits in register A where there is a corresponding 1 in
register B. The bit corresponding to 0 in register B remains unchanged. For example:

1011 Content of A before

1000 Content of B (logic operand)

1011 Content of A after

This operation is done using the logical-OR operation.
Selective-Complement

‘Selective-complement’ complements the bits in register A where there is a
corresponding 1 in register B. The bit corresponding to 0 in register B remains
unchanged. For example:

1011 Content of A before

1000 Content of B (logic operand)

0011 Content of A after

 This is done using the exclusive-OR operation.

Selective-Clear

‘Selective-clear’ clears to 0 the bits in register A where there is a corresponding 1
in register B. The bit corresponding to 0 in register B remains unchanged. For
example:

1010 Content of A before

1000 Content of B (logic operand)

0010 Content of A after

This is done using the logical A AND B’.

Mask

‘Mask’ clears to 0 the bits in register A where there is a corresponding 0 in register
B. The bit corresponding to 1 in register B remains unchanged. For example:

1010 Content of A before

1000 Content of B (logic operand)

1000 Content of A after

This is done using the logical-AND operation and B.

Insert

‘Insert’ inserts a new value into a set of bits in register A. It is used for introducing
a specific bit pattern into the A register, leaving the other bit positions unchanged.
This involve two steps which are as follows:
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1. A mask operation to clear the desired bit positions

2. An OR operation to introduce the new bits into the desired positions

Consider an example. Suppose you want to introduce 1001 into the upper order
four bits of A:

0110 1010(original)

1001 1010(desired)

First, we mask out the upper four bits (in our 8-bit value):

0110 1010 Content of A before

0000 1100 Content of B (logic operand)

0000 1010 Content of A after

• In the second step, we insert the new values:

0000 1010 Content of A before

1001 0000 Content of B (logic operand)

1001 1010 Content of A after

• The masking is done using an AND and the insertion is done with an OR.

Clear

Clear compares A and B and produces all 0s. The bits in the same position in A
and B are the same, otherwise they are set to 1. Thus, the bits in register A where
there is a corresponding  B are same are cleared 0 in register A. For example,

1010 Content of A before

1011 Content of B (logic operand)

0001 A A B

If A and B are both 1 or both 0, it produces 0.This is done using the logical-
XOR operation and B.

2.4.3 Shift Micro-Operations

Shift micro-operations are used for serial transfer of data, i.e., shifting the content
of the register either in the left or right direction. At the same time, when the first
flip-flop receives the serial input, the other bits of register are shifted. During the
left shift, the serial input is transferred to the rightmost position, i.e., to the Least
Significant Number (LSB) and during right shift the serial input transfers the most
significant bit, i.e, a bit entered from the leftmost position. There are three types of
shift operations possible which are as follows:

(i) Logical shifts transfer 0 through the serial input, with all the bits involved in
the shifting.

(ii) Arithmetic shifts multiply (or divide) a signed number by 2.

(iii) Circular shifts circulate the bits of the register around the two ends with no
loss of information.

 Each of these shift operations can be in the left or right position. Thus in
total, six types of shift micro-operations are possible. The control signal determines
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the type of shift operation to be performed. Table 2.10 lists the notations used to
represent the operation being used.

Table 2.10 Shift Micro-Operations

R shl R Logical left shift register R

R shr R Logical right shift register R

R ashl R Arithmetic left shift register R

R ashr R Arithmetic right shift register R

R cir R Circulate left register R

R cir R Circulate right regi








RTL Description

ster R

Logical Shift

A logical shift transfers 0 through the serial input. During logical shift, the bit
transferred to the end bit is assumed to be 0 as shown in Figure 2.14.

0 0 0 1 0 1 1 1

0 0 1 0 1 1 1 0

7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0 1 1

0 0 0 1 0 1 1 1

7 6 5 4 3 2 1 0

L
SB

M
SB

M
SB

L
SB

Logical shift leftLogical shift right

Fig. 2.14  8-bit Logical Shift Register

Circular Shift (Rotate Operation)

Another form of shift is the circular shift or bit rotation. Here the bits are ‘rotated’
as if the left and right ends of the register were joined. Here, the serial output act
as serial input. This operation is useful if it is necessary to retain all the existing bits
and just to shift these positions as frequently used in digital cryptography (Figure
2.15).

Rotate Right

0 0 0 1 0 1 1 1

7 6 5 4 3 2 1 0

M
SB

L
SB

1 0 0 0 1 0 1 1

0 0 0 1 0 1 1 1

1 0 0 0 1 0 1 1

7 6 5 4 3 2 1 0

M
SB

L
SB

1

1

C

0 0 0 1 0 1 1 1

0 0 1 0 1 1 1 1

7 6 5 4 3 2 1 0

M
SB

L
SB

1

0

C

Right rotate through carry Left rotate through carry

Fig. 2.15 Circular Right Shift with and Without Carry

If  rotation takes place including the carry bit we call it rotation through
carry. The rotation with carry is similar to the rotation with  no carry operation
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except the fact that here carry bit is also considered as part register. The current
value of the carry flag is accepted as input and new carry is generated. As shown
in Figure 2.15, bit that is shifted out (on the other end) becomes the new value of
the carry flag.

Arithmetic Shift

In an arithmetic shift, shift the signed binary number to the left or right. In the case of
a left arithmetic shift, insert a 0 into the least significant bit and shift all other bits. An
arithmetic left shift is used for multiplying a signed binary number by 2. The sign bit
remains unchanged as the sign of a number does not change on multiplication by 2.

Figure 2.16 shows the arithmetic left shift.

Sign
bit

0

Fig. 2.16 Arithmetic Left Shift

An arithmetic right shift divides the number by 2. The arithmetic right shift
leaves the sign bit unchanged. It is copied as such and  0-bit is inserted next to sign
bit. Then shift the number to the right, the LSB position is lost.

Figure 2.17 shows the arithmetic right shift.

Sign
bit

Fig. 2.17 Arithmetic Right Shift

An overflow can occur after an arithmetic left shift of value  R
n-1

 is not equal
to R

n-2 
before the shift. This is called overflow because in such a case the result will

not be the same as expected.  An overflow flip-flop can be used to detect whether
or not an arithmetic left  shift overflow condition can arise.

Vs = R
n-1

  XOR  R
n-2

If Vs = 0 there is no overflow, but if Vs=1, there is an overflow and a sign
reversal has taken place after the shift. Figure 2.18.

Sign
bit

0

V
Before the shift,
If the leftmost two bits differ,
the shift will result in an overflow!

Fig. 2.18 Overflow

The logical and arithmetic left-shifts are exactly the same operation. However,
the logical right-shift inserts bits with value 0 instead of copies of the sign bit.
Hence, the logical shift is suitable for unsigned binary numbers, while the arithmetic
shift is suitable for signed 2’s binary numbers.

Shift Unit with a Bi-Directional Shift Register

You can implement the shift micro-operation, either using a shift register or designing
a circuit using multiplexers. In the first case, a bidirectional shift register with parallel
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load is used. Data can be transferred to the register in parallel to all bits location
and then shifted to the right or left according to the instruction. This operation
takes two clock pulses to complete; the first for loading the data into the register
and the other for initiating the shift.

Shift Unit with Combinational Circuit (Shifter)

Another technique to implement the shift operation is by designing a circuit as shown
in Figure 2.19 using multiplexer. Here, the register whose contents are to be shifted
are first transferred onto a common bus. These buses are connected to the
combinational shifter, and the shifted number is then loaded back into the register.
This requires only one clock pulse for loading the shifted value into the register. As
shown in Figure 2.19 the 4-bit shifter has four data inputs, A0 through A3, and four
data outputs H0 through H3. There is one selection line S that determines left or right
shift. When the selection input S=0, the input data is shifted right and if S =1, the
input data is shifted left. There are two serial inputs that provide input in the left and
right shifts respectively. To design n bit shifter, we need n multiplexers.

  
 
 

 
 
 
 
 
 
 

Select Output 

S H0 H1 H2 H3 

0 IR A0 A1 A2 

1 A1 A2 A3 IL 

 
A0 
 

 
A1 
 

 
A2 
 
 
A3 
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MUX 

0 
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Select 0 for shift right 

1 for shift left 

S 
MUX 

0 
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H1 
 
 
 
 
 
 
H2 
 
 
 
 
 
 
H3 

Fig. 2.19 4-Bit Combinational Circuit Shifter

Combined Arithmetic Logic Shift Unit

The arithmetic, logic and shift circuits can be combined into one ALU by using a
multiplexer. The desired component can be selected using suitable selection
variables as given in Table 2.11. The instruction is decoded and depending on the
opcode, the control unit indicates which micro-operation is to be performed and
the appropriate selection lines input is decided.Thus, according to the operation
to be performed, the required  component is selected by the selection line. The
data to be operated, also called operands, act as inputs to the ALU, which is
stored in registers. ALU performs the operation. The result is transferred to a
destination register. The ALU needs one clock pulse to perform a complete
operation. This includes register transfer operand from the source registers to the
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ALU, and result to the destination register. The ALU also takes inputs as a set of
condition codes from the status register. It can also generate an output which are
condition codes and are to be stored in status registers. These codes are used for
test conditions like overflow, and divide-by-zero.

Table 2.11 Function Table for Arithmetic Logic Shift Unit

S3 S2 S1 S0 Cin Operation Function

0 0 0 0 0 F = A + B Addition

0 0 0 0 1 F = A + B + 1 Add with carry

0 0 0 1 0 F = A + B Subtract with borrow

0 0 0 1 1 F = A + B + 1 Subtraction

0 0 1 0 0 F = A Transfer A

0 0 1 0 1 F = A + 1 Increment A

0 0 1 1 0 F = A – 1 Decrement A

0 0 1 1 1 F = A Transfer A

0 1 0 0 x F = A B AND^
0 1 0 1 x F = A Λ B OR

0 1 1 0 x F = A Β XΟΡ

0 1 1 1 x F = A Complement A

1 0 x x x F = shr A Shift right A into F

1 1 x x x F = shr A Shift left A into F

Check Your Progress

1. What is temporary register used for?

2. Give some examples of dedicated address registers.

3. How is the speed of bus affected?

4. Write the function performed by multiplexer and decoder.

5. What are the types of buses?

6. List the four categories into which micro-operators in digital computers
are classified.

7. What is a binary adder?

8. What is the function of a logic circuit?

2.5 INSTRUCTION AND INSTRUCTION CODE

An instruction is a command given to a computer to perform a specified operation
on some given data. These instructions tell the CPU what to do. In other words,
an instruction guides the CPU to perform work accordingly. The most common
fields found in the instructions are the operation code and the operands. Each field
specifies different information for the computer. The two important fields of an
instruction are as follows:

 Op code

 Operand
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Thus,

Instruction = op code + operand

Op code (Operation Code) is an instruction field that specifies the particular
operation to be performed by the instruction. Each operation has its unique op
code and may take several micro-operations to accomplish. MOV, ADD and
SUB are examples of Intel 8086 op codes.

Operand fields specify where to get the source and destination operands
for the operation specified by the op code. The source/destination of operands
can be the memory or one of the general-purpose registers. The complete set of
op codes for a particular microprocessor defines the instruction set for that
processor.

Instruction sequencing is the method by which instructions are selected
for execution, i.e. the manner in which control of the processor is transferred from
one instruction to another.

The simplest method of controlling the sequence of instruction execution is
to have each instruction explicitly specify the address of the next instruction to be
run. However, explicit inclusion of instruction addresses in all the instructions  is
disadvantageous as the instruction length increases. This results in increase of cost
of memory where the instructions are to be stored.

2.5.1 Instruction Execution

The sequence of operations performed by the CPU in processing an instruction is
known as an instruction cycle. The time required to complete one instruction is
called execution time.

To execute an instruction, the following three steps are required:

 Fetch step, during which a new instruction is read from the memory.

 Decode step, during which the instruction is decoded.

 Execute step, during which the operations specified by the instruction are
executed.

The instruction fetch operation is initiated by loading the contents of the Program
Counter (PC) into the Address Register (AR) and it sends a read request to the
memory. The contents of the PC is the address of the instruction to be run. The
instruction read from the memory is then placed in the Instruction Register (IR)
and the content of the PC is incremented so that it contains the address of the next
instruction in the program. After this, the instruction is decoded to determine the
type of instruction that was just read. Finally, the instruction is executed to perform
the operation specified by the instruction.

Let us consider an instruction, which adds the content of a memory location
specified by register R

0
 to the content of register R

2
 and the result is to be stored

in R
2
. The execution of this instruction is performed in the following steps:

Step 1 Fetch and decode the instruction

Step 2 Fetch the operand
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Step 3 Perform the operation (addition)

Step 4 Store the result in R
2

Instruction Codes

A code is a symbol or group of symbols that stands for something. It is a
representation of discrete elements of information, which may be in the form of
numbers, letters or any other varying physical quantities. Binary bits 1 and 0 are
often used in groups. The codes are used to communicate the information to the
digital computer and to retrieve from it. The purpose of the code is that the operator
can feed data into computers directly in decimal numbers, alphabets and special
characters. The computer in turn converts these data in binary code which it can
process and after computation, it again converts the binary data into decimal
numbers, alphabets and special characters which we could understand easily.

Certain binary codes are used for arithmetic operations. Other codes facilitate
the creation of digital transducers for entering information into a system.

2.5.2 Binary Coded Decimal (BCD) Code

Code is a symbolic representation of discrete elements of information, which may
be in the form of letters, numbers or any other varying physical quantities.  The
symbol used is a string of binary digits 0  and 1, and these are arranged according
to the rules of code.  The group of binary bits (0 and 1) is known as a binary
code. A group of four binary bits is known as nibble, and a group of eight binary
bits is known as byte. In computers, code provide a means of specifying the
characters using only the 1 and 0 binary symbols available.  Several binary codes
are used to express decimal numbers, alphabets, special characters and for display.
Digital systems, for their internal operations, use some form of binary numbers.
However, the external world is decimal in nature. In many applications, special
codes are used for such auxiliary functions as error detection and correction.

Binary Coded Decimal or BCD uses binary number system to specify the
decimal numbers 0 to 9.  It is composed of four bits.  The weights are assigned
according to the position occupied by these digits.  The weight of the first (right
most) position is 20 or 1, the second 21 or 2, the third 22 or 4 and the fourth 23 or
8.  Reading from left to right the weighting is 8 - 4 - 2 - 1 and the code is also
called the 8 - 4 - 2 - 1 code.

The numbers from 0 to 9 are represented as in binary but after 9, the
representations are different.  For example, the decimal number 12 in binary is
[1100]

2
 but the same number in BCD is represented as [0001 0010]

BCD
.  Therefore,

the six code combinations 1010, 1011, 1100, 1110 and 1111 are invalid in BCD
code.

Example 2.1: Write BCD for a decimal number 559.

Solution: Decimal number  5 5 9

  
BCD code       0101 0101 1001
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 [559]
10

 = [0101    0101    1001]
BCD

Example 2.2: Write the BCD code equivalent for decimal number 96.42.

Solution : Decimal number  9 6 . 4 2

   
BCD code     1001 0110 . 0100 0010

 [96.42]
10

 = [1001   0110   .    0100   0010]
BCD

2.5.3 Excess-3 Code

The Excess-3 is a digital code that is derived by adding to each decimal digit and
then converting the result to four-bit binary. The Excess-3 code is used in some
arithmetic circuits because it is self-complementing. Table 2.12 shows Excess-3
codes to represent single decimal digit and its BCD code.

Table 2.12 BCD and Excess-3 Codes

Decimal
BCD Excess-3 CodeDigit

0 0 0 0 0 0 0 1 1

1 0 0 0 1 0 1 0 0

2 0 0 1 0 0 1 0 1

3 0 0 1 1 0 1 1 0

4 0 1 0 0 0 1 1 1

5 0 1 0 1 1 0 0 0

6 0 1 1 0 1 0 0 1

7 0 1 1 1 1 0 1 0

8 1 0 0 0 1 0 1 1

9 1 0 0 1 1 1 0 0

2.5.4 Gray Code

The Gray code pertains to a class of codes called minimum change codes, in
which only one bit in the code group changes when going from one step to the
next. Gray code is not an arithmetic code.

Table 2.13 Gray Code

  Decimal
Binary Code Gray CodeDigit

0 0 0 0 0 0 0 0 0 
1 0 0 0 1 0 0 0 1 
2 0 0 1 0 0 0 1 1 
3 0 0 1 1 0 0 1 0 
4 0 1 0 0 0 1 1 0 
5 0 1 0 1 0 1 1 1 
6 0 1 1 0 0 1 0 1 
7 0 1 1 1 0 1 0 0 
8 1 0 0 0 1 1 0 0 
9 1 0 0 1 1 1 0 1 
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10 1 0 1 0 1 1 1 1 

11 1 0 1 1 1 1 1 0 

12 1 1 0 0 1 0 1 0 

13 1 1 0 1 1 0 1 1 

14 1 1 1 0 1 0 0 1 

15 1 1 1 1 1 0 0 1 

Table 2.13 shows the Gray code representation for the decimal numbers
0 to 9 together with the straight binary code.

2.2.5 Alphanumeric Codes

Alphanumeric codes are the codes that represent alphabetic characters (letters),
punctuation marks and other special characters. Alphanumeric code represents all
of the various characters and functions that are found on a computer keyboard.

The ASCII Code

The abbreviation ASCII stands for the American Standard Code for Information
Interchange. The ASCII code is a 7-bit code used in transferring coded
information from keyboards and to computer displays and printers. It is used to
represent numbers, letters, punctuation marks as well as control characters. For
example, the letter A is represented by 100 0001.

EBCDIC Code

The abbreviation EBCDIC stands for the Extended Binary Coded Decimal
Interchange Code. It is an 8-bit code in which the decimal digits are represented
by the 8421 BCD code preceded by 1111.

2.5.6 Error-Detecting Codes

A code that uses n-bit strings need not contain 2n valid code words. An error-
detecting code has the  property that corrupting or garbling a code word will likely
produce a bit string that is not a code word (a non-code word).

A system that uses an error-detecting code generates, transmits, and stores
only code words. Thus, errors in a bit string can be detected by a simple rule—if
the bit string is a code word, it is assumed to be correct; if it is a non-code word,
it contains an error.

Parity

The most simple and commonly used error detecting method is the parity check
method, in which an extra bit called parity bit is included with the binary message,
to make the total number of 1s either odd or even, resulting in two methods;
(i) Even-parity method and (ii) Odd-parity method.

The ability of a code to detect single errors can be stated in terms of the
concept of distance. A code detects all single errors if the minimum distance
between all possible pairs of code words is 2.

In general, (n + 1) bits are needed to construct a single-error detecting
code with 2n code words. The first n bits of a code word, called information
bits, may be any of the 2n n-bit strings minimum error bit.
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A code in which the total number of 1s in a valid (n + 1) bit code word is
even; this is called an even-parity code.

A code in which the total number of 1s in a valid (n + 1) bit code word is
odd and this code is called an odd-parity code. These codes are also sometimes
called 1-bit parity codes, since they each use a single parity bit. The parity bit can
be placed at either end of the code word, such that the receiver must be able to
understand the parity bit and the actual data.

An n-bit code and its error-detecting properties under the independent
error model are easily explained in terms of an n-cube. A code is simply a subset
of the vertices of the n-cube. In order for the code to detect all single errors, no
code-word vertex can be immediately adjacent to another code-word vertex.

Figure 2.20(a) shows a 3-bit code with five code words. Code word 111
is immediately adjacent to code words 110, 011 and 101. Since a single failure
could change 111 to 110, 011 or 101 bits code does not detect all single errors. If
we make 111 a non-code word, we obtain a code that does have the single-
error-detecting property, as shown in Figure 2.20. No single error can change
one code word into another.

110 111

101

001
000

100

010
011

010

000

100

011

101

110
111

code word

non-code word

001

(a) Minimum distance = 1 (b) Minimum distance = 2
does not detect all single errors detects all single errors

Figure 2.20 Code Words in Two Different 3-Bit Codes

Table 2.14 Distance-2 Codes with Three Information Bits

 Information Even-parity Odd-parity

Bits Code Code

XYZ XYZ P XYZ P

000 000 1 000 1

001 001 1 001 0

010 010 1 010 0

011 011 0 011 1

100 100 1 100 0

101 101 0 101 1

110 110 0 110 1

111 111 1 111 0

Table 2.14 shows the distance codes with three information bits.The 1-bit parity
codes do not detect 2-bit errors, since changing two bits does not affect the parity.
However, the codes can detect errors in any odd number of bits. Actually, 1-bit
parity codes error-detection capability stops after 1-bit errors. Other codes, with
minimum distance greater than 2, can be used to detect multiple errors.
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Checksum

Since the double error will not change the parity of the bits, the parity checker will
not indicate any error. The check sum method is used to detect double errors and
pinpoint erroneous bits. The working of checksum method is explained as follows:

Initially word A 10110111 is transmitted. Next word B 00100010 is
transmitted. Binary digits of the two letters would be added together and the total
which is formed would be reserves in transmitter. Later, a letter C is sent and it is
added in the earlier total and after that the new total is kept. Hence, every letter is
adjoined to earlier total and subsequent passage of complete letters, complete
total is called checksum which is sent out. Identical process is also acted out
autonomously on beneficiary and the complete total attained is cross-checked
with conveyed checksum. If the two totals are equivalent in that case there is no
mistake.

2.5.7 Error-Correcting Codes

A code that is used to correct errors is called an error-correcting code. In general,
if a code has minimum distance 2c+1, it can be used to correct errors, that affect
up to c bits. If a code’s minimum distance is 2c + d + 1, it can be used to correct
errors in up to c bits and to detect in up to d additional bits.

Consider a fragment—cube for a code with minimum of 3. There are at
least two non-code words between each pair of code words. Now, let us transmit
code words and assume that failures affect at most one bit of each received code
word. Then a received non-code word with a 1-bit error will be closer to the
originally transmitted code word than to any other code word. Therefore, when
we receive a non-code word, we can correct the error by changing the received
non-code word to the nearest code word, as indicated by the arrows in the
Figure 2.21 Deciding which code word was originally transmitted to produce a
received word is called decoding, and the hardware that does this is an error-
correcting decoder.

1001011

0001010

0001001

0001111

0101011

0011011

0000011

1011011

1011000

0011001

1111001

1001001

1010001

1011101

0001011

1010000

1010110

1011010

1000010

1110010

1010010

0010010

1010011

101101

Code word

Non-code word

Fig. 2.21 Some Code Words and Non-Code Words in a 7-Bit Distance-3 Code
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For example, consider a fragment of the n-cube for a code with minimum
distance 4 (c = 1, d = 1) [Figure 2.22(a)]. Single-bit errors that produce non-
code words 00101010 and 11010011 can be corrected. However, an error that
produces 10100011 cannot be corrected, because no single-bit error can produce
this non-code word, and either of two 2-bit errors could have produced it. So the
code can detect a 2-bit error, but it cannot correct it.

When a non-code word is received, we do not know which code word
was originally transmitted; we only know which code word is closest to what we
have received. Thus, a 3-bit error may be corrected to the wrong value as shown
in Figure 2.22(b). The possibility of making this kind of mistake may be acceptable
if 3-bit errors are very unlikely to occur. On the other hand, if we are concerned
about 3-bit errors, we can change, the decoding policy for the code. Instead of
connecting the errors, we can just flag all non-code words as uncorrectable errors.
Thus, we can use the same distance 4-code to detect up to 3-bit errors but correct
no errors (c = 0, d = 3) as shown in Figure 2.22(c).

Detectable 2-bit errors
correctable 1-bit

error

00101011 11000011

10100011

Detectable 2-bit errors

00100011 11100011

00101010 11010011

(a) Correcting 1-Bit and Detecting 2-Bit Errors

00101011 11000011

10100011

00100011 11100011

00101010 11010011

3-bit errors
looks like a
1-bit error

(b) Incorrectly Correcting a 3-Bit Errors

00101011 11000011

All 1-to-3-bit errors
are detectable

(c) Correcting No Errors but Detecting upto 3-Bit Errors

Fig. 2.22 Some Code and Non-code Words in an 3-Bit Distance 4-Code
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2.5.8 Hamming Codes

In 1950, R.W. Hamming developed a system that provides an orderly way to add
one or more parity bits to a data character to allow detection or both error detection
and correction. The Hamming distance between two code words is defined as
the number of bits that must be changed for one code word to another. It is actually
a method for constructing codes with a minimum distance of 3.

For any value of i, Hamming code method yields a (2i – 1)—bit code with
i check bits and 2i – 1 – i information bits. Distance-3 codes with a smaller number
of information bits are obtained by deleting information bits from a Hamming code
with a larger number of bits.

The bit positions in a Hamming code word can be numbered from 1 through
2i – 1. In this case, any position whose number is a power of 2 is a check bit, and
the remaining positions are information bits. Each check bit is grouped with a
subset of the information bits, as specified by a parity-check matrix as shown in
Figure 2.23. Each check bit is grouped with the information positions whose
numbers have a 1 in the same bit when expressed in binary. For example, check
bit 2 (010) is grouped with information bits 3(011), 6(110) and 7(111). For a
given combination of information bit values, each check bit is chosen to produce
even parity, that is, so the total number of 1s in its group is even.

The bit positions of a parity-check matrix and the resulting code words are
rearranged so that all of the check bits are on the right, as in Figure 2.23(b). The
first two columns of Table 2.15 list the resulting code words.

Bit position
7 6 5 4 3 2 1

A

B

C

Group
name

Groups

Check bits

(a) Hamming Codes with Bit Positions in Numerical Order

Bit position
7 6 5 4 3 2 1

Group
name

A

B

C

Groups

Information bits Check bits

(b) Hamming Codes with Check Bits and Information Bits Separated

Fig. 2.23 Parity-Check Matrices for 7-bit Hamming Codes
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We can prove that the minimum distance of a Hamming code is 3 by proving
that at least a 3-bit change must be made to code a word to obtain another code
word.We can also prove that a 1-bit or 2-bit change in a code word yields a non-
code word.

If we change 1-bit of a code word in position j, then we change the parity of
every group that contains position j. Since every information bit is contained in at
least one group, at least one group has incorrect parity, and the result is a non-
code word.

If we change two bits in positions j and k, parity groups that contain both
positions j and k will still have correct parity. This is because parity is not affected
when an even number of bits are changed. However, since j and k are different,
their binary representations differ in at least one bit, corresponding to one of the
parity groups. This group has only one bit changed, resulting in incorrect parity
and a non-code word.

For the proof of 1-bit errors, the position numbers must be non-zero. For
the proof of 2-bit errors, no two positions have the same number. Thus, with an
i-bit position number, we can construct a Hamming code with up to 2i – 1 bit
positions.

The proof also suggests how can an error-correcting decoder be designed
for a received Hamming code word. First, check all of the parity groups. If all the
groups have even parity, then the received word is assumed to be correct. If one
or more groups have odd parity, then a single error is assumed to have occurred.
The pattern of groups that have odd parity called the syndrome must match one
of the columns in the parity-check matrix; the corresponding bit position is assumed
to contain the wrong value and is complemented. For example, using the code
defined by Figure 2.23(b), suppose we receive the word 0101011. Groups B and
C have odd parity, corresponding to position 6 of the parity-check matrix (the
syndrome is 110

2
, or 6

10
). By balancing a bit in place 6 of established sound, we

decide that the accurate remark is 0001011.

A distande-3 Hamming code could with no trouble be customized for
augmenting its smallest expanse to 4. Adding a check bit more, selected in a way
so as to communication of all matters, is constant. In the way the 1-bit even-parity
code, this bit makes sure that every inaccuracy that affects an unusual figure of bits
is visible.

Generally for detecting and correcting the mistakes in computer memory
systems distance-3 and distance-4 Hamming codes are used, particularly in huge
mainframe computers in which memory circuits are responsible for lot of system
breakdown.
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Table 2.15 Code Words in Distance-3 and Distance-4
Hamming Codes with Four Information Bits

Minimum Distance-3 Code Minimum Distance-4 Code

Information Parity Bits Information Parity Bits
Bits Bits

0000 000 0000 0000

0001 011 0001 0111

0010 101 0010 1011

0011 110 0011 1100

0100 110 0100 1101

0101 101 0101 1010

0110 011 0110 0110

0111 000 0111 0001

1000 111 1000 1110

1001 100 1001 1001

1010 010 1010 0101

1011 001 1011 0010

1100 001 1100 0011

1101 010 1101 0100

1110 100 1110 1000

1111 111 1111 1111

Example 2.3: Encode data bits 0101 as a seven-bit even-parity Hamming code.

Solution: D7 D6 D5 P4 D3 P2 P1

0 1 0 1 1 0 1

Example 2.4: A seven-bit Hamming code is received as 1111101. What is the
correct code?

Solution: D7 D6 D5 P4 D3 P2 P1

1 1 1 1 1 0 1

0 1 0

Bits 4, 5, 6 and 7, no error

Bits 2, 3, 6 and 7, error

Bits 1, 3, 5 and 7, no error

Bit 2 is in error, and the correct code is 1111111.

Example 2.5: For a received data 1100010, determine whether a single error
occurred and, if so, correct the error.

Solution: Checking the three parity bit, groups for even-parity, we have:

P1 P2 8 P4 4 2 1

1 1 0 0 0 1 0

P1 + 8 + 4 + 1 = 1 + 0 + 0 + 0 = F

P2 + 8 + 2 + 1 = 1 + 0 + 1 + 0 = E (Even-parity)

P4 + 4 + 2 + 1 = 0 + 0 + 1 + 0 = F (Failed even parity check)
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Any even parity failure indicates an error has occurred, bit 5 was in error. Thus,
the correct digit is 6.

1 2 3 4 5 6 7

1 1 0 0 0 1 0



1 1 0 0 1 1 0 (= digit 6)

Example 2.6: Determine the single error-correcting code for the BCD number
1001 (information bits) using even parity.

Solution: First, find the number of parity bits required. Let P = 3.

Then 2P = 23 = 8

Since 2P  m + p + 1, we have m + p + 1 = 4 + 3 + 1 = 8.

Three parity bits are sufficient.

Total code bits = 4 + 3 = 7

Construct a bit position table.

Bit Designation P1 P2 M1 P3 M2 M3 M4

Bit position 1 2 3 4 5 6 7

Binary position number 001 010 011 100 101 110 111

Information bits 1 0 0 1

Parity bits 0 0 1

Parity bits are determined in the following steps:

P1 checks bit positions 1, 3, 5 and 7 and must be a 0 in order to have an even
number of 1s (2) in this group.

P2 checks bit positions 2, 3, 6 and 7 and must be a 0 in order to have an even
number of 1s (2) in this group.

P3 checks bit positions 4, 5, 6 and 7 and must be a 1 in order to have an even
number of 1s (2) in this group.

These parity bits are entered into the table, and the resulting code is 0011001.

Example 2.7: Determine the single error-correcting code for the information code
10110 for odd-parity.

Solution: Determine the number of parity bits required. In this case the number of
information bits, m, is five.

Let p = 4, 2p = 24 = 16

We know that m + p + 1 = 5 + 4 + 1 = 10.

Four parity bits are sufficient.

Total code bits = 5 + 4 = 9

Construct a bit position table.
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Bit Designation P1 P2 M1 P3 M2 M3 M4 P4 M5

Bit position 1 2 3 4 5 6 7 8 9

Binary position

number 0001 0010 0011 0100 0101 0110 0111 1000 1001

Information bits 1 0 1 1 0

Parity bits 1 0 1 1

Parity bits are determined as follows:

P
1
 checks bit positions 1, 3, 5, 7 and 9 and must be 1 to have an odd

number of  1s (3) in this group.

P
2
 checks bit positions 2, 3, 6 and 7 and must be 0 to have an odd number

of 1s (3) in this group.

P
3
 checks bit positions 4, 5, 6 and 7 and must be 1 to have an odd number

of 1s (3) in this group.

P
4
 checks bit positions 8 and 9 and must be a 1 to have an odd number of

1s (1) in this group.

These parity bits are entered into the table, and the resulting combined
code is 101101110.

Example 2.8: The code word 0011001 is transmitted and 0010001 is received.
The receiver does not know what was transmitted and must look for proper parities
to determine if the code is correct. Designate any error that has occurred in
transmission if even-parity is used.

Solution: First, prepare a bit position table:

Bit designation P1 P2 M1 P3 M2 M3 M4

Bit position 1 2 3 4 5 6 7

Binary position number 001 010 011 100 101 110 111

Received code 0 0 1 0 0 0 1

First Parity Check: P1 checks positions 1, 3, 5 and 7

There are two 1s in this group.

Parity check is good  0 (LSB)

Second Parity Check: P2 checks positions 2, 3, 6 and 7.

There are two 1s in this group.

Parity check is good  0

Thirty Parity Check: P3 checks positions 4, 5, 6 and 7.

There is one in this group.

Parity check is bad  1 (MSB)

Result: The error position code is 100 (binary 4). This says that the bit in the
number 4 position is in error. It is a 0 and should be a 1. The correctd code is
0011001, which agrees with the transmitted code.

Example 2.9: The code 101101010 is received. Correct any errors. There are
four parity bits and odd-parity is used.
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2.6 COMPUTER INSTRUCTION

The primary function of the processing unit in the computer is to interpret the
instructions given in a program and carry out the instructions. Processors are
designed to interpret a specified number of instruction codes. Each instruction
code is a string of binary digits. All processors have input/output instructions,
arithmetic instructions, logic instructions, branch instructions and instructions to
manipulate characters. The number and type of instructions differ from processor
to processor. The list of specific instructions supported by the CPU is termed as
its Instruction set. An instruction in the computer should specify the following:

 The task or operation to be carried out by the processor. This is termed as
the opcode.

 The address(es) in memory of the operand(s) on which the data processing
is to be performed.

 The address in the memory that may store the results of the data-processing
operation performed by the instruction.

 The address in the memory for the next instruction, to be fetched and
executed. The next instruction which is executed is normally the next
instruction following the current instruction in the memory. Therefore, no
explicit reference to the next instruction is provided.

2.6.1 Instruction Representation
An instruction is divided into a number of fields and is represented as a sequence
of bits. Each of the fields constitutes an element of the instruction. A layout of an
instruction is termed as the instruction format.

In most instruction sets, many instruction formats are used, (Refer Figure 2.24).
An instruction is first read into an Instruction Register (IR), then the CPU, which
extracts and processes the required operands on the basis of references made on
the instruction fields, and then decodes it. Since the binary representation of the
instruction is difficult to comprehend, it is seldom used for representation. Instead,
a symbolic representation is used.

 Opcode  Operand Address  

4 Bits 12 Bits 

Fig. 2.24 A Sample Instruction Format

Table 2.16 Examples of Typical Instructions

Instruction Interpretation Number of
Addresses

ADD A,B,C Operation A = B + C  is executed 3

2

1

ADD A,B A = A + B. In this case the original 
content of operand location is lost

ADD A
 

AC = AC + A. Here A is added to the
accumulator

Typically, CPUs manufactured by different manufacturers have different
instruction sets. This is why machine language programs developed for a particular
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CPU do not run on a computer with a different CPU (having a different instruction
set). An example of typical instruction is given in Table 2.16.

2.7 TIMING AND CONTROLS

Timing and control unit generates timing and control signals. It is necessary for
the execution of instructions which provides status, timing and control signals.
This unit is necessary for the other parts of the CPU (Central Processing Unit).
It acts as the brain of the computer which controls other peripherals and
interfaces. It consists of Program Counter (PC) which is used for addressing the
program. It contains the eight-level hardware stack for PC storage during
subroutine calls and input/output interrupt services.

Arbitrary waveform
generator

Signal
generator

I

Q

RF Power
amp.

RF TX/RX
duplexer

Antenna

GPIB bus

Control computer

RX
front end

IF

IF
processor

R
e

ce
ive

r sta
g
e

IRX QRX

Timing and
control

10MHz REF
SCLK
PRF

Acquisition computer

Fig. 2.25 Air-Radar-Attached Timing and Control Unit

The above Figure 2.25 shows how the clock pulses and control signals are
collectively generated by both the units for the required operation of the radar
system, radar sample clock and the pulse repetition frequency.

The memory control unit works as an interface between the processor and
all the memories on-chip or off-chip. Timing is based on the system clock which is
either an on-board oscillator or an external clock. In either case, the maximum
clock frequency is 50 MHz (Megahertz) when using 32-bit TSR (terminate and
stay resident) and 44 MHz when using 64-bit TSR

Accumulator ALU 

General and special purpose registers  

Timing and control unit 

Fig. 2.26 Schematic Diagram of a Control Unit

Figure 2.26 has the schematic diagram of a control unit. The following steps
are performed by control unit to fetch and execute the instructions:

 It reads the address of memory location where it lies.

 It reads the instruction from the memory.

 It sends instructions to decoding circuit for decoding.
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 It addresses the data which is required for executing and reading from
the memory.

 It then sends the result to the memory or keeps it in same register to
await its chance in queue.

 It takes help from program counter to fetch next instruction.

Instruction register
op code

Negative
flag

Instruction
decoder

Ring counter

T0 T1T2 T3 T4 T5

Control
matrix

LDA
STA
ADD
SUB
MBA
JMP
JN

HLT Control signals

Fig. 2.27 Block Diagram of Control Unit

Figure 2.27 shows the block diagram of the control unit.

2.7.1 Functions of Control Unit

The main function of control unit can be see in Figure 2.28.

 Control section or unit controls the entire operation of the computer. It also
controls all other devices connected to the CPU. First, it fetches instructions
from the memory and then decodes the instruction. After interpreting the
instructions, it knows what tasks are to be performed. The last step is to
send suitable control signals to other components.

 It executes further necessary steps to run instructions successfully.

 It maintains the set of instructions and directs the operation of entire system.

 It controls the data flow between CPU and main memory.

 Control unit fetches the instructions from the memory one after another for
execution unit where all the instructions are run and executed.

General purpose computer

Control unit

Controls the sequence of events
that needs to happen

Random access memory
RAM

Arithmetic logic unit
ALU

Fig. 2.28  Main Function of Control Unit
Source: www.teach-ict.com
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2.7.2 Instruction Cycle

When a CPU is given an instruction in machine language, this instruction is fetched
from the memory by the CPU to execute. The instruction cycle (or fetch-and-
execute cycle) refers to the time period, during which one instruction is fetched
and executed by the CPU. An instruction cycle has four stages:

1. Fetch: In this step, an instruction is loaded from the memory onto the
CPU registers. All the instructions must be fetched before they can be
executed.

2. Decode: In this step, the control unit decodes the instructions.

3. Derive Effective Address of the Instruction: In this step, if the
instruction has an indirect address then the effective address of the
instruction from memory is read.

4. Execute: In this step, the action represented by instruction is performed.

Steps 1 and 2, taken together, are called fetch cycle and these steps are the
same for each instruction. Steps 3 and 4 are called execute cycle and these steps
change with each instruction.

2.8 MEMORY REFERENCE INSTRUCTIONS

The Memory Reference Instructions (MRI) are 32-bits long, with extra 16-bits. It
comes from the next successive memory allocation which follows the instruction
itself.  The effective memory address is addressed by sign-extending the 16-bit
displacement to 32-bits. Then it adds to the given index register as follows:

ea = r[x] +sxt(disp)

Here ‘ea’ is a variable which contains r[x]. It refers to the program counter
which is indexed. r[0] index shows the relative address which follows immediate
instructions. This allows easy reference to locate the current program text. All
memory reference instructions share the assembly language formats as follows:

op code   Keywords 

op Rsrc, Rx, disp, dst 

op Rsrc, label 

The first row shows the op code such as Rx, which is one of R1 through
R15 and the second row is used for system addressing. The assembler automatically
computes disp which is difference between the current location and addressed
label.

Memory reference instructions are those instructions in which two machine
cycles are required. One cycle fetches the instructions and other fetches the data
and executes the instructions. Instructions are based on arithmetic calculations.
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Memory reference instructions are used in multithreaded parallel processor
architecture. These instructions fetch process that two consecutive instructions
are tested to determine if both are register load instructions or register save
instructions. If both instructions are register save/load instructions then
corresponding addresses are tested.

2.8.1 Memory Reference Format

Memory reference instructions are arranged as per the protocols of memory
reference format of the input file in a simple ASCII sequence of integers between
the range 0 to 99 separated by spaces without formatted text and symbols. These
are pure sequences of space separated integer numbers. For example, |7     4|.

_______________   _______________ 
|_|_|_|_|_|_|_|_| |_|_|_|_|_|_|_|_| 
|7     4|3     0| |15   12|11    8| 
|1 1 1 1|  dst  | |0      |   x   | 
 _______________________________ 
|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_| 
|15                            0| 
|             disp              | 
 

Fig. 2.29 Memory Reference Format

Figure 2.29 shows how 7   4    15    12  … are arranged in memory
reference format. Here dst and disp are keywords, where dst represents destination
address and disp refers to displayed memory space.

Indexed

Memory
Reference

Register-to-
Register

AddressAddress

Address

op dR sR

op

dR

dR dRsB

op dR dRsX sB

0

0

Fig. 2.30 Memory Reference Instructions

Figure 2.30 shows the mode of operation of the computer. The dR and sR
fields give the destination register and source register for an operation. It contains
any value between 0 and 7. The sB field indicates the base/address register and
contains the value from 1 to 7. The sX field indicates the arithmetic/index register
and contains the value from 1 to 7. The first two bits of seven op code are 00, 01 or
10. Instructions starting with 11 are used for other instructions. The op code has two
parts in which first part indicates the type of number and the second part shows the
operation performed according to instruction (Refer Figures 2.25 and 2.26).
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Table 2.17 First Part of Op Code

Binary Representation Type of Number Bit Representation 

000    Byte  8-bit integer 

001    Halfword 16-bit integer 

010    Integer 32-bit integer 

011    Long 64-bit integer 

1000    Medium       48-floating point 

1001    Floating       32-floating point 

1010    Double       64-floating point 

1011    Quad     128-floating point 

 
Table 2.18 Second Part of Op Code

Binary Representation  Type of Number 

0000 000 Swap 

0001 001 Compare 

0010 010 Load 

0011 011 Store 

0100 100 Add 

0101 101 Subtract 

0110 110 Multiply 

0111 111 Divide 

1000  Insert 

1001  Unsigned Compare 

1010  Unsigned Load 

1011  XOR 

1100  AND 

1101  OR 

1110  Multiply Extensively 

1111  Divide Extensively 

 

Fig. 2.31 Memory Reference Instructions from Register-to-Register Format
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 In Figure 2.31, memory reference shows the memory location, memory to
memory shows source and destination operands, large scratchpad is the scalar
instruction format with sixty-four supplementary registers for source and one general
register for destination, whereas Aux register memory reference are scalar
instructions. XOR, AND and OR perform the basic logical operations.

Table 2.19 Logical Operations of XOR, AND and OR

a                   b  a  X O R  b  a  A N D  b  a  O R  b  

0       0        0        0       0  

0       1        1        0       1  

1       0        1        0       1  

1       1        0        1       1  

2.9 INPUT/OUTPUT AND INTERRUPTS

Input/output interrupt is an external hardware event which causes the CPU to
interrupt the current instruction sequence. It follows an interrupt mechanism to call
the special Interrupt Service Routine (ISR). Input/output interrupt services save
all the registers and flags. They also restore the registers and flags then resume
execution of code they interrupted. Interrupt is essentially a procedure. They can
pause the execution of some program at any point between two instructions when
an interrupt occurs. If an interrupt occurs in the middle of the execution of some
instruction, the CPU follows that instruction before transferring control to the
interrupt service routine.

For example, an interrupt occurs between the two executions and it does
not follow the instructions. The subroutine statement is as follows:

add (a,b);

 (Interrupts occur here)

mov(b,p);

Once interrupt occurs, its control transfers to the appropriate Interrupt
Service Routine (ISR) that handles hardware event. When ISR task is completed,
IRET (Interrupt Return) instruction is executed, the control returns back to the
point of interruption and execution of the original code. Then control returns back
to the point of interruption and then follow the MOV instruction.

A device can be used for identification of an input/output interrupt when it
registers an input/output interrupt associated with a particular input/output channel.

1. Benefits of Input/Output Interrupts

 It is an external analogy to exceptions.

 It allows response to unusual external events without an inline overhead
(polling).

 The processor initiates and performs all I/O operations.
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 The interrupt can be produced by a device to a processor when it is ready.

 The data is transferred into the memory through interrupt handler.

 The control returns to the program which is currently in use.

2. Causes of the Interrupt

The interrupt is caused due to interrupt:

 in any single device

 in a device whose ID number is stored on the address bus

 in processor poll devices

The source of the interrupt is checked and determined by interrupt handler
by verifying the associated hardware status registers.

3. Interrupts and Response Time

The interrupts are processed in the following way:
 Lower numbers get higher priority.
 Interrupt latency becomes critical for some of the devices.
 Scheduling or ordering has great impact on interrupt latency.
 A non-preemptive priority system gets affected by interrupt and causes

delay in packet transmission.
 The interrupt in any device or system cannot be re-interrupted.
 All the pending interrupts are sequentially processed in order of priority.

4. Functioning of Input/Output Interrupts

The following are the functioning characteristics of input and output interrupt:
 The processor organizes all the input/output operations for smooth

functioning.
 Device takes more than normal time to perform input/output operations.
 After completing the input/output operation the device interrupts the

processor.
 Processor then responds to the interrupt and transfers the data to the

destination.
 The input/output operation thus successfully completes.

5. Examples of Input/Output Interrupt

 Interrupt caused by external devices.
 Interrupt stops the executing code and calls the dynamic procedure.
 Interrupt causes delay in operations.
 Interrupt state is saved (as an exception) and the control passes to the

interrupt handler.
 Once the interrupt is handled the control returns to the program it was

currently working.
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Fig. 2.32 Input/Output Interrupt Device

Figure 2.32 hows how input/output interrupt hardware settings can be used
for Input/Output Ports and Interrupt Request. The values are estimated by Windows
are not correct.

 

 
 

Figure 2.33 Input/Output Interrupt Setting

Figure 2.33 shows when the values estimated by windows are changed, it
works properly.

2.10 COMPLETE COMPUTER DESCRIPTION

1. Speed
Internal processes of computers operate at the speed of light, limited only by the
programs that control these processes, and the quantum of data under process.
The speed with which computers perform is way beyond human capabilities. To
express it differently, a computer does in one minute what a human being could
take a lifetime to do.
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While referring to the speed of computers, we do not talk in terms of seconds
or even milliseconds (10–3). The units of speed are in microseconds (10–6),
nanoseconds (10–9), and even picoseconds (10–12). A powerful computer is capable
of performing about 3–4 million simple instructions per second.

2. Accuracy

The accuracy of a computer is consistently high. Errors can occur, but these are
almost always due to human error rather than technological weaknesses. Imprecise
thinking by the programmer, inaccurate data, or poorly designed systems is the
origin of error. Computer errors arising due to incorrect data input or unreliable
programs are often referred to as GIGO (Garbage-In-Garbage-Out).

3. Diligence

Unlike human beings, a computer does not suffer from limitations associated with
living beings like tiredness and lack of concentration, and hence can work for
hours at a stretch without errors arising from the above (non-existent) faults. As a
result, computers score over human beings in performing routine tasks that require
a high degree of accuracy. If a million calculations need to be performed, a computer
will perform the millionth calculation with exactly the same accuracy and speed as
the first one.

4. Versatility

Computers are capable of performing almost any task, provided the task can be
reduced to a series of logical steps. For example, a task such as preparing a
payroll can be broken down into a logical sequence of operations, and is therefore
ideal for computerised processing.

Not withstanding all this, the computer itself has only limited ability and actually
performs only four basic operations:

 Exchange of information with the outside world via Input/Output (I/O)
devices

 Transfer of data internally within the Central Processing Unit (CPU)

 Performance of the basic arithmetic operations

 Performance of operations of comparison

In one sense, the computer is not versatile because it is limited to the above-
mentioned basic functions. Yet, since so many everyday activities can be reduced
to interplay between these functions, it means that computers are effectively, highly
ingenious and versatile devices.

5. Intelligence

A computer does not possess any intelligence of its own. It can perform only those
tasks that can be broken down into a series of logical steps. Therefore, it needs to
be told what it has to do and in what sequence.
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6. Storage

The speed with which computers can process large amounts of information has
led to the large-scale information generation, resulting in the information explosion.

Storage of information in a human brain and a computer happens differently.
Using its intelligence, the human brain subconsciously shifts through new knowledge
and selects what it feels is important and retains it in the memory, and the unimportant
information is relegated to the back of the mind or just forgotten. Computers, on
the other hand, can store and recall any amount of information by using secondary
storage capability (a type of detachable memory). Information can therefore be
retained as long as desired and recalled as and when required.

From the 17th century onwards, there have been rapid improvements in the
developments of computers. Table 2.20 shows the comparison among various
generations of computers.

Table 2.20 The Comparison among Various Generations of Computers

First Second Third Fourth Fifth
Generation Generation Generation Generation Generation

Use of Use of transistors Use of integrated Use of large scale Use of ICs with
vacuum tubes and diodes circuits (ICs) and very large scale ULSI technology

integrated circuits (LSI, VLSI)

Limited Increased Storage More flexibility Increased storage Based on artificial
storage capacity with input/output intelligence
capacity

Slow speed Faster speed Smaller in size and Considerably faster Very fast
better performance and smaller

Problems of Reduction in size Extensive use of Modular design, Larger capacity
over-heating and heat generation high level versatility and storage (RAID,

languages compatibility optical disks)

High level Remote Sophisticated Support for more
programming processing and programs and complex
languages time sharing languages for applications
(COBOL, special
FORTRAN) applications

2.10.1 Basic Anatomy of the Computer
As seen in earlier sections, the size, shape, cost, and performance of computers
have changed over the years, but the basic logical structure has not changed. Any
computer system essentially consists of three important parts, namely, input device,
Central Processing Unit (CPU) and output device. The CPU itself consists of the
main memory, the arithmetic logic unit, and the control unit.

In addition to the five basic parts mentioned above, computers also employ
secondary storage devices (also referred to as auxiliary storage or backing storage),
which are used for storing data and instructions on a long-term basis.
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Figure 2.34 shows the basic anatomy of a computer system.

Fig. 2.34 Schematic Representation of a Computer System

The five basic operations for converting raw data into relevant information
that are performed by all computer systems are the following:

1. Inputting: The process of entering data and instructions into the computer
system.

2. Storing: The process of saving instructions and data so as to make them
available for future use, as and when required.

3. Processing: Performing arithmetic or logical operations on data, to convert
them into useful information. Arithmetic operations include operations of
add, subtract, multiply, divide, etc., and logical operations are operations of
comparison like less than, equal to, greater than, etc.

4. Outputting: This is the process of providing the results to the user. These
could be in the form of visual display and /or printed reports.

5. Controlling: Refers to directing the sequence and manner of performance
of the above operations. Let us now familiarize ourselves with the various
computer units that perform these functions.

Input Unit
Both program and data need to be in the computer system before any kind of
operation can be performed. Program refers to the set of instructions which the
computer is to carry out, and data is the information on which these instructions
are to operate. For example, if the task is to rearrange a list of telephone subscribers
in alphabetical order, the sequence of instructions that guide the computer through
this operation is the program, whilst the list of names to be sorted is the data.

The Input unit performs the process of transferring data and instructions from
the external environment into the computer system. Instructions and data enter the
input unit depending upon the particular input device used (keyboard, scanner,
card reader, etc). Regardless of the form in which the input unit receives data, it
converts these data and instructions into a form that is computer acceptable (Binary
Codes). It then supplies the converted data and instructions for further processing
to the computer system.
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Main Memory (Primary Storage)
Instructions and data are stored in the primary storage before processing and are
transferred when there is need, to the Arithmetic Logic Unit (ALU) where the
actual processing takes place. Once the processing is completed, the final results
are again stored in the primary storage till they are released to an output device.
Also, any intermediate results generated by the ALU are temporarily transferred
back to primary storage till there is the need at a later time. Thus, data and
instructions may move. Thus, data and instructions may move many times back
and forth between the primary storage and the ALU before the processing is
completed. It may be worth remembering that no processing is done in the primary
storage.

Arithmetic Logic Unit (ALU)
After the input unit transfers the information into the memory unit the information
can then be further transferred to the ALU where comparisons or calculations are
done and results sent back to the memory unit.

Since all data and instructions are represented in numeric form (bit patterns),
ALUs are designed to perform the following four basic arithmetic operations:
multiply, divide, add, subtract, and logical operations like less than, equal to, greater
than.

Output Unit
Since computers work with binary code, the results produced are also in binary
form. The basic function of the output unit therefore is to convert these results into
human readable form before providing the output through various output devices
like terminals, printers, etc.

Control Unit
It is the function of the control unit to ensure that according to the stored instructions,
the right operation is done on the right data at the right time. It is the control unit
that obtains instructions from the program stored in the main memory, interprets
them, and ensures that other units of the system execute them in the desired order.
In effect, the control unit is comparable to the central nervous system in the human
body.

Central Processing Unit
The control unit and arithmetic logic unit are together known as the Central
Processing Unit (CPU). It is the brain of any computer system.

Secondary storage
The storage capacity of the primary memory of the computer is limited. Often, it is
necessary to store large amounts of data. So, additional memory called secondary
storage or auxiliary memory is used in most computer systems.

Secondary storage is storage other than the primary storage. These are
peripheral devices connected to and controlled by the computer to enable
permanent storage of user data and programs. Typically, hardware devices like
magnetic tapes and magnetic disks fall under this category.
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2.10.2 Data Representation within the Computer
Information is handled in the computer by electrical components such as transistors,
integrated circuits, semiconductors and wires, all of which can indicate only two
states or conditions. Transistors may be conducting or non-conducting; magnetic
materials are either magnetised or non-magnetised in a direction; a pulse or voltage
is either present or not present. All information can therefore be represented within
the computer by the presence (ON) or absence (OFF) of these various signals.
Thus, all data to be stored and processed in computers is transformed or coded
as strings of two symbols, one symbol to represent each state. The two symbols
normally used are 0 and 1. These are known as Bits, an abbreviation for BInary
digiTS. Let us now understand some commonly used terms:

 BIT: A bit is the smallest element used by a computer. It holds one of the
two possible values. Table 2.21 lists the binary value and its meaning.

Table 2.21 The Binary Value and Its Meaning

Value Meaning

0 Off

1 On

 A bit which is OFF is also considered to be FALSE or NOT SET; a bit
which is ON is also considered to be TRUE or SET. Since a single bit can
only store two values, there could possibly be only 4 unique combinations
namely,

00    01    10    11

Bits are therefore, combined together into larger units in order to hold a
greater range of values.

 NIBBLE: A nibble is a group of four bits. This gives a maximum number
of 16 possible different values.

24 = 16 (2 to the power of the number of bits)

 BYTES: Bytes are a grouping of 8 bits  (two nibbles) and are often used
to store characters. They can also be used to store numeric values.

28 = 256 (2 to the power of the number of bits)

 WORD: Just like we express information in words, so do computers. A
computer ‘word’ is a group of bits, the length of which varies from machine
to machine, but is normally pre-determined for each machine. The word
may be as long as 64-bits or as short as 8-bits.

A CPU is the most important component of a digital computer that interprets
the instructions and processes the data contained in computer programs. CPU
works as a the brain of the computer and performs most of the calculations. It is
also referred as processor and is the most important component of a computer.
For large computers, a CPU may require one or more Printed Circuit Boards
(PCBs) but in the case of PCs it comes in the form of a single chip called a
microprocessor. PCB is a board that contains the circuitry used to connect the
components of a PC. Figure 2.35 shows the block diagram of a CPU. The two
main components of a CPU are:
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 The ALU, which performs arithmetic and logical operations.

The Control Unit, which extract instructions from the memory and converts
them into a form that the computer can understand and executes them. In
this process, it takes the help of the ALU whenever necessary.

Instruction
Fetcher

Instruction
Decoder

Memory
Interface

MemoryRegisters

ALU

    

Arithmetic Logic
Unit (ALU) 

Register Set 

Control Unit

Fig. 2.35 Block Diagram of a CPU    Fig. 2.36 Major Components of the PU

Execution of programs is the main function of the computer. The program to
be executed is a set of instructions that is stored in the computer’s memory. The
CPU performs the orders given by the program to complete a specific task. Also,
all the major comparisons and calculations are carried out inside the CPU. The
CPU is also responsible for controlling and activating the operations of various
units of the computer system. It activates the peripherals to perform input or output.

Three major components make up the CPU (Refer Figure 2.36):

 The register set (associated with the main memory) that stores the
intermediate data during the execution of instructions.

 The Arithmetic Logic Unit (ALU) which executes the needed
microoperations for performing the instructions, and

 The control unit that supervises the information transfer among the
registers, and also instructs the ALU for performance of specific
operation.

Control Unit
The Control Unit plays an important role in the functioning of the CPU itself and
transfer of data/information from a device to the CPU or vice versa. It does not
perform the actual processing on the data but manages and coordinates the entire
computer system including the input and the output devices. It retrieves and
interprets the instructions from the program stored in the main memory, and issues
signals that cause other units of the system to execute them.

It does this through some special purpose registers and a decoder. The special
purpose register called the instruction register holds the current instruction to be
executed, and the program control register holds the next instruction to be
executed. The decoder interprets the meaning of each instruction supported by
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the CPU. Each instruction is also accompanied by a Microcode, i.e., the basic
directions to tell the CPU how to execute the instruction.

2.10.3 Design of a Basic Computer

Personal computers (Refer Figure 2.37) are microcomputers commonly used for
commercial data processing, desk top publishing (DTP), engineering applications,
and so on Figure 2.38 shows computers and its peripherals.

LEDs

Fig. 2.37 Personal Computer

Fig. 2.38 Computer and Its Peripherals

2.10.4  Components of a Computer System

A personal computer comprises a Hard Disk Drive (HDD), RAM (Random Access
Memory), Processor, a keyboard, a Floppy Disk Drive (FDD), a mouse, a CD
drive, a colour monitor, and ROM (Read Only Memory). The RAM, ROM,
microprocessor, and other circuitry are connected on the motherboard, which is a
single board as shown in Figure 2.39.
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Monitor, Keyboard
and Mouse Ports

Microprocessor/CPU

Expansion slots

Sound card

Video/graphics card

ROM

RAM
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Hard disk drive

Floppy disk
drive
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Networking
ports

Fig. 2.39 Motherboard and CPU

Processor (Pentium IV)

Pentium IV processor is the microprocessor which has the control unit, memory
unit (register) and arithmetic and logic unit (Refer Figure 2.40). Electronic engineers
call this processor the computer. The processing speed of a computer depends on
the clockspeed of the system and is measured in Mega Hertz (MHz). The latest
Pentium IV processor is available with a clockspeed of 1.6 GHz.

The Intel Corporation’s Pentium processors are used in most personal
computers. Motorola, Cyrix and AMD (Advanced Micro Devices) are other
makers of processors which are also used in personal computers.

Fig. 2.40 A Microprocessor

2.10.5 Machine Language

The computer can understand only a binary-based language. This is a combination
of 0s and 1s. Instructions written using sequences of 0s and 1s are known as
machine language. First- generation computers used programs written in machine
language.

Machine language is very cumbersome to use and is tedious and time
consuming for the programmer. It requires thousands of machine language
instructions to perform even simple jobs like keeping track of a few addresses for
mailing lists.
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Every instruction in machine language is composed of two parts – the
command itself, also known as the ‘Operation Code’ or opcode (like add, multiply,
move, etc.), and the ‘Operand’ which is the address of the data that has to be
acted upon; for example, a typical machine language instruction may be represented
as shown here.

OP Code Operand

001 010001110

The number of operands varies with each computer and is therefore computer
dependent.

It is evident from the above that to program in machine language, the
programmer needs information about the internal structure of the computer. He
will also need to remember a number of operation codes and will also need to
keep track of the addresses of all the data items (i.e., which storage location has
which data item). Programming in machine language can be very tedious, time
consuming and still highly prone to errors. Further, locating such errors and effecting
modifications is also a mammoth task. Quite understandably, programmers felt the
need for moving away from machine language.

Check Your Progress

9. What is a code?

10. What are the alphanumeric codes.

11. Write the steps taken by control unit to execute any set of instructions.

12. How can you define the stages of instruction cycle?

13. Define the input/output interrupt.

14. What are the basic operations of a computer?

15. Define machine language.

2.11 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Temporary Register (TR) is used for storing the temporary data that is
calculated during the processing.

2. Examples of the dedicated address registers are as follows:

 Segment pointer: In a machine with segmented addressing, a segment
register holds the address of the base of the segment in the memory.
There may be multiple registers, for example one for the operating system
and one for the current process and they may be auto indexed.

 Index registers:  These are used for index addressing scheme and may
be auto indexed.

 Stack pointer: When the programmer visible stack addressing is used,
the stack is typically in memory and a dedicated register, called stack
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pointer, is used which points to the top of the stack. This allows implicit
addressing, i.e., push, pop and other stack instructions need not contain
an explicit stack operand.

3. The speed of the bus is affected by its length as well as by the number of
devices sharing it.

4. The multiplexer selects the source register whose binary information is then
placed on the bus and the decoder selects one destination register to transfer
the information to, from the bus.

5. Data Bus: It is used for the transmission of data. Data lines and the number
of bits in a word are similar.

Address Bus: It carries the address of the main memory location from
where  data can be accessed.

Control Bus: It is used to indicate the direction of data transfer and to
coordinate the timing of events during the transfer.

6. Micro-operations in digital computers are classified into:
(i) Register transfer micro-operation
(ii) Arithmetic micro-operation

  (iii) Logical micro-operation
  (iv) Shift micro-operation

7.  The digital circuit that gives the arithmetic sum of two binary numbers (of
any length) is known as the binary adder.

8.  A logic circuit performs logical binary operations on strings of bits stored in
registers.

9.  A code is a symbolic representation of discrete elements of information, in
the form of letters, numbers or any other varying physical quantities.

10. Alphanumeric codes are the codes that represent alphabetic characters
(letters), punctuation marks and other special characters.

11. The steps taken by control unit to execute a set of instructions:

 It reads the address of memory location.

 It reads the instruction from the memory.

 It sends instructions to decoding circuit.

 It addresses the data required from the memory.

 It sends the result to the memory or keeps it in same register to await its
chance in queue.

 It takes help from program counter to fetch next set of instructions.

12. The stages of instruction cycle:
(i) Fetch: In this step, an instruction is loaded from the memory onto the

CPU registers. All the instructions must be fetched before they can be
executed.

(ii) Decode: In this step, the control unit decodes the instructions.
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(iii) Derive effective address of the instruction: the effective address of the
instruction is read from memory.

(iv) Execute: In this step, the action represented by instruction is performed.

13.  Input/output interrupt is an external hardware event which causes the CPU
to interrupt the current instruction sequence.

14.  Basic operations of a computer are: inputting, storing, processing,
outputting and controlling.

15. The computer can understand only a binary-based language. This is a
combination of 0s and 1s. Instructions written using sequences of 0s and 1s
are known as machine language. First- generation computers used programs
written in machine language.

2.12 SUMMARY

 A digital system is a sequential logic system in which flip-flops and gates are
constructed. The register transfer logic methods focus on how adders,
decoders and registers use expressions and statements which resembles
the statements used in programming language.

 Arithmetic microoperations perform arithmetic or number operations; logic
performs AND, OR, XOR operation; and shift microoperations perform
shift register.

 Digital systems contain the set of registers and their functions in the internal
organization of the computer. The main function is that they control signals
to initiate the sequence of microoperations to perform the functions.

 If a certain condition is true, microoperation is activated as per requirement.

 In register transfer, control function is similar as ‘if’ statement in a
programming language.

 Control functions use control signal to perform microoperations. If the
control signal comes as 1, the operation takes place.

 Data Bus: It is used for the transmission of data. Data lines and the number
of bits in a word are similar.

 Address Bus: It carries the address of the main memory location from where
data can be accessed.

 Control Bus: It is used to indicate the direction of data transfer and to
coordinate the timing of events during the transfer.

 A bidirectional bus for carrying data between two units is called a data bus.
A unidirectional bus used to carry memory addresses is called memory bus.

 An instruction constitutes a set of micro-operations. You can define a micro-
operation as an elementary operation that is performed on the information
stored in one or more registers during one clock pulse.
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 Register Transfer Micro-Operation: A micro-operation that transfers binary
information from one register to another.

 The incrementer circuit adds 1 to a number in a register. This operation can
be easily implemented with a binary counter.

 ‘Selective-Set’ sets to 1 the bits in register A where there is a corresponding
1 in register B. The bit corresponding to 0 in register B remains unchanged.

 ‘Selective-complement’ complements the bits in register A where there is a
corresponding 1 in register B. The bit corresponding to 0 in register B remains
unchanged.

 The Gray code pertains to a class of codes called minimum change codes,
in which only one bit in the code group changes when going from one step
to the next. Gray code is not an arithmetic code.

 A code that uses n-bit strings need not contain 2n valid code words. An
error-detecting code has the  property that corrupting or garbling a code
word will likely produce a bit string that is not a code word (a non-code
word).

 The Hamming distance between two code words is defined as the number
of bits that must be changed for one code word to another. It is actually a
method for constructing codes with a minimum distance of 3.

 An instruction is divided into a number of fields and is represented as a
sequence of bits. Each of the fields constitutes an element of the instruction.
A layout of an instruction is termed as the instruction format.

 Control unit fetches the instructions from the memory one after another for
execution unit where all the instructions are run and executed.

 Input/output interrupt is an external hardware event which causes the CPU
to interrupt the current instruction sequence.

 Internal processes of computers operate at the speed of light, limited only
by the programs that control these processes, and the quantum of data
under process. The speed with which computers perform is way beyond
human capabilities. To express it differently, a computer does in one minute
what a human being could take a lifetime to do.

 A computer does not possess any intelligence of its own. It can perform
only those tasks that can be broken down into a series of logical steps.
Therefore, it needs to be told what it has to do and in what sequence.

 The control unit and arithmetic logic unit are together known as the Central
Processing Unit (CPU). It is the brain of any computer system.

 The computer can understand only a binary-based language. This is a
combination of 0s and 1s. Instructions written using sequences of 0s and 1s
are known as machine language. First- generation computers used programs
written in machine language.
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2.13 KEY TERMS

 Data Bus: It is used for the transmission of data. Data lines and the number
of bits in a word are similar.

 Address Bus: It carries the address of the main memory location from
where  data can be accessed.

 Control Bus: It is used to indicate the direction of data transfer and to
coordinate the timing of events during the transfer.

 Arithmetic Micro-Operation: A micro-operation that performs arithmetic
operations on numeric data stored in registers.

 Storing: The process of saving instructions and data so as to make them
available for future use, as and when required.

 Central Processing Unit (CPU): The control unit and arithmetic logic
unit are together known as the Central Processing Unit (CPU). It is the
brain of any computer system.

2.14 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Mention the conditions which are required to control the register transfer.

2. Define system service programs.

3. Define the booting process.

4. What is the role of the binary incrementor?

5. What are shift micro-operations?

6. Give the concepts of instruction and instruction code.

7. What does a BCD code do?

8. What is the work of timing and control unit?

9. Give the instruction set supported by CPU.

10. What are the benefits of input/output and interrupt?

12. What is the use of machine language?

12. Define the basic design of a Computer System.

Long-Answer Questions

1. Define storage registers. Write the functions and prototypes used in
transferring registers.

2. Explain the properties of register transfer.

3. Discuss in detail the significance of bus system giving examples of each
types.
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4. Explain various arithmetic micro-operations.

5. Explain the functions of the following:
(i) Selective-Set
(ii) Selective-Complement
(iii) Mask

6. Describe the three types of shift operations using examples.

7. What do you mean by instruction cycle? What are the steps taken to execute
an instruction? Briefly explain with the help of examples.

8. How is an instruction represented in a computer? Give examples.

9. Explain the functions of control unit.

10. Explain the functions of input/output interrupts.

11. Describe in detail the basic structure of a computer.

12. Discuss the basic anatomy and design of a Computer System giving the
significance of each component.

13. What is a machine language? Explain the significant properties of machine
language.
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3.0 INTRODUCTION

Programming or coding is the art of writing and testing a code written in a symbolic
language. A program must be efficient, reliable and usable. In the program loops,
programming arithmetic and logic the control section is responsible for decoding
the instructions, such as, add, load and store. All these steps are generated and
managed by the control unit of the processor.

In address sequencing, apart from execution of instructions, another important
function of the microprogrammed control unit is to generate the address of the
next sequence. The hardware that controls the address sequencing must be capable
of sequencing the microinstructions within a routine and be able to branch from
one routine to another and the opcode mapping maps the bits of instruction to an
address from control memory.

Control unit in a computer does the job of managing various components of
the computer. Various tasks performed by this unit are: reading and decoding of
program instructions, converting them into a set of control signals that activates
other components of the computer. In advanced computer system, control systems
may modify the order of few instructions for bringing improvement in performance.

In this unit, you will study about the assembly language, assembler, program
loops, programming arithmetic and logic, subroutines, input/output programing,
micro programmed control, address sequencing, micro program example and design
of control unit.
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3.1 OBJECTIVES

After going through this unit, you will be able to:

 Elaborate on the assembly language

 Define the term assembler

 Describe program loops

 Know programming arithmetic and logic

 Describe subroutines

 Explain input-output programming

 Illustrate address sequencing and microprogramming

 Explain the block diagram of micro-programmed control

 Elaborate on the design of control unit

3.2 ASSEMBLY LANGUAGE

Assembly language was the first step in the evolution of programming languages.
It used mnemonics (Symbolic Codes) to represent operation codes and strings of
characters to represent addresses. Instructions in assembly language may look as
given in Figure 3.1:

Operation Operation address

READ M

ADD L

Fig. 3.1 Assembly Language Instruction

Assembly language was designed to replace each machine code by an
understandable mnemonic, and each address with a simple alphanumeric string. It
was matched to the processor-structure of a particular computer and was therefore
(once again) machine dependent. This meant that the programs written for a
particular computer model could not be executed on another one. In other words,
an assembly language program lacked portability.

A program written in assembly language needs to be translated into machine
language before the computer can execute it. This is done by a special program
called ‘Assembler’ which takes every assembly language program and translates
it into its equivalent machine code. The assembly language program is called the
source program, while the equivalent machine language program is called the object
program. It may be useful to know that an assembler is a system program supplied
by the computer manufacturer.

Second generation computers used assembly language.

3.2.1 Assembler

Assemblers are computer programs that translate programs expressed in the
assembly language into the machine code. Each computer, therefore, has its own
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assembler. Programs can be written in the assembly language and converted into
the machine code before execution using assemblers.

Assembler converts programs written in assembly language to an object file
containing machine readable code. Assembler does not define addresses of external
function in the assembly source file. This is supplied by the linker when activated.
To invoke assembler following command are given at command line:

$ as hello.s -o hello.o

An -o option is used for output file. In the above code object file ‘hello.o’
keeps machine instructions for this program. But this program has no defined
reference to print file command, printf.

An assembler is a utility program for translating statements written in assembly
language into machine code of the target computer. The assembler translates
isomorphically, as 1:1 mapping, from mnemonic in these statements to machine
instructions.

An assembler completes the work of assembly in two phases and for this
the source code is read two times. The assembler, in first pass, reads the program
to collect symbols defined with offsets in a table known as symbol table. In second
pass, it creates a code in binary format for every instruction in program and then
refers to the symbol table to giving every symbol an offset, relating the segment.

Two files are created by the assembler. These are list file and object file.
Object file is a binary coded file that has binary code for every instruction in the
source code and created on successful assembly of the program without error.
Assembler detects syntax errors that vary from one assembler to another. For
example take the following lines of code in assembly language:

MOVE AX,BX undeclared identifier MOVE. 
MOV AX,BL illegal operands 

 
In the first line, there is a word MOVE, that is compared with its mnemonics

set and since no matching word in the set is found with this spelling, it does not
accept it as a command and takes it as an identifier, and looks in the symbol table
for its entry. Since this is not found there, an error ‘Undeclared Identifier’ is reported.
In second line also there is error but for different reasons. Here, two operands are
of different type. Assembler for 8086 architecture, according to syntax these two
identifiers must be of same type, either in word or in byte. In example above, AX
is byte (8-bits) type whereas BL is word type having 16 bits. Logical errors in
programs are not detected by assembler.

List file contains source code and it is optional. This contains binary equivalent
for each and every instruction with offsets for symbols in source program. This
serves the purpose of documentation only.

Commonly known assemblers are, TURBO, MASM (Microsoft Assembler)
etc. that run on PCs.

An assembler is a utility program that performs isomorphic translation from
statements written in mnemonic into machine instructions and data. There are
assemblers that have additional mechanisms for program development, controlling
assembly process and help in debugging. Modern assemblers contain macro
assemblers that come with macro facility. Modern assemblers create object code
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and translate mnemonics into op codes. These assemblers, using symbolic references
saves tedious calculations and is a key feature. Macro facilities available with
these assemblers perform textual substitution by generating small instructions.

Types of Assemblers

Assemblers are of two types, One-pass and multi-pass, depending on number of
passes it has to make through source code for producing executable codes.

In one-pass assemblers the source code is read once assuming symbols are
defined before referencing them in instructions. Such assemblers are fast. Such a
feature is now not that important since there are lot of advancements in computer
speed and capability.

In two-pass assemblers, a table is created in first pass with all unresolved
symbols and then second pass is made for resolving these addresses. In two-pass
assemblers there is a flexibility in putting definitions for symbols.  These are defined
anywhere in the body of the source code. This feature results in coding that is more
logical and meaningful. This has made assembly language codes programmer friendly.

There are advancements in design of assemblers that provide language
abstraction and theses are called high-level assemblers. Such assemblers are more
sophisticated. These provide features such as:

 Advanced control structures

 Declaration and invocation of high-level procedure/function

 Abstract data types of high-level that includes sets, structures/records, unions
and classes

 Macro processing with sophistication

 Object-Oriented paradigm for encapsulation, inheritance, polymorphism,
interfacing, etc.

Normaly, in practice, this term is used interchangeably and assembler signifies
an assembly language instead of assembler utility. But these two are related and
assembly language CP/CMS was written in S/360 assembler and ASM-H was a
widely-used S/370 assembler. Programs written in assembly language are the
source programs that are to be assembled using assembler which is a utility
program.

Thus, assembler is a translator converting each instruction written in
assembler language into corresponding instruction in machine language. Assemblers
that are less elementary translate source code into a target language that is further
combined with other software tools such as library programs, linker, loader, etc.,
before execution.

Macroprocessor

Many programs have instruction sequences that are repeated at many places in
identical form. A macro processor controls repetitious writing of sequence.
A sequence of codes in source language is defined once, and given a name and is
subsequently referred to by this name when its use is made. Finding this name in a
source program, sequence of codes is substituted at that point. An example of this
is given here.
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A 3, R ADD contents of R to register 3
A 4, R ADD contents of R to register 4
A 3, R ADD contents of R to register 3
A 4, R ADD contents of R to register 4
R D C F ‘6’ Actual value of R in hexadecimal form

Looking at the preceding program we find that the following sequence is
repeated two times.

A 3, R
A 4, R

This repetition could have occurred many times if program needed it. Using
macro facility you can attach a name to this and use the name instead of writing
same things repeatedly. Every assembler has support for macro.  IBM-360 type
language is one example supporting a macro language. A macro processor has a
language processor with its language.

Name is attached to using macro instruction definition. This is shown below:
 Macro definition MACRO
Macro name CTR (for example)
Sequence to Instructions -

-
-

END of Macro definition MEND

With this format, it can be expressed in a macro language as shown below.
Here, macro processor replaces each macro cells with the lines as shown.

 A       3, R
A        4, R

This process of replacing the sequence of lines of codes is known as
expanding die macro. This is shown as follows:

Macro CTR Expanded Source
A 1, X
A 2, X
MEND
.
.
.
CTR A R.
. A 4, R
.
CTR A 3, R
. A 4, R
.
R DC F6' R DC F6'

Linker

To impart modularity to the program, it is broken into several subroutines called
modules. A better practice is to put common routines in a separate file. Such
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routines are reading a binary number, writing a binary number and like that that
could be used by other programs. These files are translated separately and after
their successful assembly they are linked together for creating a large file constituting
the computer program. Such a program, linking several programs is known as
linker.

This linker creates a link file containing binary codes corresponding to
compound modules in the program. It also produces a link map containing address
information on linked files.  Absolute address is not assigned by linker for the
program, rather continuous relative addresses are provided to modules linked
togeher, starting from zero. Such a program is relocatable since it can be placed
anywhere in main memory for running.  Such codes can also run on other machines
that are either of the same kind or compatible to the present machine.

A linker is also known as binder or linkage editor. Input of a linker is a
translated program that has its original sources and has symbolic reference with
each other. Linker performs the task of resolving these symbolic references to
produce a single program. There is not much difference between the source and
target languages of linker. Mostly, linking is implemented by a loader only. A linker
is considered a part of a loader.

Loader

A loader puts programs into main memory and then makes preparations for
execution. A loader is also a program. Target language of a loader is machine
language and its source language is almost machine language. Loading is bound
with the task of storage management of operating systems and is mostly performed
after assembly. The period of executions of user’s program is called execution
time.

Assembler Implementation
An assembly is the process of producing a machine language code equivalent to
a source program in an assembly language. This is shown Figure 3.2.

Assembly
language
program

Machine language and
other information
for loader

Assembler

Fig. 3.2 Assembler

Externally defined symbols that contain library program have to be indicated
to the loader as assembler has no idea about the address of these symbols and it
is that task of the loader to locate them in the programs, load them into memory
placing values of these symbols in the calling program.

Assembler and Related Program

Assembler handle program, written in assembly language, contains three types of
entities namely, absolute entities, relative entities and object program.



Computer Programming
and Micro-Programming

NOTES

Self - Learning
Material 167

Absolute entities are numeric constants, string constants, fixed addresses,
and operation codes. These values signify storage locations that are independent
of resulting machine code.

Relative entities have addresses where instructions are stored along with
address of working storage.

Object program has identification addresses that are relative. This tells about
symbols defined internally as well as externally, for being referenced externally.
Linker resolves external references for two or more object programs. The linker
may accept many object programs as inputs producing one single program for
loading. These are known as a load program.

The module has independence from external references. A module contains
machine-code with specification on relative addresses. After actual locations for
main storage are known, a relocating loader adjusts relative addresses to these
actual locations. The loader output is a program ready to execute, in machine
code. These are shown in Figure 3.3 below. If there is a module from single source-
language only that does not contain any external references, it does not need a
linker to load it and is loaded directly.

Source
Program

Assembler

Assembler

Assembler

Assembler

Object
Program Load

Program

Linker Relocating
loader

Executable
Program

Fig. 3.3 Program Translation Steps

Load and Go Assembler

This is the simplest assembler program. It takes a program as input whose
instructions has one-one correspondence with those of machine language but
symbolic names are used for operators and operands. Output of this program is in
machine language loaded directly in main memory for execution. The translation is
done in a single pass. Resulting machine language program has storage locations,
fixed at the time of translation and no change can be made subsequently. These
programs can call library subroutines, if possible for them to occupy other locations
than those required by the program. There is no provision for combining separate
subprograms translated in this manner.

Modern assemblers, especially for RISC based architectures, make
optimization of instruction scheduling to make use of CPU pipeline efficiently. Such
modern assemblers are MIPS, Sun SPARC, and HP PA-RISC, as well as x86
(-64).
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3.2.2 Program Loops

Loop Control Statements

Loop control structures are used to execute and repeat a block of statements
depending on the value of a condition. There are three types of loop control
structures/statements in C language.

(i) for statement or for loop

(ii) while statement or while loop

(iii) do-while statement or do-while loop

for STATEMENT OR for LOOP

A for loop is used to execute and repeat a block of statements depending on a
condition. It has the following form.

for(<initial value >; <condition>; <increment>)

{ ––––––––––––––––-

<statement block>

––––––––––––––––-     }

where <initial value> is the assignment expression which initializes the
value of a variable.

<condition> is a relational or logical expression which will have the value
true or false.

<increment> is the increment value of the variable which will be added every
time.

Example 3.1:
for(i = 1; i <= 10; i++)

{ s = s + i ;

p = p * i ;  }

When this statement is executed, the computer assigns initial value to the
variable and the condition is evaluated. If the value of the condition is true, the
statement block will be executed. Now the value of the variable is incremented
and the condition is evaluated again and is repeated until the value of the condition
is false.

1. The braces {} can be omitted when there is only one statement available in
statement block.

2. The <initial value> is executed only once to initialize the value of
the variable.

3. The <condition> and <increment> are executed on each iteration/
repetition.

Example 3.2:

Write a C program to print natural numbers from 1 to n.
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Start

Read n

For i 1 to  Step1n

Print i

Stop

Solution:

A for loop can be used to generate and print numbers from 1 to n in steps of 1.
/* program to natural numbers upto N */

#include <stdio.h>

#include <conio.h>

main()

{ int n,i;

clrscr();

printf(“\n Enter value to n : “);
scanf(“%d”,&n);

/* loop to generate and print natural numbers */

for(i = 1; i <= n; i++)

printf(“%8d”,i);

getch(); }

When this program is executed, the user has to enter the value of n. The
numbers are generated and printed using the for loop as shown below.


Enter value to n : 15

1 2 3 4 5 6 7 8 9 10

11  12  13  14  15

The format "%8d" is used to print 10 values in a line. (Note that about 80
characters can be normally printed in a line).

Example 3.3:

The formula 3 1 41.36 1 xy x x x e     is to be evaluated for x which varies

from 1.0 to 3.0 in steps of 0.2. Write a C program to perform this and print a table
for various values of x with proper headings.
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Start

Print x, y

Stop

Solution:
/* program to find value of Y */

#include <stdio.h>

#include <math.h>

#include <conio.h>

main()

{ float x,y;

clrscr();

printf(“\n-----------------”);

printf(“\n   X        Y    “);

printf(“\n-----------------”);

 /* loop to generate and print X and Y */

for(x = 1.0; x <= 3.0; x = x + 0.2)

{

y = 1.36*sqrt(1+x+x*x*x)+pow(x,1.0/4)+exp(x);

printf(“\n  %6.2f   %6.2f “ ,x,y);

   }

printf(“\n-----------------”);

getch();

}

When this program is executed, the computer assigns x = 1.0 and y is
calculated and printed. Then x is incremented by 0.2 and y is calculated again.
The table of values of x and y are printed as shown:
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--------------------

 x y

--------------------

 1.00 6.07

 1.20 7.06

 1.40 8.23

 .

 .

 2.80 24.64

 3.0 28.97

---------------------

The scanf() function is not used here; instead a for loop is used to
generate the value of x.

Example 3.4:

Write a C program to find factorial of a given integer k.

Start

Read k

Stop

Solution:

We know that k! = 1 × 2 × 3 × …× k. The program is written to generate
numbers from 1 to k in steps of 1 and multiply them to get the factorial of k.

/* program to find factorial of a positive integer */

#include <stdio.h>

#include <conio.h>

main()

{ int k,kfact,i;

clrscr();

printf(“\n Enter an integer : “);
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scanf(“%d”,&k);

kfact = 1;

 /* loop to generate numbers from 1 to n */

for(i = 1; i <= k; i++)

kfact = kfact*i;

printf(“\n %d factorial is %d”,k,kfact);

getch(); }

When this program is executed, the user has to enter a positive integer. A
for loop is used to generate values of i from 1 to k in steps of 1. Each value is
multiplied with kfact every time  to get factorial of given number k.


Enter an integer : 4

4 factorial is 24

NESTED for STATEMENT or NESTED for LOOP

The statement block of a for loop lies completely inside the block of another
for loop. This is referred as nested for loop or nested for statement. Any
number of for statements can be nested. Consider the following example (two
loops).

Note that the block markers {} can be omitted if there is only one statement
in the statement block. When this statement is executed, the computer assigns
i = 1 and the inner loop is executed 5 times for j values from 1 to 5 in steps of
1. Now i is incremented by 1 (i.e., i = 2) and the inner loop is executed 5 times
for j values from 1 to 5. Then i becomes 3 and the inner loop is executed 5 times.
Note that the statement block is executed and repeated 15 times (3 × 5 = 15).
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Example 3.5:

Write a C program to sum the following series.

S = 1 +  (1+2) + (1+2+3) +…+(1+2+3+…+N)

Solution:

A nested for loop can be written to find the sum of the series. The inner loop is
used to find the term values 1, (1+2), (1+2+3) and so on. These are added in
outer loop to get the sum of the series.

/* program to find sum of series */

#include <stdio.h>

#include <conio.h>

main()

{ int i,j,n,s,term;

clrscr();

printf(“\n Enter value to N : “);

scanf(“%d”,&n);

s = 0;

/* outer loop to find sum of series S */

for(i = 1; i <= n; i++)

{ /* inner loop to find the terms */

term = 0;

for(j = 1; j <= i; j++)

{

term = term + j;

}

s = s + term;

}

printf(“\n Sum of the series S = %d”,s);

getch(); }

When this program is executed, the user has to enter the value to N. The
terms are now generated and added to print the sum of the series as shown below.


Enter value to N : 4

Sum of the series S = 20

Example 3.6:

z is to be computed as a function of x and y according to z  =  3x2 + 2y3 – 25.5.
Compute the values of z as x varies from –1.5 to 1.5 in increments of  0.5 and y
varies from 0 to 3 in steps of 1. Write a C program to compute z for all pairs of
(x,y).
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Start

Stop

Print , , x y z

Solution:

A nested for loop can be written to generate various combination of x and y
and to find z value for every combination of x and y.

/* program to find value of Z */

#include <stdio.h>

#include <conio.h>

main()

{ float x,y,z;

clrscr();

/* loops to generate values of x and y to find z */

for(x = -1.5; x <= 1.5; x = x + 0.5)

for(y = 0; y <= 3.0; y = y + 1.0)

{

z = 3*x*x + 2*y*y*y - 25.5;

printf("\n\n Value of y(%0.2f,%0.2f)
= %6.2f",x,y,z);

}

getch(); }

When this program is executed, the computer assigns x  = –1.5 and the
inner loop is executed for y values from 0 to 3 in steps of 1. Then x is incremented
to –1.0 and the inner loop is executed again for y values from 0 to 3 in steps of 1
and so on. The z value calculated is printed every time along with the values of x
and y.

The scanf() function is not used here; instead for loops are used to
generate values of x and y. The results are printed as follows:
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Value of y(–1.50,0.00) = –18.75

Value of y(–1.50,1.00) = –16.75

.

.

Value of y(1.50,3.00) = 35.25

while STATEMENT OR while LOOP

A while loop is used to execute and repeat a block of statements depending on
a condition. It has the following form.

while(<condition>)

{

––––––––––––

<statement block>

–––––––––––– }

where <condition> is a relational or logical expression which will have the
value true or false.

Example 3.7:
i = 1;

while(i <= 10)

{

s = s + i;

p = p * i;

i++;

}

When this statement is executed, the computer evaluates the value of the
condition. If the value is true, the statement block is executed and is repeated until
the value of the condition is false. Note that there must be a statement written
inside the statement block to change the value of the condition, otherwise the loop
is infinity.

do-while STATEMENT OR do-while LOOP

A do-while statement is also used to execute and repeat a block of statements
depending on a condition. The form is as follows:

do

{

------------

<statement block>

------------

}

while (<condition>);

where <condition> is a relational or logical expression which will have the
value true or false.
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Example 3.8:

i = 1;

do

{

s = s + i;

p = p * i;

i++;

}

while(i <= 10);

When this statement is executed, the computer will execute the statement
block irrespective of the value of the condition. At the end of statement block, the
condition is evaluated. If the value of the condition is true the statement block is
executed again and is repeated until the condition is false.

Note that the statement block is executed at least once for any value (true
or false) of the condition. It is necessary to have a statement inside the block to
change the value of the condition, otherwise the loop is infinity.

Table 3.1 Comparison of the Loop Control Structures

For Loop While Loop Do-While Loop 

A for loop is used to execute 
and repeat a statement block 
depending on a condition 
which is evaluated at the 
beginning of the loop. 
Example 
for(i=1; i<=10; i++) 
{ 
  s = s + i; 
  p = p * i; 
} 

A while loop is used to 
execute and repeat a 
statement block depending 
on a condition which is 
evaluated at the beginning of 
the loop. 
Example 
i = 1; 
while(i <= 10) 
{ 
  s = s + i; 
  p = p * i; 
  i++; 
} 

A do-while loop is used to 
execute and repeat a 
statement block depending on 
a condition which is 
evaluated at the end of the 
loop. 
Example 
i = 1; 
do 
{ 
  s = s + i; 
  p = p * i; 
  i++; 
} 
while(i <= 10); 

A variable value is initialized 
at the beginning of the loop 
and is used in the condition. 

A variable value is initialized 
at the beginning or before the 
loop and is used in the 
condition. 

A variable value is initialized 
before the loop or assigned 
inside the loop and is used in 
the condition. 

A statement to change the 
value of the condition or to 
increment the value of the 
variable is given at the 
beginning of the loop. 

A statement to change the 
value of the condition or to 
increment the value of the 
variable is given inside the 
loop. 

A statement to change the 
value of the condition or to 
increment the value of the 
variable is given inside the 
loop. 

The statement block will not 
be executed when the value 
of the condition is false. 

The statement block will not 
be executed when the value 
of the condition is false. 

The statement block will not 
be executed when the value of 
the condition is false, but 
the block is executed at least 
once irrespective of the value 
of the condition. 

A for loop is commonly 
used by many programmers. 

A while loop is also widely 
used by many programmers. 

A do-while loop is used in 
some cases where the 
condition need to be checked 
at the end of the loop. 
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goto STATEMENT

The goto statement is an unconditional transfer of control statement. It is used to
transfer the control from one part of the program to another. The place to which
the control is transferred is identified by a statement label. The form is as
follows:

goto label;

where label is the statement label which is available anywhere in the program.

Example 3.9:
------------;

goto display;

------------;

------------;

display:

------------;

When this statement is executed, the control is transferred to the statement
label display which is followed by a colon. Note that the statements between
goto and statement label display will be skipped because of the transfer.

break STATEMENT

The break statement is used to transfer the control to the end of a statement
block in a loop. It is an unavoidable statement to transfer the control to the end of
a switch statement after executing any one statement block. It has the following
form.
break;

Note that a program can be written without this statement other than in a
switch statement. Consider the following example.
printf(“\n press B to break, any other key to continue”);

for(i = 1; i <= 80; i++)

{

ch = getche();

if (ch =='B')

break;

------------

------------

}  control is transferred to the end of block

When this statement is executed, the control is transferred to the end of the
loop and the statements which are written outside the for loop will be executed
when the key B  is pressed. Note that the control can be transferred without
repeating the loop 80 times.

continue STATEMENT

The continue statement is used to transfer the control to the beginning of a
statement block in a loop. It has the form as follows:

continue;
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Note that this statement is not commonly used. Consider the following
example.
for (i = 1; i <= 80; i++)

{ ------------ control is

ch = getche(); transferred to

if(ch ==’C’  ch ==’c’) – the  beginning

{ of the block

printf("\n C for continue is pressed");
continue;

}
------------

}

When this statement is executed, the control is transferred to the beginning
of the loop such that the loop is repeated 80 times irrespective of the key pressed.

Note that the message ‘C for continue is pressed’ is
displayed whenever the key C is pressed.

exit() FUNCTION
The exit() function is used to transfer the control to the end of a  program (i.e.
to terminate the program execution). It uses one argument in () and the value is
zero for normal termination or non-zero for abnormal termination. Consider the
following example.

if (n < 0)

{

printf("\n Factorial is not available for negative
numbers");

exit(0);

}

------------;

Note that the program execution is terminated when the value of the variable
n is negative. The compiler directive #include <stdlib> is used when
this function is used in a program.

Example 3.10:

Write a C program to find the sum of all odd integers between 1 and n.
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Start

Read n

while <=i  n

Print s

Stop

1

Solution:

A while loop can be used to generate integers from 1 to n in steps of 2 and
add them to get the sum of all odd integers. S = 1 + 3 + 5 + 7 +…+ N

/* program to find sum of odd integer between 1 and N */

#include <stdio.h>

#include <conio.h>

main()

{ int s,i,n;

clrscr();

printf(“\n Enter value to N : “);

scanf(“%d”,&n);

s = 0;

i = 1;

while(i <= n)

{

s = s + i;

i = i + 2;

}

printf(“\n Sum of odd integers = %d”,s);

getch();

}

When this program is executed, the user has to enter the value of n. The
while loop used will generate odd numbers and add them to get the sum.
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Enter value to N : 10

Sum of odd integers = 25

Example 3.11:

Write a program to generate the first 50 positive integers that are divisible by 7.

Solution:

A for loop can be used to print 50 integers and an integer n is used to generate
numbers from 7 in steps of 7.

/* program to print first 50 positive integers which are
divisible by 7 */

#include <stdio.h>

#include <conio.h>

main()

{ int n,i;

clrscr();

printf(“\n Integer divisible by 7 \n”);

n = 7;

for(i = 1; i <= 50; i++)

{

printf(“%8d”,n);

n = n + 7;

}

getch(); }
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When this program is executed, the computer will not wait for any values,
but display automatically the first 50 integers which are divisible by 7.


Integers divisible by 7

7 14 21 28 35 42 49 56 63 70

_ _ _ _ _ _ _

_ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _343 350

3.2.3 Programming Arithmetic and Logic

Designing the program requires program specification. It includes technical
interpretation of programming requirement. The design of output prepared by
report generators and input screen prototypes are considered part of program
specifications. It also includes a set of test data to be processed by the program.
Testing helps to ensure quality, accuracy and acceptance of the program for use
within a system.

In the early years of programming, unstructured programs were written
without any standard technique or design method. Programs were written mostly
to solve current problems, without much consideration of future needs. An
unstructured program uses a linear or top down approach to solve problems. In
this approach, the instructions are sequentially followed until a particular condition
is reached. The program logic branches off to another part of the program and
continues sequentially from there. In a complex program, the branching overlaps.

Now-a-days, structured programs are written with three simple structures
as follows:

(i) Sequence

(ii) Selection

(iii) Iteration (Repetition)

Any program could be written with these structures. Programming languages
like C, C++ are commonly used to write structured programs.

 In a sequence, instructions are followed one after the other in the preset
order in which they appear within the program.

Example 3.12:
printf(“\n Enter value to N:”);

scanf(“%d”,&n);

printf(“\n Enter value to X:”);

scanf(“%f”,&x);

Selection means that one of two alternative sequences of instructions is
chosen based on a logical condition.

Example 3.13:
if (n > 0)

   y = 1 + n*x;
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else

   y = 1 – n*x;

printf(“\n Value of Y = %f”, y);

Iteration or Repetition means that the sequence of instructions is executed
and repeated any number of times in a loop until the logical condition is true.

Example 3.14:
do

{  printf(“\n Enter value to N:”);

  scanf(“%d”,&n);

  printf(“\n Enter value to X:”);

  scanf(“%f”,&x);

     if (n > 0)

     y = 1 + n*x;

  else

     y = 1 – n*x;

  printf(“\n Value of Y = %f”, y);

}

while(x != 0);

The three structures are effectively used to organize into modules or routines.
A module is a set of instructions that performs one specific function or action
within a program. A structured application program contains separate modules for
data entry, error checking, processing, and screen or printer output. A module is a
small program unit which can be developed by a single programmer and tested
separately before combining with the final program. When a program needs
modification, only those modules affected have to be changed. This reduces the
programming effort and cost.

Consider the following illustration to compare unstructured and structured
programs. Unstructured programs are executed in a linear fashion, whereas
structured programs execute modules of code.

The logic of unstructured program may be difficult to maintain and any
changes need to be done is possible only by the person who developed the program.
The structured approach permits flexibility in which programmers may design the
same program differently and the designer can link them to form a workable,
modifiable program.

Algorithm

An algorithm is a rough writing of a program. It contains step-by-step instructions
to solve a given problem. The steps must appear in the order in which they are
executed. The information to be given (input), computed (processing) and printed
are identified.  Algorithm is discussed in detail in a later chapter.

The sequence of instructions in an algorithm is written with the following
characteristics:

(i) Instructions should be written in the correct sequence in which they are to
be executed.
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(ii) Instructions should be precise and unambiguous.

(iii) Instructions should be executed or repeated only a finite number of times.

(iv) Check for possible infinite loop.

(v) Make sure the instructions in the algorithm are written in the correct order.

Example 3.15:

Write the algorithm and draw the flow chart to find the biggest of the given two
numbers.

Solution: For this problem, a new name big is used to store the biggest value.
Initially a is assumed as big, then b is compared with the existing big to get the
biggest value.

1. Read a, b

2. big   a

3. If b  big then

big  b

4. Print big

5. Stop

Flow Chart

Before writing the program code, the sequence of statements and the relationship
between various elements are shown with the help of a flow chart or pseudocode.
The flow chart is a common method to define the logical steps of flow within the
program. It uses various symbols to represent the functions within the program. A
flow chart shows the sequence, selection, and iterations within a program. Flow
charting is discussed in detail in a later chapter. Consider the following flow chart
to find the biggest of given two numbers.

Rules for Flow Charting

(i) Use consistent methods in drawing a flow chart.

(ii) Use common and easily understandable words.

(iii) Use consistent words or names in the flow chart.

(iv) Avoid crossing flow lines in the flow chart.

(v) Draw the flow chart from top to bottom and left to right.

(vi) Flow charts that exceed a page should be properly linked using connectors
to the portions of the flow chart on different pages.

Advantages of Flow chart

(i) A flow chart can easily explain the program logic to the program development
team.

(ii) A flow chart is useful to prepare detailed program documentation.

(iii) The flow chart details help prepare efficient program coding.

(iv) The flow chart helps detect and remove the mistakes in a program.

(v) A flow chart is useful to test the logic of the program.
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Limitations of Flow chart

(i) Flow charting is a laborious process when proper symbols are used.

(ii) Modifications in flow charting are very difficult and hence consumes more
time.

(iii) Redrawing the flow chart is also a tedious task.

(iv) No standards are strictly followed to draw the flow chart.

Example 3.16:

Draw the flow chart to find the biggest of the given two numbers.

Pseudocode

Pseudocode is a tool used for planning a computer program logic or method.
‘Pseudo’ means imitation, and ‘Code’ refers to the instructions written in a computer
language. The pseudocode instructions may be written in English, French, German
or any vernacular.

Some programmers prefer to write the actual words or pseudocode to
represent the various steps rather than drawing the flow chart. Pseudocode is
useful to design structured programs. A pseudocode looks similar to the actual
coding. Consider the following pseudocode to find the biggest of given two numbers.

Start program

    Read Number1, Number 2

       If Number 1 > Number 2 then

             Print Number 1

       Else

             Print Number 2

      Endif

End of program
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The steps in a flow chart or pseudocode can be easily translated into a
program code for any high-level programming language, independent of specific
language rules.

Advantages of Pseudocode

(i) Flexibility is a great advantage in using pseudocode.

(ii) Pseudocode provides a basis for reviewing the program design among all
members of program development team and its users.

(iii) Pseudocode instructions may be easily converted into programming language
instructions.

(iv) Pseudocode instructions can be easily modified.

(v) Preparing the pseudocode requires less time than drawing a flow chart.

Limitations of Pseudocode

(i) Reading pseudocode instructions takes more time.

(ii) There is no standard procedure for preparing pseudocode instructions.

(iii) Beginners find it difficult to write pseudocode than drawing a flow chart.

Writing the Program Code

Writing the program code is a straightforward process if sufficient care is taken
during program design. The source program code is developed using a high-level
language; one instruction or line of code is written for each line of pseudocode.
Note that some languages require several lines of code to implement a single line
in a pseudocode.

The programs written in a high-level language must be translated to the
machine language, which represents internal switch settings as 1’s and 0’s.
Compilers are used to translate high-level language instructions to a machine code.
First, the high-level language program code is loaded into the memory along with
the compiler. The compiler checks the program for errors in translating the code
into machine language. The compiler cannot translate a program code with any
syntax error. Note that a syntax error may even be a spelling mistake in the program
code.

After compilation of the program, the operating system of the computer
activates the linker. The linker program has utilities needed for input, output or
processing within the translated program. When linking is complete, the program
is ready for use. Note that the input and output devices are linked by the linker
program in see Figure 3.4 order to receive data and print results obtained during
runtime of the program.
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 High-level language program 

Compiler translates the program 

Machine code of program 

Linker adds utility programs 

Executable program 

Run this program 
to get result 

Fig. 3.4 Functioning of a Program

In order to write computer programs without any logical error, it is
recommended programmers prepare a rough writing showing the steps involved
in the program. This is called an algorithm.

An algorithm presents step-by-step instructions required to solve any
problem. These steps can be shown diagrammatically using a flow chart.

Flow chart is a symbolic or diagrammatic representation of an algorithm. It
uses several geometrical figures to represent the operations, and arrows to show
the direction of flow. Table 3.2 shows the commonly used symbols in flow charts.

Table 3.2 Flow Charts: Symbols and Operations

      Symbol Operation Meaning

Start/stop Represents the beginning and the

end of the flow chart

Input/output Represents the values to be given
by the user and the results to be
displayed

Processing Represents the arithmetic opera-
tions to compute a value

Checking/decision Represents the logical checking
making to decide the flow sequence

Looping Represents the looping, which
is  repeated based on a condition/

value of a variable

Connector Represents the continuity of the
flow chart in another place/page

Arrows Represent direction of flow
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It is recommended beginners must practice algorithm and flow charts before
starting to write programs.

Example 3.17:

Write the algorithm and draw the flow chart to find the sum and product of given
two numbers.

Solution: It is necessary to understand the data given in the problem and the
results expected.

In this problem, two numbers, say A and B, are given (input) and the results,
sum (A+B) of two numbers and product (A × B) of two numbers, are to be
calculated.

Algorithm Flow chart

1. Read a, b

2. Sum a + b

3. Product a × b

4. Print sum, product

5. Stop

Notes:

(i) Usually words Read, Accept or Input can be used to represent input
operation to give values of variables to the computer.

(ii) Print, Write or Display can be used to represent output operation to show
the results computed by the computer.

(iii) Back arrow () represents the value obtained by evaluating the right side
expression/variable to the left side variable. The symbol ‘=’ can also be
used instead of ’ ‘ but it leads to confusion in certain applications. (e.g. S
= S + X) representing the logical equivality and so on.

(iv) Down arrow () is optional.

Example 3.18:

Write the algorithm and draw the flow chart to convert the temperature in °F to °C
using the formula

°C = 5/9 (°F – 32)

Solution: The input variable is F (represents temperature in °F) and the output
variable is C (representing temperature in °C).
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Algorithm Flow Chart

1. Read F

2.  5
C F–32

9


3. Print C

4. Stop

Example 3.19:

Write the algorithm and draw the flow chart to find the area of a triangle whose
sides are a, b, and c.

Solution: You know that area of a triangle ( –a) ( –b) ( – )s s s s c

where,
c

2

a b
s

 


Algorithm Flow chart

1. Read a, b, c

2.
2

a b c
s

 


3. Area ( – )( )( )s s a s b s c  

4. Print Area

5. Stop

Example 3.20:

Write the algorithm and draw the flow chart to find the biggest of the given two
numbers.

Solution: For this problem, a new name big is used to store the biggest value.
Initially a is assumed as big, then b is compared with the existing big to get the
biggest value.
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Algorithm Flow chart

1. Read a, b

2. big   a

3. If b > big then

big  b

4. Print big

5. Stop

Note: There are other methods available to find the biggest value. The method
discussed here is  the best which can be easily extended for any number of values
and is suitable for writing structured programs.

Example 3.21:

Write the algorithm and draw the flow chart to find the biggest of the given three
numbers.

Solution: The method discussed in Example 20 is extended for three numbers:

Algorithm Flow chart

1. Read a, b, c

2. big a

3. If b > big then

big  b

4. If c > big then

big  c

5. Print big

6. Stop
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Example 3.22:

Draw a flow chart to solve the following series

s = x –x3 + x5 – x7 Xn

Solution: For this problem, the initial values are assigned as

s  0

term  x represents the first term in the series

i  1 represents the power in x1

Then the value of the term is incremented to get the next term and i is also
incremented accordingly. The term  is then added to s and is repeated until i > n.

Flow chart

Example 3.23:

Draw a flow chart to solve the following series:

3 5 7

– –
3! 5! 7! !

nx x x x
s x

n
  

Solution: The method discussed in Example 3.22 is extended by including the
denominator.
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Flow chart

Example 3.24:

Draw the flow chart to solve the following series (sin x)

3 5 7

– –
3! 5! 7!

x x x
s x  

omitting those terms which are less than 10–5 in magnitude.

Solution: The method discussed in Example 3.23 is extended by considering the
absolute value of the term.

Flow chart
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Note:  The method of solving a series given in this example can be used for any
other series of this kind, e.g. cos x, ex, and so on.

Example 3.25:

Draw a flow chart to generate and print the Fibonacci series 0  1  1  2  3  5  8 
n.

Solution: For this series, the preceding two terms are added to get the next term.

Flow chart

Example 3.26:

Draw a flow chart to find the factorial of a given integer.
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Solution: Let ‘k’ be the integer then

k! = 1 × 2 × 3 ··· k

To get k!, numbers are generated from 1 to k in steps of 1 and all these
numbers are multiplied.

Flow chart

Note: Factorial (!) is not available for non-integer and negative numbers. Also
note that 0! is 1.

3.2.4 Subroutines

A sequence of instructions are known as subroutines. These perform subtask
under the head of subprograms. Such subprograms are called subroutines or
procedures. The simplest kind of user defined code block is known as a subroutine.
Basically, a subroutine is a group of instructions that performs a subtask time
delay that is required repeatedly in a program. It is written as a separate unit, apart
from the main, and can be called whenever it is necessary. When a main program
calls a subroutine, the program execution is transferred to the subroutine and after
its completion of its job , the program execution returns to the main program. The
microprocessor uses the stack to store the return address of the subroutine. It is
also a group of instructions written separately from the main program to perform
a function and can be used repeatedly in the main program. For example, if a time
delay is required between three successive events, a time delay subroutine can be
written once instead of three times. The subroutine is written separately from the
main program, and is called by the main program when needed. The subroutine
technique enables an efficient use of memory. A subroutine is implemented with
two associated instructions: Call (call a subroutine) and Return (return from the
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subroutine). The Call instruction is written in the main program (except in the
nested subroutine) to call a subroutine, and the Return instruction is written in the
subroutine to return to the main program. When a subroutine is called, the contents
of the program counter that is basically the location address of the executable
instruction following the Call instruction is stored on the stack, and the program
execution is transferred to the subroutine address. When the Return instruction is
executed at the end of the subroutine, the memory address stored in the stack is
retrieved and the sequence of execution is resumed in the main program.  The
conditional call subroutines are given in a tabular format in Table 3.3.

Table 3.3 The Conditional Call Subroutines

Conditional Call Subroutines Functions 

CALL Z 16-bit Call subroutine if Z flag is set (Z = 1)  

CALL NZ  16-bit Call subroutine if Z flag is set (Z = 0) 

CALL  C  16-bit Call subroutine if CY flag is set (C = 1) 

CALL NC  16-bit Call subroutine if CY flag is set (C = 0) 

CALL M  16-bit Call (On Minus) if S flag is set (S = 1) 

CALL P  16-bit Call (On Plus) if S flag is set (S = 0) 

CALL PE 16-bit Call (On Parity Even) if P/V flag is set (P/V = 1)  

CALL PO  16-bit Call (On Parity Odd) if P/V flag is reset (P/V = 0) 

RET Z  Return if Z flag is set (Z = 1) 

RET NZ  Return if Z flag is reset (Z = 0) 

RET C  Return if CY flag is set (C = 1) 

RET NC  Return if CY flag is reset (C = 0) 

RET M  Return (On Minus) if S flag is set (S = 1) 

RET P  Return (On Plus) if S flag is reset (S = 0) 

RET PE  Return (On Parity Even) if P/V flag is set (P/V = 1) 

RET PO  Return (On Parity Odd) if P/V flag is reset (P/V = 0) 

 
A subroutine called by another subroutine is said to be nested. The extent

of nesting is limited only by the number of available stack locations. When a
subroutine calls another subroutine, all return addresses are stored on the stack.

By using instructions of hardware like SCAL and SXIT subroutines are put
into practice. Disparate to PCAL, SCAL does not offer a heap indicator of four-
word; as a result subroutines have subsequent upgrade and downgrade points:

 Importance in Q and index registers does not alter.

 A related P return address is kept on peak of pile.

 Entire stricture is oriented in relation to the S register and markers
cannot be accepted as limits.

 Subroutines don’t have limited variables.

 Subroutines are supposed to be placed in identical section to the
caller so that SCAL and SXIT don’t overpass division limits.

 The entrance and way out of subroutines is faster than actions due
to lesser work for commands to finish.
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 Subroutines could be announced in the procedures whilst the
procedures cannot.  They can suggest procedure-local variables
as Q is unchanged when a subroutine is described.

 Like all procedures, Subroutines could tackle every worldly
variables as DB does not get hampered by working.

Declaration of Subroutines

Subroutines are stated in a major agenda (global subroutines) surrounded by a
procedure (local subroutines). Global subroutines are mentioned merely inside
the major program nearby the procedures given that procedures are not in the
identical section as main program. Global subroutine declaration should come
after procedure announcement.

BEGIN
       ————————
      |  data group  |
       ————————
       ————————

|  intrinsics  |
       ————————

and
       ———————
       | procedures  |
       ———————
       ———————
       | subroutines |
       ———————
       ———————
       |  main body   |
       ———————

END.

Local subroutines should be mentioned simply from procedure in which
they are stated. They are announced in part of procedure, following some local
data statement, but prior the report of the body.
     —————————
     |  procedure head |
     —————————

BEGIN
          ———————————
          |  data declarations |
          ———————————
          ———————————
          |  subroutine decl.  |
          ———————————
          ———————————
          |   statements       |
          ———————————

END;
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The declaration format of a subroutine is identical to that of a procedure,
except that there is no option part and no local data group.

           { type

           { SUBROUTINE

           { name

     head  { formal parameters

           { value part

           { specification part

     body  { statement (possibly compound)

For example,

INTEGER SUBROUTINE S(A,B,C);

VALUE A,B,C;

INTEGER A,B,C;

S := (A ^ 2) + (B * C);

Invoking Subroutines

Subroutines are invoked by using their identifier in a subroutine call statement and
replacing the formal parameters with actual parameters.

identifier (parameter list);

Parameters can he stacked by asterisk ‘*’ just as with procedures.

Function subroutines are invoked by using them within an expression:
NIX := S(4,5,6) + S(100.20,1);

Here is a complete program showing the format of subroutine declarations
and invocations:

BEGIN <<USE A SUBROUTINE TO SET AN ARRAY
TO ZERO>>

INTEGER ARRAY ADATA(0:50);

INTEGER I;<<INDEX FOR USE IN SUBROUTINE>>

{  SUBROUTINE ZERO(ARRY,HISUB);

{        VALUE HISUB;

{        INTEGER HISUB;

{        INTEGER ARRAY ARRY;

{  BEGIN

subroutine {I ;=0;<<SET INITIAL VALUE INTO SUBSCRIPT>>

declaration {            WHILE I <=HISUB DO

{               BEGIN

{                  ARRY(I) ;=0;
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{                  I ;=I + 1;

{               END;

{  END<<ZERO>>;

subroutine {  <<END OF DECLARATION>>

call {        ZERO(ADATA,50);<<CALL SUBROUTINE>>

{  END <<MAIN PROGRAM>>.

Fig. 3.5  Declaration of Subroutine

The Figure 3.5 shows the non-recursive subroutine declaration.

Subroutine Functioning

The features of subroutines are determined by the functioning of the SCAL and
SXIT instructions, which work in this manner:

SCAL

1. When a subroutine is invoked, the parameters are loaded onto the stack
and a SCAL is executed.

2. SCAL loads P + 1 (the return address) onto the stack and branches to a
relative address within the current code segment.

3. S relative addressing is used to reference all parameters. Since the top of
stack changes constantly, the S relative addresses of the parameters also
change constantly.

SXIT

1. On execution of the SXIT, the current top of stack value is used as the P
relative return address.

2. Due to S changing constantly, it is possible for the subroutine to use an
incorrect return address if the subroutine has explicitly modified the stack.

The above process can be seen in the following example—suppose we
have a subroutine SW receiving two integer values. It exchanges them, and exits,
leaving them on the stack.
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Owing to the nature of the SCAL and SXIT instructions, subroutines are
much less flexible and powerful than procedures. Subroutines cannot possess
local variables; the only variables available to a subroutine are parameters as DB
relative and Q relative (local subroutines only) variables. Also, the user must not
explicitly modify the stack within a subroutine without immediately correcting for
any changes.  All subsequent parameters addressing may be wrong and S may not
point to the return address when SXIT is executed.

Processing
Block

PERFORM

Subroutine

From
...

ENDFORM

Subroutine

From
...

ENDFORM

Subroutine

From
...

ENDFORM

Subroutine

From
...

ENDFORM

ABAP Program

ABAP Program

Fig. 3.6 Subroutines in ACAP Program

In the Figure, 3.6 data is transferred or passed through the selection screen
and ABAP program following the defined parameters. The statement Subroutine
is introduced with FORM … ENDFORM statement.

Subroutine is called in the same program or in external subroutine. If internal
subroutine like in Figure 3.7 is called, global data is used to pass values defining
parameters between the main program and the defined subroutine. If external
subroutine is called, actual parameters are passed through the main program to
the formal parameters in the related subroutine.

 

 

Fig. 3.7 Internal Subroutine



Computer Programming
and Micro-Programming

NOTES

Self - Learning
Material 199

 

 
 

Fig. 3.8 External Subroutine

One-Level Subroutine

M–1

M

M+1

M+2

Main
Program

Subroutine S1

S1

S1+1

S1+3

S1+2

Subroutine S2,
Called by S1

S2

S2+1

S2+2

Fig. 3.9 Main Program

The Figure 3.9  shows the Main Program which defines the sequence of
code address in the specific micro-code ROM. The sequences,

M-1MS1S1+1S2S2+2S1+2S1+3M+1 follow the
defined steps of the subroutines to complete the task.

Nested Subroutines

By defining the R-register as Last In First Out Stack, i.e.; ‘LIFO Stack’, the
sequencer can handle nested subroutines.
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M–1

M

M+1

M+2

Main
Program

Subroutine S1

S1

S1+1

S1+3

S1+2

Subroutine S2,
Called by S1

S2

S2+1

S2+2

Fig. 3.10 Nested Subroutines

The Figure 3.10 shows that the subroutines can be nested up to the deepest
level of stack. The LIFO stack can be a 4-word memory addressed by 2 bits
from an up/down counter known as the stack pointer.

Fig. 3.11 Nested Subroutine

The Figure 3.11 shows the main routine connecting to subroutine A, which
connects to subroutine B, which links to subroutine C. The subroutines like beads
on a double string. Control is passed from the call to prologue and from epilogue
back to the caller. All subroutines in a calling chain have all five sections (prolog,
call, epilog, body, and regaining control) except the one at the bottom. Each time
another subroutine is added to the chain, more data is pushed onto the run-time
stack. At the end of the chain of calls the run-time stack has a section of data
which is saved register values from each of the subroutines including main. The
subroutine which is currently active has its data at the top of the stack subroutine
C, in our upside-down stack.
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3.2.5 Input/Output Programming

Each  input/output action returns a value which is ‘Tagged’ with input and output
type in order  to distinguish it from other values. This can be defined with function
getChar used in C as follows:

getChar ::  IO Char

The IO Char indicates that when getChar is invoked it performs the
specific action as defined in the program syntax and returns a character. The actions
that do not return any value use the unit type (). For example, if you define  the
putChar function in the following way you  get no output:

             putChar ::   Char -> IO ()

It takes a character input as an argument but returns no useful value. This
unit type is similar to type void in other programming languages.

The defined keywords and parameters process the sequence of statements
and execute each of them in order. A statement can be defined as a set of instructions
using let or a set pattern to perform the action and give the result using <-
operator. The braces and semicolons should have proper indentation. Following
is an example of simple C program to read and print a character:

main :: IO ()

main = do c <- getChar

putChar c

The return function gives an ordinary Boolean value to the realm of input/
output operations.

f :: Int -> Int -> Int

Voltage
regulator

Unregulated
power at 12 VDC 12 VDC regulated

5 VDC regulated

Front panel display

Red LED
("error")

Green LED
("busy")

9 digital I/O
lines for communication 

with switch

Microcontroller
RS–232
driver

Serial
communication
to and from
personal
computer

12 VDC regulated

12 VDC power for
switch

12 VDC regulated
to switch

Relay

Fig. 3.12 Input/Output Setting in Digital Computer
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The Figure 3.12 shows how a digital input/output circuit is needed to control
input/output operation. A microcontroller which accepts input values and sends
output values controls the interfaces .The Front panel display provides lights such
as green LED (busy) and red LED (error) for device programmer who writes
input/output programming basic.

Standard
input

(keyboard)

Standard
Error

(screen)

Standard
Output
(screen)

Program

Fig. 3.13 Input/Output Programming Flow Chart

The Figure 3.13  shows that the input data for processing uses the standard
input device which by default is a keyboard and then the processed data is sent
for output to standard output device which by default is computer screen. In case
the program execution encounters an error(s) then the error messages are also
sent to standard output error default computer screen.

Fig. 3.14 Input X1 is Put in Digital Circuit

The Figure 3.14 shows the visual indication of energized input of an indicating
LED on the front panel.
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Fig.3.15 Output Y1 is displayed in Digital Circuit

The Figure 3.15 shows how the program controls the particular output
operations. This is  to be energized for the given input conditions in a digital circuit
microcontroller. Though the program resembles to ladder logic diagram and is
specified with switch and relay symbols, whereas actually there are no real switch
contacts or relay coils that operate inside the PLC to create logical relationships
between the input and output operations.

Check Your Progress

1. What do you understand by assembly language?

2. What are two type of assemblers?

3. What do you mean by repetition?

4. Write the rules of flow charting.

5. Define the term pseudocode.

6. Give the functioning of SCAL.

3.3 MICRO-PROGRAMMED CONTROL

A control unit with its binary control values stored as words in memory is called a
micro-programmed control. Each word in the control memory contains a
microinstruction that specifies one or more micro-operations for the system. A
sequence of microinstructions constitutes a micro-program. The second one is
often fixed at the time of system design and so is usually stored in ROM.
Microprogramming involves placing some representation for combinations of values
of control variables in terms of ROM for use by the rest of the control logic via
successive read operations. The contents of a word in ROM at a given address
specify the micro-operations to be performed for both the datapath and the control
unit. A micro-program can also be stored in RAM. In this case, it is loaded initially
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at system startup from the computer console or from some form of non-volatile
storage, such as a magnetic disk. With either ROM or RAM, the memory in the
control unit is used and hence called control memory. If RAM is used then the
memory is referred to as writable control memory. The control memory is assumed
to be a ROM within which all control information is permanently stored. The
Control Address Register (CAR) specifies the address of the microinstruction.
The advantages of micro-programmed control block are as follows:

• It is a flexible and structured design.

• Its testing sequences can be easily incorporated.

• It is easy to document and debug.

The following are the disadvantages of micro-programmed control block:

• It is expensive especially for small designs.

• It is slower than random logic.
Figure 3.16 shows the block diagram of micro-programmed control which uses a
general configuration of a micro-programmed control.

Fig. 3.16 Block Diagram of Micro-programmed Control

The Control Data Register (CDR), which is optional, holds the microinstruction
which is being executed both by the datapath and the control unit. One of the
functions of the control word is to determine the address of the next microinstruction
to be executed. This microinstruction may be the next one in sequence. Therefore,
one or more bits that specify how to determine the address of the next
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microinstruction must be present in the current microinstruction. The next address
may also be a function of status and external control inputs. While a microinstruction
is being executed, the next address generator produces the next address. This
address is transferred to the CAR on the next clock pulse and is used to read the
next microinstruction to be executed from ROM. Thus, the microinstructions contain
bits for activating micro-operations in the datapath and bits that specify the sequence
of microinstructions executed. The next address generator in combination with the
CAR is sometimes called a micro-program sequencer, as it determines the sequence
of instructions that is read from control memory. The address of the next
microinstruction can be specified in several ways depending on the sequencer
inputs. The CDR holds the present microinstruction while the next address is being
computed and the next microinstruction is being read from memory. The CDR
breaks up a long combinational delay path through the control memory and the
datapath. Insertion of this register is a pipeline platform which allows the system to
use a higher clock frequency and hence perform processing faster. The inclusion
of a CDR in a system, however, complicates the sequencing of microinstructions
particularly when decision- making based on status bits is involved. The ROM
operates as a combinational circuit with the address as the input and the
corresponding microinstruction as the output. The contents of the specified word
in ROM remain on the output lines of the ROM as long as the address value is
applied to the inputs.

3.3.1 Address Sequencing

Apart from execution of instructions, another important function of the
microprogrammed control unit is to generate the address of the next sequence.
The hardware that controls the address sequencing must be capable of sequencing
the microinstructions within a routine and be able to branch from one routine to
another.

While designing the microinstruction sequencing techniques, the two
important concerns are:

 Minimizing the size of the control memory by minimizing the size of
microinstruction.

 Executing microinstructions as fast as possible; since the maximum time is
spent in generating address, the faster the address generation, the faster the
execution of instruction.

When we power up the machine, the CAR needs to contain the address of
the first microinstruction that is to be executed. In general, microinstructions are of
two types:  non-branching and branching. A non-branching microinstruction is one
in which the next microinstruction to be executed is the one following the current
microinstruction, i.e., the next instruction in sequential order. A branching
microinstruction is the one where any desired control word can be executed next.
There are three ways to determine the address of the next microinstruction to be
executed.

(i) Next Sequential Address: In the absence of other instruction, the control
units increment the CAR content by one. However, this sequence of
microinstructions is relatively small and lasts only for three or four
microinstructions.
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(ii) Branching: In branching, the determination of the desired control memory
address and its loading into the CAR are needed. Moreover, branching can
be conditional or unconditional. In conditional branching, a condition is
tested, which is determined by the status bit of ALU. Conditional branches
are necessary in the microprogram as they are required to perform some
sequences of microoperations only when certain situations or conditions
are satisfied. Thus, if there are eight status conditions, then three bits are
used to provide selection lines for multiplex.

In an unconditional branch, the microinstruction branch address from control
memory is always loaded in CAR. This can be achieved by fixing the status
bit such that the output of multiplexer is always one. One frequently used
unconditional branch is subroutine call and return. Many routines have
identical microinstruction sequences. If they are put into subroutines, routines
become shorter. This saves memory. The microprogram that uses subroutine
must have a provision for storing the return address during a subroutine call
and restoring the address during subroutine return. Thus, for storing a return
address, a stack is used.

(iii) Interrupt Testing: Certain microinstructions specify a test for interrupts.
If an interrupt has occurred, then it determines the next microinstruction
address.

In Figure 3.17, the block diagram of a control memory and hardware required for
next address  is drawn.

Opcode

Mapping Logic

Multiplexers

SBR

Branch
Logic

Mux
Select

CLK CARStatus
Bar

Select a
Status Bar

Branch Address
Micro-Ops

Control ROM

Incrementer

Fig. 3.17 Selection of Address for Control Memory

Where:

CAR: It is used to store address of control memory from where instruction is to
be fetched.
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Control ROM: It is the Control Memory (CM) that holds the control words
(CW).

Opcode: It is the machine instruction obtained from decoding instruction stored in
IR.

Mapping Logic: It maps opcode to respective microinstruction address.

Branch logic: It determines the procedure which should be adopted to select the
next CAR value among the several possibilities.

Multiplexers: They implement the choice of branch logic to obtain the next CAR
value.

Incrementer: It generates CAR + 1 as one possibility of the next CAR value.

SBR: It is used to hold return address for the operations of subroutine-call branch.

There are several ways to generate CAR values. One needs to select one
from them. It is done by providing all possible values as input into a multiplexer
and implementing the special branch logic (selecting appropriate select signal)
which determines the next address and passes it to the CAR. For example, if
there are four possible ways to determine the next address in a system, we will use
an N 4*1 multiplexer, where N is the size of address of a control word (number of
bits in the address). The branch logic determines the next address value out of the
four possible ‘next address values’. This next address value is passed to the CAR.
The 4*1 multiplexer has two select lines combinations which will decide the output,
e.g., a 0 output in multiplexer indicates the transfer of the branch address to CAR,
1 causes the address register to be incremented by one, 2 causes the branching to
subroutine, etc.

3.3.2 Micro-Program Example

The opcode mapping maps the bits of instruction to an address from control
memory. For each opcode, there exists a microprogram routine in control memory.
When the control memory is designed, the size of control word, say k, is determined
by the length of the machine instruction routines (i.e., the length of the longest one,
say n) such that k = ln(n). k should be rounded off so that it is sufficient to implement
any routine.

The first instruction of each routine will be located in the control memory
at multiples of this length. Lets say this length is N. The first routine is at 0, the
second at N, the third at 2*N, and so on. With this technique, the mapping can be
easily accomplished. In order to understand this concept, consider an example
where there are 16 possible operations resulting in a four-bit opcode and each
opcode is handled by a routine having a length of maximum four microinstructions
thus require two bit. The generation of the microinstruction address for an opcode
is done by appending two zero bits to the opcode. For example, as shown in
Figure 3.18, there is mapping between a control memory having 128 words,
requiring 2 address bits to specify the microinstruction in the routine and 4 bits that
determine the instruction among 16 different opcodes. It is considered that each
microprogram requires four microinstructions.



Computer Programming
and Micro-Programming

NOTES

Self - Learning
208 Material

Opcode Address

Machine Instruction

Mapping Mask

Microinstruction Address

1 1 10

000 × × × ×

0 0 0 01 1 1

Fig. 3.18 Mapping Instruction Code to Microinstruction Address in Control Memory

Here, 0 is placed in the most significant place. If routine needs more than
four microinstructions, it can use control memory address 1000000 through
1111111.

At the beginning of each instruction cycle, the address is determined by the
opcode mapping, which is mapping of opcodes to microinstruction addresses of
control memory. The n-bit opcode value can be used as the ‘Address’ input of a
2n × M ROM; the selected ‘Word’ in the ROM generates M-bit CAR address
for the beginning of the routine required to implement that instruction. This technique
can be extended to allow variable-length routines in the control memory. Mapping
provides the flexibility in adding instructions in control memory. As in case of
modification, the only thing needed is to update the mapping mask. The mapping
function is sometimes implemented by means of an integrated circuit, called
Programmable Logic Device (PLD), which uses AND gate and OR gate with
internal electronic fuses. In such cases, the  mapping is implemented in terms of
Boolean expressions that are executed with PLD.

3.3.3 Design of Control Unit

Control unit in a computer does the job of managing various components of the
computer. Various tasks performed by this unit are: reading and decoding of program
instructions, converting them into a set of control signals that activates other
components of the computer. In advanced computer system, control systems may
modify the order of few instructions for bringing improvement in performance.

Program Counter (PC) is a key component that is common to all CPUs.  It
is a special register keeping track of location in memory for next instruction to be
read from.

Functions of a control unit are being mentioned in brief as given below. This
is a simplified description and steps may be performed in different order and even
concurrently, that depends on type of CPU.

1. Reading code for next instruction as indicated by program counter

2. Decoding instruction into a set of signals

3. Incrementing program counter for pointing to next instruction

4. Reading data as required by instruction from cells in memory, location of
which is stored within the instruction code

5. Providing data to a register or ALU
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6. Instructing hardware for performing requested operation if instruction needs
some specialized hardware or ALU for completing the operation

7. Writing results from ALU either to a register, to a memory location or may
be to an output device

8. Jumping back to step 1.

Conceptually program counter is just a set of memory cells that may be
changed by computations made in ALU. If we add 20 to program counter, it
causes reading of next instruction from 200 locations further down. Instructions
modifying program counter are called ‘jumps’ and allow looping of instructions
and execution of conditional instruction.

Thus, control unit is a very important component of the CPU performing following
functions:

 data exchange between CPU and memory or I/O modules

 internal operations inside CPU, which are:
(i) Data transfer between registers (register transfer operations)
(ii) Instructing ALU to operate on data.
(iii) Regulation of other internal operations.

Functional Requirements of a Control Unit

For defining functions of a control unit, resources and means to use these resources
must be known. Position of control unit in the CPU and the computer system is
shown in Figure 3.19.

Processor

Control unit

Arithmetic 
logic unit

Memory address
register
Memory data
register

Register

Memory system

IO system
Input

Output

Bus

Fig. 3.19 Position of a Control Unit in CPU

Thus, one must know:

(a) Basic CPU components

(b) Microoperation performed in CPU

 CPU contains following basic functional components:

Control Unit: This unit controls all the operations inside CPU.

ALU (Arithmetic & Logic Unit): This performs basic operations, arithmetic
and logical.
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Registers: These are used for storing information within CPU. Memory
Address Registers, Memory Data Register and other registers are there in the
CPU.

Movements of data take two paths, internal and external.

Internal Data Paths: In these paths there is movement of data from one
register to another or between ALU and a register.

External Data Paths: These data paths link CPU registers with the memory
or I/O modules using system bus.

Control unit performs two basic operations:

 Execution of a microoperation

 Forming proper sequence of microoperations as per instruction to be
executed

The microoperations can be classified as:

 Register to register data transfer

 Register to external interface data transfer using system bus

 External interface to register data transfer

 Arithmetic and logic operations using registers for input and output
Basic responsibility of control unit lies in controlling various CPU components for
performing a specified sequence of microoperations for execution of an instruction.

Structure of Control Unit

A control unit has a set of input values which is converted to an output control
signal that performs microoperations. In the Figure 3.20 below a general model of
a control unit is shown.

Instruction
Register

CONTROL 
UNIT

Various

of ALU
Flags

operation

Master Clock

Control signals from the control bus

Control Signals with in
the CPC for:

Control signals to 
control bus

Control
 bus

 Fig. 3.20 General model of Control Unit

In the above model control unit has been shown as a black box containing
certain inputs and outputs.

Inputs to the control unit are:

Master Clock Signal: This signal performs microoperations. In a single
clock cycle a single or a set of simultaneous microoperations are performed. Some
microoperations are performed in one processor cycle whereas others such as
memory read, may need more than one processor cycle.
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The Instruction Register: This register stores fetch instruction. In certain
machines only op code is kept. This op code include addressing mode bits of the
instruction and performs various cycles and keeps related microoperations to be
performed.

Flags: Flags give the status of the CPU and outcomes of a previous operation
on ALU are also flags. If zero flag is set control unit issues control signals that
causes Program Counter (PC) to be incremented by 1.

Control Signals from Control Bus: Some control signals are sent to the
control unit via control bus and these signals are issued from outside the CPU.
Some signals are interrupt signals and acknowledgement signals.

Control units are implemented as hardwired control unit or
microprogrammed control unit.

Hardwired Control Unit

A hardwired control unit is implemented as combinatorial circuit in the hardware.
Inputs to control unit consists of instruction register, timing signals, control bus
signals and flags. Output signal sequences are generated on the basis of these
inputs. This becomes highly complicated if there is large control unit making
implementation of all combinational circuits very difficult. In such cases micro
programmed control unit is used.

Microprogrammed Control Unit

Hardwired control unit lacks flexibility in design. It becomes very difficult to design,
test and implement if number of control lines is very high, usually in terms of hundreds.
To overcome this, a programming approach is used which is known as
microprogrammed control unit. Such a program consists of instructions that describe
microoperations (one or more) for execution and the information on next
microoperation for execution. Such instructions are known as microinstruction
and program is called microprogram or firmware. The term firmware falls midway
between hardware and software and is easier in comparison to hardware for
designing but a bit more difficult that software.

Microprograms are usually stored in read only memory. This stored
microprogram is also known as control memory. Such control memory is also
made read-write type and in such case instruction set of a computer may be
modified. A computer tailored for specific applications and having writable control
memory is called ‘dynamically microprogrammable’ due to this reason. Computers
having control units of this type have memories in two parts; a control memory
and the main memory.

Implementation of microprogrammed control unit is done as a CPU inside
the main CPU. It does the execution of microprogrammes stored in the control
memory. Hardwired control units are faster than microprogrammed control units.
They are better for RISCs (Reduced Instruction Set Computers) and not for
CISCs (Complex Instruction Set Computers). For CISC microprogrammed
controllers are better.
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Design of Control Unit

Control unit can be viewed as a Finite State Machine (FSM) with inputs as IR
(Instruction Register), status register containing output status of ALU, with current
major state that is contained in the operating cycle. Rules of such a FSM are
encoded either in a Read-Only Memory (ROM), random logic, or a Programmable
Logic Array (PLA). These are shown in the figure below.

Outputs for instruction/data path are Reg R/W, Load/Reg-Reg, ALU
Function Select, Load Control, Read Control, IR Latch and Jump/Branch/NextPC.

Instruction register

Status register

Major state

Control unit

Jump/branch/next PC

IR Latch

Read control

Load control

ALU function select

Register R/W

Load Reg/Reg

‘ALU Function Select’ takes op code in IR (Instruction Register) translating
to a function of ALU. This may be a compact binary code or one line per ALU
function. The Jump/Branch/NextPC is dependent on instruction type which is,
when used in architecture of Reduced Instruction Set Computers (RISC), are
directly put in op code. In starting of an instruction cycle, there is read control. IR
latch has its occurrence at end of fetch state. Load control comes at end of state of
fetch data for load instruction. Load Reg/Reg has dependence over op code.
Register R/W comes in the starting of data fetch stage as well as write back stage.
Thus, it is dependent on instruction and major state.

CISC architecture makes use of control unit of more complex nature. IR
has multiple words mostly and control unit looks at different portions of IR during
execution stages.

In RISC architecture, access to registers is made uniformly as a block and
hence register file in a particular register can be selected by using a simple decoder.
But in CISC architecture, restrictions are put on some particular registers that is
used by a particular instruction, by control unit.   

We start designing a control unit and for this each control signal is listed in
processor’s instruction/data path. Instruction register, status information and a ‘major
state’ are inputs. Major state simply keeps track of position related to the execution
of an instruction. An instruction always starts with state 0, meaning ‘Fetch’. At that
state, output is given by the control unit as necessary signals for routing information
of Program Counter (PC) to memory address port and then for making a selection
for clock for the memory until there is response by fetching data from that location
and subsequently latches this into the IR. 

Decoding of an instruction in RISC architecture means decision on working
of control unit for remainder of the instructions. If control unit is treated like finite
state machine, bits of type field makes selection for ‘next state’ after decoding.  
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Talking as logic for a program, this is something like selection of branch as
is done for Switch-case type statement in which every branch of ‘switch’ has
sequence of steps that is performed for an instruction type. When a jump instruction
is decoded, control unit produces output signals combining address part of
instruction with the upper bits of Program Counter (PC), loading result to PC. CU
(Control Unit) now goes back to ‘Fetch’. Thus, Jump has three major states
known as Fetch, Decode and Complete. To load memory, CU at first transmits
selected values of register containing address, to memory’s address port through
a multiplexer and sends signals to memory for fetching that location. On return of
value by memory, CU transmits signals to multiplexer(s) as well as register file
such that memory data moves to destination bus and stored in the designated
register.  There are four major states for ‘load’ which are Fetch, Decode, Memory
and Write Back. 

Thus, for every instruction and every major state, it is required to see the list of
control signals for deciding on value that each signal has. This may be thought as a
large table of two dimensions that is indexed by type of instruction and major state.

One last bit of control output is for control of major state. This is input to
CU as register which is shown above receiving its next value on each clock from
CU. Jump begins from ‘fetch’ state to ‘decode’ state and then towards ‘complete’
state and again returning to ‘fetch’ state. State 0 is fetch state, state 1 is decode
state, complete is state 3 and a ‘load’ is state 4. There are designs where state
register does encoding of the instruction type. This way, it refers to various states
a Finite State Machine (FSM) acquires instead of important instruction steps. For
example, states of FSM for a Load may have a sequence 0, 1, 11, 12. In some
other designs, we may find Jump passing through states 0, 1, 2, and Load passing
through 0, 1, 2, 3, and type field distinguishes different behavior of the latter states.
This is like naming same things in different ways. The central requirement is input
to CU that it needs to know about its task on the present clock and next to it. In
design process to CU this means ensuring that one of the control signals in the list
indicates ‘next state’ that is specified in every cell of this table.

Check Your Progress

7. How can you define the tasks needed for execution of MCU?

8. What are the micro-instructions?

9. What are the two important concerns in designing microinstruction
sequencing techniques?

10. Why is opcode mapping used?

11. When does the cache process start?

3.4 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Assembly language was the first step in the evolution of programming
languages. It used mnemonics (symbolic codes) to represent operation codes
and strings of characters to represent addresses.
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2. Assemblers are of two types, One-pass and multi-pass.

3. Iteration or Repetition means that the sequence of instructions is executed
and repeated any number of times in a loop until the logical condition is true.

4. Rules of flow charting:
 Use consistent methods in drawing a flow chart.
 Use common and easily understandable words.
 Use consistent words or names in the flow chart.
 Avoid crossing flow lines in the flow chart.
 Draw the flow chart from top to bottom and left to right.
 Flow charts that exceed a page should be properly linked using

connectors to the portions of the flow chart on different pages.

5. Pseudocode is a tool used for planning a computer program logic or method.
‘Pseudo’ means imitation, and ‘Code’ refers to the instructions written in a
computer language.

6. Functioning of SCAL:
 When a subroutine is invoked, the parameters are loaded onto the stack

and a SCAL is executed.
 SCAL loads P + 1 (the return address) onto the stack and branches to

a relative address within the current code segment.
 S relative addressing is used to reference all parameters. Since the top

of stack changes constantly, the S relative addresses of the parameters
also change constantly.

7. Tasks for the execution of MCU:

 Microinstruction execution: This generates a control signal to execute
the microinstruction.

 Microinstruction sequencing: This provides the next microinstruction from
the control memory.

8. Micro-instructions are low-level control instruction in which the machine
instruction is used to generate the control signals. They are inputs to the
hardwired control unit.

9. While designing the microinstruction sequencing techniques, the two
important concerns are:

 Minimizing the size of control memory by minimizing the size of
Microinstruction

 Executing microinstructions as fast as possible; since the maximum time
is spent in generating address

10. The opcode mapping maps the bits of instruction to an address from control
memory.

11. Cache process starts when a CPU with cache refers to a memory. This
generates the address of the item needed and search is made in the cache.
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3.5 SUMMARY

 Computer can understand only binary-based language.

 Machine language besides being cumbersome is tedious and time consuming
for the programmer.

 Assembly language was the first step in the evolution of programming
languages.

 Assembler converts programs written in assembly language to an object
file containing machine readable code.

 A sequence of instructions is known as subroutines.

 Cache memory is located between main memory and CPU. It is a small
memory as a high-speed RAM buffer.

 Control unit in a computer does the job of managing various components of
the computer.

 A control unit with its binary control values stored as words in memory is
called a micro-programmed control. Each word in the control memory
contains a microinstruction that specifies one or more micro-operations for
the system.

 The Control Data Register (CDR), which is optional, holds the
microinstruction which is being executed both by the data path and the
control unit. One of the functions of the control word is to determine the
address of the next microinstruction to be executed.

 The hardware that controls the address sequencing must be capable of
sequencing the microinstructions within a routine and be able to branch
from one routine to another.

 Certain microinstructions specify a test for interrupts. If an interrupt has
occurred, then it determines the next microinstruction address.

 Cache memory is located between main memory and CPU. It is a small
memory as a high-speed RAM buffer.

 Control unit in a computer does the job of managing various components of
the computer.

3.6 KEY TERMS

 Macroprocessor: A macroprocessor controls repetitious writing of
sequence.

 Linker: Linker creates a link file containing binary codes corresponding to
compound modules in the program.

 Loader: A loader puts programs into main memory and then makes
preparations for execution.

 Algorithm: An algorithm is a rough writing of a program. It contains step-
by-step instructions to solve a given problem.
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 Flow Chart: The flow chart is a common method to define the logical steps
of flow within the program.

 Micro-Programmed Control Unit: A control unit designed through a micro-
program and in which the control signals are generated through the software.

 Control Address Register (CAR): Its function is to hold the address of
control memory generated by microprogram sequencer.

 Control ROM: It is the Control Memory (CM) that holds the Control
Words (CW).

 Opcode: It is the machine instruction obtained from decoding instruction
Stored in IR.

 Mapping Logic: It maps opcode to respective microinstruction address.

 Branch Logic: It determines the procedure which should be adopted to
select the next CAR value among the several possibilities.

 Registers: These are used for storing information within CPU. Memory
address registers, memory data register and other registers are there in the
CPU.  Movements of data take two paths, internal and external.

3.7 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What do you understand by machine language?

2. What does an assembler do?

3. Define the programming arithmetic.

4. What are the various types of micro programs?

5. What are the functions of a control unit?

6. What is a micro-programmed control?

7. State the function of the Control Data Register (CDR).

8. What steps are involved in the execution of a microcode in one clock pulse?

Long –Answer Questions

1. Explain assembly language and its uses.

2. Discuss the purpose served by program loops giving relevant examples?

3. Analyze the process of input-output programming giving relevant examples.

4. Write detailed notes on:
(a) Control Memory
(b) Address Sequencing

5. Explain the structure and design of control unit with the help of examples.
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6. Explain the block diagram of micro-programmed control.

7. Discuss the advantages of a micro-programmed control unit.

8. Discuss the significance of address sequencing and Opcode mapping.
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4.0 INTRODUCTION

A Central Processing Unit (CPU), also called a central processor, main processor
or just processor, is the electronic circuitry that executes instructions comprising a
computer program which include the arithmetic and logical unit, and the control
unit of a computer system. The main components of CPU are control unit, clock,
registers, and arithmetic and logic unit. Data manipulation instructions perform
operations on data and provide computational capabilities for the computer. To
fetch a word of data from memory, the processor gives the address of the memory
location in which data is stored on the address bus to activate the read operation.

In general register organization, stack organization, memory stack, and so
on we learn the important concepts like instruction formats and addressing modes
are explained with the help of examples and figures.

In instructions and addressing modes there are various ways of specifying
address of the data to be operated on. These different ways of specifying data are
called the addressing modes. Computer instructions include data transfer
instructions, data manipulation instructions and program control instructions. The
unit discusses the application of these instructions. In microprogrammed control.
Each instruction is executed by a set of microoperations which is known as
microinstructions. In microprogrammed organization, the control unit is implemented
through programming. A hard disk is one of the important I/O devices and is most
commonly used as a permanent storage device in any computer. The human-
interactive devices can be further categorized as direct and indirect. Direct devices
are those that interact with people. Indirect devices do not interact with users.
These device are used where humans are not directly involved in accepting the
input or producing the output such as a scanner or a printer.

Direct memory access is an important data transfer technique. In this, the
data is moved between a peripheral device and the main memory without any
direct intervention of the processor.

A computer memory is usually meant to refer to the semiconductor
technology that is used to store information in electronic devices. Current primary
computer memory makes use of integrated circuits consisting of silicon-based
transistors.

Memory is used for storage and retrieval of instructions and data in a computer
system. There are two main types of memory volatile and non-volatile. RAM and
ROM are considered as the two prime types of computer memory system in
which RAM supports high speed memory and is volatile in nature. ROM supports
low speed memory and it is non-volatile. You will study about organization of
CPU. Designing an instruction set is an important aspect of CPU organization.
RISC is a type of microprocessor that is designed with limited number of
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instructions. Another topic, array processors, is discussed in this unit. It is a
processor that is intended to do calculations on a sized array of data. In the end,
you will also learn about Flynn’s classification of computers-based on the multiplicity
of instruction streams and data streams in a computer system.

In this unit, you will study about the central processing unit, general register
organization, instruction formats, addressing mode, data transfer and manipulation,
micro programmed control, reduced instruction set computer, peripheral device,
input-output interface, asynchronous data transfer, priority interrupt, direct memory
access, input/output processor, serial communication, memory unit, parallel
processing, overcoming pipelining conflicts, Flynn’s classification and array
processors.

4.1 OBJECTIVES

After going through this unit, you will be able to:

 Describe processing unit

 Explain the organization of registers in different computers and register
transfers

 Understand the different forms of stack organization

 Know the concept of branching and addressing modes

 Elaborate on computer instructions

 Define microprogrammed control

 Explain Reduced Instruction Set Computer

 Understand peripheral devices and input-output devices

 State the enabling and disabling of interrupts

 Explain direct memory access

 Discuss about memory units

 Describe about the parallel processing

 Classify computers on the basis of Flynn’s classification

 Discuss array processors in a computer and their types

4.2 CENTRAL PROCESSING UNIT

CPU tests and manipulates data and transfers information to and from other
components, such as working memory, disk drive, monitor and keyboard.
Figure 4.1 shows the structure of a computer system which includes stack of
memory and I/O devices.
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MEMORY

CPU

I/O
DEVICES

Fig. 4.1 Structure of a Computer System

Central Processing Unit

The Arithmetic and Logical Unit (ALU) and the Control Unit (CU) of a computer
system are jointly known as the central processing unit. You may call CPU as the
brain of any computer system. It takes all major decisions, makes all sorts of
calculations and directs different parts of the computer functions by activating and
controlling the operations.

For a computer to start running, it needs to have an initial program to run.
This initial program, also known as bootstrap program, tends to be simple. It is
stored in CPU registers. The role of the initial program or the bootstrap program
is to load the operating system for the execution of the system. The operating
system starts executing the first process, namely ‘init’ and waits for some event to
occur. Event is known to occur by an interrupt from either the hardware or the
software. Hardware can interrupt through system bus whereas software through
system call.

When a CPU is interrupted, it immediately stops whatever it is doing and
returns to a fixed location. This fixed location usually contains the starting address
where the service routine for the interrupt is located.

Input/Output Structure

There are various types of  Input/Output (I/O) devices that are used for different
types of applications. They are also known as peripheral devices because they
surround the CPU and make a communication between computer and the outer
world.

Input Devices: Input devices are necessary to convert our information or data
into a form, which can be understood by the computer. A good input device should
provide timely, accurate and useful data to the main memory of the computer for
processing. Keyboard, mouse and scanner are the most useful input devices.

Output Devices: Visual Display Unit (VDU), terminals and printers are the most
commonly used output devices.
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4.2.1 Fundamental Concepts

The main components of the CPU are as follows:

 Control Unit: The basic role of CU is to decode/execute instructions. It
generates the control/timing signals that trigger the arithmetic operations in
ALU and also controls their execution.

 Arithmetic and Logic Unit:  It is used for executing mathematical
operations, such as *, /, + and – ; logical operations , such as, AND and
OR; and shift operations, such as rotation of data held in data registers.

 Clock: There is a simple clock, a pulse generator, that helps to synchronize
the CU operations so that the instructions are executed in proper time. A
processor’s speed is measured in hertz which is the speed of the computer’s
internal clock. The higher the hertz number, the faster is the processor.

 Registers: A CPU consists of several operational registers used for storing
data that are required for the execution of instructions.

The design of CPU in modern form was first proposed by John von Neumann
and his colleagues for the Institute for Advanced Studies (IAS) computer.
The IAS computer had a minimal number of registers along with the essential
circuits. This computer had a small set of instructions with each instruction
having two parts: opcode and operand. It was allowed to contain only one
operand address.

The simplest machine has one general purpose register, called Accumulator (AC),
which is used for storing the input or output operand for ALU. ALU directly
communicates with AC. Figure 4.2 shows the set of registers for a basic computer
using a 16-bit instruction code. 4-bit are used to represent operation code and the
other 12-bit holds address of memory location where we have considered that the
system has a memory having capacity to store 4096 words such that each word
has size of 16 bits.

M
A
R

Address Bus

PC

Control Bus

IR

Control Unit

Y

A
C

X

ALU

DATA BUS

Fig. 4.2 General Organization of a Computer
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A computer contains the following parts:

Program Counter: Program Counter (PC) contains the address of an instruction
to be fetched. It has 12 bits as it also holds a memory address, i.e., the address of
the next instruction. Programs are usually sequential in nature. The program counter
is updated by the CPU after each instruction is fetched , pointing to the next
instruction to be executed. But a branch or skip instruction will modify the contents
of the PC to some other value.

Instruction Register: The instruction fetched from memory is stored in Instruction
Register (IR) where the opcode and operand are analysed (operand can be data
itself or it can be the address of memory location which store data) and accordingly,
control signals are generated by the control unit for the execution of instructions.

Temporary Register: Temporary Register (TR) is used for storing the temporary
data that is calculated during the processing.

Accumulator: It is a general purpose register which interacts with ALU and stores
the results obtained from ALU. These results are transferred to the input or output
registers.

Data Register (DR): It acts as buffer storage between the main memory and
the CPU. It also stores the operand for the instructions, such as ADD DR or
AC = AC+DR. In other words, contents of AC and DR are added by ALU and
the results are stored in the accumulator. Thus, data register can also store one of
the input operands.

Memory Address Register: It is used to provide address of memory location
from where data is to be retrieved or to which data is to be stored. Memory
Address Register (MAR) has 12-bits as it stores the memory address which is of
12-bit in size.

AR and DR play an important role  in the transfer of data between CPU and the
memory, i.e., they act as a buffer when the processor wishes to copy information
from a register to primary storage, or read information from primary storage to a
register. In the computer systems that use a common bus system, AR is directly
connected to address bus, while DR is connected to data bus. DR is used for
interchanging the data among several other registers.

Input Register: INPut Register (INPR) is used for storing input received from
input device.

Output Register: OUTput Register (OUTR) is used for storing output to be
transferred to output device.

The input register and output register only need to be 8 bits since they store 8-bit
characters.

4.2.2 Organization of Registers in Different Computers

How the various components of control registers are connected to one another
and how they communicate data among themselves is shown in Figure 4.3. From
a user’s point of view, the register set can be classified under the following two
basic categories: (i) Programmer Visible Registers (ii) Status and Control Registers.
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Fig. 4.3 Register Level CPU Organization

(i) Programmer Visible Registers

These registers can be used by machine or assembly language programmers to
hold all temporary data to minimize the reference to main memory. Virtually all
CPU designs provide for a number of user visible registers unlike a single
accumulator, as proposed for IAS computer.

Programmer visible registers can be accessed using machine language. Following
are the various types of programmer visible registers:

 General Purpose Register: The general purpose registers are used for
various functions as required by the programmer. A true general purpose
register can contain operand for any opcode address or can be used for the
calculation of address operand for any operation code of an instruction.
But today’s trend favours machines having dedicated registers. For example,
some registers may be dedicated to floating point operations. In some cases,
general purpose registers can be used for addressing functions, for example
register indirect, displacement, etc. In other cases, there is a partial or clear
separation between data register and address register.

 Data Register: The data registers are used for storing intermediate results
or data. They cannot be used for the calculation of operand address.
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 Address Register: An address register is a general purpose register but in
some computers, the dedicated address registers are also used. Examples
of the dedicated address registers are as follows:

o Segment Pointer: In a machine with segmented addressing, a segment
register holds the address of the base of the segment in the memory.
There may be multiple registers, for example one for the operating system
and one for the current process and they may be auto indexed.

o Index Registers:  These are used for index addressing scheme and
may be auto indexed.

o Stack Pointer: When the programmer visible stack addressing is used,
the stack is typically in memory and a dedicated register, called stack
pointer, is used which points to the top of the stack. This allows implicit
addressing, i.e., push, pop and other stack instructions need not contain
an explicit stack operand.

One of the key operations where the programmer usable register is used is
when a subroutine call is issued. On a subroutine call, all temporary data stored in
these registers are stored back in main memory by the call statement and are
restored on encountering a return statement from the subroutine. This operation is
automatic in most machines. Yet, in certain machines, this is done by the
programmers. Similarly, while writing an interrupt service routine, it is required to
save some or all programmer usable registers. In this simple project, the use of a
stack pointer could be too excessive and complex to be realized. Hence, a stack
pointer is exclusively used for executing the subprograms.

(ii) Status and Control Registers

These registers cannot be used by the programmers. However, they are used by
the control unit to control the operation of the CPU and by the operating system
programs to control the execution of programs. The control registers hold information
used for the control of the various operations. These registers cannot be used in
data manipulations. However, the contents of some of these registers can be used
by the programmer. Most of them are not visible to the user. Only a few of them
may be visible which are executed in a control or operating system mode. The
various control and status registers that are essential for the execution of instructions
are as follows:

 Program Counter: PC is a register that holds the address of the next
instruction to be read from memory. The PC increments after each instruction
is executed and causes the computer to read the next instruction of program
which is stored sequentially in the main memory. In case of a branch
instruction, the address part is transferred to PC to become the address of
the next instruction. To read an instruction, the content of PC is taken as the
address for memory and a memory read cycle is initiated. PC is then
incremented by one. So, it holds the address of the next instruction in
sequence. Number of bits in the PC is equivalent to the width of a memory
address.



CPU, Input-Output and
Memory Organizations

NOTES

Self - Learning
Material 227

 Instruction Register: IR is used to hold the opcode of instruction that is
most recently fetched from memory.

 Status Register: Almost all the CPUs have a status register (also called
flag register or processor status word), a part of which may be programmer
visible. A register which may be formed by condition codes is called a
condition code register and stores the information obtained from execution
of the previous condition.

Some of the commonly used flags or condition codes stored in such a register
are as follows:

 Sign Flag: Sign bit will be set according to the sign of previous arithmetic
operation, whether it is positive (0) or negative (1).

 Zero Flag: Flag bit will be set if the result of the last arithmetic operation
was zero.

 Carry Flag: Carry bit will be set if there is a carry result from the
addition of the highest order bits or a borrow is taken from subtraction
of highest order bit.

 Equal Flag: This bit flag will be set if a logic comparison operation
finds out that both of its operands are equal.

 Overflow Flag : This flag is used to indicate the condition of arithmetic
overflow.

 Interrupt Enable/Disable Flag: This flag is used for enabling or
disabling interrupts.

 Supervision Flag: This flag is used in certain computers to determine
whether the CPU is executing in supervisor mode or user mode. It is
important as certain privileged instructions can be executed only in
supervisor mode and certain areas of memory can be accessed only in
supervisor mode.

In most CPUs, on encountering a subroutine call or interrupt handling routine,
it is desired that the status information, such as conditional codes and other register
information, be stored so that it can be restored once that subroutine is over. The
register that stores condition code and other status information is known as Program
Status Word (PSW). Along with PSW, a computer can have several other status
and control registers, such as interrupt vector register in the machines using vectored
interrupt, stack pointer if a stack is used to implement subroutine calls, etc. The
design of status and control register also depends on the operating system support.
Hence, it is always advisable to design register organization based on the principles
of operating system as there is some control information that only of specific use to
the operating system and hence depends on the operating system that we are
using. In some machines, processor itself coordinates the subroutine call which
will result in the automatic saving of all user visible registers and restoring them
back on return. This allows each subroutine to use the user visible registers
independently. While in other machines, it is the responsibility of the programmer
to save the contents of the relevant user visible registers prior to a subroutine call.
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Thus, in second case we must include instructions that can implement the saving of
the data in the program.

However there is not a clear separation of registers into these two categories.
For example, on some machines, the program counter is user visible, for example
Virtual Address eXtension (VAX ),while it is not so in case of other machines.

Virtual Machine Concept

The operating system provides applications with a virtual machine. This type of
situation is analogous to the communication line of a telephony company, which
enables separate and isolated conversations over the same wire(s). An important
aspect of such a system is that the user can run an operating system of his/
her choice.

The virtual machine concept can be well understood by understanding the
difference between conventional multiprogramming and virtual machine
multiprogramming. In conventional multiprogramming, processes are allocated a
portion of the real machine resources, i.e., a resource from the same machine is
distributed among several resources (Refer Figure 4.4).

Conventional Multi-
programming OS

JOB 1 JOB 2 --------- JOB N

Fig.  4.4 Conventional Multiprogramming

In the virtual machine multiprogramming system, a single machine gives an illusion
of many virtual machines, each of them having its own virtual processor and storage
space which can be handled through process scheduling. Figure 4.5 shows the
structure of virtual machine multi-programming which involves a number of virtual
machines, such as Virtual machine 1, Virtual machine 2, Virtual machine 3. All
machines are controlled by virtual machine operating system.

Virtual Machine
Operating System

Virtual Machine 1 Virtual Machine 2 Virtual Machine 3

Fig. 4.5 Virtual Machine Multiprogramming

Following are the advantages of virtual machine multiprogramming:

 Each user is allocated with a machine which eliminates mutual interference
between users.
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 A user can select an Operating System (OS) of his/her choice for executing
his/her virtual machine. Hence, the user can simultaneously use different
operating systems on the same computer system.

Kernel Approach

Following are the features of kernel:

 Kernel lies below system call interface and above the physical hardware.

 It provides large number of functions, such as CPU scheduling, memory
management, I/O management, synchronization of processes, inter-process
communication and other operating system functions.

4.3 GENERAL REGISTER ORGANIZATION

A bus organization for seven CPU registers is shown in Figure 4.6. The output of
each register is connected to two Multiplexers (MUX) to form the two buses A
and B. The selection lines in each multiplexer select one register or input data for
the particular bus. Buses A and B form the inputs to a common ALU. The operation
selected in the ALU determines the arithmetic or logic micro-operations to be
performed. The result of the micro-operation is available for the output data and
also goes into the inputs of these seven registers. The decoder selects the register
that receives the information from the output bus. The decoder activates one of
the register load inputs, thus providing a transfer path between the output data bus
and the inputs of the selected destination register.

Clock Input

R1

R2

R3

R4

R5

R6

R7

(7 lines)
SELA MUX

SELD

OPR

MUX

3 × 8
Decoder A bus B bus

Output

Arithmetic and
Logic Unit (ALU)

SELB

Fig. 4.6 General Register Organization
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Let the operation be

R1  R2 + R3

To perform this operation, the control must provide the following:

 SELA: Place the contents of R2 into bus A

 SELB: Place the contents of R3 into bus B

 ALU operation selector OPR: Provide the arithmetic addition A + B

 SELD: Transfer the contents of the output bus R1

At the beginning of a clock cycle, the four control selection variables generated by
R2 and R3 must be available in the control unit. Two source registers propagate
through the multiplexers and the ALU to the output bus and the input of the
destination register during the clock cycle interval. At the next clock transition,
information from the output bus is transferred to the destination register R1.

4.3.1 Control Word

The group of binary bits assigned to perform a specified operation is known as
control word.

There are 14 binary selection inputs in the units, and their combined value
specifies a control word. It consists of four fields as shown in Figure 4.7.

SELA SELB SELD OPR 

3 3 3 5

Fig. 4.7 Control Word

Three fields contain three bits each; one field has five bits. The three bits of SELA
select a source register for input A of the ALU. The three bits of SELB select a
register for input B of the ALU. The three bits of SELD select a destination register
using the decoder and its seven load outputs. The five bits of OPR select one of
the operations in the ALU.

The 14-bit control word, when applied to the selection inputs, specifies
particular micro-operations. The encoding of register selection fields is specified
in Table 4.1.

Table 4.1 Encoding of Register Selection Fields

Binary Code SELA SELB SELD

000 input input none

001 R1 R1 R1

010 R2 R2 R2

011 R3 R3 R3

100 R4 R4 R4

101 R5 R5 R5

110 R6 R6 R6

111 R7 R7 R7
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When the 3-bit binary code for SELA or SELB is 000, the respective multiplexer
selects the external input data as shown in Figure 4.7, and when the 3-bit binary
code for SELD = 000, no destination register is selected and the content of the
output bus is for the external output.

The OPR field has five bits. The encoding for the 5-bit OPR field is specified
in Table 4.2.

Table 4.2 Encoding of ALU Operation

OPR Operation Symbol

00000 Transfer A TSFA

00001 Increment A INCA

00010 Addition ADD

00101 Subtract SUB

00110 Decrement A DECA

01000 AND A and B AND

01010 OR A and B OR

01100 XOR A and B XOR

01110 Complement A COMA

10000 Shift Right A SHRA

11000 Shift Left A SHLA

Let the micro-operation given by the statement be

R1  R4  R5

This statement specifies R4 for input A of the ALU, R5 for input  B of the ALU,
and R1 as the destination register. The micro-operation to be performed is the
AND operation between R4 and R5. The control word for the above statement
according to Tables 4.1 and 4.2 is as follows:

SELA

R1
001

SELB

R4
100

SELD

R5
101

OPR

AND
01000

Thus, the control word is 001 100 101 01000.

4.4 STACK ORGANIZATION

A stack is an ordered collection of items which permits the insertion or deletion of
an item to occur only at one end. The insertion operation is known as push and the
deletion operation is known as pop.

A stack is also known as a Last-In-First-Out (LIFO) list. The stack can be
considered as a storage method in which the items stored last are the first items to
be removed. The most common example of the stack phenomenon is a pile of
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trays in a cafeteria. A tray which is placed last on top of the pile is the first to be
taken off.

A stack in a digital computer is a part of the memory unit. Also associated
with the stack is an address register. The latter keeps the address of the last
element held in the stack. This address register is known as the Stack Pointer.

Push and Pop Operations

Insertion and deletion of items are operations related with the stack. The process
of inserting an item into stack is known as a push operation. The process of
deleting an item from a stack is known as a pop operation. These operations are
done by incrementing or decrementing the stack pointer.

4.4.1 Register Stack

A stack can be organized by a finite number of registers or a stack can be a finite
number of memory words. The stack pointer contains the address of the word
that is currently on top of the stack, and which is a binary value. A 32-word
register stack is shown in Figure 4.8. Currently, there are four items X1, X2, X3
and X4 in the stack with X4 at the top, so the content of the stack pointer is 4.
Items are removed from the stack by using the pop operation. If we remove the
top item X4 from the stack, X3 is then on the top of the stack and the content of
SP is now holds the address 3. To insert a new item, first the SP is incremented
and then the item is inserted so that the SP points to the top of the stack.

FULL EMPTY

SP

Address

32

X4
X3
X2
X1

4

3
2
1
0

D
R

Fig. 4.8 Register Stack

In a 32-word register stack, the address of each location will be of five bits since
25 = 32. Thus, the stack pointer will be of five bits and cannot exceed the value
11111. When the SP content is 11111, the one-bit register FULL is set to 1,
indicating that the stack is full and there is no empty location for any more items.
Similarly, when the content of SP is 00000, another one-bit register EMPTY is set
to 1 indicating that the stack is empty and there is no element in the stack that can
be deleted. The data register DR holds the item that is to be written into the stack
or read out of the stack.

Initially, the SP is cleared to 0 so that the stack pointer points to the word at
address 0. Also, the one-bit register FULL is cleared to 0, indicating that the stack
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is not full and the register EMPTY is set to 1. A new item is inserted into the stack
by the push operation. The operation set of the following micro-operations:

SP  SP + 1 Increment stack pointer

M[SP]  DR Add item on top of the stack

If (SP = 0) then (FULL  1) Check if the stack is full

EMPTY  0 Mark the stack as not empty

If the stack is not empty, an item can be deleted from the stack using the pop
operation. This operation is implemented by the following set of micro-operations:

DR  M [SP] Read item from the top of the stack

SP  SP – 1 Decrement the stack pointer

If (SP = 0) then (EMPTY  1) Check if the stack is empty

FULL  0 Mark the stack as not full

The top item is read from the stack into DR, and then the SP is decremented by 1
so that it points to the top of the stack. The SP is checked whether it is zero or not.
If it is zero, EMPTY is set to 1, indicating that the stack is empty.

4.4.2 Memory Stack

A stack can also be implemented using the random access memory attached to
the CPU. This can be implemented by assigning a portion of the memory for the
stack operation, using the processor register as a stack pointer. The computer
memory is partitioned into three parts–program, data and stack as shown in Figure
4.9. The program counter indicates the address of the subsequent instruction stored
in memory and the stack pointer indicates to the top of the stack.

Program
(instructions)

Data
(Operands)

PC

AR

SP

0000

1000

2000

4997

4998

4999

5000

Stack

Fig. 4.9 Computer Memory divided into Program, Data and Stack Segments

The initial value of SP is 5000 and the first item stored in the stack is at address
4999; the second item is at address 4998, and so on. The last address that can be
used in the stack is 2000, i.e., the final value of the stack is 2000. The stack grows
in the reverse order with decreasing addresses. A new item is inserted into the
stack using the push operation as follows:
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SP  SP – 1

M [SP]  DR

The stack pointer is first decremented so that it points to the next address of the
stack and then the item from the data register is inserted into the top of the stack.
An item can be deleted from the stack using the pop operation as follows:

DR  M [SP]

SP  SP + 1

The top most item of the stack is read into the data register DR and then the
stack pointer is incremented by 1 so that it points to item at the top of the stack.

Most computers do not offer any method to check the overflow or underflow
of a stack to determine whether the stack is full or empty. One possible method is
to use two processor registers holding the addresses 2000 (upper limit) and 5000
(lower limit), respectively. Then, every time the stack pointer is compared,  a push
operation takes place with the upper-limit registers and pop operation takes place
with the lower-limit register.

4.4.3 Reverse Polish Notation

Let us consider an expression x + y. The plus operator is placed in between the
two operands x and y. Such a notation is known as an infix notation. If the
operator is placed before the two operands as +xy, the notation is said to be a
prefix notation, also known as a polish notation. If the operator is placed after
the two operands as xy+, the notation is said to be a postfix notation, also
known as a  reverse polish notation. Thus, the three notations are:

x + y Infix notation

+ xy Prefix or polish notation

xy + Postfix or reverse polish notation

The reverse polish notation is best suited for stack manipulation. The reverse
polish notation for the expression A * B + C * D is AB * CD *.

Conversion to Reverse Polish Notation

The conversion of an expression from the infix form to the reverse polish form
must be done according to the operational hierarchy that follows for the infix
notation. First, perform all arithmetic operations inside the inner parentheses, then
inside the outer parentheses, and then do then multiplication and division operations.
The addition and subtraction operations are performed at the end.

Example 4.1. Convert the infix expression (x + y) * [z * (w + v) + s] into the
reverse polish notation.

Solution. The two subexpressions (x + y) and (w + v) will be solved first. Thus,
the postfix expression of these subexpressions will be xy+ and wv+, respectively.

Now, in the square bracket z will be multiplied by (w + v). Thus, the postfix
of this multiplication is zwv + *.

This multiplication result is then added to s, which will result in zwv + *s +.
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Finally, xy+ and zwv + *s + will be multiplied together to get

xy + zwv + *s + *.

The procedure is shown again as follows:

(x + y) * [z * (w + v) + s]

= xy + * [z * wv ++ s]

= xy + * [zwv + * + s]

= xy + * zwv + *s +

= xy + zwv + *s + *

Example 4.2. Convert the infix notation A * B + A * (B * D + C * E) into the
reverse polish notation.

Solution. A * B + A * (B * D + C * E)

= AB* + A * (BD* + CE*)

= AB* + A * BD * CE * +

= AB * + ABD * CE * + *

= AB * ABD * CE * + * +

4.4.4 Evaluation of Arithmetic Expression

Consider an expression A * B + C * D in the infix notation. Its reverse polish
notation is AB * CD * +. This postfix expression will be evaluated as follows:

Scan the expression from left to right. Whenever an operator is found, perform
the operation with the two operands on the left side of the operator. Remove the
operator and the two operands and replace them with the result of that operation.
Continue in the same manner and repeat the procedure for every operator found
until there are no more operators.

Thus, for the reverse polish notation AB * CD* +, first we find the operator
* and the two operands to the left of *, i.e., A and B. Thus, we perform A * B and
replace A, B and * by their product, and we get

(A * B) CD* +

The next operator is * and the two operands to the left of * are C and D.
Thus, we perform C * D and replace C, D and * by the product, which is

(A * B) (C * D) +

The next operator is + and the two operands to the left of + are the two
products (A * B) and (C * D); thus, the result obtained is:

A * B + C * D

Any arithmetic expression can be evaluated using a stack in the following manner:

 Convert the given infix expression into its equivalent reverse polish notation

 Scan the expression from left to right

 While scanning, when operands are found, push them into the stack as they
appear
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 When operators are found, pop the two topmost operands from the stack,
perform the operation involving the operator and then push back the result
into the stack

 Continue scanning the expression until there are no more operators

 Finally, the result of the expression will remain on the top of the stack

To illustrate this, consider the expression (A + B) * (C + D). In the reverse
polish notation, this expression is AB + CD + *. The relevant stack operation is
shown in Figure 4.10.

The arrow () points to the top of the stack.

A

B

A A + B

C

A + B

D

C

A + B

C + D

A + B      *(C+ D)

Fig. 4.10 Stack Operation to Evaluate (A + B) * (C + D)

4.5 INSTRUCTION FORMATS

An instruction is a command given to a computer to perform a specified operation
on some given data. The format in which the instruction is specified is known as
instruction format.

The most common fields found in the instruction are as follows:

 An operation code field that signifies the operation to be done is known as
opcode field.

 An address field that identifies the register address and/or a memory address.

 A mode field that identifies the manner in which the operands or the effective
address is decided.

For example: ADD R1, R0. ADD is the op-code and R1, R0 are the address
field.

Operations identified by computer instructions are run on some data kept in
memory or some registers. Operands located on memory are identified by the
memory address and operands placed on processor registers are recognized by
register address. A register address is a binary number of K-bits that defines one
of 2K registers in the CPU. Thus, if a CPU has processor registers R0 to R15,
then the address of each register will be of four bits. For example, the binary
information 0101 is the address of register R5.

The instructions may be of numerous different lengths consisting of different
number of addresses. The number of address fields in the instruction format of a
computer system is dependent on the internal architecture/organization of registers.

The different types of CPU organization are as follows:
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 Single Accumulator Organization

 General Register Organization

 Stack Organization

Accumulator Type Organization

All the operations are done with an indirect accumulator register. The instruction
format uses one address field, i.e., only one operand address is specified in the
instruction. The other operand is in the accumulator. The result is placed in the
accumulator.

For example: ADD X, AC  AC + M[X]

The ADD X instruction means add the contents at the memory location X,
symbolized as M[X], with the contents of the accumulator. Thus, the previous
value of the accumulator will be lost and it will now contain the result of the above
instruction.

General Register Organization

In this type of computer, the instruction plan requires two or three addresses. The
number of addresses in the instruction can be reduced to two from three if the
destination register is the same as one of the source registers.

In a two-address instruction, both operand addresses are specified and the
result is placed in one of the specified addresses. In a three-address instruction,
two addresses are specified for the two operands and one address for the result.
Thus, general register type computers employ two or three address fields in the
instruction format. Each address field may indicate a processor register or a memory
location.

For example: ADD R1, R2, R3 R1  R2 + R3

The above instruction contains three register addresses. The operation performed
is the add operation between the content of processor registers R2 and R3 and the
result is to be placed in the destination register R1.

ADD R1, R2 R1  R1 + R2

The above instruction consists of only two register addresses. R1 and R2 are
source registers where R1 also serves as the destination register. The instruction
specifies the add operation between the contents of R1 and R2 and the result to
be stored into R1.

MOV R1, R2 R1  R2

Mnemonic MOV is used to transfer instructions. The instruction contains only two
register addresses R1 and R2, where R2 is the source register and R1 is the
destination. Thus, in a transfer type instruction, only two addresses are required.
The instruction specifies moving the contents of R2 into register R1.

Add R1, X R1  R1 + M[X]

This instruction has two address fields, R1 is the register address and X is a memory
address.
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Stack Organization

Stack-oriented machines do not contain any accumulator or general-purpose
registers. Computers with stack organization have push and pop instructions, which
require an address field. Thus, the instruction

PUSH X TOP  M[X]

will push the word/data at address X to the top of the stack. The SP is automatically
updated. The operation instruction does not contain any address field because the
operation is performed on the two topmost operands of the stack.

For example: ADD

The instruction ADD consists of only an operation code with no address
field. This instruction pops the top two operands from the stack, adds the numbers
and then pushes the result into the stack.

To show how the number of addresses affects a computer program, the
following arithmetic statement will be evaluated:

X = (A + B) * (C + D)

using three, two, one or zero address instructions.

The ADD, SUB, DIV and MUL mnemonics are used for arithmetic
operations, and MOV is used for the transfer operation. LOAD and STORE
mnemonics are used for transfers to and from the memory and Accumulator (AC).
It can be assumed that the operands are in memory addresses A, B, C and D, and
the result should be stored in memory address X. R1 and R2 are the registers and
T is the temporary memory location used to store intermediate results.

Three-Address Instruction

ADD R1, A, B R1  M[A] + M[B]

ADD R2, C, D R2  M[C] + M[D]

MUL X, R1, R2 X  R1 * R2

The symbol M [A] indicates the operand at the memory address symbolized by A.
The merit of the three-address format is that it results in short programs when
evaluating arithmetic expressions.

Two-Address Instruction

MOV R1, A R1  M[A]

ADD R1, B R1  R1 + M[B]

MOV R2, C R2  M[C]

ADD R2, D R2 R2 + M[D]

MUL R1, R2 R1  R1 * R2

MOV X, R1 M[X]  R1

One-Address Instruction

A one-address instruction uses an Accumulator (AC) register for all data
manipulation.
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LOAD A AC  M[A]

ADD B AC  AC + M[B]

STORE T M[T]  AC

LOAD C AC  M[C]

ADD D AC  AC + M[D]

MUL T AC  AC * M[T]

STORE X M[X]  AC

Amidst the AC register and a memory operand all operations are complete. T is
the address of a temporary memory location used for storing intermediate outcome.

Zero-Address Instruction

To evaluate an arithmetic expression for a zero-address machine, the expression
must be in the reverse polish notation. Also, instructions like ADD and MUL do
not require an operand field. They simply pop up the two topmost operands from
the stack, perform the operation and place the result on top of the stack.

However, the push and pop instructions require an address field to indicate
the operand that interacts with the stack. TOS means top of stack.

The reverse polish notation of the expression is as follows:

X = (A + B) * (C + D) is evaluated as

= (AB+) * (CD+)

= AB + CD + *

PUSH A TOS  A

PUSH B TOS  B

ADD TOS  A + B

PUSH C TOS  C

PUSH D TOS  D

ADD TOS  C + D

MUL TOS (A + B) * (C + D)

POP X M[X]  TOS

4.5.1 Addressing Modes

Addressing modes form the part of instruction set architecture. The instruction set
is an important aspect of any computer organization. A simple ADD operation
along with opcode must also provide the information about how to fetch the
operands and where to put the result. Operands are commonly stored either in
main memory or in the CPU registers. If operand is located in the main memory,
the location address has to be given the instruction in the operand field. Thus, if
memory addresses are 32 bits, a simple ADD instruction will require three 32 bits
addresses in addition to opcode. The recent architecture provides a large number
of registers so that compilers can keep local variables in registers, eliminating
memory references. This results in a reduced program size and execution time.
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As it not possible to put all variables in registers, a memory reference is
required. It attempts to refer a large range of locations in main memory or virtual
memory. One possibility is that they contain the memory address of the operand
but this will require large field to specify full memory address. Also, the address
must be determined at compiling time. Other possibilities also exist which provide
both shorter specifications and the ability to determine addresses dynamically. To
achieve this objective, a variety of addressing techniques have been employed.
These techniques trade off between address range and/or addressing flexibility on
the one hand and the number of memory references and/or complexity of address
calculation, on the other. Basically what an operand stores is the effective address.
The Effective Address (EA) of an operand is the address of (or the pointer to) the
main memory or register location in which the operand is contained, i.e., operand
= EA. Each instruction of a computer specifies an operation on certain data. There
are various ways of specifying address of the data to be operated on. These
different ways of specifying the data are called the addressing modes. There are
two ways by which the control unit determines the addressing mode used by an
instruction:

 Opcode itself explicitly specifies the addressing mode used in the instruction.

 It uses a separate mode field which indicates that the addressing mode is
being used in the instruction.

Implied Mode

The operand is specified implicitly in the definition of the instruction as in the case
of an Accumulator (AC). Only the accumulator holds the operand and a stack
organization where the operand is the data stored on the top of stack. In both the
cases, only one operand is available for manipulation. So, an instruction just tells
us about the opcode and no field is required for operand, as shown in Figure 4.11.

IR Op

Fig. 4.11 Implied Addressing Mode

Immediate Addressing

Following is the type of implied mode:

Immediate addressing is the simplest form of addressing where the operand is
actually present in instruction, i.e., there is no operand fetching activity as the
operand is given explicitly in the instruction (Refer Figure 4.12). This mode can be
used to define and use constants or set initial value variables. Examples of immediate
addressing are as follows:

MOV 15, R1 (Load binary equivalent of 15 in register R1)

ADD 15, R1 (Add binary equivalent of 15 in R1 and store the result in R1)

ADD 5 (Add binary equivalent of 5 to contents of accumulator)

Advantage: The advantage of immediate addressing is that no memory reference
other than fetching of the instruction is required. As no memory reference is required
to obtain the operand, it has very small instruction cycle. Also, it is fast as memory
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reference is reduced to one. It is commonly used to define and use constants or
set initial values.

Disadvantage: The disadvantage of immediate addressing is that the size or the
number of operations is  the same as that of the address field which in most instruction
sets, is small as compared to the word length. Further, it has a limited utility.

IR Op Operand

Fig. 4.12 Immediate Addressing Mode

Absolute Mode

In this mode, the operand’s address is explicitly given in the instruction. This address
can be in either a register or in a memory location, i.e., the EA of the operand is
given in the instruction (Refer Figure 4.13).

Operand

MM

IROp EA

R
Op EA

Operand

Absolute Mode
(Register Direct)

Absolute Mode
(Memory Direct)

IR

Fig. 4.13 Absolute Mode of Addressing

Absolute mode involves direct and indirect addressing modes which are discussed
below:

Direct Addressing

The simplest addressing mode where an operand is fetched from memory is direct
addressing. In direct addressing, the address field contains the effective address
of the operand (Refer Figure 4.14).

Op code Memory Address 
 

Instruction
A

Memory

Operand

Fig. 4.14 Direct Addressing Mode

This technique was common in earlier generations of computers. It requires only
one memory reference. As address field contains address of operand, no special
calculation is required for calculating effective address.

EA = A.
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For example, ADD A

The value of operand is obtained from memory location whose address is A and is
added to content of accumulator. The obvious limitation in this scheme is that it
provides only a limited address space.

Register Addressing

Register addressing is a way of direct addressing where the address field refers to
a register rather than the main memory address (refer Figure 4.15).

EA = R

The address field should store the reference of register. As 8–32 general
purpose registers can be referenced, we need 3–5 address bits. As the CPU
registers are frequently used, register addressing is heavily used. There are a limited
number of registers compared with the main memory locations. So, they must be
used efficiently. It is up to the programmer to decide which values should remain in
registers and which should be stored in main memory. Most modern CPUs employ
multiple general purpose registers, placing the burden of efficient execution on the
assembly language programmer, for example compiler writer. Thus, we should
have good assembly programmer or compiler who avoids frequent data transfer
from register to memory, leading to reduction in wastage of time in fetching data.
So, if the operand in a register is used in multiple operations, it results in a real
saving.

Instruction
R

Operand

Fig. 4.15 Register Addressing Mode

Advantages: As there are only few registers in this mode, very small address
field is needed when compared to memory access addressing modes, resulting in
short instructions. Further, its execution is fast as no memory access is required.

Disadvantages: Address space is limited. Speed is achieved only when a good
assembly programming or compiler writing is used.

Indirect Mode

In this mode, the register or the main memory location holds the EA of the operand
(Refer Figure 4.16). The location where the operand is stored is calculated from
address given in the instruction.

EA = (A)

Indirect addressing mode is used where the address of the operand is contained in
register pair. To implement such an instruction, first we look in A, then find address
(A) and fetch operand from that address. For example, in instruction ADD (A),
add contents of cell pointed to by contents of A (content of A is memory location)
to accumulator.
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EA

IR

Op

Operand

MM

Operand

MM

IR
Op

EA
R

Memory
Indirect Mode

Register
Indirect Mode

Fig. 4.16 Indirect Mode of Addressing

In the direct addressing mode, the length of the address field is usually less than the
word length. Thus, there is a limited address range. To overcome this problem,
one can use the address field that refers to the address of a word in memory which
in turn, contains a full length address of the operand. The obvious advantage of
this approach is that for a word of length N, an address space of 2N is available.
Its disadvantage is that the instruction execution requires two memory references
to fetch the operand: one to get its address and the other to get its value.

Although the number of words that can be addressed in this mode is equal
to 2N, the number of different effective addresses that may be referenced at any
one time is limited to 2 K, where K is the length of the address field. In a virtual
memory environment, all the effective address locations can be confined to page 0
of any process. Because the address field of an instruction is small, it will naturally
produce the low numbered direct addresses which would appear in page 0. When
a process is active, there will be repeated references to page 0, causing it to
remain in main memory. Thus, an indirect memory reference may involve more
than one page fault.

A rarely used variant of indirect addressing is multilevel or cascaded indirect
addressing and is expressed as follows:

EA = (…..(A)…..)

In this case, one bit of a full word address is an indirect flag (I). If the I bit is
0, then the word contains EA. If the I bit is 1, then another level of indirection is
invoked. There does not appear to be any particular advantage to this approach.
However, its disadvantage is that three or more memory references could be
required to fetch an operand in it. The multiple memory accesses to find an operand
makes it slower.

Register indirect addressing and displacement addressing are the two types
of indirect addressing mode which are discussed below:

Register Indirect Addressing

Just as register addressing is analogous to direct addressing, register indirect
addressing is analogous to indirect addressing. In both cases, the only difference is
whether the address field refers to a memory location or to a register. Thus, for a
register indirect address is as follows:

EA = (R)

In register indirect addressing mode, the operand field of an instruction holds the
address of the address register to calculate the true address of the operand (Refer
Figure 4.17). The advantages and disadvantages of register indirect addressing
are basically the same as of indirect addressing. In both the cases, the address
space limitation (limited range of address) of the address field is overcome by
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referring that field to a word-length location containing an address. In addition,
register indirect addressing uses one less memory reference than indirect addressing.

Instruction

Memory
R

Registers 
Operand

Fig. 4.17 Register Indirect Addressing Mode

Displacement Addressing

Displacement addressing is a very powerful mode of addressing because it
combines the capabilities of direct addressing and register indirect addressing. It
is known by a variety of names depending on the context of its use. However, the
basic mechanism is the same (to represent an expression. It is expressed in the
following way.

EA = A + (R)

Displacement addressing requires that the instruction should have two address
fields, in which at least one is explicit. The value contained in one address field is
used directly, as in above case. The other address field can be an implicit reference
based on opcode which refers to a register whose contents are added to A to
produce the effective address (Refer Figure 4.18).

Instruction

R A

Memory

Registers
Operand

Fig. 4.18 Displacement Addressing Techniques

Now we will discuss the following three most common uses of displacement
addressing:

 Relative Addressing: This is used to address an operand in the main
memory whose address is specified in relation to the current instruction.
Effective address is obtained by adding a constant, which here is the offset,
that represents the displacement from current position to the location of the
operand (Refer Figure 4.19). This offset can be the content of PC (the
implicitly referenced register) and also can be negative. The constant is
either explicitly given in the instruction by the assembly programmer, or is
calculated by the assembler on the basis of the knowledge of the main
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memory locations of the program and the desired operand. Relative
addressing exploits the concepts of locality. If most memory references are
relatively nearer to the instruction being executed, then the use of relative
addressing saves address bits in the instruction.

PC

IR
Op D(PC)

EA=[PC]+D

PC Relative Mode

Operand

MM

Next Instr.

D

Fig. 4.19 Relative Addressing Mode

 Base Register Addressing: The referenced register contains a memory
address, while the address field contains a displacement usually an unsigned
integer representation from that address. The register reference may be
explicit or implicit. The base register addressing also exploits the locality of
memory references. It is a convenient means of implementing segmentation,
for example segment registers in 80 × 86. This can be implicit using a single
segment base register or the programmer may choose a register to hold the
base address of a segment, and the instruction must reference it explicitly.
In the latter case, if the length of the address field is K and the number of
possible registers is N, then one instruction can reference any one of N
areas of 2K words.

 Indexing: In index addressing mode, the address field references a main
memory address and the reference register contains a positive displacement
from that address. The EA of the operand is generated by adding a constant
value (given in the instruction) to the content of a register (specified in the
instruction). This is used to address elements of an array
A= [A[1],A[2],…..A[n]]. The starting address of A is constant and the
index i is contained in the register (Refer Figure 4.20). Element
A[i](i =1,2,…,n) can be addressed by this mode with different index i.

IR
Op A(R)

R
i

EA=A+[R]=A+i

Index Mode

MM

Operand A[i]

A[0]

i
A[1]A

Fig. 4.20 Index Addressing Mode

It can be noticed that the usage of indexing is just the opposite of the
interpretation for base register addressing. The address field is considered to be a
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memory address in indexing, and it generally contains more bits than an address
field in a comparable base-register instruction. There are some refinements to
indexing that would not be as useful in the base register context. However, the
method of calculating EA is the same for both base register addressing and indexing,
and in both cases, the register reference can be explicit or implicit (depending on
CPU types).

Indexing provides an efficient mechanism for performing iterative operations.
Consider, for example a list of numbers stored in memory starting from location A.
Suppose that we want to add 1 to each element on the list. For this, we need to
fetch each value, add 1 to it, and store it back. The sequence of effective addresses
that we need is A, A + 1, A+2, ……., up to the last location on the list. With
indexing, this is easily done. The value A is stored in the instruction’s address field,
and the chosen register, called an index register, is initialized to 0. After each
operation, the index register is incremented by 1. As increment or decrement of
the index register is done after each reference, some systems will automatically do
this as part of the same instruction cycle and in others it is done explicitly. This is
known as auto indexing. If certain registers are devoted exclusively to indexing,
then auto indexing can be invoked implicitly and automatically. If general purpose
registers are used, the auto index operation may need to be signalled by a bit in the
instruction. Auto-indexing using increment can be depicted as follows:

EA = A + (R)
  (R)  (R) +1

In some machines, both indirect addressing and indexing are provided, and it is
possible to employ both in the same instruction. The two possibilities: post indexing
and pre-indexing are discussed below:

Post Indexing: If the indexing is performed after the indirection, it is termed as
post indexing. It is represented in the following way:

EA = (A) + (R)

First, the contents of the address field are used to access a memory location
containing a direct address. This address is then indexed by the register value.
This technique is useful for accessing one of the various blocks of data of a fixed
format. Thus, the addresses in the instructions that reference the block could point
to a location (value = A) containing a variable pointer to the start of a process
control blocks. The index register contains the displacement within the block.

Pre-Indexing: If the indexing is performed before the indirection, it is termed as
pre-indexing. It is represented in the following way:

EA = [A + (R)]

An address is calculated as in simple indexing. In this case, the calculated
address contains not the operand but the address of the operand. An example of
the use of this technique is to construct a multi way branch table. At a particular
point in a program, there may be a branch of  the various locations depending on
conditions. A table of addresses can be set up starting at location A. By indexing
into this table, the required location can be found.
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Typically, an instruction set will not include both pre-indexing and post indexing.

Stack Addressing

The final addressing mode that we consider is stack addressing. A stack is a linear
array of locations. It is sometimes referred to as a push down list of Last In First
Out (LIFO) queue. It is a reserved block of locations. Items are appended to the
top of the stack so that, at any given time, the block is partially filled. Associated
with the stack is a pointer whose value is the address of the top of the stack. The
stack pointer is maintained in a register. Thus, references to stack locations in
memory are in fact register indirect addresses.

The stack mode of addressing is a form of implied addressing. The machine
instructions need not include a memory reference but should implicitly operate on
the top of the stack.

Another important issue is how to determine the addressing mode to be followed.
Virtually all computer architectures provide more than one addressing mode. The
question arises as to how the control unit can determine the address mode to be
used in a particular instruction. Several approaches are taken. Often, different
opcodes will use different addressing modes. Also, one or more bits in the
instruction format can be used as a mode field. The value of the mode field
determines which addressing mode is to be used. Table 4.3 summarizes the principal
advantages and disadvantages of various addressing modes.

Table 4.3 Various Addressing Modes

Mode Algorithm Principal Advantage Principal Disadvantage 
Immediate Operand = A No memory reference Limited operand magnitude 
Direct EA = A Simple Limited address space 
Indirect EA = (A) Large address space Multiple memory references 
Register EA = R No memory reference Limited address space 
Register Indirect EA = (R) Large address space Extra memory reference 
Displacement EA = A + (R) Flexibility Complexity 
Stack EA = top of stack No memory reference Limited capability 
 

Notation:

A = Contents of an address field in the instruction.

R = Contents of an address field in the instruction that refers to a register.

EA = Effective (actual) address of the location containing the referenced operand.

(X) = Contents of location X.

4.6 DATA TRANSFER AND MANIPULATION

Data transfer instructions transfer data from one location to another without changing
the data content. These transfers can be between two processor registers or
between the memory location and processor registers or between the processor
registers and input or output. The different data transfer instructions (with their
mnemonics) used in various computers are listed in Table 4.4.
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Table 4.4 Data Transfer Instructions

Name Mnemonic

Load LD

Store ST

Move MOV

Exchange XCH

Input IN

Output OUT

Push PUSH

Pop POP

Different computers can use different mnemonics for the same instruction. The
load instruction is used to transfer data content from the memory location to the
processor register called accumulator. The store instruction is used to transfer
data content from the processor register to some memory location. The move
instruction is used to transfer data content from one processor register to another.
Whenever it is required to swap information between two registers or a register
and a memory location, the exchange instruction is used. To transfer data content
from processor registers and input or output terminals, respectively, the input and
output instructions are used. The push and pop instructions are used to transfer
data content between processor registers and a memory stack.

The different addressing modes for the load instruction are shown in Table
4.5, where ADR is the memory address, NBR is the number or operand, X is the
index register, R1 is the processor register and AC is the accumulator.

Table 4.5 Addressing Modes for Load Instructions

Addressing Mode Instruction Register Transfer

Direct LD ADR AC  M[ADR]

Indirect LD @ ADR AC  M[M[ADR]]

Register LD R1 AC  R1

Register Indirect LD (R1) AC  M[R1]

Relative LD$ ADR AC  M[PC + ADR]

Index LD ADR (X) AC  M[ADR + XR]

Immediate LD # NBR AC  NBR

The character @ before the memory address indicates an indirect address. In
case of the register indirect mode, the register that holds the memory address is
enclosed in parentheses. The character $ before the memory address makes the
address relative to the program counter PC. The character # before the operand
indicates immediate mode instruction.
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4.6.1 Data Manipulation Instructions

Data manipulation instructions perform arithmetic, shift or logic operations to
manipulate data. Thus, data manipulation instructions are broadly divided into the
following three basic categories:

(i) Arithmetic Instructions

(ii) Shift Instructions

(iii) Logic Instructions

(i) Arithmetic Instructions
Addition, subtraction, multiplication and division are the four basic arithmetic
operations. Most computers provide instructions to perform these operations.
Increment (or decrement) instructions add 1 (or subtract 1) to the value stored in
a register or some memory word. A list of standard arithmetic instructions is shown
in Table 4.6.

Table 4.6 Arithmetic Instructions

Name of Instruction Mnemonic

Add ADD

Subtract SUB

Multiply MUL

Divide DIV

Increment INC

Decrement DEC

Negate (2’s complement) NEG

ADD with Carry ADD C

Subtract with Borrow SUB B

(ii) Shift Instructions

Shift operations can be a circular or arithmetic shift, or a simple logical shift in
which the bits of a word are moved to the left or to the right. For both the cases,
i.e., logical shift left or logical shift right, 0 is inserted at the end bit position. The
rotate instruction produces a circular shift. It circulates the bits around the two
ends without loss of information. Instructions like rotate through carry treats a
carry bit as an extension of the register whose word is being rotated. Thus, the
rotate left through carry instructions transfer the carry bit into the rightmost bit
position and transfer the leftmost bit into the carry and at the same time shift the
entire register to the left. The arithmetic shift left instruction inserts 0 at the rightmost
bit position. The arithmetic shift right instruction leaves the sign bit unchanged and
shifts the bit (including the sign bit) to the right, and the rightmost bit is lost. The
basic shift instructions are listed in Table 4.7.
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Table 4.7 Shift Instructions

Name of Instruction Mnemonic

Logical Shift Left SHL

Logical Shift Right SHR

Rotate Left ROL

Rotate Right ROR

Arithmetic Shift Left SHLA

Arithmetic Shift Right SHR A

Rotate Left through Carry ROL C

Rotate Right through Carry ROR C

(iii) Logic Instructions

Various logical instructions are listed in Table 4.8. AND, OR and XOR instructions
provide the corresponding logical operations. The complement instruction produces
the 1’s complement of the operand. A clear instruction replaces all bits of the
operand by 0’s. Clear carry, set carry and complement carry are instructions
that are performed on the individual bits. If the instruction is clear carry, the carry
bit is cleared to 0. If it is set carry, the carry bit sets to 1. Similarly, if the instruction
is complement carry, the carry bit complements and the bit changes from 0 to 1 or
from 1 to 0.

Table 4.8 Logical Instructions

Name of Instruction Mnemonic

AND AND

OR OR

Exclusive-OR XOR

Complement COM

Clear CLR

Clear Carry CLR C

Set Carry SET C

Complement Carry COM C

Enable Interrupt EI

Disable Interrupt DI

4.7 MICRO-PROGRAMMED CONTROL

The other alternative for implementing control operation is through
microprogrammed organization where the control unit is implemented through
programming. In this case, the execution of microoperation is done through stored
program logic instead of hardwired control circuitry.

Each instruction is executed by a set of microoperations, termed as
microinstructions. For each microoperation, the control unit generates a set of
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control signals. A complete instruction is executed by generating a sequence of
control signals (group of microoperations) that are appropriately timed. This
sequence of microinstructions is termed as a microprogram or firmware. Such
a program comprises several instructions, with each instruction describing the
following:

 One or more microoperations that are to be executed

 Information about the microinstruction that is to be executed next.

The microprogram is essentially an interpreter, written in microcode and
stored in firmware (ROM, PROM or EPROM) which is often referred to as the
control memory or control store. As it is halfway between hardware and software,
it is also known as firmware. Compared to hardware, firmware is easier to design,
whereas compared to software, firmware is difficult to write. In the
microprogrammed organization, the complete control information is stored in a
control memory. The control memory is programmed for initiating the required
sequences of operations. This program converts machine instructions (stored in
binary format) into control signals. There is essentially one subroutine for each
machine instruction in this program.

The term microprogram was first coined by M.V. Wilkes in early 1950.
During his work on a stored program computer, called the Electronic Delay Storage
Automatic Calculator (EDSAC), Wilkes noticed that the sequencing of control
signals within the computer was very similar to that required in a regular program.
This made possible the use of a stored program for representing the sequences of
control signals. The first paper on this technique, termed microprogramming, was
published by Wilkes in 1951. In this paper, he proposed an approach to design  a
control unit in an organized and systematic way, avoiding the complexities of a
hardwire implementation. As it was impossible to manufacture fast control stores
in the 1950s, microprogramming could not turn out to be a mainstream technology
at that time.

Later, in the late 1950s, John Fairclough’s research at IBM’s Laboratory
in Hursley, England, led to the development of a read only magnetic core matrix
for use in the control unit of a small computer. In 1961, his research played an
important role in IBM’s decision to pursue a full range of compatible computers,
which was announced in 1964 as the System/360. Since then, microprogramming
has become popular in variety of applications, one of which being the use of
microprogramming to implement the control unit of a processor, particularly in
Intel 80x86 and Motorola 680x0 processors, whose instruction sets are essentially
evolved from the 360 original. In fact, IBM still produces mainframes that use
the same architecture.

Each microinstruction cycle is made of two parts: fetch and execute. The
fetch cycle includes the fetching of instructions that leads to initiation of a series of
microinstructions stored in control memory. The function of these microinstructions
is to issue the micro-orders to the CPU. Micro-orders generate the effective address
of operand, execute the instruction and prepare it again for fetching the next
instruction from the main memory. To execute an instruction by Microprogrammed
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Control Unit (MCU), the following two tasks are performed:

 Microinstruction Execution: This generates a control signal to execute
the microinstruction.

 Microinstruction Sequencing: This provides the next microinstruction
from the control memory.

To implement the control process, the microprogrammed units have the following
components (Refer Figure 4.21):

 Instruction Register: This holds the instruction to be executed.

 Microinstruction Address Generation: This generates the address where
the instruction (to be executed) is stored in the control memory. This address
generator uses clock signal, input from flag or status register, instruction
that is stored in instruction register and produces an output which is the
address of the control memory.

 Control Store Microprogram Memory: This stores the control words.

 Microinstruction Buffer: This stores the instruction.

 Microinstruction Decoder: This decodes the instruction into a sequence
of control signals.

Instruction Register

Microinstruction
Address Generation

Control Store
Microprogram 

Memory

Microinstruction
Buffer

Microinstruction
Decoder

ClockInput from Status/
Flag Registers

Select a
Specific
Instruction

Control Signals

Put Microinstruction
in Buffer

Subroutine that is
executed for given
Microinstruction

Fig. 4.21 Microprogrammed Control Unit

4.7.1 Execution of Complete Instruction

For the execution of a program, the series of microinstructions must be determined.
For different instructions, there are different series of microinstructions. In order
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to perform these tasks, a Microprogrammed Control Unit (MCU) should have
the following components (Refer Figure 4.22).

Instruction Register

Decoder
Control

Unit

Control Address 
RegisterSequencing

Logic

Read

ALU
Flags
Clock

Control
Memory

Control Buffer Register

Decoder

Next Address
Control

Control Signals
within CPU

Control Signals
to System Bus

Fig. 4.22 Fundamental Components of a Microprogrammed Unit

 Microprogram Sequencer (MS): It is also called next address generator.
It generates the address of the next microinstruction that needs to be retrieved
from the control memory.

 Control Address Register (CAR): Its function is to hold the address of
control memory generated by microprogram sequencer.

 Control Memory (CM): It stores all microprograms that are constituted
of control words. It is usually a ROM.

 Control Buffer Register (CBR): It basically performs three functions:
(i) Holding the control word retrieved from control memory, (ii) Generating/
propagating the control function values to the MCU and (iii) Providing the
information required for generating the next address. The CAR and CBR
are such registers that may be used and modified in parallel. Thus, CBR
leads to the execution of a collection of microoperations. It is also
simultaneously used to generate the next address (via the sequencer) for the
CAR.

 Decoder: The upper decoder translates the opcode of IR into a control
memory address. The lower decoder is not used for horizontal
microinstruction; it is used for vertical microinstruction.

In general, a microcode execution involves the following steps to be executed in
one clock pulse:

 The instructions are fetched from main memory and are stored in IR.

 Opcode is decoded.

 To execute an instruction, the microprogram sequencer issues a READ
command for control memory.

 Microinstructions are retrieved from CM from the address specified in CAR.
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 The microinstruction is read from control memory and is transferred to a
control buffer register.

 The content of control buffer register generates control signal and address
information for the sequencing logic unit.

 The microprogram sequencer loads a new address into CAR based on the
next address information from control buffer register and ALU flags.

4.7.2 Reduced Instruction Set Computer (RISC)

Pronounced as ‘Risk’, RISC is a type of microprocessor that is designed with
limited number of instructions. With the advent of X86 series, computer
manufacturers tended to design a CPU with a complex and large instruction set,
resulting in a complex hardware. But in a research by U.C. Berkeley and IBM in
the early 1980s, researchers found that most computer language compilers and
interpreters used only a small subset of the instructions of a CISC. In his research
in 1972, John Cocke of IBM Research found that a computer used only twenty
per cent of the instructions, i.e., the remaining eighty per cent were superfluous.
Hence, a demand arose to design a processor with a simpler and less orthogonal
instruction set, so that their execution is fast as well as less expensive. CPUs
became fast with calculations involving less memory access.

To implement this concept, computer designers experimented to design a
processor using large sets of internal registers. A processor based upon this concept
has a small instructions set, requiring fewer transistors. This makes its manufacturing
cheaper. Also, as the use of transistors and instructions is restricted to only those
that are most frequently used, the computer works more in less time.

 The term ‘RISC’  was later coined by David Patterson, a teacher at the
University of California in Berkeley. After the emergence of RISC computers, it
became a practice to refer conventional computers as CISC’s. RISCs generally
had larger numbers of registers, accessed by simple instructions set like load and
store, for transferring data to and from memory. The result was a very simple core
CPU running at very high speed and supporting all type of operations that compilers
were using.

The RISC architecture is basically designed on Harvard architecture, as
contrast to the Von Neumann (Stored Program) architecture on which most pre-
RISC processors were designed. In the Harvard architecture, machine program
and data are two different entities. So, separate memory devices are used to store
the program and data, but these are accessed simultaneously. The Von Neumann
architecture, on the other hand, considers the data and programs as the same
entity and stores them in a single memory device. As both of them are accessed
sequentially, it produces the so-called ‘Von Neumann bottleneck’.

The major disadvantage of RISC architecture is that compilers have to
generate longer sequences of the simpler instructions to accomplish the same results.
So, the programs that run on RISC machine are usually large compared to CISC.
However, recently, engineers have found ways to compress the reduced instruction
sets that can fit in memory systems that are smaller than CISCs, e.g., the ARM’s
‘Thumb’ instruction set. The main users of RISC processors are those systems
that require low power or have small size, such as embedded systems. The 32-bit
embedded systems market is now dominated by the RISC chips, while the smaller
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RISC chips are becoming popular in the 8-bit embedded-system market. Power PC
series are another examples of RSIC processors. Even some CISC processors
(which were created before RISC became popular) translate instructions into a
RISC-like instruction set internally. As Intel X86 designs dominate the vast majority
of desktop sales, CISC architecture still dominates the market. The Apple, Sun and
SGI desktop computer lines are few examples which are based on the RISC
architecture. Apart from desktop computers, processor chips are dominantly used
for embedded systems in cars and other household equipments which are primarily
based on the RSIC architecture.

Characteristics of RISC
The characteristics of RISC are as follows:

 Small instruction set; less than 150 machine instructions

 Simple instructions, usually register-based instructions to allow fast execution

 Simple addressing modes (less than 2) to allow fast address computation,
as instructions are register based so complex addressing modes are not
used.

 Fixed-length instructions, i.e., all instructions have the same length of 32
bits (or 64 bits)

 Small number of the instruction format; less than 2

 Fields aligned in instruction to allow fast instruction decoding

 Presence of both operands in registers to allow short fetch time

 Large number of General Purpose Registers(GRPs); more than 32

 Only one main memory access per instruction

 Onlyread/write (load/store) instructions to access the main memory

 Translation of the complex tasks into simple operations by the compiler,
increasing the compiler complexity and compiling time

 Compiler in RISC processors not developed for a specific chip; instead, it
is developed in conjunction with the chip to produce one unit

 Simpler and faster hardware implementation

 Very suitable for pipelined architecture

 Single cycle execution

 Design dominated by hardwired control unit

 Supportive to the High-Level Language (HLL)

 All operations related to registers task

 Registers managed in the form of a variable window in some RISC
processors, allowing a ‘Look’ at certain register files instead of using registers
as ax, bx, etc.

Advantage of RISC machines
RISC machine has the following advantages over CISC machine:

 Smaller instruction set

 Single-cycle execution resulting in faster execution
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 Fast instruction decoding because of fixed format

 Easy implementation of pipelining in instruction through interleaving many
instructions

 Memory access  done only by load/store instructions; execution of all other
instructions using internal registers only

 Simple design and short design time

 Best target for the state-of-the-art optimizing compilation techniques

 Simplified interrupt service logic

Check Your Progress

1. What is the function of CPU?

2. What is a control word?

3. Define Stack.

4. What are push and pop operations?

5. What does a stack pointer contain?

6. What is a memory stack?

7. Define the three basic notations.

8. List the different types of CPU organization.

9. How immediate addressing is useful in addressing modes?

10. Why displacement addressing is considered as a very powerful mode of
addressing?

11. How are computer instructions classified?

12. State different arithmetic operations?

13. What is RISC?

4.8 PERIPHERAL DEVICE

The peripheral devices can be thought of as transducers which can sense physical
effects and convert them into machine-tractable data. For example, a computer
keyboard, which is one of the most common input devices, accepts input by the
pressing of keys, or by physically moving cursor using mouse. Such physical actions
produce a signal that the processor translates into a byte stream or bit signal so
that it can understand it. Similarly, if we consider an output device like a computer
monitor screen, it accepts a bit stream generated by a processor which is further
translated into the signal that controls the movement of the electronic beam that
strikes the screen. The pixel combination produces a picture on the monitor screen.
Some devices mediate both input and output, e.g., memory or a disk drive.

These input and output devices are usually designed on the complex
electromechanical principles. The principles on which these device are designed,
principles on which they operate and their working are quite different from the
purely electronic devices that are used for designing CPU and its components.
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Thus, accepting the data signal and converting it into binary format that a system
can understand is a complex technology. So is converting binary data into signal
which the device can understand to produce an output. Thus, So, in probability if
an architect wants to makes it processor better, it requires only altering a few
gates with Computer Aided Design (CAD) tool or altering kind of memory used.
Every technology is generally alike and its constant responding is comparatively
easy to guess. But it is not the same for I/O devices as the principles on which they
work are different and based on techniques not same as those on which a computer
architect works. Thus, in order to improve an I/O device, the designer can only
suggest the desired improvements to the manufacturers. Also, in many devices,
the standards are set for some other device which is later considered as a part of
input output system. For example, in case of a CD-ROM, when the standards
were being developed, they were set for the audio compact disk, for storing audio
signals like music numbers. The incorporation of a standard for computer data
was largely an afterthought, i.e. CDs are designed for sequential access rather
then random access. The display devices used in computers are derived from
standard television technology. Keyboards originated from typewriters, and the
layout of a keyboard follows the same standard, i.e. they are designed to reduce
the typing speed and increase effort. The designs of many forms of I/O devices
are driven by concerns other than optimal performance. Also, often a device is
developed specifically for some specialized end users. As mentioned earlier, I/O
devices are classified as storage devices, networking and data transmission devices
and human-interactive devices. Let us discuss the various types of input output
devices.

Storage Devices

Hard Disk: A hard disk is one of the important I/O devices and is most commonly
used as permanent storage device in any processor. Most PCs have hard disk
having capacities in the range of 20 GB to 80 GB. Due to improvement in technology
and density of magnetic disk, it has become possible to have disk with larger
capacity and at a cheaper rate. A hard disk basically comprises several metal
platters coated with magnetic material. These plates are rotating with high speed
(5000 revolutions per second) along the central shaft. Each surface has a read/
write head mounted on arm. The head can possibly move in radial direction. Usually,
both sides of a platter are used for storing the data. Every part of plane is parted
into concentric circles also called as tracks. Every platter has 300 tracks. Parted
by spaces every track is parted in approx. 30 sects. For getting data in a particular
place, arm has to be placed over a specific part. It takes almost 3-20 mins. Head
would wait till the needed section is under it, which would take about six minutes.
But once, the sector is established, data is visible at 4 MB/s. The disk controller is
required for buffering the data to avoid bus contention and for bookkeeping.

Diskette (Soft Disk, Floppy Disk): It is a 3.5-inch diskette with a capacity of
1.44 MB The architecture is similar to hard disk, i.e., it is divided into concentric
tracks, which are further divided into sectors.

Magnetic Tape: A magnetic tape consists of a plastic ribbon with a magnetic
surface. The data is stored on the magnetic surface as a series of magnetic spots.
It has a large storage capacity of 2 to 8 GB and slow transfer rate of 160 kB/s to
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1 MB/s.

Optical Disk: A variety of optical disks are available in market, e.g., CD-ROM,
DVD having  storage capacities in the range of 128 MB–1GB, etc. These disks
read the data by reflecting pulses of laser beams on the surface. It is usually written
once with a high-power laser that burns spots in a dye layer and turns it dark that
appears as pit on the surface. Such pits are read by a laser beam that reflects into
a phototransistor. Due to variations in the thickness of the disk, vibrations, etc., a
focusing lens is used to image the pits onto the phototransistor. Data access time
of optical disk varies from 200 to 350 minutes with transfer rate of 150 KB/s to
600 KB/s.

USB Flash Drives (Commonly Called Pen Drives): These are typically small,
lightweight, removable and rewritable. They are one the most popular modes
used for data transfer because they are more compact and generally faster, able to
hold more data (commonly used capacity of 2 GB) and more reliable (due to their
lack of moving parts and their more durable design) compared to the floppy disks.
These are NAND-type flash memory data storage devices integrated with a
universal serial bus (USB) interface.

Magneto-Optical Disk: A magneto-optical disk is based on the same principle
as the optical disk. Both have capacities in the range of 128 MB, 230 MB, 1.3
GB. The only difference is that it uses a layer of magnetic grains that are reoriented
by the magnetic write head so that they either block or allow light to reflect off of
the backer. As in a floppy disk, the read-write media is stored in a self-sealing
rigid case. The time required to access the data is 16–30 minutes, with transfer
rate of 2 to 3 MB/s.

Networking and Data Transmission Devices

With the advent of the Internet, networking has become an important component
of today’s computer system. Hence, each system should provide network facility.
Networking is one of the most important parts of computer peripherals. Although
the data transfer is possible through various media, the current computer network
is usually built on top of the existing telephone network. Ethernet is commonly
used as a media for data transfer. It can transfer data at the rate of 3 Mbit per
second. It is an implementation of a one-wire bus. Networking can be done through
Local Area Network (LAN) or Wide Area Network (WAN) or wireless
communication (mobile communication). LAN connects computers within a few
kilometers. Asynchronous Transfer Mode (ATM) is the new technology for high
bandwidth network (30 Mbit to Gbit). WAN is designed for long-distance transfer.
ARPANET is the first such network. For WAN, phone lines (28 kbits/s), copper
and coaxial cables (30 Mbits/s), or optical fibers (1 Gbit /s) are used. Detail of
networks is beyond the scope of this curriculum. However, it is another example
of I/O peripheral designed specifically for the computer industry.

Human-Interactive I/O Devices

The human-interactive devices can be further categorized as direct and indirect.
Direct devices are those that interact with people. These devices respond to human
action and display information in real-time at a rate that complements the capabilities
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of people. The main job of these devices involves the translation of data between
human-readable to machine-readable forms and vice versa. Direct I/O devices
include the keyboard, mouse, trackball, screen, joystick, drawing tablet, musical
instrument interface, speaker and microphone.

Indirect devices do not interact with users. These device are used where
human are not directly involved in accepting the input or producing the output such
as a scanner or a printer. These devices also perform the data translation in the
format acceptable to machine. But they do not respond directly to a human in
real-time.

Characteristics

Individual devices are typically made up of many component parts which, in turn,
affect the rate of the speed at which data can be transferred. Each device inevitably
consists of both electronic and mechanical elements. An output event, obtained in
some form of electrical signal (binary data obtained after processing from process),
needs to be converted into a signal that allows the mechanical movement of the
device to occur. As a result, this conversion of signals takes longer access times
and subsequently results in the lower data transfer rates. Similar event may occur
in an input event where mechanical signal is converted to electrical signal. In addition,
regular intervention from the input/output (I/O) controller is required to facilitate
this action. The actual intervention from the I/O controller further slows down the
data transfer rates. Another characteristic of an input/output device is evidenced in
the way the data are written or read from a storage device. These devices are
broadly categorized into two types:

 Character Devices: They transfer data as one character at a time. Here data
are handled in a series of bytes (byte stream), that is, data are as one character at
a time. There is little structure (if any) of a byte stream. Line printers are examples
of character-oriented devices.

Block Devices: Here data are handled in blocks that are fixed in size. The data
are transferred as one block at a time. This technique was originally designed to
save space on a magnetic tape and to reduce the number of input/output requests
needed.

The human-interactive devices can further be classified as input devices and output
devices.

Input Devices

Input devices collect the information from the end user or from a device and convert
this information or data into a form which can be understood by the computer. We
characterize an input device as good if it can provide useful data to the main
memory or the processor directly and timely for processing. Some common input
devices which allow to communicate with the computer are as follows:

Keyboard

A keyboard is one of the most common input devices attached to all computers.
This input device may be found as part of an on-line/interactive computer system
used for entering the character. The layout of keyboard is similar to the traditional
typewriter of the type QWERTY as it is designed basically for editing the data. In
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other words the same function as that of a keyboard. However, the keyboards of
a computer contain some extra command keys and function keys. They contain a
total of 101 to 104 keys. One can input the data by pressing the correct combination
of keys to input data. Other keyboard layouts that have been used include
DVORAK, MALTRON, VELOTYPE, all of which have been developed in an
attempt to increase data entry speed. If we consider the configuration of keyboard,
it is just an assembly of switches that are logically arranged in the form of a matrix
as shown in Figure 4.23. When a key is pressed (mechanical action), the switch
connecting a row and column of wires is energized and the combination specifies
a particular key.
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Fig. 4.23 Logical Arrangements of Keys

When a combination of keys is pressed, an electrical signal corresponding
to it is generated. The computer can recognize the electrical signal and a byte
stream for that key is generated which is forwarded to the system for processing.
If we study the working of keyboards, the electronics of the keyboard has to
perform two functions:

 It must ‘Debounce’  the key pressed, i.e., the keys must have a tendency to
bounce back as soon as they are released so that switch comes back to
open state.

 It must translate the row and column into a standard code and then send
this as a sequence of pulses to the CPU. Corresponding to each combination
of key, there is a unique code stored in table lookup. Thus translation is
done through a table lookup, and the corresponding electrical signal is
generated through a circuit called the Universal Asynchronous Receiver/
Transmitter (UART). A typical keyboard produces bursts of character codes
at a rate of up to 3 per second (120 words per minute) but the average data
transfer rate is even lower.

Pointing Devices

There are many pointing devices, such as light pen, joystick, mouse, etc.

Mouse: Of all the pointing devices, the mouse is the most popular device used
with keyboard for accepting input. Its popularity is primarily due to the fact that it
provides very fast cursor movement providing the user the freedom to work in
any direction. It rolls on a small ball and has two or three buttons on the top. As
the mouse is moved on a flat surface, the cursor on the screen moves in the direction
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in which mouse moves. Two commonly used mouse are mechanical mouse and
optical mouse.

Mechanical Mouse: As shown in Figure 4.24(a), in a mechanical mouse, there
is a ball that protrudes under the housing. This ball is rolled across a flat surface.
The ball movement turns a perpendicular pair of shafts inside the housing. The
shafts drive encodes the distance travelled by using an encoder that consists of a
clear plastic wheel with radial lines printed on it. This type of mouse uses LED and
phototransistor to sense the ball movement and generate pulse corresponding to
mouse movement.

Let us study how this translation exactly takes place. The basic principle
behind the working of a mouse is there is an LED shines that through plastic wheel
fall onto a phototransistor, and as mouse moves there is a variation in the light
reaching the phototransistor is observed. This variation depends on the number of
line it passes on the radial wheel and leads to generation of pulses. This pulse
count will be in proportion to distance moved. The pulse generated can either be
counted in the mouse itself or it can be sent to the computer for counting. Usually
a pair of phototransistors is used so that it can be determined in which direction
the shaft is rotating. Thus according to the distance the mouse covers on the flat
surface, the corresponding cursor position moves on the screen.

Optical Mouse: In an optical mouse, as shown in Figure 4.24(b), we use a pair
of LEDs. These LEDs shine on a special reflective pad which is printed with a grid
of lines having two different colours; generally blue lines run horizontally and black
lines run vertically. Two phototransistors are used to sense the reflected light. They
determine direction in which mouse is moved across the pad. Each phototransistor
is sensitive to one colour and is elongated in the particular direction. Like in
mechanical mouse, the distance covered is measured by the count of the pulse that
is resulted from the reflections of the dots. These pulses are either sent to the
computer for counting or the pulses are counted in mouse only and the count result
is sent to the computer.

y roller
x roller

x axis

y axis

Ball touching the rollers 
rotates them via friction

       

Photosens or detects
crossing of grid lines

Mouse pad

    (a) Mechanical mouse (b) Optical mouse

Fig. 4.24 Mechanical Mouse and Optical Mouse

The mouse is one of the devices designed solely for the computer industry.
It can send data at the rate of 20 bytes per second. The information is sent to
processor in serial manner, same as in the keyboard.
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Working of the trackball is similar to a mechanical mouse. The only difference
is that in trackball, the ball used is typically larger, and the user rolls it with his or
her fingers or hands. The objective of trackball is again the cursor movement.

Joystick: A joystick is specially used in systems that are designed for gaming
purposes. It is based on the principle of electricity, i.e., it is a resistive device. It
consists of a stick that turns the two shaft potentiometers, one for X direction and
the other for Y direction. The movement of stick is just like the volume knob on a
radio. Different positions of potentiometer result in different voltage outputs. Using
an Analog-to-Digital Converter (ADC), the output from the potentiometer’s
resistance at that particular position is converted into a corresponding number.
Thus, in case of joystick also, the distance covered will give a particular output.
This output of the ADC is then serialized and sent to the computer for further
processing in similar manner as in a keyboard.

Voice Input Systems

A system that enables a computer to recognize the human voice is called the
voice-input system. The two commonly used voice input systems are: microphone
and voice recognition software.

Microphone: The microphone turns acoustical pressure into a variation in voltage.
The digital value of this voltage is obtained by dividing the analogue signal at regular
intervals (the sampling rate) and average integer value of each sample is accepted
as output. This digitized signal can be used for recording, as in audio CD, or can
be converted into text by processing it by voice recognition software.

Voice Recognition Software: It is complex software. To extract phonemes and
whole words from a voice message, we need software that is a combination of
both signal processing and artificial intelligence techniques. Thus, we need a very
powerful machine and a dedicated signal processing computer to implement it.
But then also it may be limited to a single person for which it is trained or if there
are multiple speakers we have to limit for just a small number of words and phrases.

Source Data Automation (Scanner)

Often the data supplied is not in text format. For example, data may be in the form
of pictures, etc. In such cases, the keyboard cannot be used as it can enter data
through pressing a combination of keys. We need some devices that can collect
data at their point of origin in digital form. Scanner is one such device.

Scanner is used to accept an input in any graphical format, store it in digital
format and display it back if required. It is an optical device that can read text or
illustrations printed on paper and translate this information into a form that a computer
can use. In order to scan a black and white image, it divides the page into grid of
boxes. If a box is to be filled, i.e., black in colour 1 is stored corresponding to that
box else 0 is stored. In case of gray scaling and coloured images, the same principle
is applied. However, the only difference is that instead of one bit for one box in
case of black and white images, here there are 24 bits corresponding to each box.
Thus, a scanner digitizes an image by storing a combination of bits corresponding
to each box. The result is a bit matrix where row and column value represent the
grid positions and value stored is value corresponding to the box. This is called a
bit map. This bit map can be stored in a file. It can also be manipulated by
programmers and displayed on a screen.
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Optical scanners do not distinguish between text and illustrations. For them,
all images are represented as bit maps. Hence, the editing of textual data is not
possible in scanned image. To edit text read by an optical scanner, we need an
optical character recognition system that decodes the bit image into ASCII
characters. The common optical scanner devices are: Magnetic Ink Character
Recognition (MICR), Optical Mark Reader (OMR) and Optical Character Reader
(OCR).

MICR: It is a popularly used technique in the banking sector. All banks
now issue cheques and drafts. As cheques enter an MICR machine, they
pass through the magnetic field which causes the read head to recognize the
character of the cheques. It has vastly helped the banking sector in
authenticating the cheques.

OMR: This technique is vastly used in evaluating the objective answer-
sheets. The students appearing in an objective test have to mark the answer
by darkening a square or circular space in their answer-sheets by pencil.
These answer- sheets are directly fed to OMR machine which by observing
markings evaluates the sheets.

OCR: This device can read any printed character by comparing the pattern
that is stored in computer. We keep a character of a hand-written image on
a piece of paper and put it inside the scanner. The scanned pattern is
compared with pattern information stored inside the computer. Only those
patterns that are matched are read, this process is called a character read
and the remaining unidentified patterns are rejected.

Digital Camera (Video Camera and Tape)

A video camera records the image, converts it into digital format via an ADC and
stores it on a frame buffer. A data rate of 28 MB/s can be achieved for a fully
digitized system where there is no compression. But it can be improved to 80 kB/s,
by using compression, which can lead to loss of some information. It can be further
improved to 160 kB/s with broadcast quality. A dedicated digital signal processor
is used for compression of data to be done between the ADC and the frame
buffer.

Sensor

Sensors are non-interactive type of devices, i.e., they are the devices which accept
the non-online input and send this input data to computers. The inputs of sensors
are the physical properties of devices, such as temperature, magnetic field, etc.
Based on these properties, various types of sensors are designed, such as chemical
sensors (that sense chemical combination), temperature sensors (that sense
temperature), magnetic field sensors, etc. These sensors can have binary input ,
such as on and off, or multi-valued analog input, which is converted to digital value
via ADC, and occasionally image as in case of ultrasound, CAT and MR scans,
radar, IR, UV, radio, etc. Data transfer rates vary from bytes per hour to GB/s,
depending on input.
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Actuator

Actuators are also non-interactive input devices widely used for accepting input
from control devices, such as switches, valves, solenoids, motors, stepper motors,
linear motors, lights, lasers, electron beams, X-rays, hydraulic pumps, and so on,
that are controllable by computers. In these devices also the data transfer rates
vary from B/s to kB/s.

Output Devices

Output devices are those equipments that accept data and programs from the
computer and provide them to users. Output devices are commonly referred to as
terminals. Terminals can be classified into the following two types: (i) A hard copy
terminal that provides a printout on paper and (ii) A soft copy terminal that provides
visual copy on the monitor.

Terminals can also be classified as dumb terminals or intelligent terminals depending
upon how they work.

Some important output devices are discussed as follows:

Visual Display Unit ( Monitor)

Visual Display Unit (VDU), popularly known as monitor, is the most popular
output device. It resembles a television screen. This device may form part of an
interactive computer system that displays a response, message or request received
from the computer to the user. No further processing will take place until the
necessary action is taken by the user. The response time from the user is inevitably
far slower than any action undertaken by the processor.

A monitor consists of a Cathode Ray Tube (CRT). It is attached separately
to the main computer system via a cable. In a CRT tube, an existing electron beam
(essentially a small linear accelerator) heads toward the screen. The position of
beam is controlled by an orthogonal pair of charged plates. These plates
appropriately deflect the charged electron beam. The intensity of electron beam
scanning the screen can be varied to produce variations in brightness on the screen.
The screen is coated with phosphorescent material which emits light when the
electrons beam strike it. Thus, the kinetic energy of electron beam is converted
into light. The material continues to emit light for a brief period after it is struck by
the electron beam (called the decay period), so that the screen appears to remain
evenly illuminated. In coloured screen, there are triads of phosphor dots where
each dot emits one of the primary colours. The colour pattern is achieved by a
mask dot pattern. The plates that control the beam movements are modulated so
that it produces the desired colour pattern by illuminating the appropriate
combination of signals in each triad (Refer Figure 4.25).
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Fig. 4.25 Image Formations on CRT

The quality of screen is determined by the following factors:

 The resolution is an important parameter of screen. It defines the sharpness
and clarity of an image. It depends on the number of pixel on the horizontal
and vertical lines and it ranges from 320 by 200 to 1600 by 1200. The
typical monitors have resolution of 640  480. High-resolution monitors
are becoming common these days.

 The range of colour is also an important parameter of screen. It depends
on the number of bits associated with each pixel and ranges from 8 to 24
bits.

 The pitch, i.e., the pixel per inch, which is usually 32 to 30, determines the
quality of a screen.

 The size of monitor, which is measured diagonally including a portion of
the tube, is an important parameter of determining the quality of a monitor.
The size of monitors ranges from 12–21 inches.

 The refresh rate, i.e., the number of times the electron beam scans the
screen in a second is another important parameter of a screen. It is usually
30 Hz per frame.

Liquid Crystal Display (LCD)

Nowadays common monitors are replaced by LCDs as display devices. LCDs
are specially used in laptops because they are compact, sleek and light weight. An
LCD uses thin, flat sheet made up of liquid crystals, an organic substance that has
both a liquid form and a crystal molecular structure. This thin sheet is placed in
front of a light source. Under normal conditions, each molecule of liquid crystal
acts as pixels get twisted from their natural state and allow the light to pass through
them. When an electric field is set up across the cell, the molecules get stretched,
blocking the light. How much light is blocked depends on the electric field. Pixels
are completely darkened when there is no electricity. In a coloured LCD, there
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are three sub-pixels, one for each primary colour, i.e., green, blue and red. Now
depending on the electric field, each pixel will get different light and correspondingly
produce the final image.

Printer

Printer is a hardcopy terminal used to get a printed copy of the processed text or
result on paper. A large variety of printers are available in the market, with each
designed for different applications. Printers are typically categorized according to
speed, the method of printing (e.g., impact or non-impact printing) and the quality
of output (e.g. letter quality, high, low, etc.). Line printers are considered impact
printers, where the letters themselves make contact with the paper surface. This
contact involves a high degree of mechanical movements to produce output. As a
result, impact printers are typically slower than non-impact printers. Laser printers
are non-impact printers. No keys physically hit the paper. In laser printer, a beam
of light writes an image onto the surface of the drum (which forms part of the
printer). This, in turn, causes the toner (form of ink) to be deposited and transferred
to the paper. Very fast laser printers with a high standard of output are now available.
The data transfer rates from the computer to a printer are high as human intervention
is not involved. Printer speed is 12 pages per minute (where each page is set at 80
characters wide × 66 lines)

= 12 × 5280 bytes per minute = 63,360 bytes per minute
= 356 bytes per second

Impact printing and non-impact printing are discussed as follows:

Impact Printing: In impact printing, each character is printed on the paper by
striking a pin or hammer against an inked ribbon. According the striking pattern,
the desired shape appears on the paper. Because hammering is the mechanical
process, such printers have very slow speed. The most common printer based on
this technology is Dot-Matrix printer, which can print typically 120 to 200 characters
per second. These are again of two types:

(i) Daisy wheels which can print 40 characters/second. Here the bold
characters are achieved by overprinting the text once.

(ii) High quality matrix printer, which can also print 40 characters/second,
but with a higher quality, as in such a printer hammer wires put impression
on each character four times. If this printer is used, we can also have draught
quality print with one pass for every character. In this case, the printing
speed of 180 characters/second can be achieved. Bold characters are
achieved by overprinting eight times with a horizontal displacement of typically
0.004 inches. Lists of characters that can be printed according to fonts are
stored.

Non-Impact Printing: The non-impact printing technology prints characters and
other images on the paper, or any surface by using principles of electrostatic
chemical, heat, lasers, photography, or ink-jets. Ink-jet printers and  laser-jet
printers are prominent examples of non-impact printing.
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Ink-Jet Printers: These printers spray tiny droplets of coloured inks on the paper.
The pattern of printing depends on how nozzle sprays the ink, which has a quality
to get dried within few seconds.

Laser-Jet Printers: The working of laser-jet printers is similar to photocopiers.
Nowadays there is a tendency to design a device which is hybrid of photocopiers,
scanners and printers. In laser-jet printers, there is rotating drum, as shown in
Figure 4.26, on which the paper is rotated. Such printers use a low- power laser
that charges the paper on the drum with a small electrical charge at the point
where a black dot is required. This paper is then passed over a toner tray. The
toner tray contains toner, a fine black powder which is attracted to the paper
wherever it is charged. As shown in Figure 4.26, the toner is then fixed with a
heater. The heater melts the toner onto the paper. The excess of toner is then
removed.
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Fig. 4.26 Mechanism of a Laser Printer

Plotters

Plotters are used for printing the big charts, drawings, maps and three-dimensional
illustrations, specially used for architectural and designing purposes.

Speaker and Sound Generation, Text to Speech Synthesis

To produce sound signal as output is just opposite to the acceptance of sound
input, as discussed earlier. The computer sends digital value to a Digital to Analog
Converter (DAC). DAC translates it into an analog voltage which is further amplified
and sent to the speaker. Speech is then synthesized using a lookup table of
phonemes. These phonemes are clubbed together to form words.

We have studied a variety of input and output devices. As already discussed,
all devices have different data transfer rates. The transfer rate of few popular
devices and their usage are given in Table 4.9 and are also shown in Figure 4.27.
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Table 4.9 Transfer Rate and Behaviour of Popular Devices

Device Behaviour Data Rate

Keyboard Input 3 bytes/s

Mouse Input 20 bytes/s

Scanner Input 0.2 MB/s

Laser printer Output 0.1 MB/s

Graphics display Output 30 MB/s

Floppy disk Storage 50 kB/s

CD-ROM Storage 0.5 MB/s

Magnetic disk Storage 2 MB/s

Magnetic tape Storage 2 MB/s
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Hard disk
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Fig. 4.27 Typical I/O Device Data Rates

4.8.1 Input-Output Interface

An Input/Output (I/O) interface is an entity that controls the data transfer from
external device, main memory and/or Central Processing Unit (CPU) registers.
We can say that it is an interface between computer and I/O devices (external
devices) and is responsible for managing the use of all devices that are peripheral
to a computer system. It attempts to make an efficient use of all available devices
while retaining the integrity of data.

The major problems with the I/O device management are as follows:

 There are various peripherals working on different principles. For example,
few of them work on electromechanical principle, few on electromagnetic
principle and few on optical principle and so on. As each of them uses
different methods of operation it is impractical for the processor to understand
and interpret all. Thus, designing an instruction set that can convert the
signals into corresponding input value for all devices is not possible.

 As a new I/O device is designed on some new technology, it is required to
make the device compatible with the processor. Designing an instruction
set for every new device is not at all feasible.
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 The rate of data transfer is usually much slower than the processor and
memory. Therefore, it is not logical to use the high-speed system bus that
communicates directly between I/O device and processor. A synchronization
mechanism is required for data transfer to be handled smoothly.

 Peripheral devices accept input in variety of formats. Thus, they may use
different data formats and word lengths as used in processor and main
memory.

 The operating mode of I/O devices is different for different devices. It must
be controlled so that it may not disturb the operation of other devices
connected to the processor.

To resolve these problems, there is a special hardware component between
CPU and peripheral to supervise and synchronize all input and output transfers.
Figure 4.28 illustrates the relationship between the CPU, the peripheral interface
chip and the peripheral device. Although the peripheral interface chip may appear
just like a memory location to the CPU, it contains specialized logic that allows it
to communicate with the external devices. There are a number of such I/O
controllers in a processor for controlling one or more peripheral devices.
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Fig. 4.28 Relationship Between CPU, Peripheral Interface Chip and Peripheral Device

Accessing I/O Devices

The I/O modules are designed with the aims to:

 Achieve Device Independence: It aims to facilitate more simplified
software development. In other words, it removes the complexities of
individual devices and provides a ‘Translator’ for the use of the device.

 Handle Errors: It should ensure that I/O data are correctly handled. It
informs the users in event of detection of any error.

 Speed up Transfer of Data: As the I/O is typically the slowest part involved
in a program’s execution, the direct memory access method will apply on a
range of algorithms to enhance both the software and hardware speeds.

 Handle Deadlocks: It should monitor conditions that can ‘Lock up’ a
system (e.g., resource holding) and should take steps to avoid these
conditions.

 Enable Multi-user Systems to use Dedicated Devices: It should assign
sensible printing instructions, while trying to prevent the erroneous output of
data.
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Each device may have its own controller that supervises the operations of that
device. A typical communication bus system between processor and devices is
shown in Figure 4.29.
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Fig. 4.29 Connections between I/O Device and Processor through I/O Bus

There are three types of buses, namely data bus, address bus and control bus.
Each device has an interface through which it is connected to a bus (Refer Figure
4.29). The interface decodes the signal received from the input device in the format
that processor can understand, and also interprets the control signal received from
processor for peripheral devices. It supervises and synchronizes the data flow
between external device and processor. Many devices also have a controller which
may or may not be physically integrated on the interface chip. The controller is
often used for buffering the data, Integrated Development Environment (IDE) is
used as a disk controller.

Functions of I/O Interface

The main functions of the interface are as follows:

 Control and Timing Signals: Coordination in the flow of traffic between
internal and external devices is done by control and timing signals.

 Processor Communication: As a bus is usually employed for data transfer,
each interaction between the CPU and the I/O module involves bus
arbitration. As the processor needs to communicate with the external device,
I/O module must perform the following actions:

o Command Decoding: I/O module accepts commands, sent as signals
on the control bus, from the processor.

o Data: Through data bus, the data is exchanged between the processor
and I/O module over the data bus.

o Status Reporting: Different devices have different speeds. Few are
very slow compared to processor. Hence, it is required for I/O module
to know the status before the processor sends the data. Along with
various error signals used to verify the data sent, the common status
signals used are BUSY and READY.

o Address Recognition: I/O module must recognize a unique address
for each peripheral it controls.
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 Device Communication: In similar manner as I/O module communicate
with processor it has to communicate with device to fetch status information,
data transfer rate, etc.

 Data Buffering : Data comes from main memory in rapid burst and must
be buffered by the I/O module and then sent to the device at the latter’s
rate.

 Error Detection I/O module not only detects error but also reports these
errors to the CPU.

Figure 4.30 shows the block diagram of I/O Interface
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Fig. 4.30 Block Diagram of I/O Interface

The various steps taken for I/O communication with peripheral devices are as
follows:

 Processor sends device address of the device it wants to communicate with
on the address bus.

 Interface attached to I/O bus contains address decoder. When an interface
finds that the device address is on the address line, it activates its path
between the bus line and the devices that it controls.

 Processor interacts with I/O module to check the status of external device.

 I/O module returns status.

 The processor provides the operation code on the control line.

 If device is ready, processor gives I/O module command to request data
transfer.

 I/O module gets a unit of data from device.

 Data is transferred from the I/O module to the processor.

 Interface interprets the opcode and proceeds accordingly.

There are four types of commands that an interface may receive.

 Control Command: This activates the device and informs the device what
action to be performed. A particular control command depends on a
particular device.
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 Status Command: Before the peripheral device performs the action
required by the processor, it should first check the status of device and
interface. In other words, the printer should not get new data until it has
printed the pervious data. If there is an error in the device, the same may be
responded back to the processor.

 Data Output Command: This transfers data from the bus into one of the
interface registers.

 Data Input Command: The interface receives data from the device and
places it in its registers which can be forwarded to the processor by putting
these data on the data line of the bus.

I/O vs Memory Bus

The I/O devices need to communicate with not only the processor but also with
the memory unit. There are two ways in which computer buses can communicate
with memory.

(i) Using Separate Buses for Memory and I/O Device: We have two
separate sets of data, addresses and control buses, one for accessing memory
and other for I/O. It is especially useful in those systems that use another I/O
processor along with CPU. Memory bus communicates both with I/O
processor and with CPU. Figure 4.31 shows independent I/O bus.

CPU

Independent I/O Bus Memory
Bus

Interface

Peripheral

Interface

Peripheral

Memory

Fig. 4.31 Independent I/O Bus

(ii) Using common bus for I/O device and memory: Separate read and
write control line for memory and I/O device is used. Thus enabling the
read or write control lines the CPU specifies whether the address bus
contains the address of memory location or the interface address. Figure
4.32 shows the diagram for common bus architecture.

CPU

Memory InterfaceInterface

PeripheralPeripheral

Common Memory
& I/O Bus

Fig. 4.32 Common Bus Architecture
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Addressing

There are the following two ways in which addressing can be done:

(i) Isolated I/O: Here a separate address space is used for both memory and
I/O devices and we need separate memory and I/O select lines. The CPU
has distinct input and output instructions. Each of these instructions is
associated with address of an interface register. The steps taken for
communication are:

a. The CPU decodes the operation for input or output.

b. The address of associated device is placed on the common address
bus.

c. It enables I/O read (for input) or I/O write (for output) control line.

d. External device now knows that the address on the bus is meant for the
interface and not for memory.

Same happens for memory read operation, in which case I/O interface
do not participate.

The advantages of isolated I/O are as follows:
 Small number of I/O instructions
 Commonly usable

(ii) Memory-Mapped I/O: It is a single address space for storing both memory
and I/O devices. The processor treats the status and data registers of I/O
module as memory location. Thus, computer in this case can use memory
type instructions to access I/O data. For example, load and store instructions
can be used for reading input and writing output for registers, respectively.

The advantages of the memory-mapped I/O are as follows:

 More efficient programming allowed

 Single read line and single write lines needed

 Commonly usable

The disadvantages of the memory-mapped I/O are as follows:

 Valuable memory address space used up

 I/O module registers treated as memory addresses

 Same machine instructions used to access both memory and I/O devices

4.8.2 Asynchronous Data Transfer

All the operations in a digital system are synchronized by a clock that is generated
by a pulse generator. The CPU and I/O interface can be designed independently
or they can share common bus. If CPU and I/O interface share a common bus,
the transfer of data between two units is said to be synchronous. There are some
disadvantages of synchronous data transfer, such as:

 It is not flexible as all bus devices run on the same clock rate.

 Execution times are the multiples of clock cycles (if any operation needs
3.1 clock cycles, it will take 4 cycles).
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 Bus frequency has to be adapted to slower devices. Thus, one cannot take
full advantage of the faster ones.

 It is particularly not suitable for an I/O system in which the devices are
comparatively much slower than processor.

In order to overcome all these problems, an asynchronous data transfer is
used for input/output system.

The word ‘Asynchronous’ means ‘Not in step with the elapse of time’. In
case of asynchronous data transfer, the CPU and I/O interface are independent of
each other. Each uses its own internal clock to control its registers. There are
many techniques used for such data transfer.

Strobe Control and Handshaking

In strobe control, a control signal, called strobe pulse, which is supplied from
one unit to other, indicates that data transfer has to take place. Thus, for each
data transfer, a strobe is activated either by source or destination unit. A strobe is
a single control line that informs the destination unit that a valid data is available on
the bus. The data bus carries the binary information from source unit to destination
unit.

Data Transfer from Source to Destination: The steps involved in data transfer
from source to destination are as follows:

(i) The source unit places data on the data bus.

(ii) A source activates the strobe after a brief delay in order to ensure that data
values are steadily placed on the data bus.

(iii) The information on data bus and strobe signal remain active for some time
that is sufficient for the destination to receive it.

(iv) After this time the sources remove the data and disable the strobe pulse,
indicating that data bus does not contain the valid data.

(v) Once new data is available, the strobe is enabled again.

Data Transfer from Destination to Source: The steps involved in data transfer
from destination to source are as follows:

(i) The destination unit activates the strobe pulse informing the source to provide
the data.

(ii) The source provides the data by placing the data on the data bus.

(iii) The data remains valid for some time so that the destination can receive it.

(iv) The falling edge of strobe triggers the destination register.

(v) The destination register removes the data from the data bus and disables
the strobe.

The disadvantage of this scheme is that there is no surety that destination
has received the data before source removes the data. Also, destination unit initiates
the transfer without knowing whether source has placed data on the data bus.

Thus, another technique, known as handshaking, is designed to overcome
these drawbacks.
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Handshaking

The handshaking technique has one more control signal for acknowledgement that
is used for intimation. As in strobe control, in this technique also, one control line is
in the same direction as data flow, telling about the validity of data. Other control
line is in reverse direction telling whether destination has accepted the data.

Data Transfer from Source to Destination: In this case, there are two control
lines request and reply. The sequence of actions taken is as follows:

(i) Source initiates the data transfer by placing the data on data bus and enable
request signal.

(ii) Destination accepts the data from the bus and enables the reply signal.

(iii) As soon as source receives the reply, it disables the request signal. This also
invalidates the data on the bus.

(iv) Source cannot send new data until destination disables the reply signal.

(v) Once destination disables the reply signal, it is ready to accept new signal.

Data Transfer from Destination to Source: The steps taken for data transfer
from destination to source are as follows:

(i) Destination initiates the data transfer sending a request to source to send
data telling the latter that it is ready to accept data.

(ii) Source on receiving request places data on data bus.

(iii) Also, source sends a reply to destination telling that it has placed the requisite
data on the data bus and has disabled the request signal so that destination
does not have new request until it has accepted the data.

(iv) After accepting the data, destination disables the reply signal so that it can
issue a fresh request for data.

Asynchronous Serial and Parallel Transfers

The data transfer can be serial or parallel. Thus, to transfer a 16-bit data in parallel
format, we require 16 transmission lines, one line for each bit. In serial transfer,
each bit is sent one after another in a sequence of event. Serial transmission is
slow. However, at the same time, it requires just one line, hence, simple to implement.
Parallel transmission, on the other hand, requires multiple paths and is a faster
mode of transmission.

CPU

I/O Write
I/O Read
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Interrupt Request

Microcontroller

Keyboard Controller
and Interface

Input
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Output
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Control
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Microcontroller
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Keyboard Clock

Keyboard Serial Data
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Fig. 4.33 Keyboard Controller and Interface
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The keyboard has a serial asynchronous transfer mode. In this technique, the
interactive terminal inserts special bits at both ends of the character code. Thus,
each character transmission has three types of bits: a start bit, the character bits
and stop bits. Usually the transmitter rest at 1 state, it happens when no transmission
is done. The first bit, which is 0, is first sent indicating that the character transmission
has begun. The last bit is always  1.

01 1 1 10 0

Character BitsStart
Bit

Stop
Bits

0

Fig. 4.34 Format of Asynchronous Serial Data Transfer

The various stages in an asynchronous data transmission are as follows:

1. When no transmission is done, the line is kept at 1 state.

2. The character transmission initiates with a start bit which is always 0.

3. The receiver can detect the start bit when line goes from the 1 to 0.

4. The character follows the start bit.

5. The receiver knows the transfer rate and the number of bits to be transferred.

6. After the last bit of character is sent, one or two stop bits of 1 are sent.

7. The stop bit is detected when the line returns to the 1 state for at least one
bit.

4.8.3 Mode of Transfer

Let us summarize the steps taken to write a block of memory to an output port
such that one byte is transferred at a time.

(i) Firstly, we have to initialize memory as well as the output port addresses.

(ii) The following steps are repeated until all bytes are transferred:
(a) Read one byte from memory.
(b) Write that byte to output port.
(c) Increment memory address so that next byte can be transferred during

the next clock pulse.
(d) Verify if all bytes are transferred:

If yes, go to the end of Step (ii).
Else, wait until output port is ready for transferring the next byte. Go
to Step (ii)a

Using this approach, we can transfer the data with a speed which is much less than
the maximum rate at which they can be read from the memory. Practically, there
are various transfer modes through which the data transfer between computer and
I/O device takes place with a much faster rate. These modes are as follows:

1. Programmed I/O

2. Interrupt-Initiated I/O
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3. Direct Memory Access (DMA)

4. Dedicated processor, such as Input-Output Processor (IOP)

5. Dedicated processor like Data Communication Processor (DCP)
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Fig. 4.35 Flow Chart of Various Data Transfer Modes

1. Programmed I/O

Programmed I/O operations are the results of I/O operations that are written in
the computer program. Each data transfer is controlled by an instruction set stored
in the program. When the processor has to perform any input or output instruction,
it issues a command for the appropriate I/O module that executes the given
instruction as shown in Figure 4.35(a). Processor has to continuously monitor the
status of I/O device to see whether it is ready for data transfer. Once it is ready,
I/O module performs the requested action and then setting the appropriate bits in
the I/O status register alerts the processor for further action.

2. Interrupt-Initiated I/O

In programmed I/O, the processor has to check continuously till the device becomes
ready for transferring the data. It uses the interrupt facility and issues a command
that requests the interface to issue an interrupt when the device is ready for data
transfer. Here the interrupt is generated only when device is ready, and hence, till
device becomes ready, the processor can execute another program instead of
checking the device as it has to do in programmed I/O. Once processor receives
an interrupt signal [Refer Figure 4.35(b)], it stops the current processing task and
starts I/O processing. After the completion of I/O task, it returns back to original
task.
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3. Direct Memory Access

In direct memory access, the interface transfers the data directly to memory unit
via memory bus. The processor just initiates the data transfer by sending the starting
address and the number of bits to be transferred and proceeds with the pervious
task. When the request is granted by the memory controller, the DMA transfers
the data directly into memory [Refer Figure 4.35(c)]. It is the fastest mode of data
transfer.

4. Input–Output Processor

IOP is a special dedicated processor that combines interface unit and DMA as
one unit. It can handle many peripherals through DMA and interrupt facility.

5. Data Communication Processor

DCP is also a special-purpose dedicated processor that is designed specially for
data transfer in network.

4.8.4 Priority Interrupt

In the interrupt driven I/O techniques, the processor starts data transfer when it
detects an interrupt signal which is issued when device is ready. This helps processor
to run a program concurrently with I/O operations.

Interrupt driven I/O data transfer technique is based on the on-demand
processing concept. In this, each I/O device generates an interrupt only when an
I/O event has to take place like action to be taken if the user presses a keyboard
key. The transfer is done by the service routine that processes the required data.
The interrupt handler transfers the control to this routine. After the I/O interrupt is
serviced, the processor returns the control to the program which was interrupted
and is waiting to be executed.

Its main advantages are as follows:

 The processor does not have to wait for long for I/O modules.

 The processor does not have to repeatedly check the I/O module status.

Types of Exceptions

Interrupts are nothing but just a type of exception. As far as software is considered,
there are three types of exceptions:

(i) Interrupts: These are raised by hardware at anytime (asynchronous).

(ii) Traps: These are raised as a result of the execution of the program, such as
division by zero. As the traps are reproduced at the same spot if the program
parameters are the same as before, they are considered as synchronous.

(iii) System Calls: Also called software interrupts, system calls are raised by
the operating system to provide services for performing certain common I/
O tasks, such as printing a character, opening a file, etc.
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Fig. 4.36 Interrupt Driven I/O

Figure 4.36 illustrates the organization of a system with a simple interrupt-driven
I/O mechanism. In most microprocessors, during I/O operation interrupt request,
IRQ, is asserted by a peripheral device requesting attention. This request may or
may not be granted.

Techniques of Priority Interrupt

A priority interrupt establishes a priority over the various sources to determine
which request should be entertained first if several requests arrive simultaneously.
The system may allocate a priority. Usually, a high speed system, such as magnetic
disk, has a high priority, and one with slow speed, such as keyboard, has a low
priority. There are various techniques employed to decide which device to entertain
first if two devices interrupt the computer at the same time.

Polling

Polling is the technique that identifies the highest priority resource by means of
software. The program that takes care of interrupt begins at the branch address
and polls the interrupt source in sequence. The priority is determined in the order
in which each interrupt is entered. Thus, the highest priority resource is first tested
if interrupt signal is on the control branch to the service routine. Otherwise, the
source having next lower-priority will be tested and so on.

The disadvantage of polling is that if there are many interrupts, the time
required to poll exceeds the time available to serve the I/O device. To overcome
this problem, hardware interrupt unit can be used to speed up the operation. The
hardware unit accepts the interrupt request and issues the interrupt grant to the
device having highest priority. As no polling is required, all decisions are done by
hardware unit. Each interrupt source has its own interrupt vector to access its own
service routine. This hardware unit can establish priority either by a serial or a
parallel connection of interrupt lines.

Daisy Chaining

This method is used to establish priority by serially connecting all devices that
request an interrupt. The priority is located according to physical position of device
in the serial connection. As in this technique all devices are attached serially, the
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CPU issues grant signal to the closest device requesting it, i.e., the one closest to
the processor will have the highest priority. Devices request the interrupt by passing
a signal to their neighbours who are closer to the processor as shown in Figure
4.37. This technique is a hybrid of central and distributed arbitration. Here, if
device has an interrupt signal, it sets interrupt line into a low state and enables
interrupt input to CPU. If no interrupt is pending, the interrupt line stays in high
state. The input signal is received by the device 0 at PI (Priority Input). The
acknowledge signal passes on the next device through Priority Out (PO). Device
0 will pass the signal only if it has no interrupt request. If there is some pending
interrupt, the device 0 will block the acknowledge signal by placing 0 in the PO
output. It then proceeds to handle interrupt by placing Vector Address (VAD)
into the data bus.

 

CPU data bus

VAD 0

Device 0
P1 P0

VAD 1

Device 1
P1 P0

VAD 2

Device 2
P1 P0 To next

device

CPU
Interrupt request

Interrupt acknowledge

Fig. 4.37 Daisy Chain Priority Interrupts

To understand how it actually works, let us study one stage of daisy-chain priority:
A device with a 0 in its PI input will have a 0 in its PO output to inform the next-
lower priority device that acknowledges that signal is blocked. If the device is
requesting for an interrupt has a 1 in its PI input, it will intercept the signal by
placing 0 in its PO output. If device has no pending request and PI is 1, then it
transmits the acknowledge signal to the next device by placing 1 in its output.
Thus, a device having PI=1 and PO = 0 and one with highest priority among the
devices requesting interrupt (according to proximity with processor) places its
VAD on the data bus for processor. The circuit diagram of one stage of daisy
chain priority is given in Figure 4.38. Here Enable is one only if PI = 1, i.e., the
device has open interrupt acknowledge and a request for interrupt, i.e., RF = 1
else in all other condition the VAD is Disabled to be passed to data bus. The PO
will be 1 when there is no interrupt request from the device to processor, i.e.,
RF = 0 and PI =1, i.e., interrupt acknowledge is not blocked by pervious device.
Only in this condition, the request of the device of next lower priority can be
entrained. The truth table for one stage of the daisy chain priority is also given
(Refer Table 4.10).
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Table 4.10 Truth Table for One Stage of the Daisy Chain Priority Arrangement

PI RF PO Enable 
0 0 0 0 
0 1 0 0 
1 0 1 0 
1 1 0 1 
 

Disadvantages

The disadvantages of the priority scheme are as follows:

 The priority scheme is fixed by the device’s physical position on the bus and
cannot be changed in software.

 If a closer device also requests the bus, then the request from the more
distant device is blocked. It may lead to starvation for distant devices if a
high priority devices (one nearest to arbitrator) frequently request for the
bus

 Daisy chaining is a low cost technique and also susceptible to faults.

However to overcome the disadvantage of assigning priority according to physical
position, sometimes multiple request and grant lines are used with daisy chaining
to enable requests from devices to bypass a closer device and thereby implement
a restricted software controllable priority scheme.

Parallel Priority Interrupt

The parallel priority interrupt method uses a register whose bits are set separately
by interrupt signal for each device. Priority is assigned according to the bit value in
the interrupt register and a mask register is used whose purpose is to control the
status of each interrupt request. The mask register disables a lower priority interrupt
while a higher priority device is being serviced. Suppose there are four devices, as
shown in Figure 4.39. The interrupt register bits are set by the external condition
and cleared by the program instruction. The mask register has same number of
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bits as the interrupt register. It is possible to set or reset any bit in the mask register.
The ANDed output of bits of interrupt register and mask register are set as inputs
of priority encoder. The priority encoder applies the logic that if more than one
input arrives at the same time in the input, the request of one with highest priority
will be granted. The two output bits A0 and A1 of priority encoder are the part of
the vector address for each interrupt source. The two output bits tell the subroutine
which device is to entertained and stored in VAD.
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Fig. 4.39 Parallel Priority Interrupt Hardware

Interrupt Handling using Software Subroutine

Subroutine is an important concept used by programming language. A subroutine
is a self contained program (piece of instruction code) that may be invoked or
called by main program. After the subroutine has been executed, a return is made
to the point immediately after the subroutine call. The subroutine offers economic
advantage, i.e., the same piece of code can be reused making efficient use of
storage space. As it allows breaking a large program into smaller units, it also
provides advantage of modularity. The subroutine mechanism involves two
instructions, both of them basically involving branching.

 Call Instruction: Branching from current location to the location where
subroutine is stored.

 Return Instruction: Return from the subroutine to the place from where it
was called.

In order to implement the subroutine, we require a place to store the return address.
It can be:

 Dedicated register

 Start of subroutine
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 Top of stack, where the stack is the ordered set of element which can be
accessed only from the top.

Among them, the most powerful technique to handle subroutine is the use of stack.
When a CPU invokes a subroutine, it performs the following two functions:

 Pushes updated PC content (return address) on a stack.

 Loads PC with the starting address of subroutine, i.e., the address of the
first instruction of subroutine.

After execution of subroutine instruction, pop the top item on stack, i.e., the return
address of main program which has called it, to PC.

Let us understand how it works by using a simple example where the main program
starting at location 100 has a subroutine (Sub) call at address 120. The program
places its return address at the top of the stack, i.e., 121 (next instruction to be
executed after subroutine is over). Let us consider that the subroutine Sub starts
from 200. Once the address is stored on top of the stack, a branch microoperation
will be called and 200 will be loaded to PC so that on the next clock cycle,
instructions specified in the subroutine are executed. The execution of subroutine
using stack is shown in Figure 4.40.
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Fig. 4.40 Execution of Subroutine Using Stack

If a subroutine uses a data or address register, it will overwrite any ‘old’ data in it.
If you do not want this to happen, you must save the contents of the register on
entry to the subroutine and restore its contents on exit.

Following are certain properties of a subroutine:

 The subroutine call and return mechanism is automatic; therefore programmer
will not execute it explicitly.

 A subroutine can be called from more than one program. The top of stack
will store the return address of the program calling it.

 A subroutine call can appear in a subroutine, i.e., it can be nested.
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Understanding Nesting of a Subroutine Call

We can understand the nesting of a subroutine call with the help of an example.
The main program calls a subroutine Sub1 which, in turn, calls another subroutine
Sub2. When a called subroutine is finished, go back to the calling routine.

Figure 4.41 demonstrates how subroutine Sub1 is called from the main program
and how Sub1 itself can call a second subroutine Sub2.

Main program

BSR Sub1

N

Sub1

BSR Sub2

M

RTS

Sub2

RTS

Fig. 4.41 Nested Subroutine

Suppose Sub1 starts at address 200 and Sub2 starts at 300. When Sub1 is called,
the stack pointer will store 121 (the instruction in main program to be executed
once Sub1 is over). When Call Sub2 is made in Sub1 at address 230, the top of
stack will store 231 (next address). Once Sub2 is completed, the program counter
will have 231 and Sub1 will continue. On completion of Sub1, main program will
continue form location 121. The implementation of nested subroutine using stack
is shown in Figure 4.42.
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Fig. 4.42 Implementation of Nested Subroutine using Stack
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Features of Subroutine Nesting

Following are the features of subroutine nesting:

 Nesting Subroutines can be recursive, i.e., a subroutine can call itself.

 Subroutine may involve Parameter/Result Passing: If function Sub need some
CPU registers whose contents will be used by Main program again after
Sub is executed. Hence, it is required to save the content of these registers
somewhere before Sub and then restore after Sub. This passing of data can
also be implemented using some registers or main memory location. But
this approach may prevent the use of reentrant subroutine. Hence, an easy
solution is to use stack. Let us see how stack implements it. There are two
parameters as follows:

o Pass parameters (variables) to be used in the function or their addresses
from Main to Sub.

o Return the results from Sub to Main.

When the parameters have to pass, the stack pushes the return address. Also, the
parameters are pushed in the stack. The subroutine can access these parameters
from stack. Similarly, on return, the result can also be placed in the stack which
will  be used by main program using ‘Pop’ operation. The entire set of parameters,
including return address and parameters (registers/memory location holding these
parameters) passed, is referred to as stack frame (Refer Figure 4.43).
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Contents of
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for main

old top

bottom

Fig. 4.43 Stack Frame

4.8.5 Direct Memory Access (DMA)

Direct Memory Access (DMA) is an important data transfer technique. In DMA,
the data is moved between a peripheral device and the main memory without any
direct intervention of the processor. Although DMA requires a relatively large
amount of hardware and is complex to implement, it is the fastest possible means
of transferring the data between peripheral device and memory. It reduces the
CPU overhead as it requires no CPU involvement for continuous checking the
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device status, leaving the CPU free to do other useful work. It grabs the data
buses and address buses from the CPU and uses them for transferring the data
directly between the peripheral device and memory. The CPU provides an address
on the address bus specifying the memory location from where data is to be fetched
or location where data available on data bus is to be written on memory. DMA
uses a dedicated data transfer device that reads data coming from a device and
stores it in buffer memory that can be retrieved later by the processor. The DMA
technique is particularly useful for transferring the large amount of data, for example
images, disk transfer, etc., to memory. The data transfer in such cases through
programmed I/O is impractical. The transfer of small data packet through DMA is
not considered very effective as there is lot of overhead for establishing a DMA
connection. DMA requires additional hardware, such as a DMA controller, DMA
memory partition(s) and a fast bus.

The major advantages of DMA over other the programmed and interrupt-driven
I/O technique are as follows:

 Processor is not involved in I/O transfers in DMA. In other two techniques,
on the other hand, each I/O transfer is performed by a set of instructions
that are executed by CPU. So, with the DMA data transfer technique, the
processor is available for other processing activities as it is not used for
handling the data transfer activity. In the systems where the processor
primarily uses cache, data transfer can take place in parallel, increasing
overall system utilization.

 Only one or two bus read/write cycles are required per piece of data
transferred in DMA as compared to other two methods where the rate with
which I/O transfer can take place is limited by the speed by which processor
tests the device and provides service.

 As there are dedicated hardware to respond more quickly than interrupts,
DMA is able to minimize the latency in servicing a data acquisition from the
device, which further reduces the amount of temporary storage (memory)
required for an I/O device.

 If we compare the DMA data transfer to the interrupt-driven approach,
there is no wastage of time in issuing a read command, waiting for device,
generating interrupts by device and reading data, etc., is no longer required
in DMA data transfer as it no longer has to set up the device and read from
it. This results in a reduced overhead and increased throughput.
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Thus major part of CPU overhead is the time the CPU spends in reading operation
as traditional case now overcame as shown in Figure 4.44. It is allowed to use
system bus when processor does not need it or to temporarily force processor to
suspend operations. This suspension of the process is called cycle stealing.

Figure 4.45 shows the structure of CPU bus control signals.

Bus request BR
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CPU
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Data bus

Read

Write

CPU Bus Control Signals

High impedance
(disabled)
if BG = 1

Fig. 4.45 Structure of CPU Bus Control Signals

To initiate a DMA transfer, the host writes a DMA command block. The
block contains a pointer to the source and destination of the transfer and the
number of the bytes to be transferred. The address of this command block is
written to the DMA controller by the CPU. Once the CPU requests, the ‘Request’
bit will be set for that specific block. After DMA controller detects a request, it
starts data transfers, which gives the CPU an opportunity to perform other tasks.
Once the DMA reads all the data, only one interrupt is generated per block and
CPU is notified that the data is available at the buffer.

On comparing DMA with programmed I/O we find that overhead is
negligible. As CPU is no longer responsible for setting up the device, checking if
the device is ready after the read operation and processing the read operation
itself, we have 0 overhead. By using DMA, the bottleneck of the read operation
will no longer be CPU. Now the bottleneck is transferred to the PCI BUS.
Decrease in overhead results in much higher throughput, approximately 3–5 times
higher than programmed I/O.
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Following are three possible ways of organizing DMA module using detached bus
or integrated bus or separate I/O bus:

(i) Single Bus: Detached DMA Module

 Each transfer uses bus twice: one from I/O to DMA and the other from
DMA to memory.

 Processor is suspended twice.

(ii) Single Bus: Integrated DMA Module

 Module may support more than one device.

 Each transfer uses bus only once, from DMA to memory.

 Processor is suspended once.

(iii) Separate I/O Bus

 Bus supports all DMA enabled devices.

 Each transfer uses bus only once, from DMA to memory

4.8.6 Input/Output Processor

Till now we have studied the various modes for data transfer which involve the
CPU. As the I/O Processor (IOP) is slow and wastes maximum of processor’s
time we can deploy one or more external processors and assign them the task of
communicating directly with I/O devices without intervention of CPU. An IOP
may be classified as a processor with the direct memory access capability that
communicates with I/O device. As shown in Figure 4.46, such a processor has
one memory unit and a number of processor which include CPU and one or more
IOPs. IOP’s responsibility is to handle all input/output related operations and
relieve the CPU for other operations. The processor that communicates with remote
terminals like telephone or any other serial communication media in serial fashion
is called Data Communication Processor (DCP).

Memory unit

Memory bus

Central processing
unit (CPU)

Input-output
processor (IOP)

Peripheral devices

I/O bus

PD PD PD PD

Fig. 4.46 Block Diagram of IOP

Figure 4.46 shows the block diagram of computer having an IOP. An IOP is just
like a CPU. It can fetch and execute its own instruction. It is designed to handle all
details of I/O processing. IOP can perform other processing tasks, such as
arithmetic, logic branching and code translations. It provides the path for data
transfer between various peripheral devices and memory unit. The CPU assigns
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the task of initiating the I/O operation by testing the status of IOP. If status is fine,
the processor continues its other works and IOP handles the I/O operation. After
the input is completed, IOP transfers its content to memory by stealing one memory
cycle from CPU. Similarly, an output is directly transferred from memory to IOP,
stealing a memory cycle and from IOP to the output device at a rate the device
accepts the output (Refer Figure 4.47).

(1)

(2)

(3)

(4) Issues instruction to IOP
CPU

Memory

Interrupts when done
IOP

Device to/from memory
transfers are controlled
by the IOP directly.

IOP steals memory cycles.

Fig. 4.47 Data Transfer between IOP and CPU

Instructions that are used for reading from memory by an IOP are called commands
(instructions words are used as CPU instructions). The CPU informs IOP where
the command is in memory and when it is to be executed (Refer Figure 4.48).

target device
where cmnds are

OP Device Address

Looks in memory for commands

Fig. 4.48 CPU Command for Memory

The command word constitutes the program for the IOP. It informs IOP what to
do, where to store data in memory, how much data transfer to take place and any
other special request (Refer Figure 4.49).

OP Addr Cnt Other

what
to do

where
to put
data

how
much

special
requests

Fig. 4.49 IOP Instruction

In most computers, a CPU acts as a master and IOP as slave. The I/O operations
are started by CPU but are executed by IOP. CPU gives the start command to
start the I/O operation after testing the status. The status words indicate the
conditions of the IOP and I/O devices, such as overload condition, device busy or
device ready status, etc. Once it finds that status bit is O.K, the CPUs send the
instruction to IOP to start the I/O transfer. The memory address received from the
instruction tells the IOP where to find the program. The CPU continues with another
program, while IOP is busy with the I/O program. Both programs refer to memory
by means of DMA transfer. The IOP interacts with CPU by means of interrupt.
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Also, for ending the instruction IOP, an interrupt is sent to CPU. The CPU responds
to the interrupt by checking the IOP status to find whether the complete transfer
operation takes place with or without error.

4.8.7 Serial Communication

For data communication with a remote device, a special data communication
processor is used.

The data communication processor is an IOP that distributes and collects
data from the remote terminals through telephone or other connection lines. It is a
specialized I/O processor designed to communicate directly with data
communication network. A communication network may consist of wide range of
devices, such as printer, display device, sensors, etc. Using data processor
communication, the computer can serve fragments of each network demand in an
interspersed manner. Thus it appears it is serving many users at once. The main
difference between the IOP and DCP is that the IOP communicates with peripherals
through a common bus that is consisted of many data and control lines, while in
DCP each terminal is attached with a pair of wire. Thus, in IOP all peripherals use
a common bus and to transfer information to and from the processor. The DCP
communicates with each terminal through a pair of single wires. Both data and
control information are transferred in serial fashion that results in a much slower
transfer. It is DCP’s task to collect and transfer data to and from each terminal
and also to ensure that all requests are taken care of according to the predetermined
procedure. Figure 4.50 shows an example serial transmission.
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Root Hub

Monitor Printer

Hub

Hub

Keyboard
Scanner

Mouse Joystick

Microphone Speaker Speaker

Hub

Hub

Fig. 4.50 An Example of Serial Transmission
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One common example of DCP is modem. It is used for establishing connection
between the computer and telephone line. As telephone lines are designed for
analog signal transfer, a modem should convert the audio signal of telephone line
to digital format for computer use and also convert the digital signal to audio signal
that is to be transmitted through communication line.

The transmission can be synchronous or asynchronous depending upon the
transmission mode of the remote terminal. The synchronous transmission does not
use start and stop bits. This is commonly used in high-speed device to realize full
efficiency of communication link. The synchronous message is sent as a continuous
message for maintaining a synchronism. In modems, internal clocks are set to the
frequency of communication line. In this case the receiver clock has to be maintained
continuously for adjusting any frequency shift. In asynchronous transmission, on
the other hand, each character can be separately with own start and stop bit. The
message is sent as group of bits as block of data. The entire block is transmitted
with a special control characters at the beginning and end of the block as shown in
Figure 4.51. SYNC is used for synchronous data, PID is process ID, followed by
message (packet), CRC code and EOP indicating end of block. One function of
the data communication processor is to check the transmission errors. CRC cyclic
redundancy check a polynomial code algorithm is used to check the error occur
during transmission.

SYNC PID Packet Specific Data CRC EOP

Fig. 4.51 Data Format

Check Your Progress

14. Define a magnetic tape.

15. What does a sensor mean?

16. What is MICR?

17. State a problem with the I/O device management.

18. Write some properties of subroutines.

19. Write an advantage of DMA over programmed and interrupt driven I/O.

20. Define DCP.

4.9 MEMORY UNIT

Many computer systems have a memory hierarchy consisting of CPU registers,
Static Random Access Memory (SRAM) caches, external caches, Dynamic
Random Access Memory (DRAM), paging systems and virtual memory or swap
space on a hard drive which collectively refers to the structure of large memories.
This entire pool of memory is referred to as RAM by many developers. Within a
hierarchy level, such as DRAM, the various interleave organization of the
components make the access time fast. The goal of structuring the large memory is
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to obtain the higher possible average access performance while minimizing the
total cost of the entire memory system. Memory units are used to store data
whose composition does not change during the processing of a specific type of
information or the solution of one class of problem, such as tabular data, standard
subprograms and the unchanged programs of control computers.
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Fig. 4.52 Block Diagram of Memory Unit

Figure 4.52 illustrates addressed memory units which include large storage capacity
(1), a numerical section (2), an address section (3) and a local control block or
synchronizer (4). The storage consists of memory cells and performs the functions
of data storage. The numerical section or write read circuit is the intermediate link
in which data exchange takes place between the storage and devices which are
external with respect to the memory unit. It consists of a number register for
temporary storage of words or numbers in terms of readin or readout shapers
which convert the numerical code into a series of signals recorded by the storage
cells. The readout pulse are used for amplifying readout signals cancelling and
shaping the noise. In the address part of the memory unit, the assigned address
code is converted into a set of signals that unambiguously define the required
storage location. The synchronization block forms internal commands that effect
control of the sequence of operation of all assemblies of the memory unit in
accordance with incoming commands. The aggregate of all blocks of the memory
unit except the storage is called the electronic control circuit or the peripheral
equipment or the electronic framework of the memory unit. The structure of
memory unit can be enlarged by:

 Reserving, committing and freeing virtual memory.

 Changing protection on pages of virtual memory.

 Locking pages of virtual memory.

 Querying a process’s virtual memory.

In many modern Personal Computers (PCs), the RAM comes in an easily upgraded
form of modules called memory modules or DRAM modules. These can quickly
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be replaced when changing needs demand more storage capacity. Caches are
memory circuits which work with RAM by accelerating the task of moving data to
the CPU. Technology works behind virtual memory refer to enlarge the memory
capacity of computer. Virtual memory system came into existence when large
memory is required in data transmission and of development computer programs.
At times programs are so complex and big that they are not able to fit in the
specified memory. The better option is to divide the programs into subprograms.
These subprograms are known as overlays. The overlays are swapped dynamically
in the memory processed by operating system. Virtual Memory System (VMS)
was first devised by Fotheringham in 1961. This system was developed because
stack, data and programs together exceed from required physical memory and
hence excess memory is required. Virtual memory use cache in physical DRAM in
the system unit. The virtual memory address space may exceed physical memory
size. The VMS simplifies the complete memory management which resides in the
main memory. The involved process has own address space. Virtual memory system
provides protection because one process can not intervene with other process
because both processes operate in different address spaces.
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Fig. 4.53 Structure of Memory System in Large Memory

Figure 4.53 shows how memory system is organized collectively in the disk,
processor, physical memory, virtual memory, MMU and operating system which
can store huge data, such as multimedia streaming files. Alphabet ‘b’ represents
the wide memory organizations which include multiplexer, cache, CPU, bus, etc.,
to work with interleaved memory organization which is referred by alphabet ‘c’.
Alphabet ‘a’ refers to one word wide memory organization. In the VMS, the page
table plays an important role to manage the memory. The disk keeps all the system
files and the programs to run successfully the OS. Virtual memory is used to manage
if there is shortage of memory. If processes are very complex and big then VMS
is needed for efficient protection scheme. It is also used to maintain paging system
and sharing the processes. The piece of virtual memory is generally loaded form
hard disk drive and referenced as stack. The rarely used piece of virtual memory
can be discarded out to disk. Basically, VMS is defined as an abstract space
instead physical device and is comprised of virtual address space including all
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processes.  Some system use virtual address space as a set of virtual addresses or
some might use a single virtual address space to all processes. Having large memory
in CPU includes the features, such as swapping, protection, Translation Lookaside
Buffer (TLB), etc., which are used in operating system to share the large memory
system.

Swapping

The VMS use swapping that is also called paging for Windows OS (Operating
System).  The WIN386.SWP on Windows 3.11 is created by Windows 3.x. It is
in fact a hidden file and used as virtual memory swap file. It resides on root directory
and its size depends on setting of control panel’s, such as how much virtual memory
is used for OS. In Windows 95 this swap file is located at ‘C:\\pagefile.sys’ on all
Windows NT versions of Windows.  In Linux OS, the whole partition in HDD can
be used for VMS. A swap area is created by issuing command ‘mkswap filename/
device’ which is accompanied by swap file name or swap partition. It is suggested
that swap partition is done at the very beginning of the hard disk drive because it
increases the transfer speed of the data. Swapping is used on the video cards that
have sometimes 128 or even 256 MB of RAM. Pages are defined as the division
units of virtual address space. The virtual address space is divided into units known
as pages. Sometimes, virtual page field is replaced by a page frame field due to
the following reasons:

 If the page table would be extremely large.

 If memory mapping would be very fast.

Protection

Virtual addresses give memory protection by using multiprogramming technique.
Bugs in any program can cause other program to crash and even OS. VMS
keeps user programs form crashing one another and the OS. It uses to protect
OS by using address translation and dual mode operation. The information of
address translation is accessed by page table entry. Hardware enforces this
protection trap into OS if violation occurs. The two processes namely, ‘Process i’
and ‘Process j’ are allotted in page tables that shows the preemptive multitasking.
The translation tables offer protection if they are not altered by applications.
Sometimes, malicious programs construct a new instruction every time when the
programs load into memory. The programs which are written to control the malicious
programs reside into the memory and they trap the code in memory. It makes a
difference between original program and infected programs from the protection
code using Program Status Word (PSW) key. The protection code is an interruption
that is written in main memory’s region which includes subsidiary memory. It is
connected with CPU and the main memory. The two resisters, base and limit
registers are used to implement the techniques. The PSW refers the programs to
the process registers, program counter, accumulator, etc., which are involved in
the execution of each computer program. The protection code checks subsidiary
memory number and the produced instruction. Both are accessed directly from
CPU. Protection code can be written in the stack region and information execution
in the main memory and are transmitted beyond the CPU.
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Translation Lookaside Buffer

Memory Management Unit (MMU) contains TLB that translates virtual page
number to physical page number. In fact, TLB is hardware cache. It contains page
table entries. Each virtual memory reference can cause two way of accessing the
physical memory and they are known as fetching the page table and fetching the
data. The TLB lookup contains recently used page table entries. The processor at
this stage investigates TLB that contains a given virtual address. The present page
table entry is known as TLB hit containing retrieved frame number and real address
of pages. The missing page table entry is known as TLB miss containing index of
page table. The page fault occurs pages are not available in the main memory.
Basically, a page fault is an interrupt or exception to the software raised by the
hardware, when a program accesses a page that is mapped in address space but
not loaded in physical memory. TLB can be updated for new page entry.

Virtual memory amount is considered as abstract design. Virtual RAM is a
progression used by the operating windows system to optimize in addition to increase
the storage size in addition to electric of its running RAM without the need of
adding different equipment. Virtual memory system management follows some
policies to maintain the large memory system for communicating with various
processes. The policies are discussed below:

 Allocation Policy: The allocation policy follows variable allocation along
with global scope is easy to be adopted by many operating systems. The
list of free frames is followed by the allocation policy. If page fault occurs
the set of process works accordingly. For this, free frames are replaced for
other processes.

 Fetch Policy: Fetch policy is used to bring the page into memory. If reference
is indexed for location of page then demand paging is used to bring into
main memory. When process starts first time many page faults occur.

 Replacement Policy: The replacement policy follows the frame locking
mechanism. The frame locking policy involves locked frames that can not
be replaced in the kernel of OS. The I/O buffers and control structures are
associated with each frame containing a lock bit.  The used bit is set as 0 if
it is loaded into the memory the first time. The used bit is set as 1 if the very
first frame gets used bit 0.  This is called replacement algorithm where each
used bit 1 is set as used bit 0.

 Placement Policy: Placement policy involves the real memory process. It
is important in segmentation system. The address translation is involved in
paging with hardware segmentation.  Basically, it determines the memory
space where incoming new pages are loaded into the physical memory.
Placement policy checks the tasks, such as which page can be replaced
and which page can be kept for future reference. This policy can predict the
page reference on the basis of segmentation system.

 Cleaning Policy: The cleaning policy follows demand cleaning and pre-
cleaning for managing the VMS where a page is selected for replacement.
The cleaning policy is used for page buffering where modified and unmodified
replaced pages are involved.  The modified pages are periodically written
in batches and unmodified pages are written if the pages are to be reclaimed
or referenced. The referenced pages can be accessed if frames are assigned
to other pages.
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4.9.1 Types of Memory

Memory is an indispensable part of computer and microprocessor based systems.
The data used in a program as well as the instructions for executing the program
are stored in the memory. Hence, digital systems require memory facilities for
temporary as well as permanent storage of data to perform their functions. A flip-
flop stores one bit of information, a register is able to hold a word and a register
file holds a modest number of words of information.

The very first computer memory consisted of a minute magnetic toroid,
called core memory, which required large and bulky circuit boards stored in large
cabinets. Semiconductor memory, on the other hand, is very compact and can be
accessed at very high speeds and is capable of storing data in extremely high
densities. All modern computers and microprocessor systems have been made
possible by the development of inexpensive and reliable Very Large Scale
Integration (VLSI) semiconductor memory chips utilizing Negative-channel Metal
Oxide Semiconductor (NMOS), Complementary Metal Oxide Semiconductor
(CMOS), Bipolar Junction Transistor (BJT) and Bipolar CMOS (BiCMOS)
technologies.

Information from magnetic and optical storage devices, such as hard disk,
floppy disk, CD ROM and digital tape must be accessed sequentially, starting at
the beginning of a data file or track. In contrast, data stored in an electronic memory
cell can be accessed at random and on demand using direct addressing. Direct
addressing eliminates the need to process a large stream of irrelevant data in order
to find the desired data word.

The evolution of Programmable Logic Device (PLD) began with
Programmable Read Only Memory (PROM). A ROM is a memory device that
consists of AND and OR arrays which can be programmed by the user to implement
combinational and sequential functions. For reprogrammability, PLDs use EPROM
or EEPROM like cells. Generally, PLDs may be classified depending upon the
programmability of the AND and OR arrays. PLDs with programmable AND
and fixed OR arrays are called Programmable Array Logic (PAL) devices. When
both the AND and OR arrays are programmable, such PLDs are known as
Programmable Logic Arrays (PLA).

The programmability and high density of PLDs make them useful in the
design of Application Specific Integrated Circuits (ASICs) where design changes
can be made rapidly and inexpensively.

A Field Programmable Gate Array (FPGA) is a reprogrammable gate array
that uses antifuse. The differences between FPGA and PLD is that FPGA
incorporates logic blocks instead of fixed AND – OR gates and is faster with low
power dissipation. Following are the types of memory system which work cllectively
to perform system operations.

ROM

A Read Only Memory (ROM) is a semiconductor memory device used to store
the information permanently. It performs only read operation and does not have a
write capability. A ROM is programmed for a particular purpose during the
manufacturing process and the user cannot alter its function. ROM circuits are
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typically used to provide the computer with resident programs and key operating
functions needed to boot the operating system of the computer.

The ROM is a combinational logic circuit. It includes both the decoder and
the OR gates within a single IC package. In order to minimize the number of
address lines, decoders are used. The address of the desired line is given in binary.
The connections between the output of the decoder and the input of the OR gates
can be specified for each particular configuration. The ROM is used to implement
complex combinational circuits within one IC package or as permanent storage
package for binary information. The binary information must be specified by the
designer and is then embedded in the unit to form the required interconnection
pattern.

PROM

In order to provide some flexibility in the possible applications of ROM
Programmable ROMs (PROMs) have been introduced. The PROM can be
programmed electrically by the user but cannot be reprogrammed. In a PROM
chip the manufacturer includes a connection at every intersection of the grid of
address and data lines. PROMs are widely used in the control of electrical
equipment, such as washing machines and electric ovens.

Fig. 4.54 Bipolar PROM Array with Fusible Links

PROMs are available in both bipolar and MOS technologies. Figure 4.54
shows bipolar PROM array with fusible links. A fusible link is a tiny fuse that can
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be manufactured as per requirement. PROMs are fabricated using bipolar
transistors. Vcc pins are tied together in bipolar PROM array. PROMs have 4-bit
or 8-bit output word formats with capacities ranging in excess of 2,50,000 bits. A
PROM is manufactured as a generalized integrated circuit with all the matrix
intersections linked by fusible diodes or transistors. In series with each connection,
the manufacturer includes a fusible link which can be melted and thereby opened,
by passing a large current through it. A memory link is fused open or left intact to
represent a binary number 0 or 1. The user can selectively burnout some of the
fuses by passing enough current through them and can thereby program the PROM
according to the required truth table. Once a PROM is programmed, it cannot be
changed and therefore it has to be done carefully and correctly in the first time
itself. Hence, the fusing process is irreversible.

EPROM

A PROM device that can be erased and reprogrammed is called EPROM. It uses
an array of n-channel enhancement type Metal Oxide Semiconductor Field Effect
Transistors (MOSFETs) with an insulated gate structure. Figure 4.55 shows the
basic structure and symbol of a typical EPROM cell. Here, an additional floating
gate is formed within the silicon dioxide ( )SiO2  layer. The floating gate is left
unconnected while the normal control gate is connected to the row decoder output
of EPROM. The data bits are represented by the presence or absence of a stored
charge. The initial values of unprogrammed EPROM cells may be all 0s or all 1s.

Fig. 4.55 EPROM Cell

EEPROM

Another type of reprogrammable ROM device is Electrically Erasable
Programmable ROM (EEPROM) which is also known as Electrically Alterable
Programmable ROM (EAPROM). The EEPROM overcomes the disadvantages
of EPROM. It EEPROM can be erased and programmed by the application of
controlled electric pulses to the IC in the circuit and thereby changes can be made
in the selected memory locations without disturbing the correct data in other memory
locations. EEPROM is non-volatile, for example EPROM but does not require
ultraviolet light to be erased. The non-volatility of EEPROM permits a system to
be immune to power interruptions.
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EEPROM is a rugged and low power semiconductor device and it occupies
less space. It has the advantages of program flexibility, small size and semiconductor
memory ruggedness, i.e., low voltages and no mechanical parts. The requirement
of low power supports field programming in portable devices for communication
encoding, data formatting and conversion and program storage. With EEPROM,
the programs can be altered remotely and possibly by telephone.

4.9.2 Flash Memory

Flash memory is a non-volatile computer storage chip that can be electrically erased
and reprogrammed. It was developed from EEPROM (Electrically Erasable
Programmable Read Only Memory) and must be erased in fairly large blocks
before these can be rewritten with new data. The two types are NAND and
NOR. The high density NAND type must also be programmed and read in (smaller)
blocks or pages while the NOR type allows a single machine word (byte) to be
written and/or read independently. The NAND type is primarily used in memory
cards, USB flash drives, solid state drives and similar products, for general storage
and transfer of data.

Thus, a flash memory is an electronic flash memory data storage device
which is used in digital cameras, mobile computers, telephones, music players,
video game consoles and other electronics. It is designed in a form of digital device
with excellent speed performance and capacity. It keeps a write protection switch
for holding all the written contents. The card used in flash memory generally contain
a grid of columns and rows having two transistors at each intersection. These two
transistors are also known as gates. One transistor is known as floating gate and
other is known as control gate. The flash memory cards come in various designs
and configurations ranging from 32 Megabytes to 16 Gigabytes. The most common
flash memory card is Secure Digital (SD) flash memory card which is used
frequently as devices in various electronic gadgets. The SD flash memory offers
high storage capacity, fast data transfer, great flexibility in data transfer, excellent
security and very small size about the size of a postage stamp. They are used in
digital cameras, digital camcorders, Internet music players and recorders, audio
players, Personal Digital Assistant (PDA), digital voice recorders, cellular phones,
digital projectors, photo printers, e-books, etc. Figure 4.56 shows a flash memory
card.

Fig.4.56 Flash Memory Card
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Table 4.11 lists the types of flash memory cards and their functions.

Table 4.11 Types of Flash Memory Cards and their Uses

Types of Flash Memory 
Card 

Size/Function Use 

Compact Flash Card It works as Advanced Technology 
Attachment (ATA) drive. 

In digital 
cameras. 

Data Flash Card It is a type of removable flash card. In digital cameras 
and laptops. 

Memory Flash Stick Its size is 50 mm × 21 mm × 2.8 mm. In video game 
consoles.  

Following types of flash memory cards are available for use:

The NOR Flash Memory Card

The NOR flash memory card is used for programming code execution containing
cells. Each cell stacked vertically resembling a standard MOSFET and connected
with bitline.  Figure 4.57 shows a NOR flash memory card.

Fig. 4.57 The NOR Flash Memory Card

The NAND Flash Memory Card

The NAND memory card is assembled with host in interface mode. This type of
card includes the NAND flash memory to convert the interface mode of the host.
It is connected with bit line in a series with 16 or 32 memory cells providing low
cost media for picture storage. Figure 4.58 shows a NAND flash memory card.

Fig. 4.58 NAND Flash Memory Card

In flash memory cards, two architectures NOR setup and NAND setup are very
significant. The NAND setup is being used in cellular phones.
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4.9.3 Associative Memory

Associative memory can be defined as memory unit accessed by content. It is also
known as Content Addressable Memory (CAM).

When a word is written on an associative memory, no address is given. The
memory is capable of finding an empty location to store the word. If a word is to
be read from an associative memory, the content of the word or part of the word
is specified. The memory locates all the words that are identical to the identified
content and marks them for reading.

This type of memory is accessed simultaneously and is equivalent to the
information instead of the specific address or location.

Associative memory is more costly than random access memory as every
cell should have storage capacity as well as logic circuits for matching its content
with an external argument.

Thus, associative memories are utilized in applications where the search
time is very important and must be very short.

Hardware Organization of Associative Memory

The block diagram of associative memory is shown in Figure 4.59. It consists of a
memory array and logic for m words with n bits per word. The argument register
A and the key register K each have n bits, one for each bit of a word. The match
register M has m bits, one for each memory word. Each word in the memory is
compared in corresponding with the content of the argument register. The words
that match the bits of the argument register set the corresponding bit in the match
register. After the matching process, those bits in the match register that have been
set indicate the fact that their corresponding words have been matched.

Reading is accomplished by a sequential access to memory for those words
whose corresponding bits in the match register have been set.

For selecting a particular field or key in the argument register, the key register
offers a mask. The entire argument is compared with each memory word if the
key register contains all 1s. Otherwise, comparisons of just those bits in the argument
that have 1s in the parallel position of the key register are done.

Argument Register (A)

Key Register (K)

Input

Read

Write

Output

M

Match Register 

Associative Memory
array and logic

m
n

 words
 bits per word

Fig. 4.59 Block Diagram of Associative Memory
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Suppose, A 110 001110

K 111 000000

Word 1 101 001110 no match

Word 2 110 000001 match

Only the three leftmost bits of A are compared with memory words because
K has 1s in these positions. The three leftmost bits of argument and Word 2 are
equal. Hence, Word 2 is matched with the unmasked argument field.

Figure 4.60 shows how external registers are associated with the memory
array of associative memory. The letter C with two subscripts marks the cells in
the array. The first subscript gives the word number and the second specifies the
bit positions in the word. Thus, cell Cij is the cell for bit j in the word i. Bit Aj in
the argument register is compared with all the bits in column j of the array, provided
that Kj = 1.

If a match occurs between all the unmasked bits of the argument register
and the bits in word i, the corresponding bit Mi in the match register is set to 1. If
any unmasked bit of the argument does not match with the word, the corresponding
bit in the match register is cleared to 0.

M1

Mn

A1 An

K1 Kn

Word 1

Word i

Word m

C1n

Cmn

Cn

Cj1

Cj1

Cm1

Cij

C|1

Cmj

Mij

Aj

Kj

Fig. 4.60 Associative Memory of m Words, n Cells per Word

4.9.4 Cache Memory

Cache memory is used to store the data and information temporarily. It is
implemented for Internet content by distributing it to multiple servers which are
periodically refreshed. In fact, cache is a small and fast memory placed between
the CPU and the main memory as shown in Figure 4.62. The system performance
can improve dramatically by using cache memory at a relatively lower cost. The
word cache is derived from the French word that means hidden. It is named so
because the cache memory is hidden from the programmer and appears as if it is
a part of the system’s memory space. It improves the speed because of its very
high speed and rapidly been accessed by the processor with a fetch cycle time
comparable to speed of CPU. The whole concept of using cache memory is
based on the principle of hierarchy and locality of reference which you have already
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studied. This results in an overall increase in the speed of the system. A system that
uses a tiny 512 MB cache memory and RAMs of 2 GB, it is observed that the
processor accesses to the cache 95 per cent more than RAM. The initial
microprocessors had truly tiny cache memories, for example, 32 bytes. But in the
early 1990s, the cache sizes of 8 KB to 32 KB became common. By the end of
the 1990s, multilevel cache configuration became common.The multilevel chip has
one cache of capacity up to 128 KB internal on the chip and other is  external to
chip and form second level caches having capacity up to 1 MB.

In Figure 4.61, it can be seen that the cache memory is attached to both the
processor as well as main memory in parallel via address and data buses. This is
done so that data consistency is maintained in both cache and the main memories.

CPU 

Data

Address Main Store 

Cache
Controller 

Cache
Memory

Hit 
Typically 

64M - 4 Gbytes

Typically 
64K to 512 Mbytes

If the data is in the cache, it is fetched 
from there rather than the main store.

Data Bus

Address Bus  

The address form the 
CPU Interrogates both

the cache and main
memory.

Fig. 4.61 Cache Memory Organization

According to the principle of memory hierarchy, the complete program resides on
the hard disk and a few active pages of the current process (in case of large
programs) reside in the main memory. A small part of the main memory is copied
to the cache. It is the role of cache controller to determine whether the data desired
by the processor resides in the cache memory or it is to be obtained from the main
memory. The processor generates the address of a word to be read and sends it
to address bus. The cache controller fetches the address and matches it with the
content of cache. If the desired data is found in the cache, a Hit signal is generated
and the word is delivered to the processor. However, if the data does not exist in
cache then a Miss signal is generated and the data is searched in main memory. If
data is found in main memory, it is delivered to the processor and is also
simultaneously loaded into the cache. If data is not found in main memory, it is
fetched from hard disk, as in case of virtual memory technique discussed earlier.

The amount of information which is replaced at one time in the cache is
called the line size/block for the cache. It is usually a wider word than the CPU
requires and is often equal to the width of the data bus connecting the cache and
the main memory. A wide block size means that several data words are loaded
from main memory into the cache at one time instead of single word this. It results
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in prefetching of data.

Main 
MemoryCache CPU

Word 
Transfer

Block 

Smaller, Faster Larger, Slower 

Fig. 4.62 Transfer of Information between CPU, Cache and Memory

Figure 4.62 shows a cache and main memory structure. A cache consists of C
slots and each slot in the cache can hold K memory words. Thus, the cache stores
C*K words where K is the block size and C is the number of lines. Suppose the
main memory stores 2n–1 words (M = 2n–1) with each word having a unique n-
bit address. Each word that resides in the cache is a subset of main memory. As
only some portion of main memory can reside in the cache, as it is not possible to
store the complete program in the cache, it is required to replace the existing word
from cache and bring the new one whenever a Miss signal is reported. Thus no
line can occupy permanently in the cache. To identify which particular block of
main memory is currently residing in the cache, a tag is used for each line of cache.
This tag is usually a portion of the main memory address. The cache memory is
accessed by mapping the physical address with the tag stored in the cache.

Slot 
Number Tag Block 

0
1
2

C – 1

Block Length
(  Words)K

( ) a Cache Memory

Memory
Address 

Word
Length

0
1
2
3

2  – 1n

( ) b Main Memory

Fig. 4.63 Structure of Cache and Main Memory

For accessing the data for cache, it required to transform the main memory address
to corresponding address in cache. This process is referred to as mapping. For
mapping the address generated by CPU and the memory controller needs some
algorithm. The result of mapping lets us know whether the data required by
processor is available in the cache or not. As shown in Figure 4.63, cache memory
is a linear array of some entries and each entry stores following information:
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 Data: The block of data from main memory that is stored in a specific line
in the cache.

 Tag: A small field of length K bits which is usually some portion of main
memory address and is used as input for mapping process.

 Valid Bit: A 1-bit field that indicates the status of data stored in the cache.

The address generated processor is divided into the following three fields to access
the cache memory:

 Tag: A K-bit field that is compared with the K-bit tag field stored in each
entry of cache.

 Index: An M-bit field that points to particular entry of cache.

 Byte Offset: L bits that find particular data in a line if valid cache is found.

Thus, the size of address generated by processor is given by N = K + M + L bits.

How this cache address translation take place is shown in Figure 4.64. Here
the cache address generated by processor is of 32 bits in which Tag field occupies
12–31 bits, Index field occupies bits 2–11 and bits at 0,1 position contain the
offset information. The index field tells us about the line of the cache which contains
the data requested by the processor. Tag field of that line is retrieved from the
cache and is compared with the tag field stored in the cache address generated by
processor by using the comparator circuit. If the tag matches, we get the output of
the comparator as one. The valid bit in the cache row pointed to by the index field
of the cache address is tested to check the validity of data. The output of comparator
and valid bit is  ANDed if a Hit signal is generated and the data stored in the
cached block corresponding to the byte offset is sent to the processor. If the
output of comparator is zero, a cache Miss is reported.

Cache Address

Tag Index

3 1 3 0 . . . . 1 3 1 2 11 . . . 2 1 0
Byte Offset 

Cache Storage 

Index Valid Tag Data 
0
1

i

N

Data Out Hit Signal 

20 10

Fig. 4.64 Schematic Diagram of a Cache
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Performance Considerations

The performance of the cache is measured in terms of hit ratio. The hit ratio is
number of hits divided by the total number of references a processor makes to
cache memory (hits plus misses). The hit ratios of 0.9 and above have been
reported. In a system, the hit ratio is determined by statistical observations. Apart
from hardware technology, such as size of cache and the hit ratio is also software
dependent, i.e., it depends on the nature of the program under execution. The
value of hit ratio depends, on how effectively a program implements the principle
of locality of reference. Hence, it is possible that some programs have very high hit
ratios while others have low hit ratios. Let us calculate the effect of cache on the
performance of the system.

Let us consider that a given system has:

Access time of main memory = t
m

Access time of cache memory = t
c

Hit ratio of cache memory = h

Miss ratio of cache memory = m

Speedup ratio = S

The average time to access a data is given by:

   = Hit ratio * Cache access time + ((1– Hit ratio) * (Memory access time)

The access time depends on the program and how data reference pattern is
made. Hence, we calculate the average of all access time and the mean access
time is used in our calculation. A cache miss can happen for both data and
instruction. A cache miss on a data read may be less serious than instructions, as in
principle, it continues execution until the data to be fetched. On an instruction,
fetch requires that the processor to ‘install’ and wait until the instruction is available
from main memory. Hence, it is advised to use two different caches in the system,
one for data and the other for instruction.

4.9.5 Interleaving

Interleaving is an advanced technique used by high end motherboards/chipsets to
improve memory performance. Memory interleaving increases bandwidth by
allowing simultaneous access to more than one stack of memory. This improves
performance because the processor can transfer more information to and from
memory in the same amount of time. It helps alleviate the processor memory
bottleneck that is a major limiting factor in overall performance. Interleaving works
by dividing the system memory into multiple blocks. The most common numbers
are two or four called two-way or four-way interleaving respectively. Each block
of memory is accessed using different sets of control lines, which are merged
together on the memory bus. When a read or write is begun to one block, a read
or write to other blocks can be overlapped with the first one. The more blocks,
the more  overlapping can be done.  Interleaving is an advanced technique that is
not generally supported by most PC motherboards because of cost. It is most
helpful on high end systems, especially servers that have to process a great deal of
information quickly. Interleaving infrastructure is arranged with memory. To speed
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up the memory operations (read and write), the main memory of 2n = N words
can be organized as a set of 2m = M independent memory modules (where m < n)
each containing 2n – m words. If these M modules can work in parallel (or in a
pipeline fashion), then ideally an M fold speed improvement can be expected. The
n-bit address is divided into an m-bit field to specify the module and another
(n-m)-bit field to specify the word in the addressed module. The field for specifying
the modules can be either the most or least significant m bits of the address. For
example, these are the two arrangements of M = 2m = 22  = 4 modules (m = 2) of
a memory of 2n = 24 = 16 words (n = 4). Before the data signal is modulated and
spread, an interleaving process scatters the bit order of each frame so that if some
data is lost during transmission due to a deep fade of the channel, for example the
missing bits can possibly be recovered during decoding. This provides effective
protection against rapidly changing channels, but is not effective in slow changing
environments.

Fig. 4.65 (a) High Order Arrangement and (b) Low Order Arrangement of Interleaving

In general, the CPU is more likely to need to access the memory for a set of
consecutive words either a segment of consecutive instructions in a program or
the components of a data structure, such as an array, the interleaved (low order)
arrangement is preferable as consecutive words are in different modules and can
be fetched simultaneously (Refer Figure 4.65 (b)). In case of high order
arrangement, the consecutive words are usually in one module, having multiple
modules is not helpful if consecutive words are needed (Refer Figure 4.65 (a)).
The following on example interleave infrastructure will make the concept clear.

Example 4.3: A memory of 216 = 64K words (n = 16) with 24 = 16 modules (m
= 4) each containing 2n–m = 212 = 4K words.

Solution:

In interleaving process you can find that a memory of 216 = 64K words are utilized
if (n =16), i.e., 24 =16 modules (m = 4) are given. Each contains 2n–m = 212 = 4K
words.
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4.9.6 Hit Rate and Miss Penalty

Let us consider a system which has a cache ‘hit rate’ of 95 per cent, cache memory
of 20 nanoseconds (ns) cycle time and main memory of 150 ns cycle time. The
average cycle time of the system will be calculated as follows:

(0.95)* 20 ns + 0.05 * 150 ns = 26.5 ns

The effective memory cycle time as a function of cache hit rate for the above
system is summarized in Table 4.12.

Table 4.12 Cache Hit and Effective Cycle Time

Cache Hit Per Cent  Effective Cycle Time (ns)  
80  46  
85  39.5  
90  33  
95  26.5  
100  20  
 

From the above example, it can be easily seen that the effective access time is
greatly reduced with the increase in cache hit.

The speed ratio may be defined as the ratio of the memory system’s access time
without cache memory to its access time with cache memory. It helps us to
understand how much acceleration is observed in access time by using cache
memory along with main memory. The speedup ratio is defined as: ratio of time
taken for N access without cache and with cache memory.

The speedup ratio is, therefore, given by:
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Where, N accesses to a system without cache memory require Nt
m
 seconds.

N accesses to a system with cache require N(ht
c
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m
) seconds.

Usually memory designers consider the relative speed of the main memory and
cache memories more than the absolute speed. Hence, the ratio of the access time
of cache memory to main memory k = t

c
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m 
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is used in the above formula than
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taking typical values for t
m
 and t

c
. In present system, this ratio is of the order 0.02.

Therefore,
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If h = 0, all accesses are made to the main memory and the speedup ratio is 1, as
there is no gain by using cache.

When h = 1, all accesses are made to the cache and a speedup ratio of 1/k is
achieved.

Level 2 Caches: The hierarchy cache memory, main memory, hard disk can be
further expanded by dividing the cache into a level 1 and a level 2 cache. A level 1
cache normally lives on the same chip as the CPU itself, i.e., integrated
with the processor. Level 1 caches grow in size as semiconductor technology
advances and more memory devices can be integrated on a chip. A level 2 cache
lives off the processor chip and is larger than a level 1 cache. Level 2 caches are
typically of ½ MB. When the processor makes a memory access, the level 1
cache is first searched. If the data is not there, the level 2 cache is searched. If it is
also not in the level 2 cache, the main store is accessed. The average access time
is given by:

t
cache

= hL
1
t
c1

 + tL2t
c2

 + (1 – hL
1
 – hL

2
) t

memory

Where, hL
1
 and hL

2
 are the hit rates of the level 1 and level 2 caches and t

c1

and t
c2
 are the access times of the L1 and L2 caches respectively.

4.9.7 Virtual Memory

As you know, all data is stored in the hard disk and the program that is under the
execution resides in the main memory. The virtual memory is a concept that permits
the user to construct a program with size more than the total memory space available
to it. This technique allows user to use the hard disk as if it is a part of main
memory. Hence with this technique, a program with size even larger than the actual
physical memory available can execute. Here the only thing required is an address
mapping from virtual address to physical address in main memory. An address
generated by CPU during execution of program is called virtual address and the
set of such addresses is address space. An address in the main memory is called
physical address and the set of these addresses is called memory space. A virtual
memory system provides a mechanism for translating a program generated address
by the processor into main memory location. A program uses the virtual memory
addresses space which stores data and instruction. In usual case, the address
space is more than memory space, where actually manipulation has to be done. If
there is a main memory of capacity of 32K words, 15 bits are required to specify
the physical address of memory. Let the system have auxiliary memory of 1MB
size and it will require 20 bits, i.e., address bit to access the data. As said earlier,
in the virtual memory system, a mapping from a virtual address space to a physical
address space is required. System uses a table that maps a virtual address of 20
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bit to physical address of 15 bits. This process is required for translation of every
word (Refer Figure 4.66).

Logical 
Name 

Virtual
Address 

Physical
Address 

Logical Address Space 

Name Space 

Physical Address Space 

Fig. 4.66 Translation of Logical Address to Physical Address

In Figure 4.67, a relationship between virtual address and physical address is
shown. By using address translation, we calculate the physical location of data in
main memory. It can be seen from the figure that the virtual address space is more
than the physical address space.

Virtual 
Addresses

Physical 
AddressesAddress 

Translation

Fig. 4.67 Mapping from Virtual Address to Physical Address

This technique is especially useful for a multiprogramming system where
more than one program resides in main memory. Such a system is managed
efficiently with the help of operating system. The objective of virtual memory is to
have maximum possible portion of program in the main memory and the remaining
portion of program to reside on the hard disk. The operating system, with some
hardware support, swaps data between memory and disk such that it interferes
minimum with the running of the program. The operating system manages the whole
memory. If it is required to refer to hard disk very frequently such that swapping in
and out of data between the main memory and hard disk becomes the dominant
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activity. Such condition is  referred to as thrashing and it reduces the efficiencies
of the system greatly. Virtual memory can be thought as a way to provide an
illusion to the user that disk is an extension of main memory.

Any program under execution should reside in the main memory as CPU
cannot directly access hard disk. The main memory usually starts at physical
address 0. Certain memory locations are reserved for the special purposes program,
such as operating system. It can be either at the low addresses or other high end.
However, it is usually at the low end. The rest of main memory is divided into
pieces where different programs reside. Now a days, most operating systems
have a multiprogramming environment, i.e, there are more than one programs that
reside in main memory. Different processes are mapped to different physical
locations in the main memory.

Principles of Implementation of Virtual Memory Concept

Let us study how the virtual memory concept is actually implemented by an operating
system.

 The maximum portion of program should be in the main memory. Also,
maximum number of possible processes should be loaded into the main
memory.

 A copy of the complete process, which is also called its image, should be
maintained in a hard disk, i.e., the inclusion principle of memory hierarchy.
This file is called the swap file.

 The main memory can be divided into number of pages of equal sizes,
which are nothing but chunks of memory. Pages are commonly of sizes
512, 1024, 2048 or 4096 bytes or it can be of unequal size called segments.
The virtual memory manager organizes these pages in the memory and also
takes care of their protection.

 Similar to memory, programs are also divided into pages of the same size in
which the memory is partitioned. Only some pages of a complete program
reside in the main memory others do not. But a complete program is always
there in the swap file.

 If the portion of the process which is loaded into main memory is sufficient
to complete the process, then the only job of the memory manager is to
perform address translation with support from the hardware

 However, if the process needs the data that is not present in the main memory,
a page fault is reported. Now it is the job of the memory manager to handle
the fault by bringing the page that contains the required data from the swap
file. As the swap file resides in secondary memory, the overall speed of
system reduces as speed of reading a disk file takes a minimum of 10
milliseconds as compared to reading the main memory may take only 10
nanoseconds. To create a space for storing this page, we require removing
some pages from the memory. The page which is to be replaced is decided
by the page replacement policy adopted by the operating system.
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Fig. 4.68 Paged Memory Management Address Translation

Address generated by CPU refer to the process of address translation in which
fault header retains missing item fault which can be fetched either through main
memory or through secondary memory (Refer Figure 4.68). The use of the mapping
function between the processor and the memory provides flexibility by allowing
data to be stored at different locations in the memory. The programmers perspective
of logical arrangement is different from the actual data arrangement. The advantages
of using the virtual memory technique are as follows:

 With this scheme, programs are compiled for a standard address space and
then loaded into the available memory and executed without any modification.
This provides a big flexibility.

 More than one program can fit into memory. Hence, it is very adjustable to
an operating system that supports multitasking in which an arbitrary number
of programs reside in the main memory.

 It is very useful for running large program on machine having comparatively
smaller memory. The operating system which works on the concept of virtual
memory make it possible to run a program having a size larger than the
memory size by explicitly moving the portions of the program or data in and
out from disk.

Techniques of Implementing of Virtual Memory

The concept of virtual memory is implemented by either of these three techniques:
paging, segmentation and a technique which is combination of the two is known as
paged segmentation.

Paging Memory Management

In paging technique, the memory is divided into fixed size blocks called pages. As
main memory is smaller than virtual memory, the total number of pages in main
memory is lesser than the virtual memory. For example, let us consider a physical
memory of 1GB size. Suppose the virtual memory is of size of 4GB. Thus, there is
1 to 32 mapping. A page map table is used for implementing a mapping. There is
one entry per virtual page, and the address of corresponding physical address is
stored.

The presence bit is used for letting the system know whether the page has
been transferred form the auxiliary memory into main memory. A 0 bit represents
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that this page is not available in the main memory. When the presence bit indicates
that the page is not available in main memory, a page fault exception is triggered
and the operating system brings the page into memory. However, once the transfer
is complete, the operating system stores the new physical page number into the
page table and continues with the instruction that has caused the page fault to
complete that program.

The main memory and secondary memory are divided into pages. Let the
page be of size 4KB. The system will have 1MB pages in virtual memory. In case
of main memory for the pages size of 4KB, there will be 256KB pages. Thus,
there is 1 to 4 mapping. The secondary storage address is the address of the disk
where data is stored. This address is split into the offset and page number. Here,
12 bits are used for offset and 20 bits for virtual page number.

Physical page address is also divided into page number and offset. Here 18
bits are used for page number and 12 bits are used as offset.

 The translation from virtual page number to physical page number is done
through a page map table as shown in Figure 4.69 (a). The page number is the
index of this page map table. The mapping is implemented by looking up the
virtual page address as index of this page map table to find the location from
where data is to be fetched.

Virtual Address

31 30 29 28 27 .................... 15 14 13 12 11 10 9 8 .......... 3 2 1 0

Virtual Page Number Page Offset 

29 28 27 .................... 15 14 13 12 11 10 9 8 .......... 3 2 1 0

Physical Page Number Page Offset 

Translation 

Physical Address

Fig. 4.69 (a) Address Translation from Virtual Address to Physical Address
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Fig. 4.69(b) Hardware Implementation of Address Translation
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There is one entry per virtual page in the page map table and the data stored is the
address of corresponding physical address (Refer Figure 4.69 (b)). The entry of a
page table is shown in Figure 4.70. Usually this ‘page translation table’ is maintained
using associative memory that allows a fast determination of the physical address
in main memory corresponding to a particular virtual address. A total of 20 entries
will be there in the page map table. The page offset (low order 12 bits) is appended
in physical page number to get desired location where that word is found in the
particular page. Thus, the virtual address translation hardware appears as follows:

Page Table Register Virtual Page Number Page Offset 

Virtual Address  

31 12 11 0

Physical Page Number Page Offset 

29 12 11 0 

Valid Access Physical Page Number 

If valid = 0
then Page
is not in memory 
and page 
fault exception 

Physical Address 

Fig. 4.70 Virtual Mapping Technique

Along with page number and offset few other attributes are also stored in a page
translation table, such as the one shown in Figure 4.70 is the access right. The
access right determines what type of rights are provided, such as read only, read
write, etc. These are stored as extra fields to the table. The common information
that are stored in page map table are as follows:

 The access privileges, so that no program can corrupt data of another
program

 The ‘Dirty’ bit a bit which indicates whether or not a page has been modified.
If page content are changed it must be written back onto the disk while
page replacement.

 How recently the page is used.

The page size is an important issue while designing the virtual page memory
technique. If we reduce the page size, the Page map Translation Table (PTT) will
increase and vice versa. For example, if a processor has a virtual memory address
of 32 bits and it is divided into pages of size 4096 bytes, i.e., the offset bit are 12
and there will be a 1024 K pages thus total possible entry in page map table will
be 220. However, if page size is 10 K (220 bytes), then there will 212 pages and 4
K page table entries. These large page tables will normally not be full, since the
number of entries is limited to the amount of physical memories available. These
bigger pages may result in the problem of internal fragmentation.
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Segmented Memory Management

In a segmented memory management, the main memory is divided into blocks of
unequal size. Here, the division is based on logical concept and each segment
corresponds to a logical block of code or data, for example, a subroutine or
procedure. Thus, we can divide the user program into segments (logical division)
and these segments may be placed anywhere in main memory but the instructions
or data in one segment should be contiguous, as shown in Figure 4.71.

SEGMENT 1

SEGMENT 5

SEGMENT 7

SEGMENT 2

SEGMENT 4

SEGMENT 9

Fig. 4.71 A Segmented Memory Organization

Segmentation is implemented in a similar manner as paging using a lookup
table. There is one entry corresponding to each segment called segment descriptor.
As the segments are of unequal sizes, each segment descriptor in the table should
contain the base address (start address) of the segment and its length. Each process
can be assigned a different segment descriptor in the lookup table, completely
unaware of how many processes are sharing that segment. The address translation
from virtual memory to physical memory is done effectively at run time by the
virtual memory mapping mechanism. In order to keep the size of the segment
tables small, the maximum number of segments in which memory is divided is
typically small compared to the virtual address range, for example, 254. Similar to
paging technique, in this case also the virtual address is divided into segment number
and a segment offset. Some other information like protection information, such as
the read/write permission of the segment and the process ID, are stored in the
segment descriptor. It also stores other housekeeping information, such as a
presence bit and dirty bit. In this scheme, unlike paging scheme where offset is of
fixed size, the segment offset field grows and shrinks depending on the logical
length of the segment. Segmentation is able to remove the internal fragmentation
problem which exists in paging technique.

Segment is very useful in the multiprogramming environment, especially if
two processes share some procedures, such as library functions. In such
circumstances, only one copy of the code of that procedure resides in memory
and both processes use it, i.e., reference to the same code is made in the segment
descriptor table of both programs. Figure 4.72 shows the memory allocation
process using segmentation technique. The logical address space keeps Segment
1 for data, Segment 2 for main program and Segment 3 for subroutine.
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Fig. 4.72 Memory Allocation using Segmentation Technique

Paged Segmentation

The main advantage of the paged memory management system over the segmented
memory management system is that it is simpler to implement and it does not suffer
from external fragmentation which is observed in the segmented memory management
technique. However, the major disadvantage of paged memory management is that
it suffers from internal fragmentation and also the division is done physically instead
of logical division as done in the segmentation technique. Hence, the pages do not
necessarily correspond to complete functional blocks or data elements, as in the
case of the segmented memory management. So, swapping is more frequent in a
paging scheme as compared to a segmentation scheme, i.e., the operating system
has to swapped in or out page of memory, if full of data or instructions that is required
for execution is not present in a page. The paged memory management can be
considered as a special case of segmented memory management such that all segments
are of equal size. And in advance system, we combine the two techniques and the
memory is divided into segments, with each segment further divided into pages. The
address generated by the system consists of segment number followed by page
number and then fixed size offset, as shown in Figure 4.73.

Segment Number Page Number Offset 

Segment 
Descriptor Table

Page Table for 
Selected Segment

High Order Portion of Physical Address Offset 

Fig. 4.73 Page Segmented Translation
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4.10 PARALLEL PROCESSING

Parallel processing is the architecture of working in a single computer that uses
multiple processors to execute the various parts of the same programs
simultaneously. The main objective of parallel processing is to reduce the processing
time. The computer resources can include a single computer with multiple processors
or networks or a combination of both. Parallel processing is arranged in a
uniprocessor system using the pipelining technique.

The area of parallel processing is the approach of creating effective parallel
computers that also includes parallel Linux clusters. In parallel processing technique,
many applications use parallelism maintained by various types of compilers, such
as Silicon Graphics’ MIPSpro Power C and MIPSpro Power FORTRAN 77,
etc. In essence, a normal machine is run as a parallel machine after changing an
alternating sequence of serial and parallel sections.

The parallel processing takes place if the applications take inherent serial
actions, such as opening files and initializing data areas. For example, loops,
subroutine calls, etc. Parallel processing machines are much faster than single
processing machines because more processors are installed in them. The
applications of parallel processing computers use parallelism concept to simulate
parallelism. They use it in such well-known applications as neural networks, cellular
automata, simulations, video games and Very High Speed Integrated Circuits
Hardware Description Language (VHSIC VHDL).

If a machine runs under parallel segment, the applications are distributed
into a number of threads. The logic behind this is to execute various portions of
parallel segment at the same time. At the end of parallel segment, a barrier exists
where all the threads are collected together until and unless they are finished
executing and the next serial segment starts. This type of parallel processing is
referred to as 1 to N that means one application runs on N CPUs. This is the basic
fundamental concept behind the parallel processing machines. To see the
architecture under Parallel Processing see Figure 4.74.

Split into
threads

Nonparallel segment

Parallel segment,
dispatched on
8 CPUs

Barrier for
synchronization

Nonparallel segment

CPUs

Fig. 4.74 Architecture under Parallel Processing

There are some limitations in parallelism that includes the communication
overhead between the threads of application. The parallelism supports underlying
hardware. Most of the parallel processing techniques speed up parallel processors,
such as four processors or eight processors. The number of processors varies
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because parallelism depends on the application and the coding in which it is installed.
To see parallel applications speedup see Figure 4.75.

Speed up

Ideal Application 1

Application 2

Application 3

Number of
CPUs

4 6 8

Fig 4.75  Parallel Applications Speed Up

For example, the IRIX/IRIS (Integrated Raster Imaging System) operating
system has many features to manage these types of threaded applications that
include shared memory, thread manipulations, high performance user-level locks
and semaphores. It is assembled by a shared memory programming model that
provides the high performance and fast speed. Multiple parallel applications on
parallel processing are characterized by one or more of the following workloads:

 In parallel processing, more than one user could be on the same parallel
application or different parallel applications.

 More parallel applications achieve a small number of parallel threads like
four threads to eight threads. These threads can be increased in power
challenge multiprocessors to enhance the performance.

 In some loosely-coupled message passing applications, a typical
multiprocessor workload is resembled to speed up the multiprocessing area.

 In parallel execution, workload associated with high multiprocessor
workload satisfy the general purpose and non-parallel applications needs
power challenge servers with up to 18 R8000 CPUs in combination with
SGI parallelizing tools and IRIX operating system. Parallel processing
includes parallel throughput in Figure 4.76 that refers to the performance
for multiple parallel machines at the same time on a multiprocessor.

Task 1 Task 2 Task 3 Task 4

Threads

Fig 4.76 Parallel Processing Includes Parallel Throughput

These parallel processing underlies the operating system in a parallel computer.
The suitable operating system is able to start up a number of threads quickly. The
highest performance for parallel computers is achieved by greatest possible system
throughput. The efficiency of shared memory depends on the amount of memory
sharing in parallel processing. The workstation clusters is an extreme example of a
multiple processing model but not suitable for codes in computation to communication



CPU, Input-Output and
Memory Organizations

NOTES

Self - Learning
Material 319

ratio processing. In such clusters, multiple threads work with network links. They
both collectively provide high and efficient bandwidth network connections.

Parallelism has no advantages but this concept has different levels of
effectiveness by using some methods. These methods are as follows:

 Symmetric Multiprocessor (SMP)

 Non-Uniform Memory Access (NUMA)

 Uniform Memory Access (UMA)

 Single Instruction Multiple Data (SIMD)

 Multiple Instruction Multiple Data (MIMD)

Symmetric Multiprocessor (SMP)

The SMP is easy to program but does not scale beyond 16 or 32 processors. The
SMP systems range from two to as many as 32 or more processors. However, if
one CPU fails, the entire SMP system is down. Clusters of two or more SMP
systems can be used to provide high availability fault tolerance. If one SMP system
fails, the others continue to operate. See SMP in Figure 4.77.

CPU CPU CPU CPU

Memory
I/O

Fig 4.77  Symmetric Multiprocessor

Non-Uniform Memory Access (NUMA)

In NUMA configurations, accessing specific locations in main memory is different
for some of the CPUs relative to the others. It typically consists of several smaller
SMPs wired together. It is easier to program than an MPP.

Uniform Memory Access (UMA)

This architecture in UMA is referred to as UMA architecture in the sense that each
socket can get to any memory location in a uniform way, primarily in terms of
latency. The memory access is uniform in this processor.

Single Instruction Multiple Data (SIMD)

The processor core is designed as a pure vector core, which is not to be confused
with a GPU core, which uses an SIMD configuration (Refer Figure 4.78). In SMP,
CPUs are assigned to the next available task or thread that can run concurrently. In
parallel processing operation, the problem is broken up into separate pieces, which
are processed simultaneously. The processor is either single core or multicore.
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Cell and Data Memory

Core

Buffer A Buffer B

Single Core Cell Processor

Fig. 4.78  SIMD Configuration

Multiple Instruction Multiple Data (MIMD)

In a multicore processor, the cores would divide the instruction load in the buffers
among themselves in a way that is completely transparent to the programmer.
Adding more cores would simply increase the processing power without having to
modify the programs. In an MIMD configuration, the processor is universal, meaning
that it can handle all types of applications. There is no need to have a separate
processor for graphics and another for general purpose computing. A single
homogeneous processor can do it all.

Parallel Computing

Parallel computing means doing several tasks simultaneously, thus improving the
performance of the computer system. Parallel processing is a type of computing
where numerous instructions are implemented at the same time on the principle
that larger problems may be divided into smaller ones that are solved in parallel.
The different types of parallel computing are as follows:

 Bit-level parallelism

 Instruction-level parallelism

 Data parallelism

 Task parallelism

If a computer system provides the technique for simultaneous processing of
different sets of data, then the computer system is said to be using a parallel
processing technique. The parallel processing technique increases the computational
speed of the processing system. Thus, it enhances the performance and throughput
of a computer. The various techniques by which parallel processing can be achieved
are as follows:

 Pipelining

 Vector processing

 Parallel processors
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A parallel computer is defined as an interconnected set of Processing
Elements (PEs), which cooperate by communicating with one another to solve
large problems fast.

Thus, from this definition, the keywords which define the structure of a
parallel computer are processing elements, communication and cooperation. The
generalized structure of a parallel computer is shown in Figure 4.79.

COMMUNICATION NETWORK

I/O
Systems

M M M M

PE PE PE PE

CICICICI

Fig. 4.79  Parallel Computer

PE: Processing elements

CI: Communication interface

I/O: Input–Output

M: PE’s local memory

A PE may have a private memory in which case it is called a Computing
Element (CE). The heart of the parallel computer is a set of PEs interconnected by
a communication network. This general structure can have many variations based
on the following:

 Types of PEs used

 Memory available to PEs to store programs and data

 PEs-memory connection

 Type of communication network used

 Technique of allocating tasks to PEs

 Their mutual communication and cooperation

The variations in each of these lead to a rich variety of parallel computers.

Types of PEs

 PEs may be arithmetic and logic units only. The ALU may use 64-bit
operands or may be quite tiny using 4-bit operands.

 A PE may be a microprocessor with only a private cache memory or a full-
fledged microprocessor with its own cache and main memory. A PE with its
own private memory is called a computing element.

 A large powerful computer such as a mainframe or a vector processor.
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Number of PEs

 A small number of powerful PEs (10 to 100)

 A medium number of microprocessors (100 to 1000)

 A large number of tiny PEs (e.g., ALU > 1000)

Memory system

 Each PE has its own private cache and main memory.

 Each PE has its own private cache but all PEs share one main memory,
which is uniformly addressed and accessed by all PEs.

 Each PE has its own private cache and main memory and all of them also
share one large memory.

Mode of Cooperation

 Each CE has a set of processes assigned to it. Each CE works independently
and CEs cooperate by exchanging intermediate results.

 A host CE stores a pool of tasks to be executed and schedules tasks to free
CEs dynamically.

 All processes and data to be processed are stored in the memory shared
by all PEs. A free PE selects a process to execute and deposits the result in
the memory for use by other PEs.

Communication Networks

 A fixed interconnection network.

 A programmable interconnection network where switches are used for
interconnection, which can be programmed using bit patterns to change the
connections.

 A single bus or a set of buses as the communication network.

 A memory shared by all the PEs, which is used to communicate among the
PEs.

 A combination of two or more of the above.

4.10.1 Overcoming Pipelining Conflicts

There are several problems associated with controlling smooth, efficient execution
of instructions on the pipeline. These problems are generally called hazards. There
are four possible techniques for resolving a hazard.

(i) Forward: If the data is available somewhere, create extra data paths to
‘forward’ the data to where it is needed. This is the best solution, as it
neither slows down the machine nor does it change the semantics of the
instruction set.

(ii) Add Hardware: This is the most appropriate structural hazard where if a
piece of hardware has to be used twice in an instruction, then if possible
you should duplicate the hardware.

(iii) Stall: Let the instruction wait until the hazard resolves itself. It is not a good
solution as  it slows down the machine, but may be used if no other alternative
is possible and it is necessary.
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(iv) Document (AKA punt): Define instruction sequences that are forbidden,
or change the semantics of instructions, to account for the hazard. Some
such examples are delayed loads and delayed branches.

These hazards can be broadly classified in many types. These types are as follows:

1. Structural hazards: Structural hazards occur when different instructions
try to access the same piece of hardware at the same time, especially resource
conflicts, which arise when memory is accessed by two segments at the
same time. For proper functioning of pipelining the resources required by
operands for execution must be independent. This type of hazard can be
removed by having more than one piece of that hardware for the segments
wherein the collision can occur, i.e., you should duplicate the resources
such that all possible combinations of instructions in the pipeline can execute
simultaneously. You can use separate data and instruction memory if there
is some conflict in memory access. These hazards can overcome if required
by inserting stalls or reordering the instructions. Let us study a few examples
where structural hazards have been observed and a solution has been found
for them.

Lets see how the structural hazard can be overcame by using two separate
memory units, one for data and other for instruction, instead of using a single
memory unit. In case of pure sequential program, i.e., where there is a simple non-
pipelined implementation of any program it  would work equally well with either
approach.

In effect, the pipeline design you are starting from has anticipated and
resolved this hazard by adding extra hardware.

Also, the first Sparc implementations (remember, Sparc is almost exactly
the RISC machine defined by one of the authors) did have exactly this hazard,
with the result that load instructions took an extra cycle and store instructions took
two extra cycles.

Example 4.4: Let us take a floating number addition problem pipeline. Here is
the program which contains following two instructions

R3 = R0 + R2
R4 = R1 + R2

Solution: Here, both the instructions have R2 as one of their inputs. This can
result a potential conflict in stages two and three of the adder pipeline. Let us take
an example that R2 has to shift its mantissa in order to equalize the exponent with
R1. Now, this changed value of R2 will be added to R0 in order to obtain value of
R3 in third stage which will generate a wrong result. A possible solution to the
above problem is to make multiple copies of the operands, and pass the individual
copies through the pipeline. In the addition of first pair, the CPU provides the
adder circuit a copy of R0 and R2 when it starts the pipeline for the first pair, and
the second stage will obtain the result from these copies only similarly the second
pair will get separate copies.

Let us take an example, where the first instruction involves a register file write
operation and fourth instruction involves register file read operation. Instr i will be
completed at 5 clock pulse when write operation is done. Instr i+3 starting at 4th
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clock pulse will require this register. As required data is not present, hence the
normal flow of data in pipeline does not occur. To overcome this hazard, the
pipeline stalls for one clock cycle.

Table implementation of stalls duing clock cycle

Instr 1 2 3 4 5 6 7 8 9 10 
Instr 
i 

IF ID OD EX WB           

Instr 
i+1 

  IF ID OD EX WB         

Instr 
i+2 

    IF ID OD EX WB       

Stall       bubble bubble bubble bubble bubble     
Instr 
i+3 

        IF ID OD EX WB   

Instr 
i+4 

          IF ID OD EX WB 

(a)

For simplication, refer to the following table:

Instr 1 2 3 4 5 6 7 8 9 10 
Instr i IF ID OD EX WB           
Instr i+1   IF ID OD EX WB         
Instr i+2     IF  ID OD EX WB       
Instr i+3       stall IF ID OD EX WB   
Instr i+4           IF ID OD EX WB 

 (b)

The above problem can be resolved either by (a) duplicating hardware or
(b) modifying the existing hardware to support concurrent operations. If you
duplicate the hardware as in this case if you use two register files instead of one,
then you could perform concurrent read and write operations. However, this could
lead to the consistency problem because if you are duplicating the instruction it is
always possible that at a given clock cycle, registered in one register file could
have different values than the corresponding registers in the other register file. This
inconsistency is clearly unacceptable if accurate computation is to be maintained.

Another way of handling it could be if you modify the register file architecture
such that it performs register write on the first half of the clock cycle and register
read operation on the second half of the cycle. In earlier hardware, designers
sometimes inserted a delay between write and read that was very small in relation
to the clock cycle time, in order to ensure convergence of the register file write.

Some other conditions when structural hazards are observed are as follows:

 Structural hazards could also be observed during the branch instruction, if
there were not two ALUs. Thus,  with only one ALU, you cannot perform
the simultaneous computation of any variable (arithmetic operation) and at
the same time determine whether or not the branch condition was fulfilled
(logical operation).

 A further structural hazard is also observed if you are using only single
memory for storing both instructions as well as data. This problem is very
similar to using single file for  the concurrent reads and writes on the register
file. The possible solution could be:

(i) Using two different caches, one for instructions, and other for data. It
is better than using two types of main memory, one for data and other
for instruction as cache is more frequently used than the main memory.
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(ii) Another possible solution could be design a special-purpose memory
module that permits writing (reading) on the first half of the clock
cycle.  In order to implement it however you would require special
hardware which is quite expensive.

2. Data Hazards: Data hazards occur when the input required for execution of
an instruction depends on the output of the previous instruction still in the pipeline,
i.e., not completed yet as a result output will be not available in the beginning of a
new segment. This hazard causes a degradation of performance in instruction
pipeline as there will be collision of address or data that are needed for the execution
of instruction. All the data hazards discussed here involve registers within the CPU. 
By convention, the hazards are named by the ordering in the program that must be
preserved by the pipeline (Refer Figure 4.80).

ADD DA B.C +

INC D.A bubble

Data dependency

R1 +1

Fig. 4.80 Data Hazards

Consider two instructions i and j, such that the instruction i occurs before j. There
are four  possible data hazards:

(i) RAW (Read After Write) – It happens when j tries to read a source
before i has modified (written) the value, so j gets the old value which is not
correct. Hence, here an instruction tries to read an operand before a previous
instruction is changed ( modified contents of operand). This is caused by a
true dependence. For example:

Sub R1, R2, R3

Add R4, R5, R1

Here the 2nd operation involves the addition operations. It reads the output
of 1st instruction, i.e., subtract operation. Thus, for the correct execution
add operation should not be executed till the requisite modified data is not
available.  This is the most common type of hazard and can be overcome
by using forwarding.

(ii) WAW (Write After Write) – It happens when j tries to write an operand
before it is written by the first instruction, i.e., i instruction. This happens
when the writing process is performed in the wrong order, leaving the value
written by i rather than the value written by j in the destination. This occurs
when there are two instructions and both of them have to write on the same
register.

This hazard is observed in the case when in a pipeline there are two segments
that have write operations or allow an instruction to proceed even when a
previous instruction is stalled.

(iii) WAR (Write After Read) – j tries to write a destination before it is read
by i, so i  incorrectly gets the new value. This is caused by an anti-dependence
that occurs when one instruction writes a register that will be read by another
instruction. For example:
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add     r1, r2, r3      // r1 := r2 + r3

add     r3, r4, r5      // r3 := r1 + r4

There is an anti-dependence between the two instructions because the second
instruction writes a register r3 that is used by the first instruction. This occurs
as processor have finite number of registers and registers are reused. If
there are infinite number of registers available, i.e., for each output there is
a separate register then WAR and WAW dependencies will never happen.

(iv) RAR (Read After Read) – This occurs when two instructions read from
same registers. As  reading does not change the value of registers RAR will
not create a problem hence it is not considered a hazard.

The possible solutions for this problem are following:
(a) Stall Insertion: The simplest remedy to all data hazards is to inserts

stalls in the execution sequence. These stalls are no operation instructions
that are added (one or two) into the pipeline so that the requisite
delays of the current instruction until the required operand is written
on the register file. Thus, in order to ensure the correct the use of stall.
Decrease the efficiency and throughput of the pipeline, which is against
the goals of pipeline processor design. Stalls are thus an expedient
method and should be used as the last resort under the conditions
when other techniques like compiler action or forwarding fails or the
hardware support required to execute these instructions or the required
software design to implement them are not available.

(b) Forwarding: Another technique to resolve this dependency is to add
a special circuitry in the pipeline. This circuitry comprises a set of
wires and switches with the help of which one can forward or transmit
the desired value to the pipeline segment that is needed for the
computation. Although this increases the cost and complexity of the
system as you need additional hardware and control circuitry but this
technique is very efficient and has improved throughput because it
takes far less time for the required data  to travel through this circuit
than it does for a pipeline segment to compute its result (Refer Table
4.13).

Table  4.13 Forwarding

DD R1, R2, 
R3 

IF ID OD EX WB     

SUB R4, R5, 
R1 

  IF IDsub OD EX WB   

AND R6, R1, 
R7 

    IF IDand OD EX WB 

 
In Table 4.13 result ADD operation is not needed by SUB operation
till the time it produced it, i.e., the output of EX ADD operation is
needed by OF Segment of SUB operation. If you have a circuitry
through which one can move the result from where the ADD produces
it (EX register), to where the SUB needs it (ALU input latch), then
the stall which is introduced can be avoided. In above case forwarding
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is implemented by forwarding the ALU result from the EX register to
the ALU input latches (through feedback). If the forwarding hardware
detects that the previous ALU operation has to write on the register,
then the control logic selects the forwarded result as the ALU input
rather than the value read from the register file.

(c) Code Re-Ordering: Code re-ordering is another technique where,
the compiler reorders the source code or one can  do the assembler
by reordering the object code, thus by placing one or more statements
between the current instruction and the instruction in which the required
operand was computed as a result. In order to perform this operation
one needs an ‘intelligent’ compiler or assembler, which must have in
advance the detailed information about the structure and timing of the
pipeline, that is when and where any possible data hazard could occur
in the pipeline. This type of arrangement is called a hardware-
dependent compiler.  These compilers not only detect a data conflict
but also reorder the instructions by inserting no-operation instructions
or inserting any step which does not involve conflicting data so that
the required delay in the loading of conflicting data happen by this
technique called delayed load. For example let us consider the
following case:
a = b + c ;
d = a – f ;
e = g – h ;
The stall can be easily avoided if step 2 is performed after step 3, i.e.,
if following sequence is adopted there will be no stall required
a = b + c ;
e = g – h ;
d = a – f

3. Control Hazards: They are the most difficult as well as most common types of
hazards that arise with normal operation of a program. The most common among
the control hazard is the branching instruction. Branching can be conditional or
unconditional.

In case of the unconditional branching the PC is always loaded by new PC
(Refer Figure 4.81).

JMP ID + PC Branch address dependency

IF ID OF OE OSBubble

PC

Fig. 4.81 Control Hazard

However, in case of conditional branching, there are always two possible
alternative results:

 If condition meets, then jump to the branch target address.
 If condition does not meet, execute the instruction after the branch.

As in conditional branching the value of PC is dependent on the condition
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and in case the condition is tested true, the contents of pervious pipeline are flushed
out and the address of the instruction where one has to jump is loaded in PC so
that the pipeline will continue with new address. But, in case when the condition
tested is not satisfied there will be sequential execution, hence pipeline contents
are not affected.  The simplest method of dealing with branches is to stall /to
insert bubbles in the pipeline as soon as the branch is detected until you reach the
EX stage, which determines there is branching or interrupt to be handled and  new
PC is to be loaded and you should start with first IF instruction. The problem arise
when the branch target address is not ready in time for the branch to be taken,
which results in stalls (dead segments) in the pipeline that have to be inserted as
local wait events, until processing can resume after the branch target is executed.
The pipeline behaviour looks like  as shown in Table 4.14.

Table 4.14 Pipeline Behaviour

  Branch IF ID OF EX WB           
Branch 
successor 

  IF(stall) stall stall IF ID OF EX WB   

Branch 
successor+1 

          IF ID OF EX WB 

 
The stall does not occur until after ID stage.

This control hazards stall must be implemented differently from a data hazard,
since the IF cycle of the instruction following the branch must be repeated as soon
as you know the branch outcome. Thus, the first IF cycle is essentially a stall
(because it never performs useful work), which comes to total three stalls. Three
clock cycles wasted for every branch is a significant loss. With a 30 per cent
branch frequency and an ideal CPI of 1, the machine with branch stalls achieves
only half the ideal speedup from pipelining.

Control hazards can be mitigated through accurate branch prediction (which
is difficult), and by delayed branch strategies. The problem with the branch
instruction is that you usually do not know which result will occur (i.e., whether or
not the branch will be taken) until the branch condition is computed. Often, the
branch condition depends on the result of the preceding instruction, so you cannot
precompute the branch condition to find out whether or not the branch will be
taken. The following strategies are employed in resolving control dependencies
due to branch instructions.

 Assume Branch Not Taken: As you saw, you can insert stalls until you
find out whether or not the branch is taken. However, this slows pipeline
execution unacceptably. A common alternative to stalling is to continue
execution of the instruction stream as though there is no conditional branch.
The intervening instructions between the branch and its target are then
executed. If the branch is not taken, this is not a harmful or disruptive
technique. However, if the condition satisfies and branching has taken place,
then you must discard the results of the instructions executed after the branch
statement. This is done by flushing the IF, ID and EX stages of the pipeline
for the discarded instructions. Execution continues uninterrupted after the
branch target. The cost of this technique is approximately equal to the cost



CPU, Input-Output and
Memory Organizations

NOTES

Self - Learning
Material 329

of discarding instructions. For example, if branches are not taken 50 per
cent of the time, and the cost of discarding results is negligible, then this
technique reduces the cost of control hazards by 50 percent.

 Reducing Branch Delay: In this technique the complier detects the branch
instructions and rearranges the machine language code sequence by inserting
useful instructions that keep the pipeline operating without  the interruption.
It is similar to delayed load. The advantage of this technique is that lesser
numbers instructions are needed to be discarded as compared to pervious
one. The most advantageous situation is the one where the branch condition
does not depend on instructions immediately preceding it then you can
proceed with these step till the result of branch condition is computed.

 Dynamic Branch Prediction: It would be useful to be able to predict
whether or not a majority of the branches are taken or not taken. Thus, you
require some additional logic to guess the outcome of a conditional branch
instruction before it is executed. The pipeline then begins parefetching the
instruction stream from the predicted path. This can be done in software,
using intelligent compilers and can also be done at runtime. The most
advantageous situation is one where the branch condition does not depend
on instructions immediately preceding it, as shown in the following code
fragment:

Loop : ADD R5, R5, R6 # One of the registers for branching condition
  is modified

SUB R4, R3, R6 # Nothing important to the branch here

Equal beq R5, R6, Loop

Here, the branch compares registers 5 and 6, which are last modified in the
add instruction. You can therefore precompute the branch condition as sub
r R5, R6, where r denotes a destination register. If r = 0, then you know the
branch will be taken, and the runtime module (pipeline loader) can schedule
the jump to the branch target address with full confidence that the branch
will be taken.

 Branch Target Buffer: Another approach is to keep a history of branch
statements, and to record what addresses these statements branch. This is
with use of Branch Target Buffer (BTB). BTB is an associative memory
which contains the address of previously executed branch instruction and
the target instruction for the branch. It also stores next few instructions.
When the pipeline found a branch instruction it views the BTB associative
memory. If its address is available it prefetch from BTB and continue the
available path after instruction in BTB. If the instruction is not in BTB, the
pipeline shifts to new instruction and stores the target instruction in BTB.
Thus, if branch instruction is previously executed then you can directly jump
to next steps instead of inserting extra delays slots.

(v) Loop Buffer: Although all the data dependencies are important to identify
when designing parallel programs, loop carrying dependencies are particularly
important since loops are possibly the most common target of parallelization
efforts. Since, the vast majority of branches are used as tests of loop
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condition, then you know that the branch will almost always jump to the
loop back point. If the branch fails, then you know the loop is finished, and
this happens only once per loop. Since, most loops are designed to have
many iterations, branch failure occurs less frequently in loops than does
taking the branch. Hence, you take a register file maintained by the instruction
fetch segment of the pipeline. When a program loop is detected in the
program, all the instructions (i.e., instructions inside the loop) are stored in
loop buffer. Thus, program loop can be executed directly without the access
to memory until mode is removed by final branching out.  Thus, it makes
good sense to assume that a branch will jump to the place that it jumped to
before. However, in dense decision structures (e.g., nested or cascaded if
statements), this situation does not always occur. In such cases, one might
not be able to tell from the preceding branch whether or not the branching
behaviour will be repeated. It is then reasonable to use a multi-branch
lookahead.

(vi) Branch Delay Slot: Another clever technique of making branches more
efficient is the branch delay slot.

The concept of efficient branching has two parts. First, the branch target
address is computed in the ID stage of the pipeline, to determine as early as
possible the instruction to fetch if the branch succeeds. Since, this is done in the
second stage of the pipeline, there is an instruction I following this (in the first or IF
stage). After I moves to the ID stage, then the branch target (pointed to by either
PC+4 or the BTA) is loaded into the IF stage. It is this instruction (I) that is called
the Branch Delay Slot (BDS). In  BDS, an instruction that does not have data
dependencies on be safely placed with respect to (i) the branch condition, (ii) the
instruction following the branch condition or (iii) the branch target. This ensures
that, when the instruction J is executed (J is the instruction to which control is
transferred after the branch condition is evaluated, whether J is pointed to by
PC+4 or BTA), then the instruction I will have been executed previously, and the
pipe will not have a stall where I would have been. As a result, the pipe will remain
full throughout the branch evaluation and execution, unless an exception occurs.

4.11 FLYNN'S CLASSIFICATION

The classification based on the multiplicity of instruction streams and data streams
in a computer system is referred to as Flynn’s classification.

Parallel processing can be classified in a variety of ways. It can be classified
on the basis of the internal organization of processors, the interlinked structure
between processors or the flow of information throughout the system.

M.J. Flynn introduced another classification on the basis of instructions and
data flow in a system; this classification is known as the Flynn’s classification.

Flynn classified parallel computers into four categories based on how
instructions process data. These categories are as follows:
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 Single Instruction Stream, Single Data Stream (SISD) Computer

 Single Instruction Stream, Multiple Data Stream (SIMD) Computer

 Multiple Instruction Stream, Single Data Stream (MISD) Computer

 Multiple Instruction Stream, Multiple Data Stream (MMD) Computer

The normal operation of a computer is to fetch instructions from memory
and execute them in a processor. The series of instructions read from the memory
constitutes an instruction stream. The operations performed on the data in the
processor constitute a data stream. Parallel processing may occur in the instruction
stream, in the data stream or in both.

Single Instruction Stream, Single Data Stream (SISD)

A computer with a single processor is called a Single Instruction Stream, Single
Data Stream (SISD) computer. It represents the organization of a single computer
containing a control unit, a processor unit and a memory unit. Instructions are
executed sequentially and the system may or may not have internal parallel
processing. Parallel processing can be accomplished by means of pipeline
processing.

In such a computer, a single stream of instructions and a single stream of
data are accessed by the processing elements from the main memory, processed
and the results are stored back in the main memory. The SISD computer
organization is shown in Figure 4.82.

         MM  Data Stream 

      MM – Main Memory Unit  

      PR – Processor Unit 

      CU – Control Unit 

          CU    PR 

              Instruction Stream    

Fig. 4.82 SISD Organization

Single Instruction Stream, Multiple Data Stream (SIMD)

It represents the organization of a computer which has multiple processors under
the supervision of a common control unit. All processors receive the same instruction
from the control unit but operate on different items of data. SIMD computers are
used to solve many problems in science, which require identical operations to be
applied to different data sets synchronously. Examples are, adding a set of matrices

simultaneously, such as ( )ik jk
i k

a b . Such computers are known as array

processors. The SIMD computer organization is shown in Figure 4.83.
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 – 
 – 

Fig. 4.83 SIMD Organization

Multiple Instruction Stream, Single Data Stream (MISD)

It refers to the computer in which several instructions manipulate the same data
stream concurrently. In the structure, different processing elements run different
programs on the same data. This type of processor may be generalized using a
two-dimensional arrangement of processing elements. Such a structure is known
as systolic processor. The MISD computer organization is shown in Figure 4.84.

CU : Control Unit
PU : Processor Unit
MU : Memory Unit
IS : Instruction Stream
DS : Data Stream
SM : Shared Memory

IS1 IS1

ISn

IS2 IS2

CU1 PU1

CU2 PU2

IS2 IS1

ISn PUnCUn
ISn

DS

DS

SM

MU1 MU2 MUm

Fig. 4.84 MISD Organization

Multiple Instruction Stream, Multiple Data Stream (MIMD)

MIMD computers are general-purpose parallel computers. Their organization refers
to a computer system capable of processing several programs at the same time.
MIMD systems include all multiprocessing systems. The MIMD computer
organization is shown in Figure 4.85.
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CU : Control Unit
PU : Processor Unit
MU : Memory Unit
IS : Instruction Stream
DS : Data Stream
SM : Shared Memory

MU1

MU2

MUm

SM

IS1

ISn

IS2

ISn

IS1

IS2

CU1

CU2

CUn

PU1

PU2

PUn
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ISn

DS1

DS 2

DS n

Fig. 4.85 MIMD Organization

4.11.1 Array Processors

An array processor is a processor that is designed for performing calculations on
a large-sized array of data. There are two types of array processors:

 Attached Array Processor

 SIMD Array Processor

An attached array processor is a peripheral device attached to a computer so that
the performance of a computer can be improved for numerical computations. The
purpose of the attached array processor is to improve the computer’s performance
by providing the functionality of vector processing for solving complex scientific
problems.

Figure 4.86 shows the interconnection of an attached array processor with
a computer.

 

 

Computer    I/O Interface   Attached  

           Array  

        Processor   

 

 

 

 

    Main            Local 

 Memory         Memory 

 

Fig. 4.86 Attached Array Processor



CPU, Input-Output and
Memory Organizations

NOTES

Self - Learning
334 Material

SIMD Array Processor

An SIMD array processor has a single instruction multiple data stream organization
that manipulates the common instruction by means of multiple functional units. This
array processor consists of multiple Arithmetic and Logic Units (ALUs) that operate
in parallel. ALUs work under the control of a common control unit performing the
same operation and hence, achieve the single instruction multiple data stream
organization.

The SIMD array processor consists of a set of processing elements where
each Processing Element (PE) has its own local Memory (M) as shown in Figure
4.87. The processing elements may include the Arithmetic and Logic Unit (ALU),
floating-point arithmetic unit and registers. The main memory of the CPU is used
for the storage of the program. The operation of the processing element is controlled
by the master control unit, whose main function is to decode the instructions and
determine how the instruction is to be executed. Data operands are transferred to
local memories. Each of the processing elements operates upon the data stored in
its local memory.

Suppose we need to perform the vector addition c
i
= a

i
+ b

i 
, for i = 1, 2, 3

— n. The master control unit first stores the ith data element in a local memory M
i
.

It then gives the add instruction c
i
 = a

i
 + b

i 
to the processing elements causing the

addition to take place simultaneously. The result of c
i
 is stored in the local memories.

Thus, the whole process is performed in one cycle.
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     Master Control Unit      ALU2       M2 

 

 

  

          Main Memory 

          ALUn       Mn 

 

 

 

Fig. 4.87 SIMD Array Processor
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Check Your Progress

21. What is flash memory card?

22. Microcomputers memories are made up of which material?

23. Why is cache memory used?

24. What do you understand by virtual memory?

25. List the methods of parallelism.

26. When does data hazards occur?

27. How Flynn classified parallel computers into four categories?

28. Name the two types of array processors.

4.12 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. CPU tests and manipulates data and transfers information to and from other
components, such as working memory, disk drive, monitor and keyboard.

2. The group of binary bits assigned to perform a specified operation is known
as control word.

3. A stack is an ordered collection of items which permits the insertion or
deletion of an item to occur only at one end. The insertion operation is
known as push and the deletion operation is known as pop.

A stack is also known as a Last-In-First-Out (LIFO) list. The stack can be
considered as a storage method in which the items stored last are the first
items to be removed.

4. The process of inserting an item into stack is known as a push operation.
The process of deleting an item from a stack is known as a pop operation.

5. The stack pointer contains the address of the word that is currently on top
of the stack, and which is a binary value.

6. A stack can also be implemented using the random access memory attached
to the CPU. This can be implemented by assigning a portion of the memory
for the stack operation, using the processor register as a stack pointer. The
program counter indicates the address of the subsequent instruction stored
in memory and the stack pointer indicates to the top of the stack.

7. The three basic notations are:

x + yInfix notation

+ xy Prefix or polish notation

 xy +Postfix or reverse polish notation

8. The different types of CPU organization are as follows:

 Single Accumulator Organization

 General Register Organization

 Stack Organization
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9. Immediate addressing is the simplest form of addressing where the operand
is actually present in instruction, i.e., there is no operand fetching activity as
the operand is given explicitly in the instruction.

10. Displacement addressing is a very powerful mode of addressing because it
combines the capabilities of direct addressing and register indirect addressing.

11. Computer instructions are broadly classified into the following categories:
i. Data transfer instructions
ii. Data manipulation instructions
iii. Program control instructions

12. Addition, subtraction, multiplication and division are the four basic arithmetic
operations.

13. RISC is a type of microprocessor that is designed with limited number of
instructions.

14. A magnetic tape consists of a plastic ribbon with a magnetic surface. The
data is stored on the magnetic surface as a series of magnetic spots. It has
a large storage capacity of 2 to 8 GB and slow transfer rate of 160 kB/s to
1 MB/s.

15. Sensors are non-interactive types of devices, i.e. they are the devices which
accept the non-online input and send this input data to computers.

16. MICR is a popularly used technique in the banking sector. All banks now
issue cheques and drafts. As cheques enter an MICR machine, they pass
through the magnetic field which causes the read head to recognize the
character of the cheques. It has vastly helped the banking sector in
authenticating the cheques.

17. As a new I/O device is designed on some new technology, it is required to
make the device compatible with the processor. Designing an instruction
set for every new device is not at all feasible.

18. Following are certain properties of a subroutine:

 The subroutine call and return mechanism is automatic; therefore
programmer will not execute it explicitly.

 A subroutine can be called from more than one program. The top of
stack will store the return address of the program calling it.

 A subroutine call can appear in a subroutine, i.e., it can be nested.

19. Processor is not involved in I/O transfers in DMA. In other two techniques,
on the other hand, each I/O transfer is performed by a set of instructions
that are executed by CPU. So, with the DMA data transfer technique, the
processor is available for other processing activities as it is not used for
handling the data transfer activity. In the systems where the processor
primarily uses cache, data transfer can take place in parallel, increasing
overall system utilization.
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20. The processor that communicates with remote terminals like telephone or
any other serial communication media in serial fashion is called data
communication processor (DCP).

21. A flash memory card is an electronic flash memory data storage device
which is used in digital cameras, mobile computers, telephones, music players,
video game consoles and other electronics.

22. Microcomputers memories are made of semiconductors fabricated on silicon
chips.

23. Cache memory is used to store the data and information temporarily.

24. Virtual memory is a concept which permits the user to construct a program
with size more than the total memory space available to it.

25. Parallelism has no advantages but this concept has different levels of
effectiveness by using some methods. These methods are as follows:

 Symmetric Multiprocessor (SMP)
 Non-Uniform Memory Access (NUMA)
 Uniform Memory Access (UMA)
 Single Instruction Multiple Data (SIMD)
 Multiple Instruction Multiple Data (MIMD)

26. Data hazards occur when the input is required for execution of an instruction
depending on the output of the previous instruction still in the pipeline.

27. These categories are as follows:

 Single Instruction Stream, Single Data Stream (SISD) Computer

 Single Instruction Stream, Multiple Data Stream (SIMD) Computer

 Multiple Instruction Stream, Single Data Stream (MISD) Computer

 Multiple Instruction Stream, Multiple Data Stream (MIMD) Computer

28. The two types of array processors are: attached array processor and SIMD
array processor.

4.13 SUMMARY

 CPU tests and manipulates data and transfers information to and from other
components, such as working memory, disk drive, monitor and keyboard.

 The group of binary bits assigned to perform a specified operation is known
as control word.

 A stack is an ordered collection of items which permits the insertion or
deletion of an item to occur only at one end. The insertion operation is
known as push and the deletion operation is known as pop.

 The conversion of an expression from the infix form to the reverse polish
form must be done according to the operational hierarchy that follows for
the infix notation.
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 An instruction is a command given to a computer to perform a specified
operation on some given data. The format in which the instruction is specified
is known as instruction format.

 The number of addresses in the instruction can be reduced to two from
three if the destination register is the same as one of the source registers.

 Addressing modes form the part of instruction set architecture. The instruction
set is an important aspect of any computer organization. The Effective
Address (EA) of an operand is the address of (or the pointer to) the main
memory or register location in which the operand is contained.

 Immediate addressing is the simplest form of addressing where the operand
is actually present in instruction. The simplest addressing mode where an
operand is fetched from memory is direct addressing.

 Register addressing is a way of direct addressing where the address field
refers to a register rather than the main memory address. Indirect addressing
mode is used where the address of the operand is contained in register pair.

 In register indirect addressing mode, the operand field of an instruction
holds the address of the address register to calculate the true address of the
operand. Displacement addressing requires that the instruction should have
two address fields, in which at least one is explicit.

 In index addressing mode, the address field references a main memory
address and the reference register contains a positive displacement from
that address. Indexing provides an efficient mechanism for performing
iterative operations.

 The processor unit performs arithmetic and other data processing tasks as
specified by a program.

 The control unit retrieves the instructions from a program (one by one),
which are safely kept in the memory.

 Computer instructions are broadly classified into three different categories,
data transfer instructions, data manipulation instructions and program control
instructions.

 In microprogrammed organization the control unit is implemented through
programming.

 For the execution of a program, the series of microinstructions must be
determined which is different for different instructions.

 The essential components of a microprogrammed unit are microprogram
sequencer, control address register, control memory, control buffer register
and decoder.

 The Reduced Instruction Set Computer (RISC) pipeline instructs the
verification in RISC cores.

 The peripheral devices can be thought of as transducers which can sense
physical effects and convert them into machine-tractable data.
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 An I/O interface is an entity that controls the data transfer from external
device, main memory and/or CPU registers.

 In the interrupt driven techniques, the processor starts data transfer when it
detects an interrupt signal which is issued when device is ready.

 The three types of exceptions are interrupts, traps and system calls.

 If a program requires any input or output, it lets the device controller or
device to issue an interrupt.

 In DMA, the data is moved between a peripheral device and the main
memory without any direct intervention of the processor.

 An IOP may be classified as a processor with the direct memory access
capability that communicates with the I/O device.

 The data communication processor is an IOP that distributes and collects
data from the remote terminals through telephone or other connection lines.

 Serial ports transfer data serially one bit at a time while parallel ports send
and receive one byte/8-bit data at a time.

 RAM and ROM are considered as the two prime types of computer memory
system in which RAM is considered as read write memory whereas ROM
refers to read only memory. RAM is volatile whereas ROM is non-volatile
memory.

 RAM is a volatile memory chip in which both read and write operations can
be performed. Any random memory location can be accessed for information
transfer to or from the memory and is called Read Write Memory (RWM).

 Dynamic Random Access Memory (DRAM) is single transistor memory
cell that requires regular refreshes. This chip consists of small capacitors for
each bit of memory.

 Static Random Access Memory (SRAM) is a volatile memory cell that
does not require updates or periodic refresh cycles to keep the memory
content intact. As compared to DRAM chip, SRAM chip is faster.

 Flash memory is a non-volatile computer storage chip that can be electrically
erased and reprogrammed. It was developed from EEPROM (Electrically
Erasable Programmable Read Only Memory) and must be erased in fairly
large blocks before these can be rewritten with new data. The two types
are NAND and NOR.

 Cache memory is used to store the data and information temporarily. It is
implemented for Internet content by distributing it to multiple servers which
are periodically refreshed. In fact, cache is a small and fast memory placed
between the CPU and the main memory.

 The virtual memory permits the user to construct a program with size more
than the total memory space available to it. This technique allows user to
use the hard disk as if it is a part of main memory.

 The classification based on the multiplicity of instruction streams and data
streams in a computer system is referred to as Flynn’s classification.
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 An array processor is a processor that is designed for performing calculations
on a large-sized array of data.

4.14 KEY TERMS

 CPU: The ALU and CU of a computer system are jointly known as the
CPU.

 ALU: The unit that does the arithmetic and logic operations needed for
executing instructions.

 Stack: An ordered collection of items that allows the insertion or deletion
of an item to occur only at one end.

 Direct Addressing: It is the simplest addressing mode where an operand
is fetched from memory is direct addressing.

 Data Manipulation Instructions: The instructions that perform arithmetic,
shift or logic operations to manipulate data

 Microinstructions: Each instruction is executed by a set of microoperations,
termed as microinstructions.

 Hard Disk: A hard disk is one of the important I/O devices and is most
commonly used as permanent storage device in any processor.

 Bus Master: It is the device that is allowed to initiate data transfer on the
bus at any given time.

 Polling: It is the technique that identifies the highest priority resource by
means of software.

 Subroutine: It is a self-contained program (piece of instruction code) that
may be invoked or called by main program.

 Cache Memory: It is a small and fast memory placed between the CPU
and main memory.

 Parallel Computing: Parallel computing means doing several tasks
simultaneously, thus improving the performance of the computer system.

 Array Processor: A processor designed for performing calculations on
large sized arrays of data.

 SIMD Array Processor: An array processor with a single instruction
multiple data stream organization that manipulates the common instruction
by means of multiple functional units.

4.15 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Write the examples of output devices.

2. What is the purpose of including sign flag?
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3. State the basic features of general register organization.

4. Define control world.

5. What do you mean by register stack?

6. What is an instruction formats?

7. What do you understand by register addressing?

8. Which mode of addressing is known as implied addressing?

9. What are data transfer instructions?

10. Which two tasks are performed to execute an instruction by
microprogrammed control unit?

11. Define microinstructions.

12. What steps are executed in a microcode execution in one clock pulse?

13. What do you understand by peripheral devices?

14. Define I/O interface.

15. What is the function of memory bus?

16. What are the advantages of DMA?

17. Give the significance of IOP.

18. State the objective of virtual memory.

19. How does parallel processing work?

20. What are the two types of array processors? Explain each with suitable
diagrams.

Long-Answer Questions

1. What are the main components of CPU? Explain register level CPU
organization with the help of diagram.

2. Define storage registers. Write the functions and prototypes used in
transferring registers.

3. Instructions use operands and machine registers mainly in four different
ways. Discuss these in brief.

4. What is the difference between zero-address, one-address and two address
instructions?

5. Explain the role of stacks in programming.

6. Discuss all the characteristics of a good instruction format. Explain the
structure of a typical instruction format.

7. Discuss addressing modes. What are the advantages and disadvantages of
implied mode?

8. How displacement addressing is useful in addressing mode? Explain all the
types of displacement addressing.

9. Describe the three data manipulation instructions.
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10. Elaborate on microprogrammed control unit. Which components are used
to implement the control process in the microprogrammed units?

11. Explain the functions of is Input-Output Interface. What are the types of
command that an interface receive?

12. Describe the interrupt mechanism in detail.

13. Compare programmed I/O and DMA.

14. What is cache memory? Explain cache memory organization with the help
of a diagram.

15. Explain Flynn’s classification of the parallel computer architecture. Also
discuss each class.
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UNIT 5 PIPELINE, VECTOR
PROCESSING AND
MULTIPROCESSING
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5.2.4 RISC Pipelines
5.2.5 Vector Processing
5.2.6 Array Processing

5.3 Multiprocessors
5.3.1 Interconnection Structure
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5.3.3 Interprocess Arbitration

5.4 Interprocessor communication and Synchronization
5.4.1 Racing Problem
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5.4.3 Critical Section Algorithms
5.4.4 Hardware Support for Mutual Exclusion
5.4.5 Swap Instruction
5.4.6 Binary Semaphore
5.4.7 Implementation of Semaphores with a Waiting Queue
5.4.8 Conditional Critical Region (CCR)
5.4.9 Classical Problems in Concurrent Programming

5.4.10 Readers and Writers Problem
5.4.11 Deadlocks
5.4.12 Resource Allocation Graph (RAG)
5.4.13 Methods for Handling Deadlocks
5.4.14 Introduction to File System and IO
5.4.15 Organizing Files

5.5 Cache Coherence
5.6 Answers to ‘Check Your Progress’
5.7 Summary
5.8 Key Terms
5.9 Self-Assessment Questions and Exercises

5.10 Further Reading

5.0 INTRODUCTION

A pipeline is a set of data processing elements connected in series, so that the
output of one element is the input of the next one. Computer processor pipelining
is sometimes divided into an instruction pipeline and an arithmetic pipeline. An
instruction pipeline is a technique used in the design of computers and other digital
electronic devices to increase their instruction throughput. The arithmetic pipeline
represents the parts of an arithmetic operation that can be broken down and
overlapped as they are performed.
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A vector processor is a CPU which implements an instruction set containing
instructions that operate on one-dimensional arrays of data known as vectors.
Pipelining and vector processing speed up processing by performing multiple
operations in parallel. Multiprocessors use two or more than two CPUs assembled
in a single system unit. It refers to the execution of various software processes
concurrently.

In this unit, you will study about the pipeline processing, vector processing,
array processing, multiprocessors, interconnection structures, interprocessor
arbitration, interprocessor communication and synchronization and cache coherence.

5.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand pipelining

 Classify pipeline processors

 Explain principles of designing pipelined processors

 Know vector processing and its characteristics

 Illustrate pipelined vector processing methods

 Explain multiprocessors

 Get acquainted with characteristics of multiprocessors and interprocess
arbitration

 Describe interprocessor communication and synchronization

 Define cache coherence

5.2 PIPELINE PROCESSING

The implementation technique, where multiple instructions are overlapped in
execution is known as pipelining. The computer pipeline is divided in various stages
each of which completes a part of an instruction in parallel. Each stage is connected
one to the next; one to form a pipe in which instructions enter at one end, progress
through the stages and exit at the other end.

Pipeline Computer

Pipeline computers are those computers where a computer uses a sequence of
stages (also known as segments) to execute an instruction. The computer’s Central
Processing Unit (CPU) contains one or more pipelines that interpret and execute
instructions. It is the responsibility of the CPU to make sure that every stage of
pipeline is always busy in executing an instruction. Once the instruction finishes its
execution in one stage, the CPU passes that instruction to the next stage and gets
another instruction from the previous stage, thereby moving several instructions
along the pipeline simultaneously. Hence, this process is more efficient than the
process in a non-pipeline computer where each instruction had to start its execution
at the very first stage after the previous instruction finishes its execution.
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In a digital computer, the execution of an instruction mainly involves the
following four steps:

 Fetching the instruction from computer memory (IF)

 Decoding the fetched instruction (ID)

 Identifying the operation to be performed (OF)

 Executing the instruction (EX)

In a non-pipelined computer, normally these four steps (for a single instruction)
must be completed before the next instruction is taken out from the memory for
execution. However, in a pipelined computer, successive instructions are executed
concurrently. The instructions are executed in different segments as shown in
Figure 5.1.

Fig. 5.1 Pipeline Computer

In a pipelined computer, the instruction cycle consists of multiple pipeline
cycles, where the flow of data (operands, intermediate or output results) from one
segment to another segment takes place under a common clock pulse. Thus, the
operations of all segments operate concurrently under a common clock cycle.

In a non-pipelined computer, the execution of a single instruction completes
in four-clock cycles. However, in a pipeline computer, once a pipeline is filled,
every next clock cycle will produce one output result. Thus, the instruction cycle is
reduced to one-fourth of the original clock cycle in a pipeline computer.

Pipelining has been explained as a method of decomposing a sequential
process into suboperations. Every subprocess is executed in a devoted segment,
which operates parallely with all other segments.

Pipelining is an effective method of increasing the execution speed of the
processor, provided the following conditions are satisfied:

 It is possible to break up an instruction into a number of independent
paths, each part taking nearly equal time to execute.

 There must be locality in instruction execution, i.e., instructions are
executed in a sequence one after the other in the order in which they are
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written. If instructions are not executed in a sequence but ‘jump around’
due to many branch instructions, then pipelining is not effective.

 Sufficient resources are available in a processor so that if a resource is
required by the successive instructions in the pipeline, it is readily
available.

A pipeline is basically seen as a compilation of processing parts through
which binary data flows. Each segment performs partial processing, dictated by
the way the task is partitioned. The result obtained from the computation in each
segment is transferred to the next segment in the pipeline. The final result is obtained
after data has passed through all segments. It is the characteristic of pipelines that
several computations can be in progress in distinct segments at the same time.

The foremost way to view the pipeline framework is to think that each
segment comprises an input register that holds the data information followed by a
combinational circuit. The combinational circuit in the particular segment performs
the suboperation. The result of the combinational circuit in a given segment is
assigned to the input register of the next segment. A clock is assigned to every
register after sufficient time has gone by to do all segment activity. Thus, in this
manner, the information runs through the pipeline one step at a time.

Suppose we want to perform the combined multiply and add operations
with a stream of numbers.

A
i
 * B

i
 + C

i
, for i = 1, 2, 3, 4, ..., 7.

Each suboperation is to be executed in a dedicated segment in a pipeline structure.
Each segment consists of one or two registers and a combinational circuit to carry
out the operation as shown in Figure 5.2. R1, R2, R3, R4 and R5 are registers
that receive new information with every clock pulse. Multiplier and adder are
combinational circuits used in Figure 5.2. The suboperations done in every segment
of the pipeline are as follows:

R1  A
i
, R2  B

i
Input A

i
 and B

i

R3  R1 * R2, R4  C
i

Multiply and input C
i

R5  R3 + R4 Add C
i
 to product

Fig. 5.2 Pipeline Processing



Pipeline, Vector
Processing and
Multiprocessing

NOTES

Self - Learning
Material 347

Table 5.1 Content of Registers in a Pipeline

Clock Pulse Segment 1 Segment 2 Segment 3

Number R1 R2 R3 R4 R5

1 A
1

B
1

– – –

2 A
2

B
2

A
1
* B

1
C

1
–

3 A
3

B
3

A
2
* B

2
C

1
A

1
 * B

1
 + C

1

4 A
4

B
4

A
3
* B

3
C

1
A

2
 * B

2
 + C

2

5 A
5

B
5

A
4
* B

4
C

1
A

3
 * B

3
 + C

3

6 A
6

B
6

A
5
* B

5
C

1
A

4
 * B

4
 + C

4

7 A
7

B
7

A
6
* B

6
C

1
A

5
 * B

5
 + C

5

8 – – A
7
* B

7
C

1
A

6
 * B

6
 + C

6

9 – – –  – – A
7
 * B

7
 + C

7

The five registers are loaded with new data at every clock pulse, as illustrated
in Table 5.1. With the first clock pulse, the value of A

1
 and B

1
 transfers into register

R1 and R2, respectively. The product of R1 and R2 will transfer into R3 with the
second clock pulse. At the same clock pulse, the value of C

1
 will transfer into

register R4 and the value of A
2
 and B

2
 will transfer into register R1 and R2. The

third clock pulse operates on all three segments simultaneously. It places A
3
 and

B
3
 into R1 and R2, sends the product of R1 and R2 into R3, transfers C

2
 into R4

and places the sum of R3 and R4 into R5. It takes three clock pulses to fill the pipe
and retrieve the first output from R5. From there on, each clock pulse produces a
new output and moves the data one step down the pipeline. This will continue as
long as the new input data flows into the system. When no additional data is
accessible, the process continues till the last result comes out of the pipeline.

The general structure of a three-segment pipeline is shown in Figure 5.3.
Each segment consists of a combinational circuit through which operands pass in
a specified sequence. The combinational circuit C

i
 performs the required

suboperation over the data flowing through the pipe. R1 is the register that will
hold the intermediate results between the stages. A common clock is applied to all
registers. Information flows through adjacent stages under the control of a common
clock. Also, registers are placed in between two segments to separate them.

Fig. 5.3 Three Segment Pipeline

Space-Time Diagram for Pipeline

The behaviour of a pipeline can be illustrated with a space–time diagram. This is a
diagram that shows the segment utilization as a function of time. The time in clock
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cycles, is given along the horizontal axis and the vertical axis gives the segment
number.

Fig. 5.4 Space–Time Diagram

The diagram shown in Figure 5.4 shows six tasks T
1
 through T

6
 executed in

four segments. Initially, task T
1
 is handled by segment 1. After the first clock,

segment 2 is busy with T
1
, while segment 1 is busy with task T

2
. Continuing in this

manner, the first task T
1
 is completed after the fourth clock cycle. From then

onwards, the pipe completes a task with every clock cycle. No matter how many
segments there are in the system, once the pipeline is full, it takes only one clock
period to obtain an output.

Consider a case where a k-segment pipeline with a clock-cycle time t
p
 is

used to execute n tasks.

The first task T
1
 needs the same time as kt

p
 to finish its operation since there

are k-segments in the pipe. The remaining (n – 1) task comes out of the pipe at the
speed of one task per clock cycle. They will complete all the tasks after a time
equivalent to (n – 1) t

p
.

Thus, to finish n tasks using a k-segment pipeline, the time needed will be
k + (n – 1) clock cycles.

As for instance, to complete 6 tasks using the 4-segment pipeline, the time
needed to finish all operations is 4 + (6 – 1) = 9 clock cycles.

Consider a non-pipeline unit that performs the same operation and takes
time equal to t

n
 to complete each task. The total time required for n tasks is nt

n
.

The speedup of a pipeline processing over an equivalent non-pipeline
processing is defined by the ratio:

S = nt
n
/(k + (n – 1))t

p

Therefore, as the amount of tasks increases, n becomes much bigger than
k – 1, and k + n – 1 reaches the value of n. Thus, speedup becomes:

S = t
n
/t

p

5.2.1 Arithmetic Pipeline

An arithmetic pipeline divides an arithmetic operation into suboperations for
execution in the pipeline segments.

There are two areas of computer design where the pipeline organization is
applicable.

 Arithmetic pipeline

 Instruction pipeline
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In a very high-speed computer, arithmetic pipeline units are usually found.
They are used to put into practice floating-point operations, multiplication of fixed-
point numbers and related computations found in scientific problems.

Let us take an example of a pipeline unit for floating-point addition and
subtraction.

The inputs to the floating-point adder pipeline are two normalized floating-
point binary numbers.

X = A × 2a

Y = B × 2b

A and B are two fractions that represent the mantissas and a and b are the
exponents. The floating-point addition or subtraction can be performed in four
segments. The register R is placed between the segments to store intermediate
results. The suboperations that are performed in the four segments are as illustrated
in Figure 5.5.

 Compare the exponents

 Align the mantissas

 Add or subtract the mantissas

 Normalize the result

The exponents are compared by subtracting them to determine their
differences. The larger exponent is selected as the exponent of the outcome. The
exponent difference determines how many times the mantissa associated with the
smaller exponent must be shifted to the right. This produces an alignment of the
two mantissas. The two mantissas are added or subtracted in segment 3. The
result is normalized in segment 4.

Exponents
a b

R

Mantissas
A B

R

DifferenceCompare
Exponents

by Subtraction
Segment 1 :

Segment 2 :

Segment 3 :

Segment 4 : 

Choose Exponent

R

R

Adjust Exponent

R

Add or Subtract

R

Normalize Result

R

Align Mantissas

R

Fig. 5.5 Sub-operation performed in Four Segments
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When an overflow occurs, the mantissa is shifted right and the exponent is
incremented by one. If an underflow occurs, the number of leading zeros in the
mantissa determines the number of left shifts in the mantissa and the number must
be subtracted from the exponents.

Take, for example the following two normalized floating-point numbers:

X = 0.9703 × 103

Y = 0.8200 × 102

The two exponents are subtracted in the first segment to get 3 – 2 = 1. The
bigger exponent 3 is selected as the exponent of the outcome. The next segment
shifts the mantissa of Y to the right to obtain:

X = 0.9703 × 103

Y = 0.0820 × 103

This aligns the two mantissas under the same exponent. The addition of the
two mantissas in segment 3 produces the total:

Z = 1.0523 × 103

The total is adjusted by normalizing the outcome so that it has a fraction
with a non-zero first digit. Shifting the mantissa once to the right and increasing the
exponent by one to get the result does this.

Z = 0.10523 × 103

The different combinational circuits implemented in the floating-point pipelines
are comparator, shifter, adder–subtractor, incrementer and decrementer to carry
out the different operations.

Suppose that the time delays of the four segments are t
1
 = 55 ns, t

2
 = 75 ns,

t
3
 = 100 ns and t

4
 = 70 ns and the interface registers have a delay t

r
 = 15 ns. Then,

for pipeline floating-point adder–subtractor, the clock cycle is chosen to be t
p
 = t

3

+ t
r
 = 115 ns. In an equivalent non-pipeline floating point adder–subtractor, the

delay time will be t
n
 = t

1
 + t

2
 + t

3
 + t

4
 + t

r
 = 315 ns. Thus, the pipelined adder has

a speedup of 315/115 = 2.74 over the non-pipelined adder.

Pipeline arithmetic is used in very high-speed computers specially involved in
scientific computations. It is the basic principle behind vector processor and array
processor. They are used to implement floating point operations, multiplication of
fixed point numbers and similar computations encountered in computation problems.
These computation problems can easily be decomposed in suboperations.
Arithmetic pipelining is well implemented in the systems involved with repeated
calculations such as calculations involved with matrices and vectors. Let us consider
a simple vector calculation like  A[i] + b[i] * c[i]  for I = 1,2,3,……,8.

The above operation can be subdivided into three segment pipelines. Each
segment has some registers and combinational circuits. Segment 1 loads contents
of b[i] and c[i] in register R1 and R2 , segment 2 loads a[i] content to R3 and
multiplies content of R1, R2 and stores them in R4 and finally segment 3 adds
content of R3 and R4 and stores it in R5 as shown in Table 5.2.
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Table 5.2 Content of Registers in Pipeline

Clock Pulse 
Mumber 

Segment 1 Segment 2 Segment 3 

 R1 R2 R3 R4 R5 
1 B1 C1 - - - 
2 B2 C2 B1*C1 A1  
3 B3 C3 B2*C2 A2 A1+ B1*C1 
4 B4 C4 B3*C3 A3 A2+ B2*C2 
5 B5 C5 B4*C4 A4 A3+ B3*C3 
6 B6 C6 B5*C5 A5 A4+ B4*C4 
7 B7 C7 B6*C6 A6 A5+ B5*C5 
8 B8 C8 B7*C7 A7 A6+ B6*C6 
9   B8*C8 A8 A7+ B7*C7 
10     A8+ B8*C8 

To illustrate the operation principles of a pipeline computation, the design of
a pipeline floating point adder is given. It is constructed in four stages. The inputs
are as follows:

A = a x 2p

B = b x 2q

Where a and b are two fractions and p and q are their exponents and here
base 2 is assumed.

To compute the sum

C = A+ B = c x 2r = d x 2s

Operations performed in the four pipeline stages are specified as follows:
1. Compare the two exponents p and q to reveal the larger exponent

r = max(p, q) and to determine their difference t = p – q
2. Shift the right fraction associated with the smaller exponent by t bits to

equalize the two components before fraction addition.
3. Add the preshifted fraction with the other fraction to produce the

intermediate sum fraction c where 0 <= c <1.
4. Count the number of leading zeroes, say u, in fraction c and shift left c

by u bits to produce the normalized fraction sum d = c x 2u, with a
leading bit 1. Update the large exponent s by subtracting s = r – u to
produce the output exponent.

Figure 5.6 show how pipeline can be implemented in floating point addition
and subtraction. Segment 1 compares the two exponents by subtraction. In segment
2 you choose the larger exponents. The larger exponent aligns the other mantissa
by viewing the difference between two smaller number mantissa which are shifted
to right by difference amount. Segment 3 performs addition or subtraction of
mantissa while segment 4 normalizes the result. Various registers R are used to
hold intermediate results.
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Fig. 5.6 Implementation of Pipeline

In order to implement pipelined adder you need extra circuitry but its cost is
compensated if you implement it for large number of floating point numbers.
Operations at each stage can be done on different pairs of inputs.

Example 5.1: How fast will be addition of 1000 floating point vector element
using above pipeline as compared to non-pipeline adder?

Solution: The above pipeline has four segments and let us assume each segment
requires one clock cycle time to execute.

To add 1000 pairs of numbers, without a pipelined adder would require
4000 cycles.

With 4-stage pipelined adder, the last sum will appear after 1000 +4 cycles,
so the pipeline is 4000/ 1004 = 3.98 times faster.

Lets take another example of multiplication.

The multiplication of 2 fixed point numbers is done by repeated add-shift
operations, by using ALU which has built-in add and shift functions. Multiple number
additions can be realized with a multilevel tree adder. The conventional Carry
Propagation Adder (CPA) adds 2 input numbers say A and B to produce one output
number called the sum A+B Carry Save Adder (CSA) receives three input numbers,
say A,B and D and two output numbers, the sum S and the carry vector C.
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A CSA can be implemented with a cascade of full adders with the carry-out
of a lower stage connected to the carry-in of a higher stage. A carry-save adder
can be implemented with a set of full adders with all the carry-in terminals serving
as the input lines for the third input number D and all the carry-out terminals serving
as the output lines for the carry vector C.

This pipeline is designed to multiply two 6-bit numbers. There are five pipeline
stages.

The first stage is for the generation of all 6 × 6 = 36 immediate product
terms, which form the six rows of shifted multiplicands. The six numbers are then
fed into two CSAs in the second stage. In total, four CSAs are interconnected to
form a three level merges the sum vector S and the carry vector C. The final stage
uses a CPA which adds the two numbers C and S to produce the final output of
the product A x B (Refer Figure 5.7).

Fig. 5.7 Multiplication Procedure
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5.2.2 Instruction Pipeline

An instruction pipeline operates on a stream of instructions by overlapping the
fetch, decode and execute phases of the instruction cycle.

An instruction pipeline understands the consecutive instruction from the
memory when the preceding instruction was being executed in the other segments.
In this way, we can overlap instructions in the fetch and execute phases and perform
operations simultaneously. The instruction mainly involves the following sequences
of steps:

 Instruction Fetch: Fetch the instruction from memory.

 Instruction Decode:Decode the instruction.

 Calculate Address: Calculate the effective address of operands.

 Operand Fetch: Fetch the operands from memory.

 Operation Execution: Execute the instruction.

 Result Storage: Store the result in proper place.

In a non-pipelined computer, all the above steps are performed for executing
an instruction and then the next instruction is fetched from memory for execution.
However, in a pipelined computer, these steps are performed in different segments.
Suppose one segment is busy with fetching the instruction and at the same time the
other segment is decoding another instruction. The instruction-fetching segment,
the instruction-decoding segment, the operand-fetching segment and the execution
segment would operate simultaneously in a pipelined computer. Some segments
may be skipped for certain operations; for example a register mode instruction
does not need an effective address calculation. Also, it may be possible that two
or more segments might need memory access simultaneously, thus one segment
has to wait while another segment is busy with memory access.

Let us take an example of four segment instruction pipeline as shown in
Figure 5.8 where the decoding of the instruction and calculation of effective address
are combined into one segment. Also, the execution of instruction is combined
with the storing of result into one segment as nearly all the instruction places the
outcome into a processor register after executing the instruction.

If an instruction in the sequence has a branch instruction, then that instruction
causes a branch out of the normal sequence. In this situation, the pending operations
of the last two segments are completed and information stored in the instruction
buffer is deleted. Similarly, an interrupt request causes the pipeline to empty
and start again from a new address value. Figure 5.8 shows the working of
instruction pipeline. Horizontal axis shows the time that is divided into steps of
equal period. Vertical axis shows the instructions. The four segments are abbreviated
as follows:

 FI for fetch an instruction

 DA for decode instruction and calculate effective address

 FO for fetch the operand

 EX for execute the instruction
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Fig. 5.8 Instruction Pipeline

In addition, the processor has separate memories for instructions and data
so that the operations in FI and FO proceed in time. Each segment operates on
different instructions when there is no branch instruction. Thus, in the execution
operation, instruction 1 is executed in segment EX, instruction 2 is executed in
segment FO, instruction 3 be being decoded in segment DA and instruction 4 is in
segment FI. Let the instruction 3 be a branch instruction. When this instruction is
decoded in segment DA, the transfer of other instructions from FI to DA is stopped
until the branch instruction is executed in Step 6. A new instruction is then fetched
in Step 7 and the pipeline continues until a new branch instruction is faced again
(Refer Figure 5.9).
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Step :

Instruction

(Branch)

1 2 3  4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

FI DA FO EX

FI DA FO EX

FI DA FO EX

FI –

–

–

– –

FI DA FO EX

FI DA FO EX

FI DA FO EX

FI DA FO EX

Fig. 5.9 Timing Diagram

Normally, the instruction pipeline deviates from its normal execution in three different
situations:

 Resource conflicts: When two segments access the same memory location
at same time, it is said to be resource conflicts. Employing different memories,
one for instructions and other for data may solve this type of conflicts.

 Data dependency: It happens when an instruction requires the outcome
of the earlier instructions, but is not yet accessible.

 Branch difficulties: This arises from branch and other commands that
modify the value of PC.

5.2.3 Linear Pipeline

Multiple processors are cascaded linearly in a linear pipeline processor. Pipelining
is a technique that decomposes any sequential process into smaller subprocesses,
which are independent of each other so that each subprocess can be executed in
a special dedicated segment and all these segments operate concurrently. Thus,
the whole task is partitioned into independent tasks and these subtasks are executed
by a segment. The result obtained as an output of a segment (after performing all
computation in it) is transferred to next segment in pipeline and the final result is
obtained after the data have been through all segments. So, it could be understood
each segment consists of an input register followed by a combinational circuit.
This combinational circuit performs the required sub-operation and register holds
the intermediate result. The output of one combinational circuit is given as input to
the next segment.

The concept of pipelining in computer organization is analogous to an industrial
assembly line. As in industry, pipelining also has different divisions like manufacturing,
packing and delivery division. Thus, pipeline results in speeding the overall process.
Pipelining can be effectively implemented for systems having following
characteristics:

 The  system should repeatedly execute a basic function.

 The basic function must be divisible into independent stages such that
each stage has minimal overlap.

 The complexity of the stages should be roughly similar.

The pipelining in computer organization has basic flow of information. To
understand how it works for the computer systems let us consider a process
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which involves four steps/segment and the process is to be repeated six times. If a
single step takes t nsec time, then time required to complete one process is 4t nsec
and to repeat it 6 times we require 24t nsec.

Now let us see how problem works behaves with pipelining concept. This
can be illustrated with a space-time diagram shown in Figure 5.10. It shows the
segment utilization as function of time. Let us assume there are six processes to be
handled (represented in Table 5.3 as P1, P2, P3, P4, P5 and P6) and each process
is divided into four segments (S1, S2, S3, S4). For sake of simplicity, assume that
each segment takes equal time to complete the assigned job, i.e., equal to one
clock cycle. The horizontal axis displays the time in clock cycles and vertical axis
gives the segment number. Initially, process1 is handled by segment 1. After the
first clock segment 2 handles process 1 and segment 1 handles new process P2.
Thus, first process will take four clock cycles and remaining processes will be
completed one process each clock cycle. Thus, for this example total time required
to complete whole job will be 9 clock cycles ( with pipeline organization) instead
of 24 clock cycles required for non-pipeline configuration.

Table 5.3 Space –Time Diagram for pipeline

 1 2 3 4 5 6 7 8 9 
P1 S1 S2 S3 S4      
P2  S1 S2 S3 S4     
P3   S1 S2 S3 S4    
P4    S1 S2 S3 S4   
P5     S1 S2 S3 S4  
P6      S1 S2 S3 S4 

In Figure 5.10,  let T be a task which can be partitioned into K subtasks
according to the linear precedence relation:

T= {T
1
,T

2
,..........,T

k
}, i.e., a subtask T

j
 cannot start until {T

i
  i < = j } are

finished. This can be modelled with the linear precedence graph (refer Figure 5.10):

T1 T2 Tk

Fig. 5.10 Linear Precedence Graph

A linear pipeline, i.e., the precedence graph shows no feedback, i.e., iterative
cycle or looping can always be constructed to process a succession of subtask
with a linear precedence graph (Refer Figure 5.11).

Fig. 5.11  Basic Structure and Control of a Linear Pipeline
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Processor (L=latch, C=clock, Si=the ith stage).

 Stages are pure combinational circuits used for processing.

 Latches are fast registers to hold the intermediate data between the stages.

 Informational flow is controlled by a common clock with clock period ‘t’,
and the pipeline runs at a frequency of 1/t

 t is selected as: t = MAX{t
i
} + t

L
 = t

M
 + t

L
 where, t

i
= propagation delay of

stage S
i
 t

L
=latch delay.

 Pipeline clock period is controlled by the stage with the max delay.

 Unless the stage delays are balanced, one big and slow stage can slow
down the whole pipe.

Speed-Up Ratio

The speed-up ratio is the ratio between maximum time taken by non-pipeline
processes over the processes that use pipeline. Thus, in general if there are n
processes and each process is divided into k segments (subprocesses), the first
process will take k segments to complete the processes. But once the pipeline is
full, that is the first process is complete, it will take only one clock period to obtain
an output for each process. Thus, first process will take k clock cycles and the
remaining n-1 processes will emerge from the pipe at the one process per clock
cycle thus total time taken by remaining processes will be (n–1) clock cycle time.

Let t
p
 be the one clock cycle time.

The time taken for n processes having k segments in pipeline configuration
will be = k*t

p
 + (n–1)*t

p
= (k+n–1)*t

p
, the time taken for one process is t

n 
thus the

time taken to complete n process in non pipeline configuration will be  = n*t
n

Thus, speed-up ratio for one process in non-pipeline and pipeline
configuration is = n*t

n
  / (n+k–1)*t

p
. If n is very large compared to k then =t

n 
/ t

p
,

if a process takes same time in both case with pipeline and non pipeline configuration
than t

n
 = k*t

p
. Thus, speed up ratio will be S

k
 =k*t

p
/t

p
=k.

Theoretically, maximum speed-up ratio will be k where k is the total number
of segments in which the process is divided. The following are various limitations
due to which any pipeline system cannot operate at its maximum theoretical rate,
i.e., k (speed-up ratio).

1. Different segments take different times to complete their suboperations,
and pipelining clock cycle must choose equal time delay of the segment
with maximum propagation time. Thus, all other segments have to waste
time waiting for the next clock cycle. The possible solution for
improvement here if possible can be to subdivide the segment into
different stages, i.e., increase the number of stages and if segments can
not be subdivided then use multiple resources for segment causing
maximum delays so that more than one instruction can be executed in to
different resources and overall performance improves.

2. Additional time delay, may be introduced because of extra circuitry or
additional software requirement that are needed to overcome various
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hazards. The result should be stored  in intermediate registers. Such
delays are not found in non-pipeline circuit.

3. Further pipelining can be of maximum benefit if the whole process can
be divided into suboperations which are independent of each other. But,
if there is some resource conflict or data dependency, i.e., an instruction
depends on the result of pervious instruction which is not yet available
than instruction has to wait till that result becomes available or conditional
or non conditional branching, i.e., the bubbles or time delay is introduced.

Efficiency

The efficiency of linear pipeline is measured by the percentage of time when a
processor is busy over the total time taken, i.e., sum of busy time plus idle time.
Thus, if n is the number of task, k is the stage of pipeline and t is the clock period
then efficiency is given by:

 = n/ [k + n –1]

Thus, the larger the number of tasks in pipeline, the more will the pipeline be
busy, hence, better will be its efficiency. It can be easily seen from expression  as
n ,   1.

  =  S
k
/k

Thus, efficiency of the pipeline is the speed-up divided by the number of
stages or one can say actual speed ratio over ideal speed-up ratio.

Throughput

The number of tasks completed by a pipeline per unit time are called throughput.
This represents computing power of pipeline. We define throughput as

W= n/[k*t + (n-1) *t] =  /t

In ideal case as   1 the throughout is equal to 1/t that is equal to frequency.
Thus, maximum throughput obtained is one output per clock pulse.

Example 5.2: A non-pipeline system takes 60 ns to process a task. The same
task can be processed in six segment pipeline with a clock cycle of 10 ns. Determine
the speed-up ratio of the pipeline for 100 tasks. What is the maximum speed that
can be achieved?

Solution: Total time taken by non-pipeline to complete 100 tasks is = 100 * 60 =
6000 ns

Total time taken by pipeline configuration to complete 100 tasks is

= (100 + 6 –1) *10 = 1050 ns

Thus, speed-up ratio will be = 6000 / 1050 = 4.76

The maximum speed-up that can be achieved for this process is

= 60 / 10 = 6

Thus, if total speed of non-pipeline process is same as that of total time
taken to complete a process with pipeline, then maximum speed-up ratio is
equal to number of segments.
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Example 5.3: A non-pipeline system takes 50 ns to process a task. The same
task can be processed in a six-segment pipeline with a clock cycle of 10 ns.
Determine the speed-up ratio of the pipeline for 100 tasks. What is the maximum
speed-up that can be achieved?

Solution: Total time taken by for non-pipeline to complete 100 tasks is = 100 *
50 = 5000 ns

Total time taken by pipeline configuration to complete 100 task is

= (100 + 6 –1) *10 = 1050 ns

Thus, speed up ratio will be = 5000 / 1050 = 4.76

The maximum speedup that can be achieved for this process is

= 50 / 10 = 5

Example 5.4: Suppose a process is subdivided into 4 sub tasks such that first
and third task take 40ns to complete while second and fourth task take 50ns and
20ns, respectively. Calculate the speed-up the pipeline for 10 tasks and again for
100 tasks. What is maximum speed-up that can be achieved?

Solution: Total time for 10 tasks without pipeline

1 task (40+ 50+ 40+ 20)= 150ns

10 tasks = 150*10= 1500 ns

Total time with pipeline for 10 tasks is = (10+4-1)*50= 13*50= 650ns

Speed-up ratio for 10 tasks = 1500/650= 2.3

For 100 tasks without pipeline= 150*100= 15000 ns

Total time with pipeline for 100 tasks = (100+4-1)*50= 103*50 = 5150 ns

Speed-up ratio for 100 tasks = 15000/5150 = 2.9

Maximum speed-up ratio for n process= 150*n/(n+4-1)*50

If n is very large, then n+4-1 ~ n

Speed-up ratio = 150*n/n*50= 3

Example 5.5: Consider a non-pipelined machine having 6 execution stages each
of lengths 50 ns, 40 ns, 80 ns, 30 ns 50 ns and 50 ns. How much time does it take
to execute 100 instructions without pipeline? In order to perform pipelining on this
machine an overhead of the clock skew of 5 ns is added to each execution stage.
Calculate the instruction latency on the pipelined machine? How much time does
it take to execute 100 instructions? What is the speed-up obtained from pipelining?

Solution: Without pipeline total execution time for one stage= 50+40 +80
+30+50+50= 300 ns

Time to execute 100 instructions = 100*300 = 30000 ns

With pipeline implementation, the length of the pipe stages must all be the
same, i.e., the speed of the slowest stage plus overhead. With 5ns overhead
it comes to:

The length of pipelined stage = MAX (lengths of non-pipelined stages) +
overhead = 80 + 5 = 85 ns
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Instruction latency for one instruction =  85 ns

Time to execute 100 instructions = 85*6*1 + 85*1*99  = 510 + 8415 =
8925ns

Speed-up = 30000 /8925 = 3.38

The two areas where pipeline organization is most commonly used are
arithmetic pipeline and instruction pipeline. An arithmetic pipeline is a pipeline in
which different stages of an arithmetic operation are handled along with the stages
of a pipeline, i.e., it divides the arithmetic operation into suboperations. An instruction
pipeline operates on a stream of instructions by overlapping the fetch, decode and
execute phases of the instruction cycle as different stages of pipeline. RISC
architecture supports pipelining more than a CISC architecture does. Pipelines
are also used to compress and transfer video data. They are also used as specialized
hardware to perform graphics display tasks. Pipelines and pipelining also applies
to computer memory controllers and moving data through various memory staging
places.

There are three prime disadvantages of pipeline architecture.

1. The first is complexity.

2. Many intermediate registers are required to hold the intermediate
information as output of one stage will be input of next stage. These are
not required for single unit circuit, thus, it is usually constructed entirely
as combinational circuit.

3. The third disadvantage is its inability to continuously run the pipeline at
full speed, i.e., the pipeline stalls for some cycle. There are phenomena
called pipeline hazards which disrupt the smooth execution of the pipeline.
If these hazards are not handled properly, they may give wrong result.
Often it is required to insert delays in the pipeline flow in order to manage
these hazards; such delays are called bubbles. Often it is managed by
using special hardware techniques while sometime using software
techniques such as compiler or code reordering, etc.  Various types of
pipeline hazards include:
 Structural hazards that happen due to hardware conflicts.
 Data hazards that happen due to data dependencies.
 Control hazards that happen when there is change in flow of statement

like  to branch, jump or any other control flow changes conditions.
 Exception hazard that happen due to some exception or interruption

occur while execution in a pipeline system.

5.2.4 RISC Pipelines

An efficient way to use instruction pipeline is a characteristic feature of RISC
architecture. A Reduced Instruction Set Computer (RISC) processor pipeline
operates in much the same way, although the stages in the pipeline are different.
The length of the pipeline is dependent on the length of the longest step. Because
RISC instructions are simpler than those used in pre-RISC processors (now called
CISC, or Complex Instruction Set Computer), they are more conducive to
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pipelining. While CISC instructions vary in length, RISC instructions are all of the
same length and can be fetched in a single operation. Ideally, each of the stages in
an RISC processor pipeline should take 1 clock cycle so that the processor finishes
an instruction for each clock cycle and averages one Cycle Per Instruction (CPI).
Hence, RISC can achieve pipeline segments, requiring just one clock cycle, while
CISC may use many segments in its pipeline, with the longest segment requiring
two or more clock cycles.

As most RISC data manipulation operations have register to register
operations, an instruction cycle has the following two phases.

I : Instruction fetch
E : Execute (performs an ALU operation with register input and output)

Load and Store Instructions

The data transfer instructions in RISC are limited to load and store. These instructions
use register indirect addressing and require three stages in pipeline, which are as
follows:

I : Instruction fetch
A : Decode, evaluate effective address
E : Register-to-Memory or Memory-to-Register

To prevent conflicts between memory access, to fetch an instruction and to
load or store operand, most RISC machines use two separate buses with two
memories: one for storing the instruction and the other for storing data.

Another feature of RISC over CSIC as far as pipelining is considered is
compiler support. Instead of designing hardware to handle the data dependencies
and branch penalties, RISC relies on efficiency of the compiler to detect and
minimize the delay encountered with these problems.

Data Manipulation Instructions

While different processors have different numbers of steps, lets us consider a
three segment Instruction pipeline. These segments are as follows:

I : Instruction fetch
A : Decode, Read Registers, ALU Operations
E : Execute instruction, Write a Register

The ‘I’ segment fetches the instruction from memory and decodes it. The
ALU is used for three different functions, which are data manipulation, effective
address calculation for LOAD and STORE operations or calculation of the branch
address for a program control instruction depending on the type of instruction.
The E segment directs the output of the ALU to one of three destinations, i.e., a
destination register or effective address to a data memory for loading or storing or
the branch address to program counter, depending upon decode instruction.

Program Control Instructions

I : Instruction Fetch
A : Decode, Evaluate Branch Address
E : Write Register (PC)
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Delayed Load

Compiler analyses the instructions before and after the branch and rearranges the
program sequence by inserting useful instructions in the delay steps (refer Figure
5.12).

Clock cycles: 1 2 3 4 5 6 7 8 9 10
1. Load 1 A E

3. Add
2. Increment

4. Subtract
5. Branch to X
6. NOP
7. NOP
8. Instr. in X

l A E
l A E

l A E
l A E

l A E
l A E

l A E

Using No-Operation (NOP) instructions

Clock cycles: 1 2 3 4 5 6 7 8
1. Load 1 A E

3. Branch to X
2. Increment

4. Add
5. Subract
6. Instr. in X

l A E
l A E

l A E
l A E

l A E

Rearranging the instructions

Load: R1  M [address 1]
Load: R2  M [address 2]
ADD: R3  R1 + R2
Store: M[address 3] R3

Three-segment pipeline timing
– Pipeline timing with data conflict

Clock cycle 1 2 3 4 5 6
Load R1 l A E
Load R2 l A E
Add R1 + R2 l A E
Store R3 l A E

– Pipeline timing with delayed load

Clock cycle 1 2 3 4 5 6 7
Load R1 l A E
Load R2 l A E
NOP l A E
Add R1 + R2 l A E
Store R3 l A E

The data dependency is taken care by the compiler rather than the hardware

Fig. 5.12 Delayed Load

In general, machine operation suitable for pipelining should have the following
properties:

 Identical processes (or functions) are repeatedly invoked many times, each
of which can be subdivided into subprocesses (or subfunctions).

 Successive operands are fed through the pipeline segments and require as
few buffers and local controls as possible.

 Operations executed by distinct pipelines should be able to share expensive
resources, such as memories and buses in the system.

 The operation code must be specified in order to select the functional unit
or to reconfigure a multifunctional unit to perform the specified operation.

The most useful application of the pipelining concept is used in designing
vector processors. A specially designed processor involves vector calculations.

5.2.5 Vector Processing

There are many computational problems, mainly mathematical and statistical
applications, where the computational loads are too high and hence are beyond
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the capabilities of a conventional computer. These conventional computers may
solve the problem but they may take few days or even weeks to complete the job.
These complex computations are, therefore, performed using vector computations
for faster processing. Some of the application areas that require vector processing
are as follows:

 Weather Forecasting

 Artificial Intelligence

 Experts System

 Image Processing

 Seismology

 Gene Mapping

 Aerodynamics

These scientific problems require a computer known as Vector Processor
with built-in instructions that perform multiple calculations on vectors (one-
dimensional array) simultaneously. This vector processor is a CPU design where
the instruction set includes operations that can perform mathematical operations
on multiple data elements simultaneously. Vector processors are common in the
scientific computing area.

A vector can be defined as an ordered set of one-dimensional array of data
items. A vector V of length N is represented as V = {V

1
, V

2
, V

3
, .....,V

N
}.

One of the most common computational operations performed in
computers using vector processing is matrix multiplication. Suppose we have to
perform C = A X B, where all these three matrices A, B and C are one-dimensional
vectors with n number of data elements. Then, the multiplication of matrices A and
B can be shown as follows:

 a1  b1   c1= a1b1 + a1b2 + ----------- + a1bn 
 a2   b2   c2 = a2b1 + a2b2 + ---------- + a2bn 
 a3   b3   c3 = a3b1 + a3b2 + ----------- + a3bn 
  X    =  
   
  

an   bn   cn = anb1 + anb2 + ------------ + anbn 

where a
i
, b

i
 and c

i
 are the elements of vectors A, B and C, respectively.

This matrix multiplication can be computed using the following formula:

c
i

=  a
i
b

k
 , where k= 1 to n

Let the value of n be 3, then the matrix multiplication will be as follows:

a1   b1   c1= a1b1 + a1b2 + a1b3 
 a2    X   b2   =  c2 = a2b1 + a2b2 + a2b3 
 a3    b3   c3 = a3b1 + a3b2 + a3b3 

This matrix multiplication will require nine multiplications and six additions.
Thus, in general, for a vector consisting of n elements, the total number of
multiplications and additions needed to compute the matrix multiplication will be
n2 multiplication and n (n – 1) additions.
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For matrix multiplication computation, a pipeline vector processor as shown
in Figure 5.13 consisting of multiplier pipeline and adder pipeline that can be used
having three segments or stages. All registers attached to the segments are initialized
to 0. The elements a

i
 and b

k
 are passed through the two pipelines. In the first clock

cycle, a
i
 and b

1 
pairs are brought in the pipeline and multiplied in the multiplier

pipeline. The pairs—a
i
 and b

1
 are multiplied at the rate of one pair per cycle.

Hence, after three clock cycles, the multiplier pipeline is filled with products a
i
b

1
,

a
i
b

2
, and a

i
b

3
. Thus, it takes three cycles to fill the multiplier pipeline and these

products begin to be added to the next pipeline one by one. After the six clock
cycles, the adder pipeline will get filled with the three product terms, a

i
b

1
, a

i
b

2
,

and a
i
b

3
, respectively and the next three products terms, a

i
b

4
, a

i
b

5
, and a

i
b

6, 
are in

the multiplier segments. Hence, it is only at the beginning of the seventh clock
cycles the output of the adder pipeline will be a

i
b

1
 and the output of the multiplier

pipeline is a
i
b

4
. Thus, the seventh clock cycle starts the addition a

i
b

1
 + a

i
b

4 
in the

adder pipeline. The eighth cycle gives a
i
b

2
 + a

i
b

5 
and so on.

During the tenth clock cycle, in the sum a
i
b

1
 + a

i
b

4,
 the product a

i
b

7 
will be

added and in the next clock cycle, the product a
i
b

8 
will be added in the sum of a

i
b

2
+ a

i
b

5
 and so on till a

i
b

n
. Hence, the summation process will be as follows:

C = a
i
b

1
 + a

i
b

4
 + a

i
b

7 
+…..+ a

i
b

2
 + a

i
b

5
 + a

i
b

8
 +…..+ a

i
b

3
 + a

i
b

6 
+ a

i
b

9
 +….

At last, when there are no more product terms to be added, zeros are
inserted in the multiplier pipeline. The adder pipeline will consist of one partial
product term in each of the three segments. The three partial sums are then added
to compute the final sum.

 
     
  ai 
 
 
 
 
 
 
Memory 
 
       Multiplier Pipeline         Adder Pipeline 
 
 
 
     bk 
 
 

Fig. 5.13 Pipeline Vector Processor

Vector Processing Requirements
A vector operand contains an ordered set of n elements, where n is called the length
of the vector. Each element in a vector is a scalar quantity, which may be a floating
point number, an integer, a logical value or a character.

A computer capable of vector processing eliminates the overhead associated
with the time it takes to fetch and execute the instructions in the program loop and
allow operations to be specified with a single vector instruction form as follows:

C(1:100) = A(1:100) + B(1:100)

The vector instruction includes the initial address of the operands, the length
of the vectors and the operation performed all in one composition instruction. A
possible instruction format for vector instruction is as follows:
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Operation 
code

Base address
source 1

Base address
source 2

Base address
destination

Vector
lenght

This is essentially a three address instruction, with three fields specifying the
base address of the operand and an additional field that gives the length of data
items in the vector.

 For a memory reference instruction, the base addresses are needed
for both source operands and result vectors. If the operands and results
are located in the vector register file, the designated vector registers
must be specified.

 The address increment between the elements must be specified.

 The address offset relative to the base address should be specified.
Using the base address and the offset, the relative effective address can
be calculated.

 The vector length is needed to determine the termination of a vector
instruction.

A vector processor consists of a both a scalar processor unit and a vector
processor unit, which could be thought of as an independent functional unit, capable
of efficient vector operations.

Vector Hardware

Vector processor unit is used to perform the vector operations efficiently.  In these
processors, the operands cannot be used directly from memory. Rather they are
loaded into registers. Once the open operation has been performed the results are
put back into the registers rather than directly to memory. Vector hardware has
the special ability to overlap or pipeline operand processing (Refer Figure 5.14).

Fig. 5.14 Vector Hardware

In this architecture, all vector functional units are pipelined such that it is fully
segmented and each stage of the pipeline performs a computational step. Once the
pipeline is full, you will get result at each step, provided no stall has been introduced.

The pipeline is divided  into individual segments, such that, each segment is
completely free to perform its computation and involves no hardware sharing.
This improves the performance of the system as now it is possible that the machine
can be working on separate operands at the same time. This ability enables it to
produce one result per clock period as soon as the pipeline is full. The same
instruction is carried out repeatedly using the pipeline technique, so the vector
processor processes all the elements of a vector in exactly the same way. The
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pipeline segments arithmetic operation, such as, floating point, multiplies into stages
passing the output of one stage to the next stage as input. The next pair of operands
may enter the pipeline after the first stage has processed the previous pair of
operands. The processing of a number of operands may be carried out
simultaneously.

The loading of a vector register is itself a pipelined operation, with the ability
to load one element each clock period after some initial startup overhead.

Theoretical speedup depends on the number of segments in the pipeline.
This is so that there is a direct relationship between the number of stages in the
pipeline you can keep full and the performance of the code. The size of the pipeline
can be increased by chaining. Thus the Cray combines more than one pipeline to
increase its effective size. Chaining means that the result from a pipeline can be
used as an operand in a second pipeline as illustrated in Figure 5.15.

X (I) Y (I) S (I)

A

S(I) = A * X(I) + Y(I)

Fig. 5.15 Pipeline Chaining

This example shows how two pipelines can be chained together to form an
effectively single pipeline containing more segments. The output from the first segment
is fed directly into the second set of segments thus giving a resultant effective
pipeline length of 8. Speedup (over scalar code) is dependent on the number of
stages in the pipeline. Chaining increases the number of stages.

Most vector architectures have more than one pipeline; they may also contain
different types of pipelines. Some vector architectures provide greater efficiency
by allowing the output of one pipeline to be chained directly into another pipeline.
This feature is called chaining and eliminates the need to store the result of the first
pipeline before sending it into the second pipeline. Figure 5.16 demonstrates the
use of chaining in the computation of a vector operation:

a*x + y,

where x and y are vectors and a is a scalar constant.

Scalar Register a

Vector Register 1

a

Pipeline for Floating –Point Multiplication

Pipeline for Floating –Point Addition

Vector Register 2

ax10 ax9 ax8 ax7 ax6 ax5
ax4

x11

y4

ax3 + y3 ax2 2+ y ax1 1+ y

... y6 5y

... x x13 12

Fig. 5.16 Vector Chaining used to Compute a*x + y
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Characteristics of Vector Processing

The characteristics of vector processing are as follows:

Vector Instructions

The ISA of a scalar processor is augmented with vector instructions of the following
types:

Vector-vector instructions

f1: Vi  Vj (e.g., MOVE Va, Vb)

f2: Vj x Vk  Vi (e.g., ADD Va, Vb, Vc)

Vector-scalar instructions

f3: s x Vi  Vj (e.g., ADD R1, Va, Vb)

Vector-memory instructions

f4: M  V (e.g., Vector Load)

f5: V  M (e.g., Vector Store)

Vector reduction instructions

f6: V  s (e.g., ADD V, s)

f7: Vi x Vj  s (e.g., DOT Va, Vb, s)

Scatter and Gather Operations

Scatter and gather operations are used to process sparse matrices/vectors where
only certain elements of a vector are needed in a computation. The gather operation,
uses a base address and a set of indices to access from memory ‘few’ of the
elements of a large vector into one of the vector registers. The scatter operation
does the opposite of gather operation.

Most vector processors use gather operation for picking out the appropriate
elements and putting them together into a vector or a vector register. If the elements
to be used are in a regularly-spaced pattern, the spacing between the elements to
be gathered is called the stride. For example, if the elements for every fifth element
are the one that are used for the operation

a1, a6, a11, a16, ..., a[5*floor((n-1)/5)+1]

are to be extracted from the vector
( a1, a2, a3, a4, a5, a6, ..., an )

then we will say that the stride is equal to 5.

A scatter operation reformats the output vector so that the elements are spaced
correctly. Scatter and gather operations may also be used with irregularly spaced
data.

f8: M x Va  Vb (e.g., gather)

f9: Va x Vb  M (e.g., scatter)

Masking Instructions

F10: Va x Vm  Vb (e.g., MMOVE V1, V2, V3)
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The masking operation allows conditional execution of an instruction based on a
‘masking’ register.

A Boolean vector can be generated as a result of comparing two vectors,
and can be used as a masking vector for enabling and disabling component
operations in a vector instruction. A compress instruction will shorten a vector
under the control of a masking of vector. A merge instruction combines two vectors
under the control of a masking vector.

Pipelined Vector Processing Methods

Vector computations are often involved in processing large arrays of data. By
ordering successive computations in the array, the vector array processing can be
classified into three types which are as follows:

 Horizontal Processing—This is the one in which vector computations are
performed horizontally from left to right in row fashion.

 Vertical Processing—This is the one in which vector computations are
carried out vertically from top to bottom in column fashion.

 Vector Looping—This is the one in which segmented vector loop
computations are performed from left to right and top to bottom in a combined
horizontal and vertical method.

A simple vector summation computation illustrates these vector processing methods

Let {a
i
 for 1 <= i <= n) be n scalar constants, X

j
 = (X

1j
, X

2j
…… X

mj
)T for j = 1,

2, 3 ….n be n column vectors and Y
j
 = (Y

1j
, Y

2j
 …… Y

m
)T be a column vector of

m components. The computation to be performed is as follows:

 Y = a
1
.x

1
 + a

2
.x

2
 + …. a

n
.x

n

 Y
1
 = Z

11
 + Z

12
 + …..Z

1n

 Y
2
 = Z

21
 + Z

22
 + …..Z

2n


 Y

m
 = Z

m1
 +Z

m2 
+ …..Z

mn

Horizontal Vector Processing

In this method, all components of the vector y are calculated in sequential order,
yi for i = 1, 2, …. m. Each summation involving n–1 additions must be completed
before switching to the evaluation of the next summation.

5.2.6 Array Processing

 An array processor is a specific processor type that performs the required
computations on huge arrays of data. It can be created using a group of unique
special processors which are specifically designed for calculating mathematical
procedures at extremely high speeds, and are frequently under the control of another
central processor. Some computers are deigned for only using array processors
that speed up video processing or can do fast floating-point mathematical operations.
There are two different types of array processors, an attached array processor
and a Single Instruction Multiple Data (SIMD) array processor.
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Hence, an array processor is a processor that is designed for performing
calculations on a large-sized array of data. The two types of array processors are
discussed here.

Attached Array Processor

An attached array processor is a peripheral device attached to a computer so that
the performance of a computer can be improved for numerical computations. The
purpose of the attached array processor is to improve the computer’s performance
by providing the functionality of vector processing for solving complex scientific
problems. This can be achieved by means of a parallel processing technique with
multiple functional units. An attached array processor consists of an attached
Arithmetic and Logic Unit (ALU) that may contain one or more pipelined floating-
point adders and multipliers.

The array processor is interfaced with the computer through an input/output
interface. The computer treats the attached array processor as an external
peripheral, which is a back-end machine driven by the computer. The main memory
transfers data to a local memory through high-speed memory bus and the array
processor receives the data from the local memory.

The objective of the attached array processor is to provide the conventional
computers the functionality of the vector manipulations at a fraction of the cost of
a supercomputer.

Algorithms for Array Processors

Here we see a parallel algorithm to determine the maximum item in an array:

 For n array items, this algorithm uses n/2 processors and takes Q(log n)
time

 Each processor takes 2 array elements from position M[pid] and M[pid +
incr], finds the max and copies it into M[pid]

incr = 1;

 while (incr < n)

         temp0 = M[pid]

         temp1 = M[pid + incr]

         if(temp0 > temp1)

              M[pid] = M[pid + incr]

         incr *= 2

It should be easy to see that the above algorithm iterates log n times.
Therefore, the complexity is 4 log n + 1 number of operations or log n comparisons.

Linear Array of Processors

The algorithms are specifically used as unique functions on a two-dimensional
mesh in the pattern-matching algorithm. An array of n processors is constructed
from processors Po … Pn – 1, where Pi, is connected to Pi – 1 and Pi + 1, if
exists. It is considered that the text have been already allocated in the processors,
such that the processor Pi stores the ith symbol of text S = To ... Tn – 1. The
prototype pattern Po … Pm – 1 is considered as an input to the array and then
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first the symbols are entered into Pn – 1 and then transmitted through the array.
The set order of the input symbols is referred as Pm – 1 through Po. This specific
algorithm is termed as Array Pattern Matching (APM) and is frequently used.

SIMD Array Processors

An SIMD array processor has a single instruction multiple data stream organization
that manipulates the common instruction by means of multiple functional units. This
array processor consists of multiple ALUs that operate in parallel. ALUs work
under the control of a common control unit performing the same operation and
hence, achieve the SIMD stream organization.

The SIMD array processor consists of a set of processing elements where
each Processing Element (PE) has its own local memory (M). The processing
elements may include the ALU, floating-point arithmetic unit and registers. The
main memory of the CPU is used for the storage of the program. The operation of
the processing element is controlled by the master control unit, whose main function
is to decode the instructions and determine how the instruction is to be executed.
Data operands are transferred to local memories. Each of the processing elements
operates upon the data stored in its local memory.

Suppose we need to perform the vector addition c
i
= a

i
+ b

i 
, for i = 1, 2, 3 —

n. The master control unit first stores the ith data element in a local memory M
i
. It

then gives the add instruction c
i
 = a

i
 + b

i 
to the processing elements causing the

addition to take place simultaneously. The result of c
i
 is stored in the local memories.

Thus, the whole process is performed in one cycle.

Array Instruction Set

Following table shows the instruction set of the processors in an array. The
processors take their instructions from the Processing Element-Instruction Register
(PE-IR), loaded by the ACU.

Arithmetic/Logical Instructions

Arithmetic/logical instructions are of the form:
< tr>

OpcodeI Immediate   ---  

OpcodeM Rx Address 

Opcode Source   ---  

 
At the end of an operation, which updates the ACC, each active PE sends

the value in its accumulator to its neighbours.

OpcodeI

The operand is the immediate value in PE-IR.

OpcodeM

The ACU reads the value in Rx from within its own registers, adds this to the value
in the address field in AC-IR and loads this modified value into the address field of
the instruction as it is copied into PE-IR. Each processing element accesses its
own memory to obtain the operand using the modified address in PE-IR, i.e., it
ignores the Rx field.
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Opcode

The Source can be:

E0, E1, W0, W1 or P in SIMD-1

N0, N1, E0, E1, W0, W1, S0, S1 or P in SIMD-2

N  operand = value sent by processor above  

E  operand = value sent by processor to the right  

W  operand = value sent by processor to the left  

S  operand = value sent by processor below  

P  operand = processor's own number within the array  

(0-7 in SIMD-1, 0-15 in SIMD-2)  

 
Major Characteristics of SIMD Architectures are:

 A single processor

 Synchronous array processors

 Data parallel architectures

 Hardware intensive architectures

 Interconnection network

An SIMD whose main component is an Associative Memory (AM) that is
used in fast search operations consists of:

 Data register

 Mask register

 Word selector

 Result register

Associative processor architectures also belong to the SIMD classification:
STRAN and Goodyear Aerospace’s MPP (Massively Parallel Processor). The
systolic architectures are a special type of synchronous array processor architecture.
The SIMD instruction set contains additional instruction for IN operations,
manipulating local and global registers, setting activity bits based on data conditions.
Popular high-level languages such as FORTRAN, C and LISP have been complete
to allow data-parallel programming on SIMDs.

Check Your Progress

1. What is pipelining?

2. In which systems the arithmetic pipeline is used?

3. Write the steps involved in instruction pipeline.

4. Write strategies employed in resolving control dependencies due to
branch instructions.

5. Wat are the areas of application of vector processing.
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5.3 MULTIPROCESSORS

Multiprocessors use two or more than two CPUs assembled in single system unit.
It refers the execution of various software processes concurrently. Cache coherency
issue is solved by multiprocessor systems. The processors, for example Pentium
Pro II, Power PC 603 and 604, digital Alpha keep cache in multiprocessors to
solve the problem of cache coherence.  These processors contain two, four and
even eight processors within memory bus to share the memory problems. Large
multiprocessors share a single bus to transmit the data directly from cache so that
modified data aborts transaction to write back the system memory for next
transaction, whereas original requester of data re-arbitrates data from the memory.
The two types of multiprocessors are known as shared memory type multiprocessor
and distributed memory type multiprocessor. The main memory is directly accessed
by the assembled processors in multiprocessor system is known as shared memory
multiprocessor in which the shared portion belongs actually to main memory
referred to as global memory. Cache is used for this and known as high-speed
buffer exist with almost each processor. In fact, data and instructions are accessed
from local memory and global memory that is used by internetworking facility.
Distributed memory type has own private memory. Various processors involved
in shared memory type access the same variables at a time that can be referenced
for data integrity. But in distributed memory a computational task is distributed for
multiple processors involving distinct memory stack to reassemble the produced
result (Refer Figure 5.17).

       

Processor Processor Processor

One or 
more levels 

of cache

One or 
more levels 

of cache

One or 
more levels 

of cache

One or 
more levels 

of cache

Main memory I/O system

Processor

Fig. 5.17 Memory Organization in Multiprocessor

Multiprocessor uses large caches but limited processors that shares single
memory bus.
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Both memory types (distributed and shared) are also referred to as tightly-
coupled and loosely-coupled multiprocessors respectively and hence called coupled
multiprocessors. Loosely coupled system uses file level and tightly-coupled works
with data elements. Tightly coupled Multiprocessors use memory that is physically
shared so that part or all of the memory available to a processor is also available
to other processors. Basically, they do not have central processors instead they
are having multiple processors.  There is difference between shared and distributed
memory type architecture is how each processor is assembled.  The examples of
OS support multiprocessors are UNIX, Linux, Windows 2000 etc. Figure 5.18
shows a functional diagram a typical multiprocessor.

5.3.1 Interconnection Structure

Following are the interconnection structure used in the multiprocessing.

Fig. 5.18 Functional Diagram of a typical Multiprocessor
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Shared Memory Multiprocessors

Shared memory multiprocessor consists of a number of processors can be accessed
among various shared memory modules. The assembled processors are connected
physically to the various memory modules but each processor is logically connected
to every memory modules (Refer Figure 5.19). The arrangement of memory modules
is as follows:

 The system unit contains m memory modules and p processors.

 Each processor sends requests so that they can get information from memory
module.

 The memory modules are synchronized that means two modules can get
requests at the same time because memory access performs task in one
time unit, i.e. one complete memory cycle.

 Memory module can work one request at a time. If more than one request
is tagged with at a time, they are to be queued when memory cycle starts.

Fig. 5.19 Four Processors Involved in Shared Memory Multiprocessors

Let take an example in which shared memory is worked with four processors
and sends requests to four modules. The following table defines the various states
which are involved in the processing:

Table 5.4 Various States and Their Functions

State Function 
1 This state keeps all four requests in one module 
2a This state keeps three requests in one module and one in other 

module. 
2b This state keeps two requests in one module and two are in other 

module. 
3 This state keeps two requests in one module and one request is 

kept each of the two modules. 
4 This state keeps each request in all of the four modules 

Distributed Memory Multiprocessor

The distributed memory multiprocessor keeps a number of processors in which
virtual storage space is assigned for redundant execution. Each processor is
assembled to write the data.  The memory is allotted with each processor which
keeps the address of its own memory and full bandwidth of local memory without
involving in interference the other processor. There is no limit for number of
processors. The memory capacity in system is constrained because the connecting
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processors are used in network. The distributed memory multiprocessors do not
encounter with cache coherency problems. Each processor is worked with its
own data. It keeps the data in local cache because data can be referenced by
other processors. One main drawback of this type of multiprocessor is that
interprocess communication task becomes very complex because if one processor
needs other processor memory the message must be exchanged with each other
which introduces two types of overhead. First overhead takes time to prepare
and construct the message form one processor to other and second overhead
refers to receiving processor that is in fact interrupted if one message is shared
from one processor to other processors. Concurrent programmings, semaphore
monitoring, etc. are the various techniques which are not directly applicable because
they are implemented by a layered software approach. For example, if message is
passed form one processor to other, it uses semaphore programming. The need
of   mutual exclusion in the operating system is to implement the semaphores but
few machine instructions are busy to accept it. The process blocking is required in
operating system calls at this design phase. The name servers are expensive to
broadcast in a network if name resolves to this but at this level, name servers and
global names use hierarchy that are basically local unique names. The solution for
mutual exclusion is simple that generalizes to N number of processes. These
processes follow the protocol to call the message passing system calls to follow
the IPC patterns.

Fig. 5.20 Mutual Exclusion Process

Figure 5.20 shows how two-process mutual exclusion can take place in the
operating system. Here Process A and Process B maintain a message queue
through three methods namely, ReceiveMessage(); , UseFile(); and
SendMessage();.The processes are decided after getting the received
messages. The received messages are collected in the process that can be used in
method UseFile and at last message is sent to the clients. This concept can be
understood with the help of examination. The messages are solved at the user
level but the mutual exclusion is needed to be implemented at the operating system
level. So, this step is considered as reduce a problem to a special case. For
example, all the commands and events that are used at command prompt are not
easy to remember but this problem can be solved if use Help menu or Help
command of the running application.
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Fig. 5.21 Distributed Memory Processor

Figure 5.21, PE refers to processing element that explains how one message
is passed from one to other by copying information in the local memory.  Then it
tells the local controller form transferring the information to the external devices.
The controller also finds a stack for incoming message then it notifies the special
processor for arrived message.

Fig. 5.22 Comparison of Shared and Distributed Memory Multiprocessors

Figure 5.22 displays Comparison of Shared and Distributed memory
Multiprocessor.

5.3.2 Characteristics of Multiprocessors

Table 5.5 shows the characteristics of multiprocessors.

Table 5.5 Characteristics of Multiprocessors

Criteria Characteristics 
Fast speed Multiprocessor supports fast processing to perform the task. Speed 

is decided in multiprocessor by a large number of components, for 
example PSK1, SSK, PSK etc. These systems components are 
connected with every serial system bus maintain the consistency of 
cache for high speed bus (SB1, SBn-1, SBn) etc. 

Memory 
organization 

Its memory organization is centralized in which bus uses large 
cache and effective way of scaling the memory bandwidth. It uses 
shared and distributed memory organization using at least 2-8 
processors.  

Efficient system-
on-chip 

 
Multiprocessor includes embedded processors, mixed signal 
circuits, digital logic techniques to make an efficient system-on-
chip because all together are combined to make a heterogeneous 
multiprocessor.  

Thread-level It executes using reentrant programs multiple processes known as 
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Thread-level 
parallelism 

It executes using reentrant programs multiple processes known as 
multithreading. These programs are necessary to run the thread. 
Basically it refers to two threads that execute the same code 
simultaneously. The programs are not thread-safe if programs with 
embedded data are not reentrant. The programs can be made as 
reentrant by removing the embedded data and allocated it for each 
execution in the multiprocessors. The most versions of MS/DOS 
are not reentrant but in the object-oriented programs, the data area 
of each object is allocated heap store therefore, they are 
automatically thread-safe means reentrant. Therefore, 
multiprocessors maintain thread-level parallelism  that makes them  

Support fast 
service of 
interconnection 
network 

It requires interconnection network because it communicates among 
processors across net.  

Pipelining and 
scheduling 

Multiprocessor uses pipelining and scheduling to make architecture 
as parallel architecture.  

On-time 
multiprocessing 

It uses various multiprocessing, such as SISD (single instruction 
stream, single data stream), SIMD (single instruction stream, 
multiple data stream), MISD (multiple instruction stream, single 
data stream), and MIMD (multiple instruction stream, multiple data 
stream). SISD refers to uniprocessor, SIMD refers to multimedia 
processors, MISD refers to special purpose stream processors, and 
for example digital filter and MIMD refers to servers. The main 
characteristics of these multiprocessing is cache-coherent that 
allows the running software on any processor share with the other 
memory and system resources at minimal support.  

Different 
configuration 

Multiprocessors use bus in which CPU is configured as 
master/client arrangement in which environments are set with 
isolated engines to exchange the processing information over LAN 
or WAN.   

5.3.3 Interprocess Arbitration

An interprocess arbitration system for multiprocessors shares a common bus.
Arbitration fixes the priority criteria made by the multiprocessors. This operate a
multiprocessor system in either synchronous or an asynchronous manner. In input-
output organization, multiprocessor operating system controls all the processors by
same clock. In this, common bus is prime factor because various multiprocessors
must function in a synchronous manner. The major problem involved in interprocessing
of multiprocessors with a common clock during pulse path run by circuits and buses.
The availability of system is closely linked to the common clock cycle. In asynchronous
system, a processor is added to existing system without modifying the algorithm
because it controls the interprocess arbitration of access request by various processors
having common bus. The two types of interprocess arbitration are serious arbitration
system and parallel arbitration system. In series arbitration system, each processor
is comprised with arbitrate circuit which is arranged to connect in line. These systems
use clock. The clock manages the request of different processors by a common bus.
If one processor fails, no circuit scrutinizes the interprocess arbitration to switch
from one system to other. Arbitration is used to decentralize the decision to avail
greater flexibility to the system that makes processors or microprocessors in a very
short   time (approximately 100 nanoseconds). To make a decision in probable
priority combinations, such as fixed, cyclic or mixed, a fusible PROM memory is
used. The combination of priorities is obtained by coding and scrambling circuits
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which make the system producing in the form of integrated circuit. In short, an
interprocess arbitration system connects a large number of processors to a common
bus accessing all the resources used in file processing. It involves control lines that
maintain the state of system, for example, occupied or current. The interprocess
arbitration basically refers to a process in which the mechanism is communicated to
exchange the data from one process with other processes without negotiating a
request made by FIFO for storing ones and zeros that corresponds to received
requests in the order that they are made. This process is communicated with os.popen
(function in UNIX) and subprocess. Each arbiter independently reviews and
processes the messages so that the computers communicate directly with each other
on a peer to peer basis without the need for a master controlling program or other
gateway for controlling and processing the messages as the messages are transmitted
between computers. The interprocessing arbitration uses pipes, named pipes (include
FIFO mechanism in which data is written to a pipe that is first named), message
queuing and passing (messages are coordinated and managed with system kernel
for application program interface), semaphores (programmed value is used to
synchronize the information), shared memory (allows data to be exchanged on share
basis), sockets (interprocessing is communicated with arbitration that requires third
party over a network between client and server) and mutual exclusion (it wastes the
processor time but primitive interprocess  priors it).

Arbiters play main role in interprocess arbitration. The main application of
interprocess arbitration is synchronization problem. Synchronization requires
arbitration. The wait and signal instruction produced by register do not need arbiter.
Arbiter is a type of device used to make binary decision based on instruction. For
example, for A–B operation, an arbiter implies the decision that A begins before B
ends. It also decodes a discrete decision which is basically based on a range of
values. It produces a result either 0 or 1. It is designed by hardware designers. A
bus arbitration circuit is used to determine which board connected to the system
bus gets control of the bus for data transfers. One of the most common methods
of arbitrating the bus is to assign a priority level to each board and to award bus
ownership to the board with the highest priority request. This normally requires a
combination of priority encoder and decoder logic to determine the priority.

A bus arbitration circuit is need for finding which part related to system bus
gets the control of bus for data transfers. Most general way of arbitrating bus is
giving a important strand of ever board and giving bus ownership to board with
highest priority request. It generally needs a mixture of precedence encoder and
decoder logic for finding priority. It uses wired-OR logic on the bus, implemented
with open-drain outputs for determining the relative priority and eliminating the use
of dedicated priority encoder/decoder logic.

A centralized arbitration is attached to the group of processors, whereas
decentralized system requires less number of processors assembled with less
number of circuits. Generally a choice is moved to interprocess arbitration to transmit
on the bus signals whose frequency is considered as above 10MHz. The main
function of this system is to fix a priority encoder that is preceded by circular
network to access the network followed by an adder that adds number of
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processor and the value+1 in which the input is fixed priority encoder that is
connected to the output of logic circuit. It makes logic circuits to the fixed priority
and cyclic priority encoders. The request and the interprocess arbitration operate
at fixed priority and requests of the arbitration correspond to the number of
processors requesting access to the bus which is constructed in the form of
interprocess.

A typical bus arbitration cycle begins by detection of an active BREQ signal
driven by all requesting boards. If BREQ is inactive, it means that none of the
boards on the bus has requested the bus. Table 5.6 lists the signals used in
interprocess arbitration along with their functions.

Table 5.6 Signals Used in Interprocess Arbitration with Their Functions

Signals Functions 
 BAP This signal tells that an arbitration of the access bus is possible during 

interprocessing. 
 DBA This signal bus request.  
BREQ  This signal on the bus indicates that a request from process arbitration is 

to be processed.  

BECH  This signal is exchanged information by bus.  

BNA  This signal on bus applies +1 to the priority of resolution circuits of the 
arbitration designate a new arbitration.  

BM1 to BM3 This signal creates 3 lines of bus in which signals from the encoded 
number of processors. 

BM4  This signal requests the validation signal make active if its logic level is 0 
and validate signals from BM1 to BM3. 

BAL  This signal represents synchronization signal decided by interprocess 
arbitration with a certain delay or signal DBA.   

 
Note: Word overline for example,  signal maintains the low bit or bytes in the
process of message passing.

The conditions require for interprocessing arbitration are as follows:

Mutual Exclusion: If only one process holds a resource at a given time.

Hold-And-Wait: If one process holds the allocated resources and other
waits for it.

No Preemption: If resource is not removed from a process holding.

Synchronization Problem: If busy waiting, programmer errors, deadlock
or circular wait occurs in interprocessing.

A

C

D

B

Fig. 5.23 Synchronization Problem for Four Actions
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In Figure 5.23, process a send requests to B and C both. The process
operation is based on priority basis. Process B and C send their request directly
to C at a time. So this type of problem is determined by arbitration in interprocessing.

If any problem occurs at interprocessing arbitration, mutual exclusion is
implemented with semaphores. The need of   mutual exclusion in the operating
system is to implement the semaphores but few machine instructions are busy to
accept it. The process blocking is required in operating system calls at this design
phase. The name servers are expensive to broadcast in a network if name resolves
to this but at this level, name servers and global names use hierarchy that are
basically local unique names. The solution for mutual exclusion is simple that
generalizes to N number of processes. These processes follow the protocol to call
the message passing system calls to follow the IPC patterns. For this the following
statement is written in ‘C’ required:

int Attach_Msg_Queue(char *Queue_Name)

In the above statement, the function Attach_Msg_Queue returns
qid as character type value that points to the queue identifier. The second statement
is as follows:

int Detach_Msg_Queue(int Queue_id)

In the above statement, the function Detach_Msg_Queue returns Queue_id
as integer data type value that points to the queue identifier.

Fig. 5.24 IPC at User Process Level

In Figure 5.24, it is shown that the three processes are controlled in OS
through IPC. The OS is set at OS level, whereas all the processes are set at
process level. A general problem defined in OS can be taken as more than once,
whereas a solution is given as to work well with the system. For example,
interprocess communication patterns provide a typical way to use arbitration design
pattern that arranges the objects to solve common problems and in frameworks
skeleton code is used to solve common problems. The all patterns are set in
operating system in that way that processes do not fail at critical times but sometimes
processes do fail in networks. The solutions are hard but the portability is reduced
if a single process failure that can cause the entire system to fail. To overcome this
problem, fault-tolerant server system is used. This mechanism can be referred to
as adding a new facility to the system hence known as arbitration.
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5.4 INTERPROCESSOR COMMUNICATION
AND SYNCHRONIZATION

Process synchronization is a mechanism used by the OS to ensure a systematic
sharing of resources amongst concurrent resources. When the correctness of the
computation performed by cooperating processes can be affected by the relative
timing of the processes execution, it is referred to as a race condition.

Several processes access and manipulate the shared data concurrently. The
final value of the shared data depends upon which process finishes last. In order
to prevent race conditions, it is essential that concurrent processes are synchronized.

5.4.1 Racing Problem

Let us consider two processes P
0
 and P

1
 which are accessing the same integer

value A.

Let A=1000

P
0

: Read (A);

A: = A – 100;

Write (A);

P
1

: Read (A);

A: = A + 200;

Write (A);

The execution of these two processes will result in the change of value of A as
A=1100. This will only happen if P

0
 and P

1
 will execute in any one of the following

sequences:

(a) P
0
 followed by P

1

(b) P
1
 followed by P

0

But, if P
0
 and P

1 
are allowed to execute in an arbitrary fashion, then there would

be the following two possibilities:

Possibility 1:

P
0
: P

1
:

Read (A);

Read (A);

A=A–100;

Write (A);

A=A+200;

Write (A);
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The sequence followed is: P
0
, P

1
, P

0
, P

1 
the end result value of A is 1200, which is

wrong.

Possibility 2:

P
0
: P

1
:

Read (A);

Read (A);

A = A + 200;

Write (A);

A = A – 100;

Write (A);

The sequence followed is P
0
, P

1
, P

0
, which leads to A = 900. This is again wrong.

Such a situation is called a racing problem, which should be avoided.

Critical Section

It is basically a sequence of instructions with a clear indication of beginning and
end for updating shared variables. In critical section, only one process is allowed
to access the shared variables and all others have to wait. This condition is known
as mutual exclusion. Mutual exclusion ensures that at most one process at a time
has access to it during critical updates, i.e. it helps the system to maintain its integrity
by allowing only one process to share the common resources.

5.4.2 Problems of Critical Section

Any mechanism to control access to critical sections must satisfy the following
three requirements, so that its can be ensured:

(a) Mutual Exclusion: When one process is in a critical section that accesses
a set of shared resources, no other processes can be in a critical section
accessing any of those shared resources.

(b) Progress: When no processes are in its critical section, and one or more
processes are waiting to enter the critical section. A process that terminates
outside its critical section may not prevent other processes from entering
their critical sections.

(c) Bounded Wait: When a process requests access to a critical section, a
decision that grants it access may not be delayed indefinitely.

A process may not be denied access due to starvation or deadlock. Figure 5.25
shows Mechanism to Control Access to Critical Section
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Process A enters 
the Critical Region

Process A leaves 
Critical Region 

Process A 

Process B

Process B levels 
Critical Region 

Process B enters 
Critical Region

Process B attempts 
to enter the Critical Region 

Process B
Blocked 

T1 T2 T3

Time 

Fig. 5.25 Mechanism to Control Access to Critical Section

Initial attempts to solve the problem of critical section were to have only two
processes P

0
 and P

1
 with the general structure as:

do {

Entry Section

Critical Section

Exit Section

Remainder Section

} While (1);

Processes may share some common variables to synchronize their actions.

Entry Section: This refers to the code segment of a process that is executed
when the process intends to enter its critical section. This code appears at the
entry of a critical section. The execution of this code checks whether or not the
process has the eligibility to enter the critical section.

Critical Section: This refers to the code segment where a shared resource
is accessed by the process. At a time, only one of the cooperating process can
enter into the critical section. Hence the shared resource is being used by only one
process.

Remainder Section: This is the remaining part of a process’s code. When
a process is executing in this section, it implies that it is not waiting to enter its
critical section. Hence, the processes in the remainder section are not considered
to enter into thecritical sections.

5.4.3 Critical Section Algorithms

Algorithm 1

This algorithm is applicable for only two processes P
0
 and P

1
. Both are cooperating

through a shared integer variable ‘turn’. At a time its value will be either 0 or 1. If
turn equals 0, P

0
 enters the critical section, and if the value is 1, then P

1
 enters the

critical section.
P0: do {

While (turn = = 1); /* keep looping as long as turn
equals 1*/
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 /* this is entry section*/

< Critical section >

Turn = 1; /* P1 enters into the critical section*/

/* this is Exit Section*/

< Remainder Section >

} While (1);

P1: do {

While (turn = = 0); /* keep looping as long as turn
equals 0 */

/* this is the Entry Section */

< Critical Section >

Turn = 0; /* P0 enters into the critical
section*/

/* this is Exit Section*/

< Remainder Section >

 } While (1);

Let us observe the three conditions for controlling access to critical section:

(a) Mutual Exclusion: The value of turn is either 0 or 1. Hence, at a time only
one cooperating process will be there in the critical section. Thus, the
requirement of mutual exclusion is satisfied.

(b) Progress: Here the two cooperating processes are entering strictly
alternatively only. In other words, if the value of turn is 0, then P0 enters,
and if the value of turn is 1, P

1
 enters the critical region. Hence, a sequence

followed is: P
0
,P

1
, P

0
, P

1
, P

0
, P

1
 . . . and if the initial value of turn is 1, then

sequence followed is: P
1
, P

0
, P

1
, P

0
, P

1
, P

0
……

Consider the following two situations:

1. Turn = 0 but P
1
 tries to enter the critical section earlier than P

0
; it cannot,

until P
0
 enters the critical region, executes and exits the critical region

and changes the value of turn to 1.

2. When P
0
 exits the critical region, it changes the value of turn to 1. Suppose

at this point, P
1
 is executing in its remainder section and does not want

to enter into the critical region again, but since the value of turn is set to
1 then no process is executing in the critical region at this time. But still
P

0
 cannot enter the critical region until and unless P

1
 enters the critical

region and it sets the value of turn equal  to 0. Thus, this is the situation
that no cooperating processes are in the critical-section but still P

0
 has

to wait. So, the requirement of progress is not satisfied.

(c) Bounded Wait: Suppose a process P
0
 requests to enter the critical section.

There are two possibilities:

(a) If turn = 0, then P
0
 immediately enters the critical section.
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(b) If turn = 1, then P
1
 enters the critical section. In this way, P

0
 has to

wait until P
1
 finishes executing in the critical section. Once exited, the

value of turn is changed to 0 and P
0
 can enter into critical section.

Hence. the requirement of bounded wait is met.

Algorithm 2

This algorithm also works for only two processes. This takes into consideration as
to who wants to enter the critical section. Boolean variables Flag [0], and Flag [1]
are used to synchronize the two cooperating processes. Initially, they are set to
false, and are accessible to both the cooperating processes.

Whenever a process P
0
 intends to enter its critical section, it sets its Flag

[0] which is accessible to process P [1] also. Now, the process P [0] will examine
the Flag [1] of the other cooperating process P [1]. If Flag [1] is not set, then P
[0] enters its critical section immediately. Else, if Flag [1] is also found to be set, it
indicates that P [1] is also interested to enter its critical section. In that case,

P [1] has to wait till Flag [1] is cleared by P [1].

Typedef enum Boolean {false, true};

Boolean flag [2]; /* initially both set to false*/

P0:

do {

flag [0] = true; /* intend to enter critical section*/

while (flag [1]); /* keep looping as long as flag is
true*/

/*Entry Section*/

< Critical Section >

Flag[0] = false; /* Exiting from the critical section*/

< Remainder Section >

} while (1);

P1:

do { flag [1] = true;

while (flag[0]) /* keep looping as long as flag is true*/

/* Entry Section */

< Critical Section >

Flag[1] = false; /* Exiting from the critical section*/

< Remainder >

} while (1);

Let us observe the three conditions for controlling access to critical section:

(a) Mutual Exclusion: The value of Flag is either 0 or 1, i.e. either Flag[0] is
set or Flag[1] is set. Hence, at a time only one cooperating process will be
there in the critical section. Thus, the requirement of mutual exclusion is
satisfied.

(b) Progress: Let us observe when process P
0
 is running and it wants to enter

in its critical section. It executes the statement flag[0] = true, and is pre-
empted thereafter prior to execution of “while” statement. Now, if P[1] is
at RUN state. P[1] also intends to enter the critical section, and sets flag
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[1] to true. Now both the processes flag are set to true but none is in the
critical section hence deadlock as both will continue looping in the while
statement each waiting for the other to reset its flag. This is the situation
when none is in the critical section, both waiting to enter, but none is able to
enter. So, the requirement of progress is not met.

(c) Bounded Wait: When process P
0
 sets its flag [0] to true. it checks for flag

[1].

There are two possibilities:

(a) Flag [1] is ‘false’. P
0
 enters its critical section immediately.

(b) Flag [1] is ‘true’. Process P
1
 is executing in its critical section.

Now, P0 waits for the moment when P
1
 exits its critical section, resets its flag [1]

to false, thus enabling P
0
 to enter its critical section. Thus, after P

0
 indicates its

intention to enter its critical section, and before it enters, P
1
 can enter critical

section at most once. Hence, the requirement of bounded wait is met.

Unfortunately, a distinct possibility exists that both processes may set their
Flags to ‘true’ almost simultaneously, thus preventing each other from entering
their respective critical section (a deadlock).

An algorithm is required for breaking the tie in case of a deadlock. Peterson’s
algorithm serves this purpose. It has a synchronism mechanism to take into
consideration both ‘who intends to enter the critical section’ and ‘who should
enter the critical section’.

Algorithm 3 (Peterson’s Algorithm)

Int turn: /* initial value does not matter*/

Boolean flag [2]; /* initially set to false*/

P0:

do { flag[0] = true; /*intend to enter critical section*/

turn = 1;

while ( flag[1] && turn= =1); /* keep looping as long
as flag[1] is set to true && turn equals 1*/

/* Entry Section*/

< Critical Section >

Flag[0] = false;/* exiting from critical section*/

< Remainder Section >

} While (1);

P1:

do { flag[1] = true; /*intend to enter critical section*/

turn = 0;

while ( flag[0] && turn= =0); /* keep looping as long
as flag[0] is set to true && turn equals 0*/

/* Entry Section*/

< Critical Section >

Flag[1] = false; /* exiting from critical
section*/
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< Remainder Section >

} While (1);

This algorithm meets all the three requirements of an ideal critical-section solution.
Here, if both processes set their flag to true, then the value of ‘turn’ will break the
tie since it can assume only one value, either 0 or 1.

If both flags are set to true and turn equals 0, then P
0
 is allowed to enter the

critical section. If the value of ‘turn’ equals 1, then P
1
 proceeds.

5.4.4 Hardware Support for Mutual Exclusion

Test-and-Set (TS) Instruction

TS instruction provides a direct hardware support to mutual exclusion. It allows
only one concurrent process to enter the critical section. It is able to make the
programming task easier. It also improves the efficiency of the system.

The critical-section problem can be solved simply in a uniprocessor
environment if we are able to prevent the occurrence of interrupts during the
modification of a shared variable. Hence, the current sequence can be allowed to be
executed without pre-emption. This is the approach taken by non-preemptive kernels.

Unfortunately, this solution is not feasible in a multiprocessor environment.
Message passing to all the processors could be time-consuming in case of disabling
the interrupts in a multiprocessor environment. As entry into the critical section is
delayed due to such a message passing, the efficiency of the system decreases.

Therefore, many modern systems provide a special hardware support which
helps in testing and modifying the content of a word or in swapping the contents of
two words atomically.

This mechanism sets the global variable to 0, which indicates that the shared
resource is available for being accessed. Each process has to execute TS instruction
in order to use the resource available with a control variable as an operand. As a
principle, TS takes one operand, the address of the control variable or a register,
which may act as a semaphore.

You can implement the wait operation on the semaphore variable S using
TS instruction set. However, it is possible only in case of the availability of the set
with the supporting hardware.

Test-and-Set instruction

boolean TestAndSet (int S) {
if (S == 0) {
S = 1;
return true;

}
else {

return false;
}
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The importance of the above instruction is that it executes automatically. Thus, if
two Test AndSet () instructions are executed simultaneously (each on a different
CPU), they will be executed sequentially in some arbitrary order.

5.4.5 Swap Instruction
void swap (int register, int memory)

{

int temp;

temp = memory;

memory = register;

register = temp;

}

Like the TestAndSet () instruction, the swap instruction is also executed atomically.
Otherwise, mutual exclusion will not be ensured. This algorithm also ensures the
requirement of progress, but it does not satisfy the requirement of  bounded-wait.
A process waiting to enter its critical section may have to wait for unduly long time
or may have to wait forever. While a process is waiting, other cooperating processes
may keep entering their critical sections repeatedly. So, the algorithm may cause
starvation of waiting processes.

Advantages

The advantages of the TS instruction are as follows:

 It is applicable to any number of processes on either a single processor or
multiple processors sharing main memory.

 It is simple and, hence, easily verifiable.

 It can be used to support multiple critical sections.

Disadvantages

The disadvantages of the TS instruction are as follows:

 Busy-waiting consumes a lot of the processor’s time.

 Starvation may occur if a process leaves a critical section and there are
more than one process in waiting.

 It results in deadlocks.

If a low-priority process has the critical region and a high-priority process needs
the higher priority process will obtain the processor to wait for the critical region

Wait and Signal Operations

Wait and Signal is a modified version of the TS instruction which is designed to
remove busy-waiting. Wait and Signal are two new and mutually exclusive
operations. They become a part of the process scheduler’s set of operations.

Wait gets activated whenever the process encounters a busy condition code.
Its function is to set the Process Control Block (PCB) of the process to the blocked
state. It links to the waiting queue to be sent to critical region.
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Signal gets activated whenever a process leaves the critical region and the
Flag is set to false. Following this, the process is selected to be sent to the READY
state.

Semaphores

A semaphore represents an abstraction of many important ideas in mutual exclusion.
It is a protected variable which can be accessed and changed only by operations.
It also controls synchronization by using an abstract data type. The synchronization
tool called semaphore is used for the solution of the critical section problem, as
discussed in the hardware-based solution using TestAndSet () and Swap ()
instructions. A common example of a semaphore is the flag-like signalling device
that is used by railroads for indicating whether or not a track is clear. In case the
track is clear, the semaphore’s arm is raised. On the other hand, if the track is not
clear or is busy, the arm of the semaphore is lowered and the train is not allowed
to proceed.

In an operating system, if a resource is free, the semaphore SIGNALS and
can be used by the process.

5.4.6 Binary Semaphore

A semaphore is a non-negative integer variable upon which two atomic operations,
wait and signal, are defined.

Int S = 1; /* Let S be a binary semaphore, initialized to 1*/

 Wait (s); while S< = 0 do no operation S = S–1;

A semaphore is an integer variable that accepts non-negative integer values only by
using two standard atomic operations: wait () requesting to enter into the critical
section, then process P

i
 has to wait. So, at a time only one process will be executed

or allowed to enter into the critical section. Process P
i
 will repeatedly check for the

semaphore value to become 1. Then the value will be decremented by 1 (S=S–1)
and the process will be allowed to enter into the critical section. The above- mentioned
two instructions are executed atomically in order to ensure that no two waiting
processes find the semaphore value as 1.

Signal (s); S = S + 1;

This primitive is executed only when a cooperating process is exiting from the
critical section. This operation increments the value of semaphore to 1 in order to
ensure that only one of the waiting processes enters into the critical section.

A process P
i
 can be synchronized to provide access to its critical cection,

as follows:
do{

Wait (& S) ;

<Critical Section>

Signal (&S);

<Remainder Section>

} while (1);
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Let us observe the three conditions of an ideal critical-section solution:

(a) Mutual Exclusion: If no process is executing in critical section, semaphore
value will be 1. The first process, executing wait operation, will decrement
the value to 0 and enter its critical section. The process, which execute
‘wait’ operation while a cooperating process is executing in its critical section,
will find the semaphore value to be 0 and keep looping in the ‘while’ loop of
‘wait’ operation. Due to this ‘spinning’ of a waiting process in the ‘while’
loop, the binary semaphores are also known as ‘spin locks’ . ‘Signal’
operation is executed as soon as a process exits from a critical section. The
value of semaphore is incremented to 1. One of the processes in ‘while’
statement of ‘wait’ operation will find the value to be 1, exits the ‘while’
loop, decrements the value by 0 and enters the critical section.

‘Wait’ operation is to be executed atomically. The other processes will now
find the value of semaphore as 0 and continue to loop in the ‘while’ loop. It
means that at a time only one cooperating process is executing in the critical
section, subject to satisfaction of the condition that ‘wait’ operation is
executed atomically. So, the requirement of mutual exclusion is met.

(b) Progress: When in the critical section, there is execution of any process,
the semaphore value is 1. Then, one of the waiting processes, looping in the
‘while’ loop of ‘wait’ operation, will find the semaphore to 0 and enter the
critical section. So, if there is no execution of any process in the critical
section, then one of the waiting processes will soon occupy its critical section.
Thus, the requirement of progress is met.

(c) Bounded Wait: One of the waiting processes will get an arbitrary entry
into its critical section when a cooperating processes executing in its critical
section exits. This selection of a process being arbitrary, a process waiting
to enter its critical section is likely to face starvation. So, the requirement
of bounded wait is not met.

5.4.7 Implementation of Semaphores with a Waiting Queue

The main disadvantage of the semaphore definition is that it requires busy-waiting.
In other words, a process in critical section prevents all other processes from
entering the critical section. Hence, the process should necessarily loop continuously
in the entry code. Such a looping faces a severe problem in a real multi-programming
system, in which various processes have to share a single CPU. In such a
semaphore, the process has to ‘spin’ while awaiting the lock. This is why this type
of semaphore is also termed as ‘spinlock’.

In order to overcome the problem of busy-waiting, the process has the
feature to block itself. The process is placed in the waiting queue associated with
the semaphore by the block operation. Now the process is in the waiting state.
The control is transferred to the CPU scheduler, which selects another process to
execute.
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This blocked process, waiting on a semaphore S, should be restarted when
some other process executes a signal () operation. The process is restarted by
wakeup () operation which changes the state of the process from waiting to ready
state. The process is now located in the ready queue.

Table 5.7  Implementation of Semaphores

Action Results

State Calling Operations Running in Blocked Value of S
Number Process Critical Region on S

0 1

1 P1 P(S) P1 0

2 P1 V(S) 1

3 P2 P(S) P2 0

4 P3 P(S) P2 P3 0

5 P4 P(S) P2 P3, P4 0

6 P2 V(S) P3 P4 0

7 P3 P4 0

8 P3 V(S) P4 0

9 P4 V(S) 1

As presented in Table 5.7, P
3
 is placed in the Wait state on state 4. In states 6 and

8, when a process exits the critical region, the value of S is reset to 1, indicating
that the critical region is free. This, in turn, triggers the awakening of one of the
blocked processes, its entry into the critical region, and the resetting of S to zero.
In state 7, processes P

1
 and P

2
 are not trying to do processing in that critical

region and P
4
 is still blocked. After state 5, the longest waiting process, P

3
, was

the one selected to enter the critical-region, but that is only possible in case FCFS
algorithm is used. In fact, this purely depends on the choice of the algorithm used
by the process scheduler.

5.4.8 Conditional Critical Region (CCR)

The Conditional Critical Region (CCR) is a control structure in a higher-level
programming language. It provides two features for process synchronization:
(i) Providing mutual exclusion over accesses to shared data and (ii) Permitting a
process to execute CCR to block itself until a specified Boolean condition becomes
true.

Consider the following:

Var x: shared <type>:= <initial_value>;

 begin

 pbegin

repeat
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 region x do

begin

———

await

———

end;

{Remainder of the cycle}

Forever

————

pend

end

Here variable x is shared with the attribute named as shared and can be used in
any program. A process in CS uses variable x and executes until it reaches await
(B) statement. If condition B evaluates to true, the process continues execution of
the CS, else, it returns mutual exclusion and blocks itself awaiting for B to become
true. Some other process can now enter the CCR. A process blocked on B is
activated sometime in future when condition B is true and no other process is in a
CS on x. It now requires the critical section on x and resumes its execution at the
statement following await (B).

Deadlocks and Starvation

If you implement a semaphore with a waiting queue, a situation may arise where
two or more processes indefinitely await an event that can be caused only by one
of the waiting processes. When such a state is reached, then processes are said to
be deadlocked.

For example, consider the following two processes, P
0
 and P

1
, each

accessing two semaphores, S and Q. Set to the value 1.

P
0

P
1

Wait (S); wait (Q);

Wait (Q); Wait (S);

. .

. .

. .

Signal (S); Signal (Q);

Signal (Q); Signal (S);

In the above example, as P
0
 executes Wait (S), and at the same time, P

1
 executes

Wait (Q). When P
0
 executes Wait (Q), P

0
 must wait until l P

0
 executes Signal (S).

Since the execution of these signal ( ) operations is not possible, P
0
 and P

1
are

deadlocked.

If every process in the set awaits an event which can be caused only by
some other process in the set, a process is said to be deadlocked.
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5.4.9 Classical Problems in Concurrent Programming

Bounded Buffer Problem

The classic problem of producers and consumers is one in which one process
produces some data and some other process consumes it. The problem can be
expanded to any number of pairs of producers and consumers.

Consider the case of the profile CPU. The pace with which the CPU is able
to generate output data is much greater than the pace with which a line printer is
able to print it. This involves a producer and a consumer having different speeds.
So, a buffer, which offers the producer to temporarily store data to be retrieved
by the customer at a greater speed, is required.

(a) Producer

(a) Full Buffer

Buffer

Consumer 

(b)

(c)

Producer

Producer

(b) Partially Empty Buffer

(c) Empty Buffer

Buffer

Buffer

Consumer 

Consumer 

Fig. 5.26 States of Buffer

As shown in Figure 5.26, the buffer can be in any of these three states: (a) full
buffer, (b) partially empty buffer or (c) empty buffer.

The synchronization should necessarily prevent the producer from generating
more data when the buffer is full as buffer can hold only a finite number of data.
On the other hand, it should also prevent the consumer from retrieving the data
when buffer is empty. This can only be performed by taking two counting
semaphores—one for indicating the total number of full positions in the buffer and
the other for indicating the total number of empty positions in the buffer.

The exclusion between processes is ensured by a third semaphore, called
mutex.

We assume that the buffer pool consists of n buffers, each capable of holding
one item. The mutex semaphore provides mutual exclusion for accesses to the
buffer pool and is initialized to the value 1. The empty and full semaphores count
the number of empty and full buffers. The empty semaphore is initialized to the
value n and the full semaphore is initialized to the value 0. Suppose there is a
producer process, which produces some data-items for the consumption by a
consumer process. The producer is producing the data-items asynchronously.

It is possible that at times the producer may produce data-items at a rate
faster than the consumer can consume.

Semaphores Empty, Full, Mutex
Data Buffer [N], Buf_P, Buf_C; /* Buffer is shared memory
for transfer

Of data-items from Producer to Consumer*/
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/* Buf_P is a local buffer of producer*/

/* Buf_C is a local buffer of consumer*/

Int p, c; /* p is a pointer of producer to Buffer- where
next data item is

to be stored in the Buffer.*/

/* c is a pointer of consumer to Buffer- where next data-
item is to be fetched

from the Buffer*/

Empty.count = N; /* This indicates that all the N slots
are empty in buffer */

Full.count = 0; /* This indicates that none of the slots
is full in buffer */

Mutex.count = 1; /* This semaphore is used to achieve
mutual exclusion

between producer and consumer, while they transfer data
in/out of buffer */

P=0;

C=0;

The producer operates as follows:
 do {

 . . .

// produce an item in Buf_P

. . .

Wait (Empty); /* Request an empty slot */

Wait (Mutex); /* To achieve mutual exclusion of access of
buffer */

. . .

// Buffer [P] = Buffer_P /* Deposit the data item in
buffer */

P = (P + 1) % N /*increment the producer pointer to next
slot in buffer */

Signal (Mutex); /* Finished with accessing of buffer */

Signal (Full); /* A slot has been filled*/

} while (1);

The Structure of the Consumer Process
do {

Wait (Full); /* waiting for a filled slot*/

Wait (Mutex); /* to achieve mutual exclusion of access of
buffer*/

Buf_C=Buffer [C]; /* Fetch a data-item from buffer*/

C=(C+1)%N; /* Increment the consumer pointer to next slot
in buffer*/

// remove an item from buffer to next slot
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. . .

Signal (Mutex); /* Finished with accessing of buffer*/

Signal (Empty); /* A slot has been emptied*/

} while (1);

5.4.10 Readers and Writers Problem

The problem of readers and writers was first formulated by P.J. Courtois,
F. Heymans and D.L. Parnas (1971). It occurs when two different kinds of
processes have to access a shared resource, which include a file or database.

Airline reservation system is a typical example of the readers and writers
problem. Those who seek information about flight are called the readers. As they
read only the existing data, they are known as readers. They are not involved in
modifying data. Many readers can be active simultaneously as no change in data is
required. Thus, we can say that there is no requirement of the enforcement of
mutual exclusion in case of readers.

On the other hand, those who are making reservation on a particular flight
are referred to as writers. As writers are involved in modifying the existing database,
they are required to be carefully accommodated. Thus, in case of the presence of
many readers and writers, the enforcement of mutual exclusion is a must as the
system cannot allow the reading and writing together.

Courtois, Heymans, and Parnas gave two solutions to this problem:

(i) In the first solution, the readers are given priority over writers. If a writer is
busy in the modification of data, readers have to wait. However, this solution
can lead to a situation what is called writer starvation if there exists a
continuous flow of readers.

(ii) In the second solution, writers are given priority over readers. Here, the
moment the writers arrive, the existing readers are allowed to finish
processing. However, all other readers have to wait until the writer has
finished his job. Thus, this solution leads to a condition what is called the
readers’ starvation if there exists a continuous flow of writers.

Thus, we can conclude that neither solution is desirable.

In solving the writers and readers problem, it is ensured that:

 When a writer is in the critical section, no other reader or writer can execute
in critical section.

 When a reader is in its critical section, other readers can also enter their
critical sections.

Semaphore Mutex, Reader_Writer /* count of both semaphore initialized to
1*/ Int Read_count = 0 /* this indicates that initially none of the readers is in its
critical section.*/

 A WRITER operates as follows:

 Wait (&Reader_writer);

 <Perform Write Opertions>

 Signal (&Reader_Writer)

 A READER operates as follows:
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 Wait (&Mutex);

 Read_count= Read_count+1;

 If (Read_count = = 1) wait (&Reader_Writer);

 Signal(&Mutex);

 <perform Read Operations>

 wait(&Mutex);

 Read_count= Read_count-1;

 If (Read_count = = 0) Signal (&Reader_Writer);

 Signal(&Mutex);

In the above algorithm, once a writer enters the critical section; no other reader or
writer can enter the critical section. At this time, the readers who arrive first, will
wait on the READER_WRITER semaphore and the subsequent readers will wait
on the mutex semaphore itself. If a reader is in the critical section, then other
readers will also keep entering in the critical section, as long as there is still at least
one reader in the critical section. During this time writers have to wait sometime
for a long period and they might get starved.

5.4.11 Deadlocks

A deadlock is a situation in which some processes wait for each other’s actions
indefinitely. In real life, deadlocks can arise when two processes wait for phone
calls from one another, or when persons crossing a narrow bridge in opposite
directions meet in the middle of the bridge. Deadlock is more serious than indefinite
postponement or starvation because it affects more than one job. Because
resources are tied up in deadlocks, the entire system is affected.

Processes involved in a deadlock remain blocked permanently which affects
the throughput, resource efficiency and the performance of the operating system.
A deadlock can bring the system to standstill.

Operating system handles only deadlocks caused by sharing of resources in
the system. Such deadlocks arise when some conditions concerning resource
requests and resource allocations are held simultaneously.

Deadlock detection detects a deadlock by checking whether all conditions
necessary for a deadlock hold simultaneously. The deadlock prevention and
deadlock avoidance ensure that deadlocks cannot occur, by not allowing the
conditions for deadlocks to hold simultaneously.

The most common example for deadlock is a traffic jam. In the example
(Refer Figure 5.27) shown below, there is no proper solution to a deadlock; no
one can move forward until someone moves out of the way, but no one can move
out of the way until either someone advances or a rear of a line moves back. Only
then can the deadlock be resolved.
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Fig. 5.27 A Classic Case of Traffic Deadlock

Thus, we can say that a deadlock refers to a situation in which two or more
competing actions are waiting for the other to finish, and thus neither ever does
this. For example, consider about the two trains approaching each other at a
crossing. In this situation, both the trains stop, and none of them can restart until
the other has gone.

In computer science, deadlock refers to a specific condition when two or
more processes are each waiting for another to release a resource, or more than
two processes are waiting for resources in a circular chain (Wikipedia).

Some Examples

 The occurrence of deadlocks is common in the multiprocessing system.
The reason for this is that in the multiprocessing system, several processes
have to share a specific type of mutually exclusive resource known as a
software, or soft, lock. There often exists a hardware lock (or hard lock)
in computers that intend for the time-sharing and/or real-time markets.
This lock provides an exclusive access to processes. This leads to a forced
serialization. Deadlocks create troubles as we lack a general solution to
this problem.

 Think of two people drawing diagrams with only one pencil and one ruler
between them. If one person possesses the pencil and the other possesses
the ruler, this would lead to a deadlock if the person having the pencil needs
the ruler and vice versa. As it is not possible to satisfy both the requests, a
deadlock is inevitable.

 In case of telecommunications, deadlock is a little more complex. Here,
deadlock occurs when neither of the processes meets the condition for
moving to another state (as described in the process’s finite state machine)
and each communication channel is empty. The second condition is ignored
in case of other systems but is very important in the context of
telecommunications.



Pipeline, Vector
Processing and
Multiprocessing

NOTES

Self - Learning
Material 399

 We may consider an example of a deadlock in database products. >>Client
applications using the database may need an exclusive access to a table. To
acquire such an access, a lock may be demanded by the applications. Think
of a client application holding a lock on a table and attempting to obtain the
lock on a second table which is already held by a second client application.
This may lead to deadlock if the second application tries to obtain the lock
possessed by the first application. (However, this particular type of deadlock
is easily prevented, e.g., by using an all-or-none resource allocation
algorithm.)

Characteristics of a Deadlock

A deadlock occurs when the following four conditions are met:

(a) Mutual Exclusion: Each resource is allocated to only one process at any
given point of time.

(b) Hold and Wait: The previously granted resources are not released by
processes.

(c) No pre-Emption: The previously granted resources are not taken away
from the processes which hold them.

(d) Circular Wait: There exists a chain of two or more processes. These
processes should exist in such a way that each process in the chain holds a
resource requested by the next process in the chain; there must exist a set
(P

0
, P

1
, P

2
, P

3
,……., P

n
) of waiting processes such that P

0
 is waiting for a

resource that is held by P
1
, P

1
 is waiting for a resource that is held by

P
2
, . . . . . P

n
–1is waiting for a resource that is held by P

n
, and P

n
 is waiting

for the a resource that is held by P
0
 see Figure 5.28.

R1

R3

R2R4

P1

P1P1

P1

Fig. 5.28 Circular Wait

5.4.12 Resource Allocation Graph (RAG)

Three events concerning resource allocation can occur in a system: request for a
resource, allocation of a resource and release of a resource (Refer Table 5.8).

A request can occur when some process P
i
 makes a request for a resource

r
i
. If r

i
 is currently allocated to some process P

k
, process P

i
 gets blocked on an

allocation event r
i
. In effect, P

i
 is waits for process P

k
 so that r

i 
is released. A

release event does the task to free r
i
 by P

k
.
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Table 5.8  Request Allocation and Release of Resources

Request A process requests a resource through a system call. If the
resource is free, the kernel allocates it to the process
immediately; otherwise, it changes the state of the
process to block.

Allocation The process becomes the holder of the resource allocated
to it. The resource state information gets updated and the
process’ state changes to ready.

Release A process releases a resource through a system call. If
some processes are blocked on the allocation event for
the resource, the kernel uses some tie-breaking rule, e.g.
FCFS allocation, to decide which process should be
allocated the resource

Symbols used in RAG

1. Process

2. Resource type with four instances

3. P
i
 requests instances of R

j
Pi 

request edge 

4. Process P
i
 is holding an instance of R

j

P  i

assignment edge 

Basic facts:

1. If a graph contains no cycles, no deadlock.

2. If a graph contains a cycle

a. If only one instance per resource type, then a deadlock.

b. If several instances per resource type, possibility of a deadlock

Possibility 1 for a Deadlock

Figure 5.29 shows possibility 1 for a deadlock.
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R1 R3

P2 P3P1

R2 R4

Fig, 5.29 Possibility 1 for a Deadlock
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Two possibility cycles are:
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  R
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  P

2

Possibility 2: Cycles but No Deadlock

Figure 5.30 shows possibility 2 for a deadlock.

R1 P2

P3

P4

P1

R2

Figure 5.30 Possibility 2 for a Deadlock

Cycle is P
1
  R

1
  P

3
  R

2
 P

1
.

No deadlock, observe that process P
4
 may release its instance of resource

type R
2
. That resource can then be allocated to P

3
 breaking this cycle.

5.4.13 Methods for Handling Deadlocks

There are three methods to handle a deadlock:

1. Deadlock Prevention: It ensures that the system will never enter a deadlock
state

2. Deadlock Avoidance: It allows the system to avoid a deadlock.

3. Deadlock Detection: It allows the system to enter a deadlock and then
recover
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(a) Ignore the problem, and pretend that deadlock never occur in the
system

Deadlock Prevention

Let us discuss the four conditions that should be met in order to produce a deadlock:

(a) Mutual Exclusion:

 It is not required for sharable resources.

 It must hold for non-sharable resources.

(b) Hold and Wait:

 Require a process to request and be allocated all its resources before it
begins execution, or allow process to request resources only when the
process has none.

 It may lead to low resource allocation.

 Starvation is a problem. A process may be held for a long time waiting
for all its required resources.

 If it needs additional resources, it releases all of the currently held
resources and then requests all of those it needs; one should be aware
of all the needs well in advance

(c) No Preemption:

 Preempting a resource is necessarily a compulsory sharing. It can be
applied to such devices whose state can be saved and later restored.

 If a process that is holding some resources requests another request
that can not be immediately allocated to it, then all the resources currently
being held are released.

 Preempted resources can be added to the list of resources the process
is waiting for.

 Process can be restarted only if it can regain its old and new resources
it is requesting in an alternative manner.
When a process requests some resources, first of all we check whether
or not they are available. If yes, they are allocated. If no, we check if
they are allocated to some other process waiting for some additional
resources. If they are so allocated, the desired resources are pre-empted
from the waiting process and are allocated to the requesting process. In
case the resources are neither available nor held by a waiting process,
the requesting process has to wait.

(d) Circular Wait:

 It imposes a total ordering on all resources types.

 It requires each process to request resources only in a strict increasing
order.

 Resources from the same resources type have to be requested together.

Let R = {R
1
, R

2
, R

3
 …, R

n
} be the set of resources types. Then one- to-one

function is defined as:
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F: R  N, where N is the set of natural numbers.

R {tape drive, disk drive, printer}

Then,

F (tape drive) = 1,

F (disk drive) = 5,

F (printer) = 12.

Protocol

 Each process can make a request only in an increasing order. In other words,
any number of instances of resource type R

i
 can be initially requested by a

process. Following this, the process can request instances of resource type
R

j
 if and only when F (R

j
) is greater than F (R

i
). If you need several instances

of the same resource type, you need to issue a single request for all of them.

 Alternatively, we may need that whenever a process makes a request of an
instance of resource type R

j
, it has released any resource R

i
, such that F

(R
i
) is greater than equal to F (R

j
).

If the above-mentioned two protocols are used, then the circular wait-condition
can not hold.

Deadlock Avoidance

We have seen that in deadlock prevention, one of the conditions that must be
present for a deadlock to exist is prevented. In deadlock avoidance, a resource
which may eventually lead to a deadlock is never allocated. This can be done by
allocating resources to just one process at a time.

Safe State

A system is considered to be in a safe state if there exists a safe execution sequence.
By execution sequence we mean an ordering for process execution such that each
process, on being executed, runs so long as it does not terminate or is blocked,
and all requests for resources are immediately granted in case of their availability.
A safe execution sequence means an execution sequence wherein all processes
run to completion.

Hence a safe state is one where:

 There is no deadlock.

 There is some sequence by which all requests can be satisfied.

 To avoid deadlocks, we try to make only those transactions that will
take us from our safe state to another.

Unsafe State

An unsafe state refers to a state that is not safe, not necessarily a deadlocked
state.
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Unsafe 

Safe

Fig. 5.31 Safe and Unsafe States

An unsafe state may currently not be deadlocked, but there is at least one sequence
of request from process that would make the system deadlocked Figure 5.31
shows and Unsafe States.

Simplest Algorithm

Each process tells a max number of resources it will ever need. As a process runs,
it requests resources but never exceeds the max number of resources. System
schedules process and allocate resources in a way that ensures that no deadlock
results. For example, the system has twelve tape drives.

Process Max need Current needs

P0 10 5

P1 4 2

P2 9 2

Can a system prevent a deadlock even if all processes request the max? Well,
right now, the system has three free tape drives.

If P
1
 runs just and completes, it will have (3+2) =5 free tape drives. P

0
 can

run to completion with those 5 free tape drives even if it requests max. Then P
2

will execute. So, this schedule will execute without a deadlock.

If P
2
 requests two or more tape drives, can system give it the drives? No,

because it cannot be sure that it can run all jobs to completion with only 1 free
drive. So, the system must not give P

2
 two more tape drives until P

1
 finishes. If P

2

asks for two more tape drives, the system suspends P
2
 until P

1
 finishes.

RAG Algorithm

Figure 5.32 shows stages of RAG algorithm. The features of RAG algorithm are
as follows:

 It maintains a graph with a directed edge from each process to each resource
it might request. (Needs a prior knowledge)

 Allocated resource reverses the edge direction.

 Released resource returns the edge to its original direction.

 The algorithm allocates a resource only if it can do that without creating a
cycle in the graph.
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Potential Request

Potential Request Poten
tial R

equest

Resource B

P1 P2

Potential
 Request

Resource B

(a)

Potential Request

Potentia
l R

equest

Resource B

P2

Resource A

P1

Potential Request

Potential Request

(b)

Potential Request

Potentia
l R

eq
uest

Resource B

P2

Resource A

P1

Allocated

Potential Request

(c)

Request

Resource B

P2

Resource A

P1

(d)

Allocated

Resource B

P2

Resource A

P1

Denied!!!
A cycle found. Will have to wait

(e)
Fig. 5.32 Stages of RAG Algorithm
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Banker’s Algorithm

RAG is not applicable to a resource allocation system with multiple instances of
each resource type. The deadlock avoidance algorithm that we will be describing
next is applicable to such a system. However, this algorithm, commonly known as
Banker’s algorithm, is not as efficient as RAG scheme.

When a process enters the system, it must declare the maximum number of
instances of each resource type that it may need. When a user requests a resource,
we must ensure that after allocating it the system must be in a safe state. If it is
ensured, the resources are allocated; else, the process has to wait until some other
process releases resource types.

Data Structures

 Available: vector [1, …, m], // m indicates the number of available
resources of each type.

If available [j] =k // the number of instances currently available for resource
j.

 Max: matrix [1,…., n, 1,…, m], Max [i, j] =k // the maximum number of
instances of resource j that process i can request at any one time.

 Allocation: matrix [1,…, n, 1,…., m], Allocation [i, j] = k // Process i
currently holds an instance of resource j.

 Need: matrix [1,…, n, 1, …, m], // Process i needs more (additional)
resource (instances) of type j.

Need [i, j] =Max [i,j]–Allocation[i,j]

Banker’s Algorithm—Safety Procedure

1. Let Work and Finish be two vectors defined as:

Work [1,…, m], Finish [1,…, n]

Initialize Work = Available and Finish [i] = false for i=1,2,3,…, n

2. Find an I such that:

a. Finish[i] = false

b. Need
i
<=Work

If yes, GOTO step 4

3. Work = Work + Allocation;

Finish[i]:= true

GOTO step 2

a. If Finish [i] = true for all i, then the system is in safe state.

Resource-Request Algorithm

Let Request
i
 be the request vector for process P

i
. If Request

i
 [j] = k, then process

P
i
 wants k instances of resource type R

j
. When a request for resources is made

by process P
i
, then following actions are taken:
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1. If Request
i
 <= Need

i
, go to step 2. Otherwise, raise an error condition,

since the process has executed its maximum claim.

2. If Request
i
 <= Available, go to step 3, otherwise, P

i
 must wait, since the

resources are not available.

3. Have the system pretend to have allocated the requested resources to process
P

i
 by modifying the state as follows:

Available = Available – Request
i

Allocation = Allocation + Request
i

Need
i 
= Need

i
 – Request

i

If the resulting resource-allocation state is safe, the transaction is completed and
process P

i
 must wait for Request

i
 and the old resource-allocation state is restored.

Example 5.6:

Process Allocation Max Available

A B C A B C A B C

P
0

0 1 0 7 5 3 3 3 2

P
1

2 0 0 3 2 2

P
2

3 0 2 9 0 2

P
3

2 1 1 2 2 2

P
4

0 0 2 4 3 3

Need = Max–Allocation

Process Allocation Need Available

A B C A B C A B C

2 3 0

P
0

0 1 0 7 4 3

*P
1

3 0 2 0 2 0 -------- (1)

P
2

3 0 2 6 0 0

P
3

2 1 1 0 1 1 -------- (2)

P
4

0 0 2 4 3 1

Now we have to perform the safety algorithm to find the safe sequence. After
executing our safety algorithm, we find that the safe sequence is < P

1
, P

3
, P

4
, P

0
,

P
2
>. So, the request for P1 can be immediately granted.

Now suppose that P
2
 requests one additional resource of type A and two

of type C, so request <1, 0, 2> is sent to the OS. For this, first we have to check
the condition available.

Now suppose that process P
1
 requests one additional instance of resource

type A and two instances of resource type C,

So request1= (1, 0, 2)

request1<=available

[(1, 0, 2) <= (3, 3, 2)], which is true.
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Safety Algorithm

(i) Work = <2 3 0>

(ii) Work= <2 3 0> + <3 0 2> = <5 3 2><P
1
, P

3
, P

4
, P

2
, P

0
>

(iii) <5 3 2> + <2 1 1> = <7 4 3>

What if P
4
 then requests (3, 3, 0)? And if P0 requests (0, 2, 0)?

Deadlock Detection

In RAG, a direct arrow is drawn from the process to the resource rectangle to
represent each pending resource request. To indicate each granted request, on
the other hand, a direct arrow is drawn from a resource dot to the process (Figure
5.33).

o o o                o   o    o       o      o               o 

P2 P3 
P4 

Fig. 5.33 Resource Allocation Graph

Table 5.9 Resource Usage

Current Outstanding Resources
Process Allocation Requests Available

R
1

R
2

R
3

R
1

R
2

R
3

R
1

R
2

R
3

P
1

3 0 0 0 0 0 0 0 0

P
2

1 1 0 1 0 0

P
3

0 2 0 1 0 1

P
4

1 0 1 0 2 0

To reduce a RAG, you need to check the arrows associated with each process
and resource (Refer Table 5.9).

 If a resource contains only arrows pointing away from it (meaning it has no
request pending), all its arrows are erased.

 If a process contains only arrows pointing towards it (meaning all its requests
have been granted), all its arrows are erased.

If a process has arrows pointing away from it, but for each such request arrow,
there is an available resource dot (a dot without an arrow leading from it) in the
resource the arrow points to, erase all processes arrow (Refer Figure 5.34).
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 R1   R2   R3 

P1 P2 P3 P4 

o o o  o  o      o  o  o             o 

Fig. 5.34 Reduced Resource Allocation Graph

Example 5.7:

From the following resource usage table, draw the resource allocation graph.

Current Outstanding Resources
Process Allocation Requests Available

R
1

R
2

R
3

R
1

R
2

R
3

R
1

R
2

R
3

P
1

2 0 0 1 1 0

P
2

3 1 0 0 0 0 0 0 0

P
3

1 3 0 0 0 1

P
4

0 1 1 0 1 0

Solution:
 
 
 
 
 
 
 
 
 
 
 
   Resource allocation graph  

P1 
P2  

P3  
P4  

  o  o    o   o   o   o      o   o   o   o   o                o        

Example 5.8:

From the resource usage table given in Example 5.6, draw the reduced resource
allocation graph.

Solution:

(a)

 R1    R2   R3 

  o   o   o   o   o   o    o   o   o   o   o           o    
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(b) Process P
2
 only has arrows pointing towards it. So, the links can be erased

and requests can be granted to process P
1
 from the resources R

1
 and R

2
.

Hence, we have the following:
 
 
 
 
 
 
 
 
 
 R1    R2   R3 

P1 P2 P3 P4 

  o   o   o   o   o   o      o   o   o   o   o         o  

(c) Process P
1
 only has arrows pointing towards it. So, the links can be erased

and requests can be granted to process P
3
 from resource R

2
. Hence, we

have the following:
 
 

 
 
 
 
 
 
  Partially reduced allocation graph 

P1 P2 P3 P4 

  o   o   o   o   o   o      o   o   o   o   o         o  

(d) Processes P
3
 and P

4
 only have arrows pointing towards them. So, the links

can be erased.

 
 
 
 
 
 
 Reduced resource allocation graph 

P1 P2 P3 P4 

  o   o   o   o   o   o      o   o   o   o   o         o  

Example 5.9:

From the given table, draw the resource allocation graph.

Cureent Outstanding Maximum Resources
  Process Allocation Requests Allocation Available

R
1

R
2

R
3

R
1

R
2

R
3

R
1

R
2

R
3

R
1

R
2

R
3

P
1

2 0 0 1 0 0 2 0 1 0 20

P
2

1 2 0 0 0 1 2 5 2

P
3

0 1 1 0 0 0 1 4 2

P
4

0 0 1 0 0 1 2 0 1
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Solution:

 
 
 
 
 
 
 
 

RAG 

P1 P2 P3 P4 

 o   o    o o  o  o  o  o       o   o 

Example 5.10:

From the table given in Example 5.7, draw the reduced RAG.

Solution:

(a) Process P
3
 has only arrows towards it. So, erase those arrows and allocate

the resources to process P
4
:

 
 
 
 
 
 
 
 
 
 
 R1   R2    R3 

P1 P2 P3 P4 

 o   o    o  o   o    o   o   o      o    o 

(b) Process P
4
 has only arrows pointing towards it. So, they can be erased and

the resource can be allocated to process P
2
.

 
 
 
 
  
 
 
 
 
 R1   R2    R3 

P1 P2 P3 P4 

 o   o    o  o   o    o   o   o      o    o 

 (c) Process P
2
 has only arrows pointing towards it. So, they can be erased and

the resource from R
1
 can be given to process P

1
.

 
 
 
 
 
 
 
 
 
 R1    R2   R3 

P1 P2 P3 P4 

 o   o    o     o    o  o   o    o   o   o 

(d) Process P
1
 has now all the arrows pointing towards it. So, they can be

finally erased to get the reduced resource allocation graph.
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 R1    R2   R3 
 

P1 P2 P3 P4 

 o   o    o  o   o    o   o   o     o    o 

5.4.14 Introduction to File System and IO

A file is a logical collection of information. A file system is a collection of files. It
may also include a variety of other objects that share many of properties of files
(such as I/O devices).

Attributes of a File

The attributes of a file are as follows:

Name: The symbolic file name is the only information kept in human readable
form.

Identifier: This unique tag, usually a number, identifies a file within the file
system. It is the non-human-readable name for the file.

Type: This information is needed for the systems that support different
types.

Location: This information is a pointer to a device and to the location of
this file on that device.

Size: The current size of the file, and possibly the maximum allowed size,
are included in this attribute.

Protection: Access control information determines who can do reading,
writing, executing, and so on.

Time, Date and User Identification: This information may be kept for
creation, last modification and last use. These data can be useful for protection,
security and usage monitory.

File Operations

The various file operations are as follows:

Creating a File: There are two requirements for creating a file. First, there
must be space in the file system for the file. Second, an entry, for the file must be
made in the directory.

Writing a File: For writing a file, we make a system call specifying both
the name of the file and the information to be written to the file. Given the name of
the file, the system searches the directory to find the location of the file.

Reading a File: For reading from a file, we use system call specifying the
name of the file, and where the next block of the file should be put. Pointer is used
to write to the file.

Repositioning within a File: The directory is searched for the appropriate
entry, and the current file-position is set to a given value.
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Deleting a File: For deleting a file, we search the directory for the named
file. Having found the associated directory entry, release all file space, so that it
can be used by other files, and erase the directory entry.

Truncating a file: The user may want to erase the contents of a file but
keep its attributes. Rather than forcing the user to delete the file and then recreate
it, this fn allows all attributes to remain unchanged – except for the length but lets
the file be reset to length zero and its file space released.

Structure of a Directory
File system allows user to organize file and other file system objects through the
use of directories (Refer Figure 5.35).

directory

filesPortion A disk 1

directory

filesB disk 2

directory

filesC disk 3

Fig. 5.35 Structure of a Directory

Operations that are to be performed on a directory are as follows:

 Search for a File

 Create a File

 Delete a File

 List a Directory

 Rename a File

 Traverse the File System

5.4.15 Organizing Files

A file organization defines two things concerning a file: the arrangement of records
in the file and the procedure to be used to access the records. It determines how
efficiently the I/O medium would be used. It exploits the characteristics of I/O
device to provide the file processing efficiency for a specific access pattern. For
example, a disk record has a unique address and a read/write operation can be
performed on any disk record by specifying its address.
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On magnetic disks, files can be organized in one of the three ways: sequential,
direct, or indexed sequential.

Sequential File Organization

In the sequential file organization, records are stored in an ascending or descending
sequence by the key field. They are the easiest to implement because records are
retrieved serially, one after the other. To find a specific record, the file is searched
from its beginning until the requested record is found. It supports two kinds of
operations: read the next (or previous) record and skip the next (or previous)
record.

Most I/O devices can be accessed sequentially. Hence, sequential files are
most crucial dependent on device characteristics.

Direct Access File Organization

The direct file organization provides convenience and efficiency of file processing
when records are accessed in a random order. These can be implemented only on
direct access storage devices. These files give users the flexibility of accessing any
record in any order without having to begin a search from the beginning of the file
to do so. Hence, it is known as ‘random organization’, and its file are called as
‘random access files’.

There are two types of addresses, relative addresses and logical addresses,
through which the records can be identified. Relative address allows finding the
relative address of the beginning of the file, while logical address is required when
the records are stored and retrieved from a file.

The method is quite simple in which a user identifies a field and designates it
as a key field as it can uniquely identify the records. The program used to store the
data follows a set of instructions called a hashing algorithm, which transforms each
key into a number and records logical address. This is given to the file manager,
which takes the necessary steps to translate the logical address into a physical
address.

Direct access files can be updated more quickly than sequential files because
records can be quickly rewritten to their original address after modifications have
been made. Since the order of storing the records is not mandatory, adding or
deleting records is quite easier.

Indexed Sequential File Organization

It combines both the sequential and direct access. It is created and maintained
through Indexed Sequential Access Method (ISAM) software package, which
removes the burden of handling overflows and preserving record order from the
shoulders of the programmer. An index helps to determine the location of a record
from its key value. It contains index entries such as key, disk address for all key
values existing in a file. To access a record with key k, the index entry containing
k is found by searching the index, and the disk address mentioned in the entry is
used to access the record. If the index is smaller than a file, this arrangement
provides high access efficiency because search in the index is more efficient than
search in the file.
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To select the best of these three types of file organization, the programmer
or analysts usually considers the following practical characteristics:

 Volatility of the data

 Activity of the file

 Size of the file

 Response time

5.5 CACHE COHERENCE

Cache memory is assembled between main memory and CPU. It is considered as
semi-conductor memory, which is made up of static RAMs. The accessing time of
cache memory is approximately 10 ns, whereas main memory is about 50ns.
Basically, it keeps the data and instruction codes. The main function of cache
memory is to reduce the average accessing time for data and instruction codes.
These are basically stored in the main memory. For this, cache memory uses cache
controller. In these days, special integrated chips are used in cache controller. The
32-bit and 64-bit microprocessors work in high speed and corresponding clock
rates that lie between 400 MHz and 1000 MHz. Caches perform well in transferring
data frequently.  It is required because all processors are supposed to share the
same address as other processors do. It is used with data items   at a time. If
specified data items are updated by one processor without informing the other
processors, it causes incorrect executions and inconsistencies. A protocol is
maintained in the multiprocessor system if data items are lost or overwritten before
transferring the data from cache to target memory. Multiple processors use separate
cache sharing the common memory. It is essential to keep the cache in coherence
state because the shared operand can be changed throughout the entire system.
This mechanism utilizes two methods. The first method prefers through a directory
based sharing and second method prefers snooping method. The directory-based
system maintains a common directory in which coherence takes place between
various caches. Directory works here as a ‘filter’ in which processor is given a
permission to load the information and data from primary memory to cache memory.

M
V P1 P2

1 0 0

P1 P2

a. Memory has a copy

M
V P1 P2

0 0 1

P1 P2

c. Processor P2 has a dirty copy

V P1 P2

1 1 0

P1 P2

b. Processor P1 and memory have copies.

V P1 P2

1 1 0

M

M

P1 P2

d. Processor P2 performs a write back

Fig. 5.36 Directory Sample
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In Figure 5.36, part (a) represents memory has a copy whereas part (b)
represents processor P

1
 and memory has copies. Processor P

2
 keeps a dirty

copy in part (c) and processor P
2
 performs a write-back operation part (d).

 

Cache A Cache B

Cache to Cache Transfer

Snooped Hit

Bus
(for modified hit only)

Request

Memory

Fig. 5.37 Snooping Read-Hit in Cache-to-Cache Transfer

In figure 5.37, cache A requests from the memory controller carrying address
which is snooped by cache B. After reading the snooped address by cache B, it
sends hit-modified signal (HIT#). Bus is also involved in requesting the data. To
get this idea, let take an example. There is cache block about 32 bytes long. It
takes 32 bytes from DRAM acquiring 1 clock arbitration for the bus and one
clock is put to refer the address onto the address bus. The requirement of 6
clocks is to access the DRAM, 2 clocks are required to transfer the data and 10
clocks are required to write back the data.  The entry for updating and invalidating
data items can sometimes change other caches along with the entry. It supports
write-invalidate and write- update in the following way:

 Write-Invalidate: a processor gains exclusive access of  a block before
writing by invalidating all other copies.

 Write-Update: when a processor writes, it updates other shared copies
of that block.

Whereas, snooping caches the bus monitors known as ‘snoop’ to copy the
block of requested data on the bus. The following conditions are required if cache
memory system is coherent:

 P writes to X, no other processor writes to X, P reads X  and receives the
value previously written by P

 P
1
 writes to X, no other processor writes to X, sufficient time elapses, P2

reads X and receives value written by P
1
.

 Two writes to the same location by two processors are seen in the same
order by all processors known as write serialization.

 The memory consistency model defines ‘time- elapsed’ before the effect of
a processor is shared by others.

In the preceding conditions, P
1
 and P

2
 are the processors and X represents

the data items. Caching data means the multiple copies of data are available for
processing, for example, copy in main memory, secondary memory cache and
primary memory cache. The main problem with cache coherence is that all cache
copies of data items are true so that available data items in main memory reflecting
the same data items. In these days, suitable hardware is assembled to achieve the
cache coherence. It does not make any effect on software. A kernel-device driver
maintains cache coherence by disabling the data cache on each processor. The data
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cache is accessed input-output space. It prevents burst reads or writes that supports
wasting of huge number of cycles for every time if processors access data. The main
task of cache coherence is to suppress the problems generated by sharing data.
Table 5.10 shows the cache protocol used in removing the problem in cache
coherence.

Table 5.10 Cache Protocol

Request Source Block state Action 

Read hit Proc Shared/excl Read data in cache 

Read miss Proc Invalid Place read miss on bus 

Read miss Proc Shared Conflict miss: place read miss on bus 

Read miss Proc Exclusive Conflict miss: write back block, place 
read miss on bus 

Write hit Proc Exclusive Write data in cache 

Write hit Proc Shared Place write miss on bus 

Write miss Proc Invalid Place write miss on bus 

Write miss Proc Shared Conflict miss: place write miss on bus 

Write miss Proc Exclusive Conflict miss: write back, place write 
miss on bus 

Read miss Bus Shared No action; allow memory to respond 

Read miss Bus Exclusive Place block on bus; change to shared 

Write miss Bus Shared Invalidate block 

Write miss Bus Exclusive Write back block; change to invalid 

Cache coherency reads the block of memory known as cache line are sent to a
memory cache. The size of cache line is fixed (range starts from 16 bytes to 256
bytes). Line size is determined as per application. For this, cache circuits are
configured by the system designers.

Fig. 5.38 Cache Segment
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In Figure 5.38, the cache line starts from cache line 0 to cache line n which makes
collectively cache segment. The pending reads can be tracked with read resources.
After requesting read resources, a corresponding read response appears on the
bus.

Invalid
Read
Only

Read
Hit or Miss

Read/Miss
(Copy Back)

Read/Miss

Write/
Miss

Read/Hit Write
Hit or Miss

Read /
Write

       Write
   Hit or Miss
(on Hit send
invalidate)

Invalid
Read
Only

Read
Hit or Miss

Read/Miss
(Copy Back)       Write

    Hit or Miss
(on Hit send
invalidate)

Read/Miss

Write/
Miss

Read /
Write

Write
Hit or Miss

Read/Hit

Other Proc
Write / Miss

Other Proc
Write / Miss
or Invalidate

Other Proc
Read / Miss

Copy Back to 
Main Memory
and Other Proc

Fig. 5.39  Hit and Miss Cache Coherence

In Figure 5.39, the two types of cache schemes are used. They are known
as write-through and write-back schemes. The updating of main memory is possible
through cache. The main memory contains same data as write-through contains.
This mechanism is used in Direct Memory Access (DMA) for transforming the
data. The solution of cache coherence problem is solved by two methods:

 The shared writable data is kept as non-cacheable.

 The writable data maintains centralized global table which exists in one
cache.

 Snoopy cache controller is used for write operation.

Check Your Progress

6. Why are scatter and gather operations used in vector processing?

7. Define semaphore.

8. What is the main function of cache memory?
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5.6 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Pipelining is an effective method of increasing the execution speed of the
processor.

2. Arithmetic pipeline is found in high-speed computer. It is well implemented
in systems involved with matrices and vectors.

3. The instruction mainly involves the following sequences of steps:

 Instruction fetch

 Instruction decode

 Calculate address

 Operand fetch

 Operation execution

 Result storage

4. The following strategies are employed in resolving control dependencies
due to branch instructions:

 Assume branch not taken

 Reducing branch delay

 Dynamic branch prediction

 Branch target buffer

 Loop buffer

 Branch delay slot

5. Some of the areas of application of vector processing are weather
forecasting, artificial intelligence, experts system, image processing,
seismology, gene mapping and aerodynamics.

6. Scatter and gather operations are used to process sparse matrices/vectors
where only certain elements of a vector are needed in a computation.

7. A semaphore represents an abstraction of many important ideas in mutual
exclusion. It is a protected variable which can be accessed and changed only
by operations. It also controls synchronization by using an abstract data type.

8. The main function of cache memory is to reduce the average accessing time
for data and instruction codes. These are basically stored in the main memory.

5.7 SUMMARY

 Pipeline computers are those computers where a computer uses a sequence
of stages (also known as segments) to execute an instruction.

 In a digital computer, the execution of an instruction mainly involves, fetching
the instruction from computer memory, decoding the fetched instruction,
identifying the operation to be performed and executing the instruction.
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 In a pipelined computer the operations of all segments operate concurrently
under a common clock cycle.

 The behaviour of a pipeline can be illustrated with a space-time diagram.
The time in clock cycles is given along the horizontal axis and the vertical
axis gives the segment number.

 Arithmetic pipelining is well implemented in the systems concerned with
repeated calculations involved with matrices and vectors.

 An instruction pipeline understands the consecutive instruction from the
memory when the preceding instruction was being executed in the other
segments.

 The instruction pipeline deviates from its normal execution in case of resource
conflicts, data dependency and branch difficulties.

 An arithmetic pipeline is a pipeline in which different stages of an arithmetic
operation are handled along with the stages of a pipeline.

 An instruction pipeline operates on a stream of instructions by overlapping
the fetch, decode and execute phases of the instruction cycle as different
stages of pipeline.

 An efficient way to use instruction pipeline is a characteristic feature of
RISC architecture. The length of the pipeline is dependent on the length of
the longest step.

 Computational problems with very high computational loads which are
beyond the capabilities of a conventional computer are performed using
vector computations for faster processing.

 A vector can be defined as an ordered set of one-dimensional array of data
items. Vector processor unit is used to perform the vector operations efficiently.

 Chaining eliminates the need to store the result of the first pipeline before
sending it into the second pipeline.

 By ordering successive computations in the array the vector array processing
can be classified into horizontal processing, vertical processing and vector
looping.

 An array processor is a specific processor type that performs the required
computations on huge arrays of data. It can be created using a group of
unique special processors which are specifically designed for calculating
mathematical procedures at extremely high speeds and are frequently under
the control of another central processor.

 There are two different types of array processors, an attached array
processor and a SIMD array processor.

 The algorithms are specifically used as unique functions on a two-dimensional
mesh in the pattern-matching algorithm. An array of n processors is
constructed from processors Po … Pn – 1, where Pi, is connected to Pi –
1 and Pi + 1, if exists.

 The SIMD array processor consists of a memory, an array control unit and
the two-dimensional array of simple processing elements.
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 Multiprocessors use two or more than two CPUs assembled in a single
system unit. It refers to the execution of various software processes
concurrently.

 An interprocess arbitration system for multiprocessors shares a common
bus. Arbitration fixes the priority criteria set by the multiprocessors.

 Process synchronization is a mechanism used by the OS to ensure a systematic
sharing of resources amongst concurrent resources.

 Cache memory is assembled between main memory and CPU. It is
considered as semiconductor memory, which is made up of static RAMs.

5.8 KEY TERMS

 Pipeline Computers: It refers to those computers which uses a sequence
of stages to execute an instruction.

 Space-Time Diagram: It is a diagram that shows the segment utilization
as a function of time.

 Speed-Up Ratio: It is the ratio between the maximum times taken by non-
pipeline processors over the processors that use pipeline.

 Throughput: It is the number of tasks completed by a pipeline per unit time.

 Mutual Exclusion: When one process is in a critical section that accesses
a set of shared resources, no other processes can be in a critical section
accessing any of those shared resources.

 Bounded Wait: When a process requests access to a critical section, a
decision that grants it access may not be delayed indefinitely.

 Critical Section: This refers to the code segment where a shared resource
is accessed by the process. At a time, only one of the cooperating process
can enter into the critical section. Hence the shared resource is being used
by only one process.

5.9 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What is the use of arithmetic pipeline?

2. How does an instruction pipeline operates?

3. What is the efficiency of a linear pipeline?

4. State some applications of pipelining.

5. What are the disadvantages of pipeline architecture?

6. What is the basis of RISC pipelines?

7. Define vector processing.

8. What is the use of linear array processors?
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9. Define SIMD array processor.

10. What are masking instructions?

11. How do you explain multiprocessors?

12. Define cache coherence.

Long-Answer Questions

1. Explain the importance of space-time diagram for pipelining.

2. Describe the working of arithmetic pipeline with the help of an example.

3. Write a note on instruction pipeline.

4. Explain the basic structure of linear pipeline.

5. Explain the architecture of RISC pipelines.

6. Describe the characteristics of vector processing.

7. Discuss the array processing specifications with the help of examples.

8. Explain the process of multiprocessors in detail.

9. What do you mean by interprocess arbitration? Explain in detail.

10. Write an explanatory note on interprocessor communication and
synchronization.

11. Describe the problems of critical section in detail.
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