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INTRODUCTION
Classical mechanics describes the motion of macroscopic objects, from 
projectiles to parts of machinery, and astronomical objects, such as spacecraft, 
planets, stars and galaxies. If the present state of an object is known it is 
possible to predict by the laws of classical mechanics how it will move in 
the future (determinism) and how it has moved in the past (reversibility).
The earliest development of classical mechanics is often referred to as 
Newtonian mechanics. It consists of the physical concepts employed by and 
the mathematical methods invented by Isaac Newton and Gottfried Wilhelm 
Leibniz and others in the 17th century to describe the motion of bodies 
under the influence of a system of forces. Later, more abstract methods were 
developed, leading to the reformulations of classical mechanics known as 
Lagrangian mechanics and Hamiltonian mechanics. These advances, made 
predominantly in the 18th and 19th centuries, extend substantially beyond 
Newton’s work, particularly through their use of analytical mechanics. They 
are, with some modification, also used in all areas of modern physics. Classical 
mechanics provides extremely accurate results when studying large objects 
that are not extremely massive and speeds not approaching the speed of light. 
When the objects being examined have about the size of an atom diameter, 
it becomes necessary to introduce the other major subfield of mechanics: 
quantum mechanics. To describe velocities that are not small compared to 
the speed of light, special relativity is needed. In case that objects become 
extremely massive, general relativity becomes applicable. However, a number 
of modern sources do include relativistic mechanics into classical physics, 
which in their view represents classical mechanics in its most developed and 
accurate form.

This book, Classical and Statistical Mechanics is divided into five 
units that follow the self-instruction mode with each unit beginning with an 
Introduction to the unit, followed by an outline of the Objectives. The detailed 
content is then presented in a simple but structured manner interspersed 
with Check Your Progress Questions to test the student’s understanding 
of the topic. A Summary along with a list of Key Terms and a set of Self-
Assessment Questions and Exercises is also provided at the end of each unit 
for recapitulation.
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UNIT 1	 LAGRANGIAN MECHANICS

Structure 
	 1.0	 Introduction
	 1.1	 Objectives
	 1.2	 Constraints  in Lagrangian Mechanics
	 1.3	 D’Alembert’s Principle
	 1.4	 Derivation of Lagrange’s Equation
	 1.5	 Rayleigh’s Dissipation Function
	 1.6	 Variational Equation and Euler-Lagrange’s Equation
	 1.7	 Derivation of Lagrange’s Equation from Hamilton’s Principles
	 1.8	 Two Body Central Force Problem 
	 1.9	 Kepler’s Problem
	 1.10	 Inverse Square Law of Force
	 1.11	 Definition of Scattering
	 1.11.1	 Scattering in a Central Force Field
	 1.12	 Answers to ‘Check Your Progress’
	 1.13	 Summary 
	 1.14	 Key Terms
	 1.15	 Self-Assessment Questions and Exercises
	 1.16	 Further Reading

1.0	 INTRODUCTION
Swiss mathematician Leonhard Euler and Italian-French mathematician 
Joseph Louis Lagrange evolved Lagrange’s equation in relationship with 
their discussion of the tautochrone problem. They used Lagrange’s method to 
mechanics, which led to the formation of Lagrangian mechanics. Lagrange’s 
equation is a second-order partial differential equation whose solutions are 
the functions for which a given functional is stationary. In this unit you will 
study Lagrange’s equations for simple systems and important properties of 
the Lagrangian function. You will also learn principle of virtual work and 
D’Alembert’s principle along with the derivation of Lagrange’s equation for 
general and conservative system.

1.1	 OBJECTIVES
After going through this unit, you will be able to:

•	 Explain Lagrange’s equations for simple systems
•	 Describe gauge function, law of inertia, central force and virtual 

displacement
•	 Understand D’ Alembert’s principle and principle of virtual work
•	 Derive Lagrange’s equations for general and conservative systems
•	 Discuss applications of Lagrangian formulation
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•	 Describe important properties of the Lagrangian function
•	 Explain Kepler’s laws of planetary motion

1.2	 CONSTRAINTS  IN LAGRANGIAN 
MECHANICS

The work of a force on a particle along a virtual displacement is known as 
the virtual work. The principle of virtual work explains that in equilibrium 
the virtual work of the forces applied to a system is zero.

Virtual Displacement

Consider a system of N particles 1, 2, ….., N having s degrees of freedom. Let  
q1, q2, ….., qs be the generalized coordinates that describe the system. The 
configuration space of the system is s-dimensional. At any instant of time t, 
the configuration of the system is specified by a point in the configuration 
space, the point being defined by a particular set of values for the generalized 
coordinates.

Let the system be subjected to arbitrary displacement in the 
configuration space consistent with the constraints imposed on the system at 
the instant. The corresponding change in the configuration of the system is 
independent of time, i.e., no actual displacement of the system occurs with 
respect to time. Such displacements in the configuration space are called 
virtual displacements. It is usual to denote virtual displacement of the 
generalized coordinates, say qk, as dqk.    

The concept of virtual displacement has been found useful for 
mathematical analysis of the properties of mechanical systems.

Virtual Work

Consider the system of N particles described above. Let 1 2, , ....., NF F F
→ → →

 be the 

forces acting on the particles. If we consider the system to be in equilibrium, 
we have

   	    ( )0 1, 2, .....,kF k N
→

= = 	 (1.1)

Let 1 2, , ....., Nr r r
→ → →

 be the equilibrium position vectors of the particles.

Let 1 2, , ....., Nr r r
→ → →

δ δ δ  be the infinitesimal virtual displacements of the 

particles from their equilibrium positions. 
We then have according to Equation (1.1)



NOTES

Lagrangian Mechanics

Self - Learning
Material 	 5

	 	 
1

0
N

k k
k

F r
→ →

=
⋅ δ =∑ 	 (1.2)

However, if the forces kF
→

 are continuous functions of positions then 

the left hand side of Equation (1.2) can be interpreted as the net work done 
in the virtual displacements of the particles. If the system changes from its 
equilibrium configuration, we may write Equation (1.2) as
	 dW	=	 0	 (1.3)

The result given by Equation (1.3) is referred to as the principle of 
virtual work.

Let us consider the presence of constraints in the system. We then have 

the force on any particle as a vector sum of the applied force ( )aF
→

and the 

force of constraint ( )cF
→

. Thus, we get

  		    ( ) ( )a c
k k kF F F

→ →→
= + 	 (1.4)

Equation (1.2) then becomes

	          ( ) ( )

1
0

N
a c

kk k
k

F F r
→ → →

=

 
+ ⋅ δ =   

∑

or	    ( ) ( )

1
0

N
a c

k kk k
k

F r F r
→ →→ →

=
⋅ δ + ⋅ δ =∑ ∑ 	 (1.5)

Unlike in Equation (1.2), the left hand side of Equation (1.5) can not 
be interpreted as the net work done in the virtual displacements of the particles 

of the system. This is because forces of constraints ( )c
kF

→
’s are not continuous 

functions of positions.
Let us restrict our considerations to only such systems for which

		  ( ) 0c
kkF r

→ →
⋅ δ ≥ 	 (1.6)

For all drk which are consistent with the constraints, from Equations 
(1.5) and (1.6), we get

		  ( ) 0a
kk

k
F r
→ →

⋅ δ ≤∑ 	 (1.7)
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The only forces involved in Equation (1.7) are the applied forces 
which may be considered as continuous functions of positions, in general. 
We are then in a position to interpret the left hand side of Equation (1.7) as 
the net work done by the applied forces during the virtual displacements of 
the particles consistent with the constraints and express Equation (1.7) as

		  ( ) 0a
kkW F r

→ →
δ = ⋅ δ ≤∑ 	 (1.8)

Let the virtual displacements under consideration be restricted to displacements 
which are reversible in the geometrical sense. Denoting reversible 

displacements by kr
→

δ′  we get from Equation (1.7)

		  ( ) 0a
kkF r

→ →
⋅ δ′ ≤∑

    Also,		  ( ) 0a
kkF r

→ → ⋅ −δ′ ≤ 
 

∑

The above two results hold only if

		  ( ) 0a
kkF r

→ →
⋅ δ′ =∑ 	 (1.9)

Equation (1.9) is the generalized form of the principle of virtual work. 
The principle can be stated as follows:

The work done in infinitesimal reversible virtual displacements, 
consistent with the constraints, from the equilibrium configuration of 
a system is zero.

It is important to note that the equilibrium of the system we have 
referred to in the above discussion is static equilibrium. If we extend this 
argument to systems in motion, we obtain another important principle called 
the D’Alembert’s principle.

1.2.1	 Generalized Coordinates
In analytical mechanics, the term generalized coordinates refers to the 
parameters that describe the configuration of the system relative to some 
reference configuration. These parameters must uniquely define the 
configuration of the system relative to the reference configuration. This is done 
assuming that this can be done with a single chart. The generalized velocities 
are the time derivatives of the generalized coordinates of the system. An 
example of a generalized coordinate is the angle that locates a point moving 
on a circle. The adjective “generalized” distinguishes these parameters from 
the traditional use of the term coordinate to refer to Cartesian coordinates. 
For example, describing the location of the point on the circle using x and 
y coordinates.
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Check Your Progress

	 1.	What are virtual displacements?
	 2.	Write the equation that we refer for virtual work.
	 3.	Define the principle of virtual work.

1.3	 D’ALEMBERT’S PRINCIPLE

If kr
→

 is the radius vector of the kth particle in the system of particles considered 

above we have the equation of motion of the particle

		  k k k
dF m r
dt

•→ →
 
 =    

	 (1.10)

or		  0k k k
dF m r
dt

•→ →
 
 − =   

	 (1.11)

If kr
→

δ is an infinitesimal virtual displacement of the particle, we obtain 

from Equation (1.11)  

	                  0k k k k
dF m r r
dt

•→ →→
  
  − ⋅ δ =      

Considering all the particles in the system, the above equation gives

		  0k k k k
k

dF m r r
dt

•→ →→
  
  − ⋅ δ =      

∑ 	 (1.12)

In the presence of constraints in the system, the above equation can be 
written as 

		  ( ) ( ) 0a c
k k kk k

k

dF F m r r
dt

→ → → →    + − ⋅ δ =         
∑

or,		  ( ) ( ) 0c a
k k k kk k

k k

dF r F m r r
dt

•→ →→ →→
  
  ⋅ δ + − ⋅ δ =      

∑ ∑ 	 (1.13)
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Once again restricting our consideration to only such systems for which

		  ( ) 0c
kkF r

→ →
⋅ δ ≥

for all kr
→

δ  which are compatible with the constraints, we get from 

Equation (1.13)

		  ( ) 0a
k kk

k

dF p r
dt

→ → →  − ⋅ δ ≤  
   

∑ 	 (1.14)

where k k k
dp m r
dt

→ → =  
 

 is the momentum of the kth particle.

Further, considering only such virtual displacements which are 

reversible and denoted as kr
→

δ′ we obtain

		  ( ) 0a
k kk

k

dF p r
dt

→ → →  − ⋅ δ′ ≤  
   

∑ 	 (1.15)

and also

		  ( ) 0a
k kk

k

dF p r
dt

→ → →    − ⋅ − δ ≤    
     

∑ 	 (1.16)

Simultaneous validity of Equations (1.15) and (1.16) gives

		  ( ) 0a
k kk

k

dF p r
dt

→ → →  − ⋅ δ′ =  
   

∑ 	 (1.17)

The term ( )a
kk

k
F r

→
⋅ δ′∑  is the net work done by the applied forces in 

the course of virtual displacements of the particles of the system. It is usual 

to call k
d p
dt

→ −  
 

 as the force of inertia which may be denoted as ( )I
kF

→
. In 

view of this we may write Equation (1.17) as 

		  ( ) ( ) 0a I
kk k

k
F F r
→ → → 

+ ⋅ δ′ = 
  

∑ 	 (1.18)

( ) ( )a I
k kF F

→ → 
+   

 can be called the effective force on the kth particle and 

denoted as eff .kF
→
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Equations (1.17) and (1.18) are different mathematical forms of 
D’Alembert’s principle. The principle may be stated as follows:

For any dynamical system, the total work done by the effective force is 
zero in the course of reversible infinitesimal virtual displacement compatible 
with the constraints imposed on the system.

It is important to note that the coefficients of kr
→

δ′  in Equation (1.17) 

and (1.18) cannot be put equal to zero because 
kr

→
δ′  are not independent of 

each other.
Here is another mathematical form of D’Alembert’s principle,
� �F rk
eff

k∑ =.δ1 0 	 (1.19)

1.4	 DERIVATION OF LAGRANGE’S 
EQUATION

Consider a mechanical system of N particles. At some instant of time t, let 

1 2, ....., Nr r r
→ → →

 be the position vectors of the particles with respect to some fixed 

origin. If the system is described by s generalized coordinates q1, ….., qs, 
then we have the transformation equations

	 ir
→

	=	 1( , ....., , ) . ( 1, ....., )i sr q q t i N
→

= 	 (1.20)

Velocity vectors for the particles are then given by

	 iv
→ 	=	

1

s
i i i

k
kk

dr r rq
dt q t=

∂ ∂
= +

∂ ∂∑
� � �

� 	 (1.21)

If d ir
→
 is an infinitesimal virtual displacement of the ith particle, we get

	 d ir
→

	=	 i i
j

jj

r rq t
q t

∂ ∂
δ + δ

∂ ∂∑
� �

However, since virtual displacement does not refer to displacement 

with respect to time, we have ir
t

→
∂
∂

 = 0
 
and hence we obtain

	 d ir
→

	=	 i
j

jj

r
q

q
∂

δ
∂∑
�

	 (1.22)

According to D’Alembert’s principle we have

	 .i i i
i

F p r
•→ →→

 
 − δ   

∑ 	=	 0	 (1.23)
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where iF
→

 is the actual force acting on the ith particle and ip
i�  is the reverse 

effective force. Using Equation (1.22) in Equation (1.23) we get

	 . i
i i j

ji j

rF p q
q

•
→

→ →
  ∂ − δ  ∂  

∑ ∑  	=	 0

or	
, ,

i i
i j i j

j ji j i j

r rF q p q
q q

•
→ →

→ →∂ ∂
⋅ δ − ⋅ δ

∂ ∂∑ ∑ 	 =	 0

or	
,

i
j j i j

jj i j

rQ q p q
q

•
→

→ ∂
δ − ⋅ δ

∂∑ ∑ 	 =	 0	 (1.24)

where	 Qj	 = 	
1

N
i

i
ji

rF
q

→
→

=

∂
⋅

∂∑ 	 (1.25)

are the components of the generalized forces.
We further have

	
,

i
i j

ji j

rp q
q

•
→

→ ∂
⋅ δ

∂∑ 	=	
,

i
i i j

ji j

rm r q
q

••
→

→ ∂
⋅ δ
∂∑

	 =	
,

i i
i i i i j

j ji j

r rd dm r m r q
dt q dt q

→ →
→ →

    ∂ ∂    ⋅ − ⋅ δ    ∂ ∂        
∑ 	 (1.26)

Now

	 i

j

rd
dt q

→ ∂ 
 ∂  

	=	 i i
k

k j jk

r rq
q q t q

→ →   ∂ ∂∂ ∂   +   ∂ ∂ ∂ ∂      
∑ �

		 =	
2 2

i i
k

k j jk

r rq
q q t q

→ →
∂ ∂

+
∂ ∂ ∂ ∂∑ �

		 =	
2 2

i i
k

j k jk

r rq
q q q t

→ →
∂ ∂

+
∂ ∂ ∂ ∂∑ �
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		 =	 i i
k

j k

r rq
q q t

→ → ∂ ∂∂  + ∂ ∂ ∂
  
∑ �

or	 i

j

rd
dt q

→ ∂ 
 ∂  

	=	 i i

j j

d r v
q dt q

→ →
∂∂ =

∂ ∂
	 (1.27)

We have from Equation (1.21)

	 i

j

v
q

→
∂
∂

	=	 i i
k

j jk

r rq
q q t

→ → ∂ ∂∂  + ∂ ∂ ∂
  
∑ �

or	 i

j

v
q

→
∂
∂ �

	=	 i

j

r
q

•→
∂
∂ �

	
(1.28)

Substituting Equations (1.27) and (1.28) in Equation (1.26) we obtain

	
,

i
i j

ji j

rp q
q

→
→ ∂

⋅ δ
∂∑ 	=	

,

i i
i i i i j

j ji j

v vd m v m v q
dt q q

→ →
→ →

  ∂ ∂  ⋅ − ⋅ δ  ∂ ∂    
∑

		 =	
2 21 1

2 2i i i i j
j jj i

d m v m v q
dt q q

     ∂ ∂  − δ     ∂ ∂       
∑ ∑ ∑�

	 (1.29)

		 =	 j
j jj

d T T q
dt q q

  ∂ ∂− δ   ∂ ∂   
∑ �

	 (1.30)

where  T = 21
2 i im v∑  = Kinetic energy of the system of particles.

Using Equation (1.29) in Equation (1.24) we then obtain

		  j j j
j jj j

d T TQ q q
dt q q

  ∂ ∂δ − − δ   ∂ ∂   
∑ ∑ �

=  0

The above can be re-written as

		  j j
j jj

d T T Q q
dt q q

  ∂ ∂− − δ   ∂ ∂   
∑ �

 = 0	 (1.31)

For holonomic constraints, qj’s are independent of each other and hence 
the coefficient of each dqj in Equation (1.31) separately vanishes giving
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j j

d T T
dt q q

 ∂ ∂−  ∂ ∂ �
 = Qj; (j = 1, ....., S)	 (1.32)

Considering the system under consideration to be conservative, the 
potential energy U of the system is a function of only the position vectors, 

i.e., 1( , ....., )NU U r r
→ →

=  and force on each particle can be derived from the 

potential energy function U according to

	 iF
→

	=	
i

U

r
→

∂−
∂

	 (1.33)

The generalized force Qj, given by Equation (1.25) can thus be written as

	 Qj	=	
1

N
i

i j ji

rU U
r q q

→ →

=

∂∂ ∂− = −
∂ ∂ ∂∑ 	 (1.34)

In view of Equation (1.34), we get from Equation (1.32)

		   
j j

d T T
dt q q

 ∂ ∂−  ∂ ∂ �
 = 

j

U
q

∂−
∂

or		  ( ) ( )
j j

T T Ud
dt q q

∂ ∂ −
−

∂ ∂�
 = 0

Since U does not depend on the generalized velocities, the above 
equation can also be written as

                                 	  ( ) ( )
j j

d T U T U
dt q q

∂ ∂− − −
∂ ∂�

 = 0	 (1.35)

If we replace T – U  by L, Equation (1.35) becomes

	                          
j j

d L L
dt q q

 ∂ ∂−  ∂ ∂  �
= 0	 (1.36)

Since T is a function of the generalized velocities kq� ’s and U is a 

function of generalized coordinate  qk’s, we find L to be a function of 
coordinates, velocities and time in general, and in view of Equation (1.36) 
we can identify L as the Lagrangian function of the system. Thus, for a 
conservative system we obtain

L = Kinetic energy of the system – Potential energy of the system 

Applications of Lagrangian Formulation

1: Motion of a Simple Pendulum Placed in a Uniform Gravitational Field
A simple pendulum consists of a point mass m at one end of a weightless, 
inelastic string of length l, the other end being rigidly clamped. The mass m 
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can swing back and forth in a vertical plane about the position of rest once it 
is displaced from the position of rest and released. As the mass is constrained 
to move on a circular arc in the vertical plane, the pendulum has only one 
degree of freedom. Thus, the pendulum is described, at any time, by only 
one generalized coordinate which can be conveniently taken as q, the angle 
the string makes with the vertical as shown in Figure 1.1. 

O x
X

y

l

Y

�

Reference zero level
of potential encrgy

Fig. 1.1  Movement of Pendulum

If x and y are the coordinates of the mass point with respect to the origin 
at the point of suspension O, then we have  
	 x	=	 l sin q
	 y	=	 l cos q

The kinetic energy of the point mass is

	 T 	= ( ) ( ) ( )2 22 21 1 cos sin
2 2

m x y m l l + = θ + − θ  
� �� �

or	 T 	= 	 2 2 2 2 21 cos sin
2

ml  θθ + θθ 
� �

or	 T 	=	 2 21
2

ml θ� 	 (1.37)

The potential energy of the point mass in the gravitational field is
	 V	=	 – mgy = – mgl cos q	 (1.38)

The Lagrangian of the pendulum is thus given by

	 L	=	 T – V = 2 21 cos
2

ml mglθ + θ� 	 (1.39)

The Lagrange’s equation for the coordinate q is

	 d L
dl

∂ 
 ∂θ �

	= 	 L∂
∂θ

Using L given by Equation (1.39), the above gives

	 21 2
2

d ml
dt

 θ  
� 	=	 sinmgl− θ
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or	 d ml
dt

θ� 	=	 mgl sin q

or	 lθ�� 	=	 – g sin q

or	 θ�� 	=	 sing
l

− θ 	 (1.40)

Considering q to be small, we get sin q ≈ q and hence the above 
equation reduces to

	 θ�� 	=	 g
l

− θ 	 (1.41)

Equation (1.41) shows that under the condition that the angular 
amplitude is very small the motion of the pendulum is simple harmonic of 
time period

	 T	=	 2 l
g

π

2: Motion of a Compound Pendulum in a Uniform Gravitational Field 
Any rigid body capable of oscillating in a vertical plane about a horizontal 
axis passing through any point (excepting the centre of gravity) of the body 
is called a compound pendulum.

Let the vertical plane of oscillation of the compound pendulum be the 
XY plane.

Let us choose the origin of the coordinate system as the point O through 
which the horizontal axis (the X axis) passes.

Let G be the position of the centre of gravity of the body when at rest.
			   OG = l (say)

On displacing the pendulum slightly from the position of rest and 
releasing, the pendulum begins to oscillate about the horizontal axis through 
O.

At any instant of time t, let G’ be the new position of the centre of 
gravity and ˆ 'GOG  be equal to q as shown in Figure 1.2.

The kinetic energy of the pendulum at the instant t is

	 T	=	 21
2

Iθ� 	 (1.42)

where I is the moment of inertia of the pendulum about the axis of 
oscillation.
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O

Reference zero level
of potential energy

Y

B

G
G�

�
y

x

X

Fig. 1.2  Positions of Centre of Gravity

Taking the horizontal axis OX as the reference zero of potential energy, 
we get the potential energy of the pendulum at the instant t as
	 V	=	 – mgy = – mgl cos q	 (1.43)

The Lagrangian of the pendulum is thus

	 L	=	 T – V = 21 cos
2

I mglθ + θ� 	 (1.44)

From Equation (1.44) we find that the only generalized coordinate for 
the pendulum is q. We thus have the Lagrange’s equation for the compound 
pendulum

	 d L
dt

∂ 
 ∂θ �

	=	 L∂
∂θ

	 (1.45)

Using L given by Equation (1.44) the above equation gives

	 1 2 sin
2

d I mgl
dt

 θ + θ  
� 	=	 0

or	 sinI mglθ + θ�� 	=	 0

or	 sinmgl
I

θ + θ�� 	=	 0	 (1.46)

Considering q small Equation (1.46) reduces to

	 θ�� 	=	 mgl
I

− θ 	 (1.47)

Clearly, the motion of the pendulum is simple harmonic of time period

	 T	=	 2 I
mgl

π 	 (1.48)
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3: Motion of a Spherical Pendulum
A spherical pendulum consists of a point mass m constrained to move on the 
surface of a sphere. The position of the point mass at any instant is located 
by the Cartesian coordinates x, y, z, or more conveniently by the spherical 
polar coordinates r, q, f (r = radius of the sphere is constant) with respect 
to a coordinate frame XYZ having the origin at the centre of the sphere as 
shown in Figure 1.3. 

m

�

O
Y

Z

X

�

Fig. 1.3  Motion of Spherical Pendulum

We have the transformation equations
	 x	=	 r sin q cos f
	 y	=	 r sin q sin f	 (1.49)
	 z	=	 r cos q

The kinetic energy of the body at the instant of time under consideration 
is given by

	 T	=	 2 2 21
2

m x y z + + � � � 	 (1.50)

, and x y z� � �  found by differentiating Equation (i) with respect to time, 

when substituted in Equation (1.50) gives

	 T	=	 2 2 2 21 sin
2

mr  θ + θφ 
� �� 	 (1.51)

Considering the horizontal plane XOY as the plane of zero potential 
energy, we get the potential energy of the body as
	 V	=	 mgz = mgr cos q	 (1.52)

The Lagrangian of the spherical pendulum is then given by

	 L	=	 T – V = 2 2 2 21 sin cos
2

mr mgr θ + θφ − θ 
� �� 	(1.53)

From Equation (1.53) we find the generalized coordinates for the 
pendulum to be q and f (since r is constant), so that the Lagrange’s equations 
are
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	 (i)	             d L
dt

∂ 
 ∂θ �

 = L∂
∂θ

          or	        21 2
2

d mr
dt

 θ  
�  = 2 21 2sin cos sin

2
mr mgrφ θ + θ�

     	     or                     ( )2 2 2sin cos sin 0d mr mr mgr
dt

θ − θφ − θ =� �

          or	      2sin cos sinr r gθ − θφ − θ�� � = 0	 (1.54)

	 (ii)	             d L
dt

 ∂
 ∂φ �

 = L∂
∂φ

          or		  2 21 sin 2
2

d mr
dt

 θ φ  
�  = 0

          or		  2 2sindmr
dt

 θφ 
�  = 0	 (1.55)

4: Motion of a Particle Under a Central Force
Central force is that force which acts either towards or away from a fixed 
point (called the centre of the force) and depends only on the distance r from 
the fixed point.

We may thus express the magnitude of central force as F = F(r).
Further, any central force can be derived from a potential function V 

according to

	 F	=	 dV
dr

−

which gives 	 dV 	= – Fdr and hence

	 V	=	 Fdr−∫

Since F depends only on the distance r, we find from the above, the 
potential V to depend only on r, i.e., on the distance from the force centre. 
Thus, V = V(r).

The most important characteristic of motion of a particle under central 
force is that the motion is restricted to take place in a plane. The number of 
degrees of freedom of the particle is thus two and the convenient generalized 
coordinates are polar coordinates r and  q as indicated in Figure 1.4.
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Y

( , )x v

P (Particle at the instant )t

XO

�

r

Fig. 1.4  Polar Coordinates r and a

The kinetic energy of the particle at the instant t is

	 T 	= 	 ( )2 21
2

m x y+� �  	 (1.56)

Coordinate transformation equations are
	 x	= 	r cos q
and 	 y	=	 r sin q	

(1.57)

Equations (1.57) give
	 x� 	=	 cos sinr rθ − θθ�� 	 (1.58)
	 y� 	=	 sin cosr rθ + θθ�� 	 (1.59)

Using Equations (1.58) and (1.59) in Equation (1.56) we obtain
2 2 2 2 2 2 2 2 2 21 cos sin 2 cos sin sin cos 2 sin cos

2
T m r r rr r r rr = θ + θθ − θ θθ + θ + θθ + θ θθ 

� � � �� �

or	 T	=	 2 2 21
2

m r r + θ 
�� 	 (1.60)

The potential energy of the particle is
	 V	=	 V(r)	 (1.61)

Thus, the Lagrangian of the particle is given by

	 L	=	 T – V = ( )2 2 21
2

m r r V r + θ − 
�� 	 (1.62)

Lagrange’s equations are

	 (a)	 d L
dt r

∂ 
 ∂ �

 = L
r

∂
∂

		 Using L given by Equation (1.62), the above gives

	 1 2
2

d m r
dt

 
  

� 	= 	 ( )21 2
2

dV r
m r

dr
θ −�



NOTES

Lagrangian Mechanics

Self - Learning
Material 	 19

        or	 mr��	=	 ( )2 dV r
mr

dr
θ −�

          or	 2mr mr− θ��� 	= ( )dV r
dr

− 	 (1.63)

	 (b)	       d L
dt

∂ 
 ∂θ �

 = L∂
∂θ�

		 Using L given by Equation (1.62), the above gives

	 21 2
2

d mr
dt

 θ  
� 	=	 0	 (1.64)

	 21
2

d mr
dt

 θ  
� 	=	 0

        or	 2mr θ� 	=	 constant	 (1.65)
Note: By definition, the generalized momentum (pq) conjugate to the 
generalized coordinate q is given by

	 pq	=	 L∂
∂θ�

Using Equation (1.62), the above becomes

	 pq	=	 2mr θ� 	 (1.66)
Equations (1.65) and (1.66) show that for a particle moving under a 

central force, the angular momentum is a constant quantity.
From Equation (1.64) we get

	 22m rr mrθ + θ� ��� 	=	 0
or	 2r rθ + θ�� �� 	=	 0	 (1.67)
5: Motion of a Linear Harmonic Oscillator
Let a particle mass m undergo simple harmonic motion along the X-axis. Let 
us measure displacement of the particle from the mean position O which is 
taken as the origin of the X-axis as shown in Figure 1.5.

O

X axis

Mean position

Fig. 1.5

If x is the displacement of the particle at any instant of time t, the kinetic 
energy of the particle at that instant is

	 T	=	 21
2

mx� 	 (1.68)
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If k is the restoring force per unit displacement acting on the particle 
then the potential energy of the particle when the displacement is x is given by

	 V	=	 21
2

kx 	 (1.69)

The Lagrangian of the oscillator is thus

	 L	=	 T – V 2 21 1
2 2

mx kx= −� 	 (1.70)

The Lagrange’s equation for the oscillator is given by

	 d L
dt x

∂ 
 ∂ �

	=	 L
x

∂
∂

	 (1.71)

Using Equation (1.70) we get

	 L
x

∂
∂�

	=	 1 2
2

m x mx=� � 	 (1.72)

and	 L
x

∂
∂�

	= 1 2
2

k x kx− = − 	 (1.73)

Using Equations (1.72) and (1.73) in Equation (1.71) we obtain

	 ( )d mx
dt

� 	=	 – kx

or	 mx kx+�� 	=	 0
which is the familiar equation of motion for a linear harmonic oscillator.

6: Motion of a Coplanar Double Pendulum Placed in a Uniform 
Gravitational Field
A double pendulum consists of two mass points m and m1 at the ends of two 
weightless rods of lengths l and l1. 

The rod of length l is suspended from a rigid support at O while the 
rod of length l1 is suspended from a hinge at the mass point m as shown in 
Figure 1.6.

x
2

x
1

O X

� l y
1

m

l
1�

y
2

m
1

Y

Fig. 1.6  Pendulum Motion: In Uniform Gravitational Field
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Both the pendulums are constrained to move in the same vertical 
plane, say the XY plane and hence the number of degrees of freedom for 
the pendulum is two.

The two generalized coordinates are conveniently chosen as angles 
f and y which the two rods make with the Y-axis which is assumed to be 
vertical.

The Cartesian coordinates of the mass point m are
	 x1	=	 l sin f; y1 = l cos f	 (1.74)

The Cartesian coordinates of the mass point m1 are
        	        x2 = l sin f + l1 sin y; y2 = l1 cos f + l2 cos y	 (1.75)

For the mass point m, the kinetic energy is

                    T1 = 	 ( ) ( ) ( )2 22 2 2 2
1 1

1 1 1cos sin
2 2 2

m x y m l l ml + = φφ + − φφ = φ  
� � �� � 	 (1.76)

The potential energy of the mass point m is
	 V1	=	 – mgy1 = – mgl cos f	 (1.77)

For the mass point m1, the kinetic energy is

      T2 	= ( ) ( ) ( )2 22 2
1 2 2 1 1 1

1 1 cos sin sin sin
2 2

m x y m l l l l + = φφ + ψψ + − φφ − ψψ  
� �� �� �

	        = ( )2 2 2 2
1 1

1 2 cos
2

m l l ll φ + ψ + φ − ψ φψ 
� �� � 	 (1.78)

The potential energy of the mass m1 is
	 V2	=	 m1gy2 = m1g(l cos f + l1 cos y)	 (1.79)

The Lagrangian of the double pendulum is thus
	 L	=	 T1 – V1 + T2 – V2

Using Equations (1.76), (1.77), (1.78) and (1.79) we obtain

L = ( ) ( )2 2 2 2 2 2
1 1 1 1 1

1 1cos 2 cos cos cos
2 2

ml mgl m l l ll m g l l φ + φ + φ + ψ + φ − ψ φψ + φ + ψ 
� � �� �

or  

( ) ( ) ( )2 2 2 2
1 1 1 1 1 1 1 1

1 1 cos cos cos
2 2

L m m l m l m ll m m gl m gl= + φ + ψ + φψ φ − ψ + + φ + ψ� �� �  

(1.80)
The Lagrange’s equations for the pendulum are

	 d L
dt

 ∂
 ∂φ �

	=	 ;L d L L
dt

 ∂ ∂ ∂= ∂φ ∂ψ ∂ψ �
	 (1.81)

We obtain using Equation (1.80)

 (a) ( ) ( ) ( ) ( )2 2
1 1 1 1 1 1cos sin sin 0m m l m ll m ll m m gl+ φ + ψ φ − ψ + ψ φ − ψ + + φ =�� �� �   (1.82)
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		  and

	 (b)	 ( ) ( )2 2
1 1 1 1 1 1 1cos sin sin 0m l m ll m ll m glφ + φ φ − ψ − φ φ − ψ + ψ =�� �� � 	 (1.83)

In the special case when m1 = m = m0, and l1 = l = l0, the above equations 
assume the simple forms

                ( ) ( )22 cos sin 2 sin
o

g
l

φ + ψ φ − ψ + ψ φ − ψ + φ�� �� � = 0	 (1.84)

                           ( ) ( )2cos sin sin
o

g
l

ψ + φ φ − ψ − φ φ − ψ + ψ�� ���  = 0	 (1.85)

Further, if we consider both f and y small, the above equations further 
reduce to

	 2 2
o

g
l

φ + ψ + φ�� �� 	= 	0	 (1.86)

	
o

g
l

ψ + φ + ψ���� 	=	 0	 (1.87)

The above are coupled differential equations for the double pendulum.    
7:  Lagrangian of a Hoop Rolling Down an Inclined Plane without 
Slipping
Consider a hoop (circular ring) of radius r and mass m rolling down an inclined 
plane without slipping (velocity of the instantaneous point of contact of the 
hoop along the plane is zero) as shown in Figure 1.7.

�
r

x

�

Fig. 1.7  Motion in an Inclined Plane

Let us measure the displacement of the centre of mass of the hoop 
from the top of the incline.

Let at some instant of time t, the centre of mass be at a distance x from 
the top.

The velocity of the centre of mass is then
	 v = x� 	 (1.88)

Since there is no slipping, the angular velocity of the hoop about the 
axis of rotation through the centre of mass is
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	 θ� 	= 	 v x
r r

=
� 	 (1.89)

Now, the kinetic energy of the hoop at the instant t is

	 T 	=	 2 2 21 1
2 2

mx mr+ θ�� 	 (1.90)

The potential energy of the hoop at the instant t is
	 V 	=	 mg(l – x)sin f	 (1.91)

where l is the length of the inclined plane.
The Lagrangian of the hoop is thus given by

	 L	=	 ( )2 2 21 1 sin
2 2

T V mx mr mg l x− = + θ − − φ�� 	(1.92)

Using Equation (1.89) we may write the Lagrangian as

	 L	=	 2 sin sinmx mgx mgl+ φ − φ� 	 (1.93)

8: Lagrangian of a Charged Particle Moving in an Electromagnetic Field

The electric field vector E
→
 and the magnetic field vector B

→
 which 

describe an electromagnetic field satisfy the Maxwell’s equations

	 1curl BE
c t

→
→ ∂+

∂
	= 	0 ; div 4D P

→ →
= π 	

	 1curl DH
c t

→
→ ∂−

∂
 	= 	 4 ; div 0j B

c
→ →π = 	 (1.94)

The force F
→

 experienced by a particle of mass m having charge q 

moving with a velocity v
→  in the electromagnetic field is given by

	 F
→

 	= 	 qq E v B
c

→ →→ + × 
 

	 (1.95)

The electromagnetic field can alternatively be described by a scalar potential 

f and vector potential A
→
 defined according to

	 B
→

	=	 curl A
→

	

and 	 E
→

	=	 1 A
c t

→
→ ∂−∇φ =

∂
	 (1.96)
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In terms of f and A
→

 the force F
→

 becomes

	 F
→

	= 	 1 1Aq v A
c t c

→
→ → →→

 ∂   −∇φ − + × ∇×  ∂    
	 (1.97)

The x-component of F
→

 is

	 Fx 	= 	 1 1

x x
x

Aq v A
c t c

→
→ → →→

  ∂     − ∇φ − + × ∇×     ∂       

	 (1.98)

Now,	 (
→
∇ f)x	= 	

x
∂φ
∂

	 (1.99)

	 x
d A
dt

 	= 	 yx z
x

AA Adx dy dzA
t x dt y dt z dt

∂∂ ∂∂ + + + +
∂ ∂ ∂ ∂

	 (1.100)

		   =  yx x z
x y z

AA A Av v v
t x y z

∂∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂

Also,	
x

v A
→ →→ × ∇× 

 
	=	 y z

z y
v A v A

→ → → →   ∇× − ∇×   
   

		 =	 y x x z
y z

A A A Av v
x y z x

∂ ∂ ∂ ∂ − − −   ∂ ∂ ∂ ∂  

		 =	 yx x x xz
x y z y z x

AA A A AAv v v v v v
x y z y z x

∂∂ ∂ ∂ ∂∂
+ + − − −

∂ ∂ ∂ ∂ ∂ ∂

		 =	 . x
x

dAv A A
x dt t

→→∂ ∂  − + ∂ ∂ 
	 (1.101)

Using Equations (1.99) and (1.101) in Equation (1.98) we obtain

	 F	=	 1 1 1 1.x x xA dA Aq v A
x c t c x c dt c t

→→ ∂ ∂∂φ ∂  − − + − +  ∂ ∂ ∂ ∂  

		 =	 1 1. .
x

dv A v A
x c c dt v

→ →→ →  ∂ ∂   − φ − −     ∂ ∂      

or	 F	=	
x

U d U
x dt v

∂ ∂− +
∂ ∂

	 (1.102)
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where	 U	=	 .qq v A
c

→→
φ − 	 (1.103)

We note that 
xv

∂φ
∂

 = 0 since f is independent of velocities. Thus, U is 

a kind of generalized velocity-dependent potential. 
The Lagrangian of the charged particle is thus given by

	 L	=	 T – U (T is the kinetic energy)

or	 L	=	 .qT q v A
c

→→
− φ + 	 (1.104)

1.4.1	 Velocity Dependent Potentials
Velocity-dependent potential functions can sometimes be used to determine 
the field of force that can be applied in order that particles may move in 
specified paths. In particular, the electromagnetic field vectors E and B can 
be determined from such a potential function if the paths on which charged 
particles move are specified.

The velocity-dependent potential U is related to the kinetic energy T and 
the Lagrangian function L by the equation U = T - L, where L is an arbitrary 
solution of the Lagrange equation (d/dt)(δL/δp’) - (δL/δp) = 0, where p = 
constant represents the orthogonal trajectories of the curves which describe 
the paths the particles are to follow. From the velocity-dependent potential 
function U, the field of force can be calculated by the definition Qp = -(δU/
δp) + (d/dt)(δU/δp’).

Check Your Progress

	 4.	Define D’ Alembert’s principle.
	 5.	What would be the Lagrangian function of the system for a 

conservative system?

1.5	 RAYLEIGH’S DISSIPATION FUNCTION
In physics, the Rayleigh dissipation function, named for Lord Rayleigh, is a 
function used to handle the effects of velocity-proportional frictional forces 
in Lagrangian mechanics. If the frictional force on a particle with velocity  

can be written as  , the Rayleigh dissipation function can be 
defined for a system of N particles as

The force of friction is negative the velocity gradient of the dissipation 
function, . The function is half the rate at which energy is being 
dissipated by the system through friction.
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1.6	 VARIATIONAL EQUATION AND 
EULER-LAGRANGE’S EQUATION

The D’Alembert’s principle, which is widely used together with Newton’s 
laws of motion for dealing with mechanical systems, is a differential principle. 
This is because, in using this principle, we need to consider the instantaneous 
state of a system (defined by positions and velocities in the configuration 
space of the system) along with some infinitesimal virtual displacements 
from the instantaneous position.

The variational  principle  finds immense usefulness in treating 
mechanical system on the one hand, while on the other hand, it considers the 
motion of the system as a whole between the given time limits along some 
small variation in the motion of the system between the same time limits 
from the actual motion. In this sense, the variational principle is essentially 
an integral principle. In the following, we will discuss some important aspects 
of the calculus of variation that happens to be useful for future development 
of different formulations of mechanics.

Consider a curve given by
	 y	 =	 y(x)	 (1.105)

defined between two points (x1, y1) and (x2, y2) as shown in Figure 1.8. We 
may conveniently call the two points as end points.

Let a function f = ( ), , , 'dyf y x f y y x
dx

  =  
 be defined on the above curve. 

Our basic problem is to obtain the curve for which the line integral of the 
function f between the end points (x1, y1) and (x2, y2) is stationary, i.e.,  

I = ( )
2

1

, ,
x

x

f y y x dx′∫  = Extremum (either maximum or minimum)
Y

y y+ �

y

Curve 2

Q ( , + )
x y y�

x y
2 2
,

Curve 1

P( , )x y

x y,
11

X
x

Fig. 1.8  Neighbouring Curves

In Figure 1.8, two neighboring curves governed by Equation (1.105) 
are shown between the end points y(x1) = y1 and y(x2) = y2, the curve-1 
corresponding to the stationary value of the integral I. Consider the point 
P(x, y) on Curve 1  for x = x.
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The point on Curve 2 for the same value of x is the point ( ),Q x y y+ δ

. Here, dy defines the variation in y as we go over from Curve 1 to Curve 2, 
keeping x the same.

It is useful to associate some parameter, say a, with all the possible 
curves determined by the constraints between the end points indicated. The 
a should be such that for some given value, for simplicity, say, for  a = 0 the 
Curve 2 coincides with Curve 1. 

Corresponding to the extremum value of the integral, y is then a function 
of both the independent variable x and the parameter a. We may express
	 y(a, x)	 =	 y(x) + ah(x)	 (1.106)

where h(x) is a function of x which has continuous first derivative and vanishes 
at the two end points. Clearly, y(a, x) reduces to y(x) at the two end points.

In view of our considerations above, the integral I becomes a function 
of the parameter a  and we get

	 I(a)	 =	 ( ) ( )
2

1

, , , ,
x

x

f y x y x x dxα ′ α  ∫ 	 (1.107)

Condition that I(a) has an extremum value is thus

	
( )

0

I

α=

∂ α
∂α

	 = 	0	 (1.108)

Differentiating Equation (1.107) with respect to a  we obtain

	
( )I∂ α

∂α
	 =	 ( ) ( )

2

1

, , , ,
x

x

f y x y x x dx
 ∂  α ′ α  ∂α   
∫

                                  		 = 
2

1

 (we may note that 0)
x

x

f y f y xdx
y y

 ∂ ∂ ∂ ∂ ′ ∂+ = ∂ ∂α ∂ ′ ∂α ∂α ∫

or                       	
( )I∂ α

∂α
	 =	

2

1

2x

x

f y f y dx
y y x

 ∂ ∂ ∂ ∂+ ∂ ∂α ∂ ′ ∂α∂ 
∫ 	 (1.109)

Integrating by parts, we have

	
2

1

x

x

f d y dx
y dx x

∂ ∂ 
 ∂ ′ ∂ ∫ 	 =	

2 2

1 1

x x

x x

f y d f y dx
y x dx y x

   ∂ ∂ ∂ ∂−   ∂ ′ ∂ ∂ ′ ∂   ∫ 	 (1.110)   

Clearly,	
2

1

x

x

y∂
∂α

	 =	 ( ) ( ) ( )2

1
2 1 0x

x
x x xη = η − η = 	 (1.111)

We thus get

	
2

1

x

x

f d y dx
y dx x

∂ ∂ 
 ∂ ′ ∂ ∫ 	 =	

2

1

x

x

d f y dx
dx y

 ∂ ∂
 ∂ ′ ∂ ∫ α

	 (1.112)



Lagrangian Mechanics

NOTES

	 Self - Learning 
28	 Material

Using Equation (1.112) in Equation (1.109) we obtain

	
( )I∂ α

∂α
	 =	

2

1

x

x

f y d f y dx
y dx y

  ∂ ∂ ∂ ∂−  ∂ ∂α ∂ ′ ∂α  
∫

		  =	 ( )
2

1

x

x

f d f x dx
y dx y

  ∂ ∂− η  ∂ ∂ ′  
∫ 	 (1.113)

We may note that the functions y and y′ with respect to which the 
derivatives of the function f appear on the right hand side of Equation (1.113) 
are functions of a. However, for a =  0 we get y(a, x) = y(x), y′(a, x) = y′(x) 
and Equation (1.113) becomes independent of a. Since  h(x) is an arbitrary 

function, for ( )
0

I

α=

∂ α
∂α

 to vanish so that I(a) has an extremum value, we find 

from Equation (1.113)

	
f d f
y dx y

 ∂ ∂−  ∂ ∂ ′ 
	 =	 0

or	
d f
dx y

 ∂
 ∂ ′ 

	 =	
f
y

∂
∂

	 (1.114)

Equation (1.114) is the Euler-Lagrange equation as obtained earlier.
The Euler-Lagrange equation can be generalized to the case when

	 f	 =	 ( )1 1, ....., , , ....., ,s sf y y y y x′ ′ 	 (1.115)

In this case, the equation reads

	
'k

d f
dx y

 ∂
 ∂ 

	 =	 ; 1, .....,
k

f k s
y

∂ =
∂

	 (1.116)

The results of the calculus of variation can be expressed in terms of 
d-notation as

	 dI	 =	 ( )
2

1

1 1, ....., , ' , ....., ' , 0
x

s s
x

f y y y y x dxδ =∫ 	 (1.117)

1.7	 DERIVATION OF LAGRANGE’S 
EQUATION FROM HAMILTON’S 
PRINCIPLES

Using Hamilton’s principle of least action, it is possible to derive the 
dynamical equations for the system under consideration.

We have the Lagrangian of the system given by
	 L	=	 ( )1 1, ....., , , ....., ,s sL q q q q t� �
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For convenience, we may write L in a shorter form as
	 L	=	 ( ), ,k kL q q t� 	 (1.118)

In the above, qk stands for all the coordinates and kq�  stands for all the 

velocities which describe the system.
qk’s in general depend on time explicitly so that we should write qk(t) 

instead of qk. Let qk(t)  be replaced by qk(t) + dqk(t). where dqk(t) is a small 
variation in qk(t) in the interval of time from time t1 to time t2. The variation 
of action S for fixed t1 and t2 is then

           	           dS = ( ) ( )
2 2

1 1

, , , ,
t t

k k k k k k
t t

L q q q q t dt L q q t+ δ + δ −∫ ∫� � � 	 (1.119)

The major contributions in the expansion of L ( ), ,k k k kq q q q t+ δ + δ� �  in 

powers of dqk  and kqδ �  are of the first order. Hence, for S to be an extremum, 

these terms should be zero. Thus, Hamilton’s principle given by the following 
equation: 

		      dS = ( )
2

1

1 1, ....., , , ....., , 0
t

s s
t

L q q q q tδ =∫ � �

takes the form,

	          dS = ( )
2 2

1 1 1
, , 0

t t s

k k k k
k kkt t

L LL q q t dt q q dt
q q=

 ∂ ∂δ = δ + δ = ∂ ∂ ∑∫ ∫� �
�

	 (1.120)

We may note that t is fixed in the d-variation under consideration. The 
following identity holds

	 kqδ � 	= 	 ( )k
d q
dt

δ 	 (1.121)

Using Equation (1.121) in Equation (1.120) we get

	              dS ( )
2 2

1 11 1
0

t ts s

k k
k kk kt t

L L dq dt q dt
q q dt= =

   ∂ ∂δ + δ =   ∂ ∂   ∑ ∑∫ ∫ �
�

or    dS = 	
22

1 11 1
0

tt s s

k k k
k k kk k kt t

L L d Lq dt q q dt
q q dt q= =

      ∂ ∂ ∂δ + δ − δ =     ∂ ∂ ∂       
∑ ∑ ∑∫ �

� �
	 (1.122)

Since variations at the end points are zero, i.e.,
	 dqk(t1)	=	 0 = dqk(t2)	 (1.123)

Equation (1.122) becomes

	 dS	=	
2 2

1 11 1
0

t ts s

k k
k kk kt t

L d Lq dt q dt
q dt q= =

   ∂ ∂δ − δ =   ∂ ∂   
∑ ∑∫ ∫ �
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or	 dS	=	
2

11
0

ts

k
k kk t

L d L q dt
q dt q=

  ∂ ∂− δ =  ∂ ∂   
∑ ∫ �

	 (1.124)

The result given by Equation (1.124) holds for all arbitrary variations 
provided the coefficient of dqk in the integrand on the right hand side vanishes 
for each k. We thus obtain

	
k k

L d L
q dt q

 ∂ ∂−  ∂ ∂ �
	=	 0

or	
k k

d L L
dt q q

 ∂ ∂− ∂ ∂ �
	=	 0;    (k = 1, 2, ....., s)	 (1.125)

The above set of s number of second order differential equations 
satisfied by the Lagrangian of the system are called the Lagrange’s equations 
of motion.

Lagrange’s equations of motion given by Equation (1.125) can be seen 
to follow directly from Euler-Lagrange equation given by Equation 

'k

d f
dx y

 ∂
 ∂   = 

; 1, .....,
k

f k s
y

∂ =
∂ . If in the function f given by Equation 

(f = ( )1 1, ....., , , ....., ,s sf y y y y x′ ′  we replace y1, ….., ys by the generalized 
coordinates q1, ….., qs, respectively,  y1’, ….., ys’ by the generalized velocities 

1, ....., sq q� �  respectively and x by t then the function f can be identified as the 

Lagrangian ( )1 1, ....., , , ....., ,s sL q q q q t� �  and the Euler-Lagrange equations given 

by Equation

'k

d f
dx y

 ∂
 ∂   = 

; 1, .....,
k

f k s
y

∂ =
∂

become the Lagrange’s equations

	
k

d L
dt q

 ∂
 ∂ �

	= 	
k

L
q

∂
∂

;    k = 1, ….., s.

Important Properties of the Lagrangian Function 

In this section we discuss the important properties of the Lagrangian function 
and attempt to find its meaning, i.e., to find whether or not the Lagrangian 
function is representative of some physical quantity of the system under 
consideration.   

(i)  Lagrangian is Gauge Invariant

The Lagrangian function of a system having s degrees of freedom and 
described by the generalized coordinates q1, ….., qs and the generalized 
velocities 1, ....., sq q� �  is given by 
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	 L	=	 ( ) ( )1 1, ....., , , ....., , , ,s s k kL q q q q t L q q t=� � � 	 (1.126)

Consider an arbitrary function F = ( ) ( )1, ....., , ,s kF q q t F q t=  and define 

a new function ( )' , ,k kL q q t�  as

	 ( )' , ,k kL q q t� 	=	 ( ) ( ), , ,k k k
dL q q t F q t
dt

+� 	 (1..127)

The action of the system between the time limits t1  and t2  is the time 
integral

	 S	=	 ( )
2

1

, ,
t

k k
t

L q q t dt∫ � 	 (1.128)

Let us consider the time integral of the new function L′ between the 
same time limits

	 S′	=	 ( )
2

1

' , ,
t

k k
t

L q q t dt∫ � 	 (1.129)

Using Equation (1.127) in Equation (1.129) we get

	 S′ 	= 	 ( ) ( )
2

1

, , ,
t

k k k
t

dL q q t F q t dt
dt

 +  ∫ �

		 =	 ( ) ( )
2 2

1 1

, , ,
t t

k k k
t t

dL q q t dt F q t dt
dt

+∫ ∫�

or	 S′	=	 ( ){ } 2

1
, t

k t
S F q t+ 	 (1.130)

Taking d-variation of Equation (1.130) we get

	 dS′	=	 ( ){ } 2

1
, t

k t
S F q tδ + δ

or,	 'S Sδ − δ 	= 	 ( ) ( )
2 1

, , 0k kt t t t
F q t F q t

= =
   δ − δ =    	 (1.131)

because dqk = 0 at t = t1 and at t = t2.
According to Hamilton’s principle we have

	 dS	=	 0
In view of this and Equation (1.131) we find

	 dS′	=	 0	 (1.132)
The condition dS’ = 0 leads to equations of motion which are the same 

as those given by the condition dS = 0. Hence, we may identify the function 
L′ given by Equation (1.127) also as the Lagrangian of the system.
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From the above we may conclude that the Lagrangian of a system 
cannot be defined uniquely, but can be defined only within an additive total 
time derivative of any function of coordinates relevant to the system and time.

The arbitrary function ( ) ( )1, ....., , ,s kF q q t F q t=  is called gauge function. 

Hence, the above result shows that Lagrangian of a system is gauge invariant.

(ii)  Lagrangian is Additive         

Let A and B be two non-interacting parts of a mechanical system. Let AL

and BL  be their Lagrangians, respectively. By additivity, we mean that the 
Lagrangian of the whole system is given by
	 L	=	 LA + LB	 (1.133)

A consequence of this property is that the equation of motion of the part 
A are completely independent of the quantities of the part B and vice-versa.

(iii)	 Lagrangian of a System is Arbitrary within an  
Overall Multiplicative Constant 

This property means that if the Lagrangian is multiplied by any arbitrary 
constant then the equations of motion remain unaltered.

Lagrangian of a Particle Moving Freely in Space

Consider a particle of mass m moving freely in space with respect to the 

origin of an inertial frame of reference. Let r
→

 be the position vector of the 

particle at the instant of time t. Let v
→

 be the velocity of the particle at the 

instant t as observed from the frame under consideration. The Lagrangian 
function of the particle is given by

	 L	=	 L( r
→

, v
→

, t)	 (1.134)
From the symmetry properties of space and time with respect to an 

inertial frame, namely, homogeneity and isotropy of space and homogeneity 
of time, the Lagrangian for the free particle must be invariant with respect 
to (i) Translation in space (ii) Rotation in space about any axis, and  
(iii) Translation in time.

In other words, L cannot be an explicit function of r
→

 and t. Further, L 

should not depend upon the direction of the velocity of the particle. Thus, L 
can only be a function of the magnitude of the velocity of the particle. Thus, 
we may write
	 L	=	 L(v2)	 (1.135)
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According to Equation (1.125), Lagrange’s equation of motion for the 
system is given by

	 d L
dt v

→

 ∂ 
 ∂ 

	=	 L

r
→

∂

∂

or,	 d L
dt v

→

 ∂ 
 ∂ 

	=	 0 0L

r
→

 ∂ =
 ∂ 
∵

or,	 L

v
→

∂

∂
	= A constant of motion	 (1.136)

Since L is a function of only velocity, the above equation leads to

	 v
→

	=	 Constant of motion	 (1.137)
Equation (1.137) is the law of inertia according to which a particle 

which moves without the influence of any external agent has a constant 
velocity vector.

To find the exact form of the function L(v2), consider two inertial frames 
of reference S and S’, where S’ moves with an infinitesimal uniform velocity, 

say 
→
ε , with respect to S. Let L and L′ be the Lagrangians of the particle as 

observed from the frames S and S’, respectively. Since the equations of 
motion remain the same in all inertial frames, we must have L and L’, different 
by only a total time derivative of a function of coordinates and time. We have 
according to Equation (1.127)

	 L′	=	 ( )2 2 2' 2L v L v v
→→ = + ⋅ ε + ε 

 

		 =	 ( )2
22 terms with higher order of LL v v

v
→ → ∂+ ⋅ ε + ε

∂

		 =	 22 LL v
v

→→ ∂+ ⋅ ε
∂

Thus,	 L′ – L	=	 22 Lv
v

→→ ∂⋅ ε
∂

	 (1.138)

Now for L′ – L to be a total time derivative of a function of coordinates 

and time, we must have L′ – L as a linear function of v
→ , i.e., 2

L
v

∂
∂

 to be 

independent of the velocity. Further, 
t

→
∂ ε
∂

 = 0. We thus find that L must be 

proportional to v2, i.e., L ∝ v2. To assign a physical meaning to L, we take 

the constant of proportionality as 1
2

m , so that we can write
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	L = 21
2

mv  = Kinetic energy of the particle.	 (1.139)

In order to obtain the Lagrangian function for an assembly of particles 
(non-interacting or interacting) we need to consider the important properties 
which the Lagrangian of the system possesses.

Check Your Progress

	 6.	What are the Lagrange’s equations?
	 7.	What is the equation for the Lagrangian function of a system?
	 8.	What is gauge function?
	 9.	Define law of inertia.

1.8	 TWO BODY CENTRAL FORCE 
PROBLEM 

The particles (1 and 2) exert forces on each other, and there are no external 
forces. The potential energy is U(|r|) where r = r1 − r2 ; the forces are central 
and spherically symmetric ; r = | r | ; U = U(r)

Fig. 1.9  Particles 1 and 2

Astronomical Problem

The potential energy is U(r) = − G m1 m2 /r .

Fig 1.10  Center of mass of m1 and m2

Notes:

•	 The orbits are not circular in general.
•	 Sun and Earth, or another planet; m2m1
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•	 Earth and Moon, or a satellite; m2>>m1
•	 Binary Star; m2 and m1 are comparable.

Atomic Problem

The hydrogen atom U(r) = − k e2 /r
Diatomic molecule e.g., O2
U(r) = A1/r12 − A2/r6

Fig 1.11  Diatomic molecules

1.9	 KEPLER’S PROBLEM
Based on the observations made by Tycho Brahe, Kepler enunciated the 
following three laws for the motion of planets round the sun.
1st Law: Each planet moves in an elliptical path with the sun at one of the 
foci of the ellipse.  
2nd Law:  The area swept by the radius vector (the line joining the sun to 
the planet) in equal intervals of time is equal, i.e., the areal velocity of the 
planet is a constant.
3rd Law:  The square of the time period of revolution of the planet round the 
sun is directly proportional to the cube of the semi-major axis of the ellipse.

Derivation of Kepler’s Laws

Consider a planet of mass Mp moving under the gravitational attraction of the 
sun of mass Ms. The force on the planet towards the sun when its distance 
from the sun is r is given by

	 F(r)	 = 	 2 2
s pM M kG
r r

− = − 	 (1.140)

where	 k	 =	 GMsMp = a constant	 (1.141)

The potential energy U(r) corresponding to the force F(r) is

	 U(r)	 =	 ( ) 2
dr kF r dr k

rr
− = = −∫ ∫ 	 (1.142)

In terms of the variable u, introduced in the previous section, we may 
write Equation (1.142) as

	
1U
u

 
  

 	= 	–ku	 (1.143)
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Substituting Equation (1.143) in the differential equation of motion 
given by Equation, 
	

2

2
d u u
d

+
θ

 = 2
1m d U

du uM
 −   

we get

	
2

2
d u u
d

+
θ

	 =	 ( )2
m d ku

duM
− −

or	
2

2
d u u
d

+
θ

	 =	 2
km
M

	 (1.144)

The most general solution of the Equation (1.144) is

	 u	 =	 ( )2 coso o
mk u
M

+ θ − θ 	 (1.145)

where uo and q0 are constants. By orienting the coordinate system properly, 
let us, for   convenience, choose the constant q0 equal to zero so that the 
Equation (1.145) takes the form

B

C x

Y

r

�
O

A

p
X

Fig. 1.12  Conic Section

	
1
r

	 =	 2 coso
km u
M

+ θ

or	 r	 =	
2

1

coso
mk u
M

+ θ

or	 r 	=	

2

2
1 coso

M
mk

u M
mk

+ θ
	 (1.146)
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We find that for q = 0, r is the maximum, while for q = 0 + p, r is the 
minimum. We can thus interpret q0, which we have taken as zero, to represent 
one of the angles corresponding to a turning point in the path of motion.

Equation (1.146) can be compared with the equation of a conic section 
which is a curve AB as shown in the Figure 1.12. In the figure, O is a fixed 
point called the focus and XY a fixed line called the directrix of the conic 
section. Let C be any arbitrary point on the curve AB.
	 OC	 =	 r(say)

Let CD be the perpendicular from the point C on the directrix.
	 CD	 =	 x(say)

Let the line OC make an angle q with the line drawn normal from the focus 
to the directrix.

The curve AB is such that the ratio 
r
x  is a constant. This constant ratio 

is called the eccentricity of the conic section and is usually denoted by the 
symbol e.  

Let p be the distance of the directrix from the focus. We then get 
according to the Figure 1.12.

	 p 	=	 cos cosrx r r+ θ = + θ
ε

Semilatus rectum, which we denote by the symbol r of the conic 
section is defined as
	 r	 =	 ep (= constant)

 The above gives	 p	 =	
ρ
ε

Thus, we get	          cosr rρ = + θ
ε ε

 = [ ]1 cosr + ε θ
ε

 

or	 r 	=	
1 cos

ρ
+ ε θ

	 (1.147)

Equation (1.147) is the general equation of a conic section. Comparing 
Equation (1.146) with Equation (1.147), we find that if motion takes place 
under a central attractive force varying inversely as the square of the distance 
from the force centre then the path is a conic section having the focus at the 
force centre; the eccentricity and the semilatus rectum of the conic section 
being given by

	 e	 =	
2

ou M
mk

	 (1.148)

	 r	 =	
2M

mk
	 (1.149)

To know exactly the eccentricity of the conic section in which the 
motion takes place we are required to find the constant uo in terms of known 
quantities.

For the motion which is under consideration, the total energy is given by
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	 E	=	
2

2
2

1 constant
2 2

M kmr
rmr

+ − =� 	 (1.150)

At the turning point corresponding to r = rmin , we get according to Equation (1.150)

	 E	 =	
2

2
minmin2

M k
rmr

− 	 (1.151)

From Equation (1.147) we have

	 rmin	 = 	 ( )
2

1 1
M

mk
ρ =
+ ε + ε

	 (1.152)

Using Equation (1.152) in Equation (1.151) we obtain

	    E	 =	
( ) ( )22 2 2

4 2
1 1

2
M m k kmk

mM M
+ ε + ε

−

or	 E	 =	
( ) ( )

2 2
2

2 2
11 1

2
mkmk

M M
+ ε

− + ε

or	               E	 =	 ( )
2 2

2 2
2 21 2 2 2 1

2 2
mk mk
M M

 + ε + ε − − ε = ε − 

or	 e	 =	

1
2 2

2
21 M E
mk

 
+ 

 
	 (1.153)

Substituting for e given by Equation (1.153), the equation for the conic 
section in which the motion takes place is given by

	 r	 =	

2

1
2 2

2
21 1 cos

M
mk

M E
mk

 
+ + θ 

 

	 (1.154)

From Equation (1.153) we find that the eccentricity e and hence the 
nature of the conic section is primarily decided by the total energy E. We 
the get
	 (i)	For E > 0, i.e., the total energy being positive, the eccentricity is 

greater than 1 and the conic section is a hyperbola,
	 (ii)	For E = 0, the eccentricity is 1 and the conic section is a parabola,
	 (iii)	For E < 0, i.e., the total energy being negative, the eccentricity is 

less than 1 and the conic section is an ellipse,
	 (iv)	For eccentricity equal to 0, the conic section is a circle.

For the motion of the planet in the gravitational field of the sun which 
is being considered presently we have the following: 

Kinetic energy and potential energy of the planet when it is at a distance 
r from the sun and has velocity v are
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	 T	 =	 21
2 pM v

and	 U	 =	 2
s pM M

G
r

−

Clearly, the total energy of the planet is

	 E	 =	 21
2

s p
p

M M
T U M v G

r
+ = − 	 (1.155)

The necessary centripetal force for the planet to move along the conic 
is provided by the gravitational force of attraction on the planet due to the 
sun. Thus, we have

	
2

pM v
r

	 =	 2
s pM M

G
r

or	 2
pM v 	 =	 s pM M

G
r

	 (1.156)

Using Equation (1.156) in Equation (1.157), we get

	 E	 = 	
1 1
2 2

s p s p s pM M M M M M
G G G

r r r
− = − 	 (1.157)

We find the total energy E of the planet to be negative. Clearly, the 
eccentricity of the conic section is less than 1, and consequently the planet 
goes round in an elliptic path with the sun at one of its foci. This is Kepler’s 
first law.

We have seen that in the case of motion under central force, the angular 
momentum is a constant of the motion Equation

	 pq 	= 2L mr∂ = θ
∂θ

�
�  = constant = M(say)

	 2mr θ� 	 =	 constant = M	 (1.158)

O

Section of the
planct's orbit

P( )t

Q( + )t dt

d�

Fig. 1.13  Positions of the Planet

Consider Figure 1.13, in which the positions of the planet on its path 
of motion at two instants of time t and t + dt are shown. During the interval 
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dt the area swept dA by the radius vector is the area of the shaded region. 
Since dt is infinitesimally small, the arc PQ can be considered as a straight 
line. Hence, we get        
	    dA	 =	 Area of the triangle OPQ

		  21 1
2 2

rrd r d= θ = θ

Thus, the areal velocity of the planet is

	
dA
dt

	 =	 2 21 1
2 2

dr r
dt
θ = θ�

In view of Equation (1.158), the above becomes

	
dA
dt

	 = 	
1 constant
2

M
m

= 	 (1.159)

The above is the Kepler’s second law of planetary motion. 
Kepler’s third law can be proved as follows:
If a be the semi-major axis of the ellipse in which the planet moves, 

we get by definition

	 a	 =	 21
ρ

− ε
	 (1.160)

Substituting for r given by Equation (1.149), we get

	 a	 =	 ( )
2

21
M

mk − ε

or	 1 – e2	 =	
2M

mka
	 (1.161)

Using Equation (1.161) in the expression for E given by Equation 
(1.153), we get

	 E	 =	
2 2

2 22
mk M k

mka aM
− = − 	 (1.162)

The semi-minor axis b of the ellipse is related to a and e as

	 b 	= 	 ( )
1

2 21a − ε 	 (1.163)

Using Equation (1.161) the above becomes

	 b	 = 	
( ) ( )

1
2

1 1
2 2

M Maa
mka mk

= 	 (1.164)

Let T be the time period of revolution of the planet in its elliptic orbit. 
We then have
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	 Area of the ellipse	 = 	
0

T dA dt
dt

 
  ∫

or	 pab	 =	
2
M T
m

or	 T	 =	
2m ab
M

π

Substituting for a and b in the above, we get

	 T 	= 	
( ) ( )

1 3
2 2

1 1
2 2

2 2m Ma maa
M mk mk

ππ =

Substituting for k, the above gives

or	 T2	 =	 ( )
2

34

p s s p
a

M M GM M
π

+

or	 T2	 =	 ( )
2

34

s p
a

G M M
π
+

	 (1.165)

Thus, we find that
		  2 3T a∝ 	 (1.166)

The above is the Kepler’s third law of planetary motion.

Check Your Progress

	 10.	Define Kepler’s first law of planetary motion.
	 11.	State Kepler’s second law of planetary motion.
	 12.	What is meant by Kepler’s third law of planetary motion?

1.10	 INVERSE SQUARE LAW OF FORCE
In science, an inverse-square law is any scientific law stating that a specified 
physical quantity is inversely proportional to the square of the distance from 
the source of that physical quantity. The fundamental cause for this can be 
understood as geometric dilution corresponding to point-source radiation 
into three-dimensional space.

Mathematically notated:

It can also be mathematically expressed as:
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or as the formulation of a constant quantity:

The divergence of a vector field which is the resultant of radial 
inverse-square law fields with respect to one or more sources is everywhere 
proportional to the strength of the local sources, and hence zero outside 
sources. Newton’s law of universal gravitation follows an inverse-square law, 
as do the effects of electric, light, sound, and radiation phenomena.

1.11	 DEFINITION OF SCATTERING
The ‘Scattering Theory’ is significantly used for studying and understanding 
the scattering of waves and particles in mathematics and physics. Typically 
the wave scattering corresponds to the collision and scattering of a wave 
with some material object, for example formation of rainbow is resultant 
of sunlight scattered by rain drops. Latest technology of ultrasonic testing 
is another example of scattering theory which is used in medical imaging, 
non-destructive testing of metals and quantum field theory.  

Rayleigh scattering is one commonly known type of scattering which 
mainly consists of scattering from atmospheric gases, it occurs when the 
particles causing scattering are smaller in size than the radiation wavelengths 
in contact with them. 

Mie scattering, and non-selective scattering are the two other types 
of wave scattering. Principally, the Mie scattering  is considered to be 
elastic scattered light of particles that have a diameter similar to or larger 
than the wavelength of the incident light. The Mie signal is proportional 
to the square of the particle diameter, where as in case of non-selective 
scattering also known as Raman scattering, it occurs in all wavelengths of 
electromagnetic radiation equally in the atmosphere and is usually caused 
by particles which are much larger than the energy wavelengths.

Definitions of Scattering

	 1.	Scattering, in physics, is defined as a change in the direction of motion 
of a particle because of a collision with another particle. As defined 
in  physics, a collision can occur between particles that repel one 
another, such as two positive (or negative) ions, and need not involve 
direct physical contact of the particles. 

	 2.	Scattering occurs when light or other energy waves pass through an 
imperfect medium, such as air filled with particles of some sort, and are 
deflected from a straight path. The light is deflected off of its straight 
path and scatters in many directions. 

	 3.	Scattering is a general physical process where some forms of radiation, 
such as light, sound, or moving particles, are forced to deviate from 
a straight trajectory by one or more paths due to localized non-
uniformities in the medium through which they pass.
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	 4.	As per the Encyclopaedia Britannica, the ‘Scattering, in physics, a 
change in the direction of motion of a particle because of a collision 
with another particle. A collision can occur between particles that 
repel one another, such as two positive (or negative) ions, and need 
not involve direct physical contact of the particles. 
The physicist Ernest Rutherford passed a stream of alpha particles 

through a thin sheet of gold foil. The alpha particles were emitted by a 
radioactive material and had enough energy to penetrate an atom; although 
most passed right through the gold foil, some were deflected in a way that 
indicated that the scattering was produced by a Coulomb force. Because 
the alpha particles are positively charged and the electrons in the atom are 
negatively charged, it followed that there must be a large positive charge 
inside the atom to create the Coulomb force by interacting with the alpha 
particles. In this way the nucleus of the atom was discovered.

Elastic and Inelastic Scattering

The term ‘Elastic Scattering’ implies that the internal states of the scattering 
particles do not change, and hence they emerge unchanged from the scattering 
process. In inelastic scattering, by contrast, the particles’ internal state is 
changed, which may amount to exciting some of the electrons of a scattering 
atom, or the complete annihilation of a scattering particle and the creation 
of entirely new particles.

When two atoms are scattered off one another, one can understand 
them as being the bound state solutions of some differential equation. Thus, 
for example, the hydrogen atom corresponds to a solution to the Schrödinger 
equation with a negative inverse-power, i.e., attractive Coulombic, central 
potential. The scattering of two hydrogen atoms will disturb the state of each 
atom, resulting in one or both becoming excited, or even ionized, representing 
an inelastic scattering process.

1.11.1	 Scattering in a Central Force Field
In the case of a repulsive central potential, it becomes obvious that the two 
particles will not orbit each other - they will at most approach each other, 
before the repulsive potential causes them to move away from each other, 
and never meet again. This type of behaviour is typically referred to as 
scattering, an example of which is illustrated in Figure 1.14. This type of 
scenario is incredibly important in a wide range of physics, especially in 
condensed matter systems (where neutrons being scattered off of a material 
reveal information about the microscopic details of the material) and in high 
energy physics (where scattering elementary particles against each other 
can reveal information about the existence of new fundamental particles). 
For this reason, we want to understand how to describe the basic physics of 
such a system.
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Fig. 1.14  A projectile, with impact parameter b, being scattered by a stationary target

After being scattered, the projectile travels off at some angle θ, never 
to return to the target. We will also assume, as before, that the two particles 
interact through a central potential, which in the case of a stationary target, 
essentially acts as an external central potential on the smaller body. For this 
reason, we know that we can still make use of linear momentum, angular 
momentum, and energy conservation in solving our problem, which means 
that all of the usual results from the study of the two-body problem should 
still be applicable. In the case that a collision between two particles conserves 
total energy, we typically refer to the scattering as being elastic.

Check Your Progress

	 13.	What is scattering theory?
	 14.	How does scattering occur?

1.12	 ANSWERS TO ‘CHECK YOUR 
PROGRESS’

	 1.	The corresponding change in the configuration of the system 
subjected to arbitrary displacement is independent of time, i.e., 
no actual displacement of the system occurs with respect of time. 
Such displacements in the configuration space are called virtual 
displacements.

	 2.	 dW = 0
	 3.	The principle can be stated as follows: The work done in infinitesimal 

reversible virtual displacements, consistent with the constraints, from 
the equilibrium configuration of a system is zero.

	 4.	The principle may be stated as follows: For any dynamical system, the 
total work done by the effective force is zero in the course of reversible 
infinitesimal virtual displacement compatible with the constraints 
imposed on the system.
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	 5.	We can identify L as the Lagrangian function of the system. Thus, for 
a conservative system we obtain, L = Kinetic energy of the system – 
Potential energy of the system

	 6.	The following set of s number of second order differential equations 
satisfied by the Lagrangian of the system are called the Lagrange’s 
equations of motion.

		
	 7.	The Lagrangian function of a system having s degrees of freedom and 

described by the generalized coordinates q1, ….., qs and the generalized 
velocities q1, ....., qs is given by

		  L = L(q1, ....., qs, q1, ....., qs, t ) = L(qk, qk, t )

	 8.	The arbitrary function F (q1, ....., qs, t ) = F (qk, t ) is called gauge 
function.

	 9.	Law of inertia states that, a particle which moves without the influence 
of any external agent has a constant velocity vector.

	 10.	Each planet moves in an elliptical path with the sun at one of the foci 
of the ellipse.

	 11.	The area swept by the radius vector (the line joining the sun to the 
planet) in equal intervals of time is equal, i.e., the areal velocity of the 
planet is a constant.

	 12.	The square of the time period of revolution of the planet round the 
sun is directly proportional to the cube of the semi-major axis of the 
ellipse.

	 13.	The ‘Scattering Theory’ is significantly used for studying and 
understanding the scattering of waves and particles in mathematics and 
physics. Typically the wave scattering corresponds to the collision and 
scattering of a wave with some material object, for example formation 
of rainbow is resultant of sunlight scattered by rain drops. Latest 
technology of ultrasonic testing is another example of scattering theory 
which is used in medical imaging, nondestructive testing of metals and 
quantum field theory.

	 14.	Scattering occurs when light or other energy waves pass through an 
imperfect medium, such as air filled with particles of some sort, and are 
deflected from a straight path. The light is deflected off of its straight 
path and scatters in many directions.
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1.13	 SUMMARY 
	 •	The Lagrangian of a system cannot be defined uniquely, but can be 

defined only within an additive total time derivative of any function 
of coordinates relevant to the system and time.

	 •	 If the Lagrangian is multiplied by any arbitrary constant then the 
equations of motion remain unaltered.

	 •	A particle which moves without the influence of any external agent 
has a constant velocity vector.

	 •	The corresponding change in the configuration of the system is 
independent of time, i.e., no actual displacement of the system occurs 
with respect to time.

	 •	The work done in infinitesimal reversible virtual displacements, 
consistent with the constraints, from the equilibrium configuration of 
a system is zero.

	 •	The variational principle finds immense usefulness in treating 
mechanical system on the one hand, while on the other hand, it 
considers the motion of the system as a whole between the given time 
limits along some small variation in the motion of the system between 
the same time limits from the actual motion.

	 •	The ‘Scattering Theory’ is significantly used for studying and 
understanding the scattering of waves and particles in mathematics 
and physics. Typically the wave scattering corresponds to the collision 
and scattering of a wave with some material object.

1.14	 KEY TERMS
	 •	 Law of inertia: It states that a particle which moves without the 

influence of any external agent has a constant velocity vector.
	 •	 Virtual displacement: A presumed infinitesimal change of system 

coordinates occurring while time is confined constant is known as 
virtual displacement.

	 •	 Central force: Central force is that force which acts either towards or 
away from a fixed point (called the centre of the force) and depends 
only on the distance from the fixed point.

	 •	 Harmonic oscillator: It is a system that, when displaced from its 
equilibrium position, encounters a restoring force proportional to the 
displacement.

	 •	 Simple harmonic motion: It is an oscillatory motion under a retarding 
force proportional to the quantity of displacement from an equilibrium 
position.
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	 •	 Scattering theory: This is significantly used for studying and 
understanding the scattering of waves and particles in mathematics 
and physics.

	 •	 Elastic scattering: It implies that the internal states of the scattering 
particles do not change, and hence they emerge unchanged from the 
scattering process.

	 •	 Inelastic scattering: In this the particles’ internal state is changed, 
which may amount to exciting some of the electrons of a scattering 
atom, or the complete annihilation of a scattering particle and the 
creation of entirely new particles.

1.15	 SELF-ASSESSMENT QUESTIONS AND 
EXERCISES

Short Answer Questions

	 1.	Give a brief account of important properties of Lagrangian function.

	 2.	State Lagrangian of a particle moving freely in space.

	 3.	Write a short note on virtual work.

	 4.	State the motion of a linear harmonic oscillator.

	 5.	Mention Lagrangian of a charged particle moving in an electromagnetic 
field.

	 6.	State Rayleigh’s dissipation function.

	 7.	Derive Kepler’s first law of planetary motion.

	 8.	What is scattering theory?

	 9.	Define elastic scattering.

Long Answer Questions

	 1.	Derive Lagrange’s equations for simple systems.

	 2.	Deduce different mathematical forms of D’ Alembert’s principle.

	 3.	Discuss applications of Lagrangian formulations.

	 4.	Describe Lagrange’s equations for conservative systems.

	 5.	Discuss Kepler’s laws of planetary motion.

	 6.	Discuss the significance of term scattering theory giving appropriate 
examples.

	 7.	Explain elastic and inelastic scattering.
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UNIT 2	 HAMILTONIAN MECHANICS 
AND RIGID BODY

Structure 
	 2.0	 Introduction
	 2.1	 Objectives
	 2.2	 An Introduction of Hamiltonian Equation
	 2.2.1	 Derivation of Hamiltonian Equation from Vibrational Principles
	 2.3	 Principle of Least Action
	 2.4	 Equation of Canonical Transformation
	 2.5	 Lagrange Brackets 
	 2.6	 Poisson Brackets
	 2.7	 Angular Momentum and Poisson Brackets Relation
	 2.7.1	 Equation of Motion in Poisson Brackets Relation
	 2.8	 Euler Equation of Motion for a Rigid Body and its Applications of Torsion 

Free Symmetric Rigid Body 
	 2.9	 Answers to ‘Check Your Progress’
	 2.10	 Summary 
	 2.11	 Key Terms
	 2.12	 Self-Assessment Questions and Exercises
	 2.13	 Further Reading

2.0	 INTRODUCTION
William Rowan Hamilton formulated the principle of stationary action which 
expresses that the dynamics of a physical system is established by a variational 
problem for a functional based on a single function, the Lagrangian, which 
holds all physical information relating the system and the forces acting on it. 
Hamilton’s principle is applicable to the electromagnetic and gravitational 
fields also. It contributes in quantum mechanics, quantum field theory and 
criticality theories significantly. In this unit you will study Hamiltonian of 
the system and the Legendre transformation relations for the change of basis. 
Hamilton’s principle for conservative system and principle of least action 
is also discussed.

2.1	 OBJECTIVES
After going through this unit, you will be able to:
	 •	Explain Hamiltonian of the system and the method of Legendre 

transformation
	 •	Describe Hamilton’s principle for a conservative system
	 •	Understand principle of least action and Lagrangian formulation of 

Mechanics
	 •	Analyse Lagrange brackets and Poisson brackets
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	 •	Explain Eulerian angles, Euler’s equations of motion of a rigid body 
and torque free motion of a rigid body

2.2	 AN INTRODUCTION OF HAMILTONIAN 
EQUATION

Legendre transformation refers to the mathematical method for changing the 
basis of the description of a system from one set of independent variables to 
another set of independent variables.

Consider a function f = f(x, y) of two independent variables x and y. 
The total differential of f is

	 df 	= 	
f fdx dy
x y

∂ ∂+
∂ ∂

	 (2.1)

Let us define	 u 	= 	
f
x

∂
∂

	 (2.2)

and	 v 	=	  
f
y

∂
∂

	 (2.3)

We may then write Equation (2.1) as
	 df 	= 	udx + vdy	 (2.4)

Let us now consider u to be an independent variable and x a dependent 
variable in order to change our basis from the variables (x, y) to the variables 
(u, y).

Let f ′ = f ′(u, y) be a function of u and y defined according to
	 f  ′	= 	f – ux	 (2.5)
We then have	 df ′ 	= 	df – udx – xdu	 (2.6)

Using Equation (2.4) in Equation (2.6), we obtain
	 df  ′ 	= 	udx + vdy – udx – xdu
or	 df  ′ 	= 	vdy – xdu	 (2.7)

Since f ′ = f  ′(u, y), we have

	 df ′ 	= 	
f fdu dy
u y

∂ ′ ∂ ′+
∂ ∂

	 (2.8)

Comparing Equation (2.7) and (2.8) we obtain

	 x 	= 	
f
u

∂ ′−
∂

	 (2.9)

and	 v 	= 	
f
y

∂ ′
∂

	 (2.10)

The relations given by Equation (2.9) and (2.10) are called the Legendre 
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transformation relations for the change of basis from (x, y) to (u, y). It is 
possible to extend the above method if we need to transform more than one 
variable.
Consider a mechanical system having s degrees of freedom. Let q1, ….., qs 
be the generalized coordinates that describe the system.

In the Lagrangian formulation of mechanics, the independent variables 
are the s generalized coordinates and time. The Lagrangian function L 
that characterizes the  system is, in general, a function of the generalized 
coordinates, the generalized velocities and time, i.e.,

	 L	 = 	 ( ) ( )1 1, ....., , , ....., , , ,s sL q q q q t L q q t=� � � 	 (2.11)

In Equation (2.11), q stands for all the coordinates and q�  stands for all 

the velocities.
We note that although the generalized velocities appear in the 

expression for L explicitly, they cannot be treated as independent variables 
because of being equal to the total time derivatives of the generalized 
coordinates. Hamilton developed an alternative formulation of mechanics 
by considering the independent variables for the system as the generalized  
co-ordinates (q1, ….., qs), the generalized momenta p1, ….., ps and time t. In 
this formulation, the generalized velocities are dependent functions such as

	 kq� 	 = 	 ( )1 1, ....., , , ....., ,k s sq q q p p t� 	 (2.12)

We may note that the generalized momenta are derived variables defined 
in terms of the Lagrangian L as

	 pk	 =	
( ), ,

k

L q q t
q

∂
∂
�
�

	 (2.13)

It follows from the above that to go over from the Lagrangian 
formulation to the Hamiltonian formulation, we need to change our basis of 
description of the system from ( ), ,q q t�  set to the (q, p, t) set. Such a change 

of basis can be carried out by the method of Legendre transformation 
discussed in the previous section.

A new function H = H (q1, ….., qs, p1, ….., ps, t) = H (q, p, t), which 
also characterizes the system under consideration, is defined in terms of the 
Lagrangian function of the system  ( ), ,L q q t�  in a manner analogous to 

Equation (2.8) as
	 H(q, p, t)	 = 	 ( )

1
, ,

s

k k
k

p q L q q t
=

−∑ � � 	 (2.14)

The function H(q, p, t) given by Equation (2.14) is known as the 
Hamiltonian of the system.
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2.2.1	 Derivation of Hamiltonian Equation from 
Vibrational Principles

Consider a mechanical system of s degrees of freedom. Let (q1, ….., qs) be 
the generalized coordinates, ( )1, ....., sq q� �  be the generalized velocities and  
(p1, ….., ps) be the generalized momenta for the system. The Lagrangian L 
of the system then is given by

	 L	=	 ( ) ( )1 1, ....., , , ....., , , ,s s k kL q q q q t L q q t=� � � 	 (2.15)

Hamilton’s variational principle, or the Principle of Least Action, is 
stated as

	 dS	=	 ( )
2

1

, , 0
t

k k
t

L q q t dtδ =∫ � 	 (2.16)

The Hamiltonian function H = H (q1, ….., qs, p1, ….., ps, t) = H (qk, pk, 
t) is related to the Lagrangian L as
	 H	=	  

1

s

k k
k

p q L
=

−∑ � 	 (2.17)

Using Equation (3) in Equation (2) we obtain

	 dS	= 	 ( )
2

1

, , 0
t

k k k k
kt

p q H q p t dt
 

δ − = 
 
∑∫ � 	 (2.18)

or	
2 2

1 1

t t

k k
k t t

p q dt Hdtδ − δ∑ ∫ ∫i 	=	 0

or	
2 2

1 1

t t

k k
k t t

p dq Hdtδ − δ∑ ∫ ∫ 	=	 0	 (2.19)

Equations (2.18) and (2.19) are referred to as the modified Hamilton’s 
Principle.  

Let us label each path of the system in its configuration space between 
time limits t1  and t2 by a parameter a. We can then write the d variation for 
the action S as

	 dS	=	 . Sd ∂α
∂α

	 (2.20)

The above gives, for generality,

	 d	≡	 .d ∂α
∂α

	 (2.21)
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Using Equation (2.18) in the Equation (2.20), we obtain

	                    dS = ( )
2

1

. , , 0
t

k k k k
kt

d p q H q p t dt
  ∂  α  − = ∂α     

∑∫ � 	 (2.22)

It is possible to introduce the differential operator ∂
∂α

 inside the integral 

because the two time limits t1 and t2 are the same for all the paths and hence 
are independent of a. We thus obtain

dS = 
2

1

0
t

k k k k
k k

k kkt

p q q pH H H td q p dt
q p t

 ∂ ∂ ∂ ∂∂ ∂ ∂ ∂α ⋅ + − − − = ∂α ∂α ∂ ∂α ∂ ∂α ∂ ∂α 
∑∫

�
� 	 (2.23)

We now have		
2

1

t
k

k
t

qp dt∂
∂α∫
�

=
2

1

t
k

k
t

qdp dt
dt

∂ 
 ∂α ∫

Evaluating the integral on the right hand side of the above by parts 
we obtain

    	   
2

1

t
k

k
t

qp dt∂
∂α∫
�

 = 
2 22

1 1 1

t tt
k k k

k k k
t t t

q q qp p dt p dt∂ ∂ ∂  − ⋅ = − ⋅ ∂α ∂α ∂α  ∫ ∫� � 	 (2.24)

since 0kq∂
=

∂α
 at t1 and at t2.

Further, we have	 t∂
∂α

	=	 0	 (2.25)

since the time of travel along all the paths is the same.  
Using the results given by Equation (2.24) and (2.25) in Equation (2.23) 

we obtain

	
2

1

. 0
t

k k k k
k k

k kkt

p q q pH Hd q p dt
q p

 ∂ ∂ ∂ ∂∂ ∂α − − − = ∂α ∂α ∂ ∂α ∂ ∂α 
∑∫ � � 	 (2.26)

In view of Equation (2.21) we may write

	 kpd ∂
α ⋅

∂α
	= 	dpk

	 kqd ∂
α ⋅

∂α
	= 	dqk	 (2.27)

Using Equation (2.27) in Equation (2.26) we get

	
2

1

0
t

k k k k k k
k kkt

H Hp q p q q p dt
q p

 ∂ ∂δ − δ − δ − δ = ∂ ∂ 
∑∫ � �
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or,	
2

1

0
t

k k k k
k kkt

H Hq p p q dt
p q

    ∂ ∂ − δ − + δ =    ∂ ∂     
∑∫ � � 	 (2.28)

Since qk and pk are independent variables, their variations dqk and dpk 
are also independent. Hence, for Equation (2.28) to hold, the coefficients of 
dpk and dqk must separately vanish. We hence obtain

	 k
k

Hq
p

∂−
∂

� 	=	 0       or        ∂=
∂

�k
k

Hq
p

 	   (2.29)

	 k
k

Hp
q

∂+
∂

� 	=	 0       or       k
k

Hp
q

∂= −
∂

�

For each k, we have two equations of the form given by Equation 
(2.29). These 2s number of first-order differential equations are Hamilton’s 
equations of motion, also called Hamilton’s canonical equations.

Check Your Progress

	 1.	What do you understand by Legendre transformation?
	 2.	Write the equations for the Legendre transformation relations for the 

change of basis.
	 3.	What is the Lagrangian function?
	 4.	Give the function which is known as the Hamiltonian of the system.

2.3	 PRINCIPLE OF LEAST ACTION
Lagrangian formulation of mechanics, which is an alternative to Newtonian 
formulation, is based on one of the fundamental variational principles given 
by Hamilton known as the Hamilton’s variational principle. It is important 
to note that the principle is stated in a form which is independent of any 
coordinate system and as such the principle can be used for dealing with 
non-mechanical systems and fields as well.    

According to Hamilton, every mechanical system possesses a 
characteristic function of coordinates, velocities and time called the 
Lagrangian of the system usually denoted by the symbol L. If for a dynamical 
system having s-degrees of freedom, q1, ….., qs and        1, ....., sq q� �  be 
respectively the generalized coordinates and generalized velocities (both the 
coordinates and the velocities may be implicit as well as explicit functions 
of time), then the Lagrangian of the system is given by
	 L	 =	 ( )1 1, ....., , , ....., ,s sL q q q q t� � 	 (2.30)

At any instant of time t, the configuration of the system can be represented 
by a point called the system point in the s-dimensional mathematical space, 
namely, the configuration space of the system. As time passes, the system 
point moves in the configuration space and traces out a definite curve or path 
during a definite interval of time. Hamilton’s principle is concerned with the 
trajectory or the path which is followed by the system point.                    
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The principle states that of all possible paths along which the system 
may move from one point to another in its configuration space between two 
given time instants, say t1 and t2, which are consistent with the constraints 
imposed on the system, if any, the actual path which the system follows is 
the one for which the time integral of the Lagrangian of the system is an 
extremum (either maximum or minimum). 

Mathematically, the principle is stated as

	 S 	= 	
2

1

t

t

Ldt∫  = An extremum	 (2.31)

The line integral 
2

1

t

t

Ldt∫  which has been denoted above by the symbol 

S, is called the Hamilton’s principle function, or action integral, or simply 
the action during the time interval from t1 to t2.

In most of the dynamical problems, the minimum condition for the 
action S is satisfied. For this reason, the principle is also called Hamilton’s 
principle of least action.     

In terms of calculus of variation we can express Hamilton’s principle 
given by Equation (2.31) as 

	 dS	 = 	
2

1

0
t

t

Ldtδ =∫

or	 dS	 =	 ( )
2

1

1 1, ....., , , ....., , 0
t

s s
t

L q q q q tδ =∫ � � 	 (2.32)

Check Your Progress

	 5.	Give mathematical statement for Hamilton’s principle for a 
conservative system.

	 6.	What do you understand by Hamilton’s principle for a conservative 
system?

	 7.	Why Hamilton’s principle for a conservative system is also called 
Hamilton’s principle of least action?

2.4	 EQUATION OF CANONICAL 
TRANSFORMATION

Canonical equations of motion can be derived alternatively, using the 
definitions of Lagrangian function, Hamiltonian function and Lagrange’s 
equations of motion.
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We have the Lagrangian function of the system under consideration 
given by

	 L	=	 ( )1 1, ....., , , ....., ,s sL q q q q t� �

The total differential of L is thus

	 dL	 =	 k k
k kk k

L L Ldq dq dt
q q t

∂ ∂ ∂+ +
∂ ∂ ∂∑ ∑ �

�
	 (2.33)

The Hamiltonian function of the system is
	 H	= 	H (q1, ….., qs, p1, ….., ps, t)

The total differential of H is thus

	 dH	=	 k k
k kk k

H H Hdq d p dt
q p t

∂ ∂ ∂+ +
∂ ∂ ∂∑ ∑ 	 (2.34)

Further, H is related to L according to

	 H	=	 k kp q L−∑ �

So, we obtain

	 dH 	= 	 k k k kp dq q dp dL+ −∑ ∑� �

Substituting for dL from Equation (2.33) in the above, we get 

	                dH = k k k k k k
k k

L L Lp dq q dp dq dq dt
q q t

∂ ∂ ∂+ − − −
∂ ∂ ∂∑ ∑ ∑ ∑� � �

�
	      (2.35)

Using k
k

Lp
q

∂=
∂ �

, the above equation reduces to

	    dH	=	 k k k k k
k k k

L L L Ldq q dp dq dq dt
q q q t

∂ ∂ ∂ ∂+ − − −
∂ ∂ ∂ ∂∑ ∑ ∑ ∑� � �
� �

or	 dH	=	 k k k
k

L Lq dp dq dt
q t

∂ ∂− −
∂ ∂∑ ∑� 	 (2.36)

The Lagrange’s equation is given by

	
k

d L
dt q

 ∂
 ∂ �

	=	
k

L
q

∂
∂

or	 ( )k
d p
dt

	= or k
k k

L Lp
q q

∂ ∂=
∂ ∂

� 	 (2.37)
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Equation (2.37) used in Equation (2.36) gives

	 dH =	 k k k k
Lq dp p dq dt
t

∂− −
∂∑ ∑� � 	 (2.38)

Comparing the coefficients of dpk, dqk and dt on the right hand sides 

of Equation (2.34) and (2.38), we obtain

	 kq� 	=	
k

H
p

∂
∂

 (k =1, 2 ....., s)	 (2.39)

	 kp� 	= 	
k

H
q

∂−
∂

and	 H
t

∂
∂

	= 	 L
t

∂−
∂

	 (2.40)

Equation (2.39) is the Hamilton’s canonical equation of motion as 
obtained earlier. 

2.5	 LAGRANGE BRACKETS 
Consider a mechanical system of s degree of freedom. Let the system be 
described by generalized coordinates q1, ….., qs and conjugate momenta 
p1, ….., ps. 

Let  f = f(q1, ....., qs, p1, ....., ps) = f(q, p) and g = g(q1, ....., qs, p1, ....., 
ps) = g(q, p) be two dynamical variables of the system.

The Lagrange bracket of f and g with respect to the basis (q, p) is written as  
{  f, g}q, p and is defined as

		 {  f, g}q, p = 0k k k k

k

q p p q
f g f g

 ∂ ∂ ∂ ∂ 
− = ∂ ∂ ∂ ∂ 

∑ 	 (2.41)

We may note the following 

	 (a)	Taking f = qi and g = qj Equation (2.41) gives

		 { qi, qj} = k k k k

i j i jk

q p p q
q q q q

 ∂ ∂ ∂ ∂
−  ∂ ∂ ∂ ∂ 

∑  = 0	 (2.42)

	 (b)	Taking f = pk and g = pj Equation (2.41) gives

		 { pk, pj} = 0k k k k

k j k jk

q p p q
p p p p

 ∂ ∂ ∂ ∂
− =  ∂ ∂ ∂ ∂ 

∑ 	 (2.43)
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	 (c)	 Taking f = qk and g = pj Equation (2.41) gives

		 { qk, pj} = k k k k
kj

k j k jk

q p p q
q p q p

 ∂ ∂ ∂ ∂
− = δ  ∂ ∂ ∂ ∂ 

∑ 	 (2.44)

		  We may further note the following important properties of Lagrange 
bracket.

	 (d)	Lagrange bracket is invariant under canonical transformation from the 
set of variables (q, p) to the set of variables (Q, P), i.e.,

		 {  f, g}q, p = {f, g}Q, P	 (2.45)

	 (e)	Lagrange bracket is non-commutative. Thus, we have

		 {  f, g} = – { g, f}	 (2.46)

	 (f)	The following general theorem that relates Lagrange bracket and 
Poisson bracket is found to hold

		  { }
2

1
,

n

k i k j
k

f f f f
=

  ∑  = dij	 (2.47)

where f, f2, ....., f2n is a set of 2n independent functions, each of which 
is itself a function of n coordinates q1, ….., qn and n momenta p1, ….., pn.

2.6	 POISSON BRACKETS
Consider a mechanical system of s degrees of freedom. Let q1, ....., qs be 
the generalized coordinates, and p1, ....., ps be the generalized momenta in 
terms of which the system is described. Let F be any dynamical variable of 
the system which is a function of the coordinates, momenta and time, i.e.,
		 F = F (q1, ….., qs, p1, ….., ps, t) = F (q, p, t) 	 (2.48)

The total time derivative of F is given by

		
dF
dt

 = k k
k kk

F F Fq p
q p t

∂ ∂ ∂+ +
∂ ∂ ∂∑ ∑� � 	 (2.49)

Using the Hamilton’s canonical equations given by

		  kq�  = ; k
k k

H Hp
p q

∂ −∂=
∂ ∂

�

in Equation (2.49), we obtain

		
dF
dt

 = 
k k k kk

F H F H F
q p p q t

∂ ∂ ∂ ∂ ∂− +
∂ ∂ ∂ ∂ ∂∑ ∑

or		
dF
dt

 = 
k k k kk

F H F H F
q p p q t

 ∂ ∂ ∂ ∂ ∂− + ∂ ∂ ∂ ∂ ∂ 
∑

or		
dF
dt

 = [ ], FF H
t

∂+
∂

	 (2.50)
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The quantity within the parenthesis on the right hand side of Equation 

(2.50) turns out to be of fundamental importance in the formal development 
of mechanics and is known as the Poisson bracket (PB) of F and H. It is usual 
to write it as [F, H]q, p. Thus,

		 [F, H]q, p = 
k k k kk

F H F H
q p p q

 ∂ ∂ ∂ ∂− ∂ ∂ ∂ ∂ 
∑ 	 (2.51)

In general, for any two arbitrary physical quantities f and g, which are 
functions of coordinates, momenta and time, the Poisson bracket is defined as

		 [f, g]q, p = 
k k k kk

f g f g
q p p q

 ∂ ∂ ∂ ∂− ∂ ∂ ∂ ∂ 
∑ 	 (2.52)

Some of the special cases of Equation (2.50) give

	 (i)	 kq�  = [qk, H]      (choosing F = qk)	 (2.53)

	 (ii)	 kp�  = [ ], (choosing )k kp H F p= 	 (2.54)

		 Again, from Equation (2.52) it follows that the PB of a quantity 

with itself is zero. Hence, we obtain from Equation (2.50)

	 (iii)	  H�  = [ ], , (choosing   )dH H HH H F H
dt t t

∂ ∂= + = =
∂ ∂

	 (2.55)

We may note the following identities from the general definition of 

Poisson bracket given by Equation (2.52).
	 [f, g]	 =	 – [g, f]	

	 [f, c]	 =	 0	 (2.56)
	 [cf, g]	 =	 c[f, g]

In the above, c is a constant
	 [ f, g1 + g2]	 =	 [ f, g1] + [ f, g2]

	 [ f, g1g2] 	= g1[ f, g2] + [ f, g1] g2	 (2.57)

	 [ ],f g
t

∂
∂

	 = , ,g ff g
t t

∂ ∂   +   ∂ ∂   
	 (2.58)

Furthermore, some of the special cases of Equation (2.55) and (2.56) 
are easily seen to follow.  
	 (a)	Taking g = qj in Equation (2.52), we get
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	 [  f, qj]	 =	 j j

k k k kk

q qf f
q p p q

∂ ∂ ∂ ∂− ∂ ∂ ∂ ∂ 
∑

		  =	
0 if

0 ;
1 if

jkj
jk

k kk

j kqf
p p j k

δ = ≠∂ ∂− δ = ∂ ∂ = = 
∑ ∵

	 Thus,	 [  f, qj]	 =	
j

f
p

∂−
∂

	 (2.59)

	 (b) 	Taking f = qk and g = qj, we obtain from Equation (2.52)

		 [ qk, qj] = k

j

q
p

∂
−

∂
 = 0	 (2.60)

		  Similarly, taking g = qj, we obtain

		 [ pk, qj] = k
kj

j

p
p

∂
− = −δ

∂
	 (2.61)

	 (c)	 If g = pj, we get from Equation (2.56)

		 [ f, pj] = j j
jk

k k k k kk

p pf f f
q p p q q

∂ ∂ ∂ ∂ ∂− = δ ∂ ∂ ∂ ∂ ∂ 
∑ ∑

or	 [	 f, pj] = 
j

f
q

∂
∂

	 (2.62)

If g = pj, then

		 [ pi, pj] = 0i

j

p
p

∂
=

∂
	 (2.63)

If f = qi, then

		 [ qi, pj] = i
ij

j

q
q

∂
= δ

∂
	 (2.64)

The above results are summarized as
		 [qi, qj] = 0 = [pi, pj]	 (2.65)
                                         		 [qi, pj] = dij

Equations (2.65) are known as the Fundamental, or basic, Poisson 
brackets.   

Constants or Integrals of Motion

Consider Equation (2.50) which gives the total time derivative of the 
dynamical variable F = F(q, p, t)

		
dF
dt

 = 
k k k kk

F H F H F
q p p q t

 ∂ ∂ ∂ ∂ ∂− + ∂ ∂ ∂ ∂ ∂ 
∑
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or		
dF
dt

 = [ ] ,, q p
FF H
t

∂+
∂

	 (2.66) 

If F has no explicit time dependence, we have 0F
t

∂ =
∂

 and Equation 

(2.66) reduces to

		
dF
dt

 = [F, H]q, p	 (2.67)

If the variable F under consideration is such that its Poisson bracket 
with the Hamiltonian of the system vanishes, i.e., [F, H]q, p = 0, we get from 
Equation (2.67)

		
dF
dt

 = 0	 (2.68)

or		 F = A constant of motion

We thus find that a dynamical variable of a mechanical system is a 
constant of motion or an integral of motion, provided that
	 (i) 	it has no explicit time dependence, and
	 (ii) 	its Poisson bracket with the Hamiltonian of the system vanishes.

2. Canonical Transformation and Poisson Bracket 

Let us consider a mechanical system of s degrees of freedom described by 
generalized coordinates 1, ....., sq q  and generalized momenta 1, ....., sp p . 

Consider two dynamical variables f anf g which are functions of the q’s and 
p’s. The Poisson bracket of f anf g is, by definition,

		  	 [ ] ,, q p
k k k kk

f g f gf g
q p p q

 ∂ ∂ ∂ ∂= − ∂ ∂ ∂ ∂ ∑ 	 (2.69)

Let us consider a canonical transformation of the variables q’s and 
p’s, respectively to Q’s and P’s. In terms of the transformed variables, the 
Poisson bracket of f and g is

		 [ ] ,, Q P
k k k kk

f g f gf g
Q P P Q

 ∂ ∂ ∂ ∂= − ∂ ∂ ∂ ∂ ∑ 	 (2.70)

The Poisson bracket given by Equation (2.70) can alternatively be 
written as

    [ ] ,
,

, j j j j
Q P

k j k j k k j k j kk j

q p q pf g g f g gf g
Q q P p P P q Q p Q

    ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂= + − +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     
∑ 	(2.71)

On rearranging the terms, the above becomes

	    [ ] , , ,
, , ,j jQ P Q P Q Pj jk

g gf g f q f p
q p

 ∂ ∂    = +    ∂ ∂  
∑ 	 (2.72)
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Replacing f by qj and g by f we obtain

         
, ,

, ,j jQ P Q P
f q q f   = −     i i

i k i ii

g qf f
Q P P Q

 ∂ ∂∂ ∂= − − ∂ ∂ ∂ ∂ 
∑

      	          
,

j jk k k k

i k i k i i k i k ik i

q qq p q pf f f f
Q q P p P P q Q p Q

∂ ∂    ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ = − + − +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     
∑

              j j j jk k k k

k i i i i k i i i ik i i

q q q qq q p pf f
q Q P P Q p Q P P Q

 ∂ ∂ ∂ ∂    ∂ ∂ ∂ ∂∂ ∂ = − − + −    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     
∑ ∑ ∑

                           
, ,

, ,j k j kQ P Q Pk kk

f fq q q p
q p

 ∂ ∂   = − +    ∂ ∂ 
∑  

                           jk
kk

f
p
∂= − δ
∂∑

using the properties [ ], 0i kq q = , , 0j kq p  =  if j k≠ , [ ], 1i kq p = if j = k]

or		
,

, j Q P
j

ff q
p

∂  = −  ∂
	 (2.73)

Similarly, we get

		
,

, j Q P
j

ff p
q

∂  = −  ∂
	 (2.74)

Using Equations (2.73) and (2.74) in Equation (2.71), we get

		 [ ] ,, Q P
j j j jj

g f g ff g
q p p q

 ∂ ∂ ∂ ∂= − + ∂ ∂ ∂ ∂ 
∑

or		 [ ] ,, Q P
j j j jj

f g f gf g
q p p q

 ∂ ∂ ∂ ∂= − ∂ ∂ ∂ ∂ 
∑ 	 (2.75)

or		 [ ] [ ], ,, ,Q P q pf g f g= 	 (2.76)

Thus, the Poisson bracket remains invariant under canonical 
transformation. 

Check Your Progress

	 8.	Define Lagrange brackets.
	 9.	Write the equations of fundamental or basic Poisson brackets.
	 10.	What do you mean by Poisson brackets?
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2.7	 ANGULAR MOMENTUM AND POISSON 
BRACKETS RELATION

The angular momentum is given as

Or	 		  (2.77)
From equation (2.77),

, 	       (2.78)

Using the Poisson Bracket relation, 

	 (2.79)

Also, we can write,

Similarly, the other relations can be written as follows:

and
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Further, by using equation (2.77)

Taking q_1=x, q_2=y, q_3=z and p_1=p_x, p_2=p_y, p_3=p_z
Equation (29) can be written as

Similarly, we can derive

2.7.1	 Equation of motion in Poisson Bracket form

Properties of Poisson Bracket
Poisson Bracket has the property of antisymmetric, i.e.

[A,B]=-[B,A]
Also, the other identities of Poisson Bracket include:
[A,A]=0
[A,c]=0, where c is a constant.
[cA,B]=c[A,B]
[A_1+A_2,B]=[A_1,B]+[A_2,B]
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2.8	 EULER EQUATION OF MOTION FOR A 
RIGID BODY AND ITS APPLICATIONS 
OF TORSION FREE SYMMETRIC 
RIGID BODY 

The configuration of a rigid body which has six degrees of freedom is 
completely specified by locating the coordinates of a Cartesian system fixed 
in the body with respect to the coordinate axes of a system fixed in space 
external to the body.   

In other words, it is usual to consider two coordinate systems for 
describing the motion of a rigid body:
	 (i)	A space fixed system XYZ whose origin and whose axes are fixed 

in space, and 
	 (ii)	A body fixed system X1 X2 X3 whose origin and axes are fixed 

within the body so that this system moves along with the body and 
it is usual to call it the moving system. The above two coordinate 
frames are shown in the Figure 2.1.

Fig. 2.1  Space Fixed System and Body Fixed System

As has been pointed out earlier, it is convenient to choose the origin of 
the moving system as the centre of mass of the body. Of the six generalized 
coordinates required to specify the configuration of the body, three are taken 
as the three Cartesian coordinates of the centre of mass of the body, i.e., the 
origin of the moving system with respect to the space-fixed system. About 
the remaining three let us look into the following:

Let
ˆˆ ˆ, and i j k  be, respectively, the unit vectors along the X-, Y- and Z-axes.

ˆˆ ˆ, and i j k′ ′ ′  be respectively the unit vectors along the X1-,,X2- and X3-

axes.
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a1, b1, and g1 be the direction cosines of the X-axis relative to the X1-, 
X2- and X3-axes, respectively.

a2, b2, and g2 be the direction cosines of the Y-axis relative to X1-, X2- 
and X3-axes, respectively.

a3, b3 and g3 be the direction cosines of the Z-axis relative to X1-, X2- 
and X3-axes, respectively.

We then have the relations
	 ′̂i 	 =	 1 1 1

ˆˆ ˆi j kα + β + γ

	 ˆ′j 	 =	 2 2 2
ˆˆ ˆi j kα + β + γ 	 (2.93)

	 ˆ′k 	 =	 3 3 3
ˆˆ ˆi j kα + β + γ

We further have
	 ˆ ˆi i′ ⋅ ′ 	 = 	 2 2 2

1 1 1 1α + β + γ =

	 ˆ ˆj j′ ′⋅  	= 	 2 2 2
2 2 2 1α + β + γ = 	 (2.94)

	 ˆ ˆk k′ ′⋅  	= 	 2 2 2
3 3 3 1α + β + γ =

and	 ˆ ˆi j′ ′⋅  	= 	 1 2 1 2 1 2 0α α + β β + γ γ =

	 ˆĵ k′ ′⋅  	= 	 2 3 2 3 2 3 0α α + β β + γ γ = 	 (2.95)

	 ˆ ˆk i′ ′⋅  	= 	 3 1 3 1 3 1 0α α + β β + γ γ =

We find nine direction cosines connected by six relations. Thus, three 
remain unconnected. However, these three are not independent of each 
other and as such they cannot be taken as the remaining three generalized 
coordinates for the specification of the configuration of the rigid body.

Various sets of the remaining three generalized coordinates have been 
proposed. The most common and useful of them are the Eulerian angles. 
They refer to the angles corresponding to three successive rotations of the 
space-fixed system performed in a particular sequence or order, such that at 
the end, the axes of the space-fixed system coincide with those of the body-
fixed system. Clearly, the Eulerian angles give the orientations of the axes 
of the body-fixed system relative to the space-fixed system.      

In the following, we consider the three successive rotations of the 
space-fixed system to define Eulerian angles.

First Rotation

The space-fixed system (XYZ) is rotated about the Z-axis counter-clockwise 
by an angle f, such that the X- and Y-axes, respectively, take the new positions 
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X ′ and Y ′and the new Y–Z plane, namely the Y ′–Z ′ plane contains the axis 
X3 of the body-fixed system as shown in the Figure 2.2.

Z�
Z

O
1

X
X�

Y�

Y
�

�

Fig. 2.2  First Rotation

Let 1 1
ˆ ˆ,′ ′i j  and 1̂′k  be, respectively, the unit vectors along the transformed 

set of axes X ′, Y ′ and Z ′.
We then have

	 1̂′i 	 =	 ˆ ˆcos sini jφ + φ

	 1̂′j 	 =	 ˆ ˆsin cosi j− φ + φ 	 (2.96)

	 1̂′k 	 =	 k̂

The above equations can be written in the matrix form as

	
1

1

1

ˆ
ˆ
ˆ

i
j

k

 ′
 

′ 
 ′ 

	 =	

ˆcos sin 0
ˆsin cos 0
ˆ0 0 1

i
j

k

 φ φ 
  − φ φ   

    

	 (2.97)

The matrix of transformation from XYZ to X ′ Y ′ Z ′ is thus,

	 D	 =	
cos sin 0
sin cos 0
0 0 1

φ φ 
 − φ φ 
  

	 (2.98)

Second Rotation

The transformed system X’Y’Z’ is rotated about the X ′-axis counter-clockwise 
by an angle q, such that Z ′-axis which is the same as the Z-axis coincides 
with the axis X3 of the body-fixed system and the transformed X”– Y” plane 
becomes the X1–X2 plane of the body-fixed system as shown in Figure 2.3.
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Z , Z�

Z = X
3
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Y��

�

�
Y�

Y
O

1

�

X , X� ��

X

Fig. 2.3  Second Rotation

Let 1 1 1̂
ˆ ˆ, ,i j k ′′′′ ′′  be, respectively, the unit vectors along the transformed 

set of axes X”, Y” and Z”. We then have
	 1̂i ′′ 	 =	 1̂i′

	 1̂j′′ 	 =	 1 1̂
ˆ cos sinj k′ ′θ + θ 	 (2.99)

	 1̂k ′′ 	 =	 1 1̂
ˆ sin cosj k′ ′− θ + θ

In matrix form, the above equations can be written as

	
1

1

1

ˆ

ˆ
ˆ

i

j

k

′′

′′

′′

 
 
 
 
 

	 =	
1

1

1

ˆ1 0 0
ˆcos sin 0
ˆsin cos 0

i
j

k

 ′ 
  θ θ ′  
 − θ θ  ′ 

	 (2.100)

The matrix of transformation from the X’Y’Z’ system to (X”Y”Z”) 
system is thus

	 C	 =	
1 0 0

cos sin 0
sin cos 0

 
 θ θ 
 − θ θ 

	 (2.101)	

Third Rotation

The new system (X ′′Y ′′Z ′′) obtained after the second rotation is rotated about the Z ′′ 
(= X3) axis counter-clockwise by an angle y such that the transformed axis 
X ′′′ coincides with X1-axis while the transformed axis Y ′′′ coincides with 
X2-axis of the body-fixed system as illustrated in Figure 2.4.
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X , X� �� X = X�
1

��

�
�
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Fig. 2.4  Third Rotation

Let 1 1 1̂
ˆ ˆ, ,i j k ′′′′′′ ′′′  be, respectively, the unit vectors along the transformed 

axes X ′′′, Y ′′′ and Z ′′′. We get according to the operation performed

	 1̂i ′′′ 	 =	 1 1 1
ˆ ˆ ˆcos sini i j′′ ′′ ′′= ψ + ψ

	 1̂j′′′ 	 =	 1 1 1 1
ˆ ˆ ˆ ˆsin cosj j i j′′′ ′′ ′′ ′′= = − ψ + ψ 	 (2.102)

	 1̂k ′′′ 	 =	 1
ˆ ˆk k′ = ′′

In matrix form we may write the above equations as

	
1

1

1

ˆ

ˆ
ˆ

i

j

k

′′′

′′′

′′′

 
 
 
 
 

	 =	
1

1

1

ˆˆ cos sin 0
ˆ ˆsin cos 0
ˆ ˆ0 0 1

ii
j j

k k

′′

′′

′′

  ′ ψ ψ 
    ′ = − ψ ψ          ′   

	 (2.103)

The matrix of transformation from (X′′Y ′′Z′′) system to X ′′′Y ′′′Z ′′′ (or 
X1 X2 X3) system is thus

	 B	 =	
cos sin 0
sin cos 0
0 0 1

ψ ψ 
 − ψ ψ 
  

	 (2.104)

The complete transformation from (XYZ) system to (X1 X2 X3) system 
is thus in matrix form given by

	

ˆ
ˆ
ˆ

i
j

k

 ′
 

′ 
 ′ 

	 =	
1 1

1 1

1 1

ˆ ˆ ˆ
ˆ ˆ ˆ
ˆ ˆ ˆ

i i i
B j BC j BCD j

k k k

′′ ′′

′′ ′′

′′ ′′

     
     = =     
         
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or		       

ˆ
ˆ
ˆ

i
j

k

 ′
 ′ 
 ′ 

 = 

ˆ
ˆ
ˆ

i
A j

k

 
 
 
 
 

	 (2.105)

where	 A = BCD	 (2.106)
Using the matrices for B given by Equation (2.104), C given by 

Equation (2.101) and D given by Equation (2.98), we obtain

A= 
cos cos cos sin sin cos sin cos cos sin sin sin
sin cos cos sin cos sin sin cos cos cos cos sin

sin sin sin cos cos

ψ φ − θ φ ψ ψ φ + θ φ ψ ψ θ 
 − ψ φ − θ φ ψ − ψ φ + θ φ ψ ψ θ 
 θ φ − θ φ θ 

   (2.107)

Since all the elements of the matrix A are real, the matrix A itself 
is real.

Each of the matrices B, C and D corresponds to orthogonal 
transformation because the transformation of the axes is caused by simple 
rotations. We, thus, have
	 �D 	= � �1 1 1, ,D C C B B− − −= =               (2.108)

We have the total transformation matrix  A = BCD
Taking transpose of the above, we get

	 �A 	=� ���BCD DCB=                     (2.109)

or	 �A 	=	 ( ) 11 1 1 1D C B BCD A−− − − −= =         (2.110)

Thus, A is also orthogonal.    

Equations of Motion of a Rigid Body: Euler’s Equations  
There exist several methods to analyse the dynamics of a rigid body. One such 
method is due to Euler in which the analysis is made in terms of the body-
fixed frame of reference or the moving coordinate system which rotates with 
the body. Simplification arises because relative to this frame, the moments of 
inertia and products of inertia are time-independent while relative to space-
fixed system they are functions of time.     
Euler’s Equation for Force Free Motion
We know that a rigid body undergoes pure rotational motion about an axis 
passing through a fixed point in the body when a net external torque about 

that axis acts on the body. The external torque 
→
Γ  and the angular momentum 

J
→

 of the body about the axis of rotation are related according to

	
→
Γ 	 =	

d J
dt

→

	 (2.111)



NOTES

Hamiltonian Mechanics  
and Rigid Body

Self - Learning
Material 	 71

where the time derivative of J
→

 is calculated relative to the space-fixed 

system external to the body.

If 
→
Ω  be the angular velocity of rotation of the body then the time 

derivatives relative to space-fixed system of axes and body-fixed system of 
axes are given by

	
space

d
dt

 
  

	 = 	
body

d X
dt

→  + Ω  
	 (2.112)

In view of the relation expressed by Equation (2.112), we may write 
Equation (2.111) as

	
→
Γ 	 = 	

body

d J J
dt

→
→ →

 
  + Ω ×   

	 (2.113)

If, for convenience, we choose the axes of the body-fixed system as 
the principal axes of the body, we get

	 J
→

	 = 	 1 1 2 2 3 3
ˆˆ ˆiI jI kIΩ + Ω + Ω 	 (2.114)

where W1, W2, W3 are, respectively, the components of the angular velocity 
→
Ω  along the principal axes along which the unit vectors are ˆˆ ˆ, ,i j k , while I1, 

I2, I3 are the principal moments of inertia.
Since, relative to the body-fixed system, the principal moments of 

inertia and the unit vectors are stationary or time-independent, we get from 
Equation (2.114)

		

body

d J
dt

→ 
 
   

= 1 1 2 2 3 3
ˆˆ ˆiI jI kIΩ + Ω + Ω� � � 	 (2.115)

The component of 
→
Γ  along the principal axis along which the unit 

vector is î , is given by

        
→
Γ  = 	 ( )( )

body

ˆ ˆ using Eq. 73d Ji i J
dt

→
→ → →

    ⋅ Γ = ⋅ + Ω ×     

       [using Equation (2.113)]

              = 	

body

ˆ ˆd Ji i J
dt

→
→ →

    ⋅ + Ω ×      
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       	       = ( ) ( ) ( )1 1 2 3 3 2 3 1 1 3 1 2 2 1
ˆˆ ˆ ˆI i i j j j j j k j j Ω + ⋅ Ω − Ω + Ω − Ω + Ω − Ω 

�

or	 1Γ 	 =	 ( )1 1 2 3 3 2I j jΩ + Ω − Ω�

or	 1Γ 	 =	 1 1 2 3 3 3 2 2I I IΩ + Ω Ω − Ω Ω�   [using Equation (2.114)]

or	 1Γ 	 =	 ( )1 1 2 3 2 3I I IΩ − − Ω Ω� 	 (2.116)

Similarly, we obtain for the other two components of the torque 
→
Γ  

along the remaining principal axes as
	 2Γ 	 =	 ( )2 2 3 1 3 1I I IΩ − − Ω Ω� 	 (2.117)

	 3Γ 	 =	 ( )3 3 1 2 1 2I I IΩ − − Ω Ω� 	 (2.118)

Restricting our considerations to force-free motion of the rigid body, 
we get
	 (i)	Potential energy of the body = 0   
	 (ii)	Kinetic energy of the body = Rotational kinetic energy (Trot) 

so that the Lagrangian L of the body becomes
	 L	 = 	Trot

Choosing the axes of the body-fixed or the moving system as the 
principal axes of the body, we get the Lagrangian as

	 L	 =	 ( )2 2 2
1 1 2 2 3 3

1
2

I I IΩ + Ω + Ω 	 (2.119)

Further, for convenience, let us choose the generalized coordinates 
corresponding to the three rotational degrees of freedom as the Eulerian 
angels y, q and f. We may then write the Lagrangian as
	 L	 =	 ( ), , , , ,L ψ θ φ ψ θ φ� �� 	 (2.120)

The Lagrange’s equation for the coordinate y is

	
d L
dt

 ∂
 ∂ψ �

	 =	
L∂

∂ψ

or	
3 3

1 1

i i

i ii i

d L L
dt = =

∂Ω ∂Ω∂ ∂−
∂Ω ∂ψ ∂Ω ∂ψ∑ ∑�

 = 0	 (2.121)

The components of the angular velocity 
→
Ω  can be expressed in terms 

of the Eulerian angels as
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	 1Ω 	 =	 sin sin cosφ θ ψ + θ ψ
i �

	 2Ω 	 =	 sin cos sinφ θ ψ − θ ψ
i � 	 (2.122)

	 3Ω 	 =	 cosφ θ + ψ
i

�

From the above we obtain

	 1∂Ω
∂ψ

	 = 	 2sin cos sinφ θ ψ − θ ψ = Ω�

	 2∂Ω
∂ψ

 	= 	 1sin sin cos−φ θ ψ − θ ψ = −Ω� 	 (2.123)

                              	 3∂Ω
∂ψ

	 = 	0

	 1∂Ω
∂ψ�

	 = 	0

and	 2∂Ω
∂ψ�

	 = 	0	 (2.124)

	 3∂Ω
∂ψ�

	 = 	1

From Equation (2.119), we get

	
1

L∂
∂Ω

	 =	 1 1I Ω

	
2

L∂
∂Ω

	 =	 2 2I Ω 	 (2.125)

	
3

L∂
∂Ω

	 =	 3 3I Ω

Euler’s Equation in a Force Field  
Since a rigid body, in general, has six degrees of freedom, its motion can be described 
in terms of six independent coordinates. Thus, the general equations of motion of 
a rigid body are six in number. In the Newtonian formulation, three of these are  
given by  

	 p
•→

	 =	 p f F
• → →→

= =∑ ∑
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where p
•→  is the linear momentum of any particle, and f

→
 is the force acting 

on the particle.
The summation is carried over all the particles of the body. Here, the 

total force F
→

 includes, in principle, both external as well as internal forces.
We may start with the fundamental equations expressed as

	

fixed

d P
dt

→ 
 
   

	 = 	 and

fixed

d MF k
dt

→
→ →

 
  =   

The designation ‘fixed’ is written explicitly since the above relations 
(from Newtonian mechanics) are valid only in an inertial frame of reference. 
The moving system X1, X2, X3, is fixed in the rigid body and hence rotates 

with angular velocity 
→
Ω . If the radius vector of a point in the system changes 

from r
→

 to r
→

 + r
→
δ  then the geometrical situation is correctly represented, 

if we write

	 r
→
δ 	 =	

→
δθ  × r

→

where 
→
δθ  is a vector whose magnitude is equal to the infinitesimal rotation 

angle  dq  and having direction along the instantaneous axis of rotation. 
Similarly, we can write

	 v
→
δ 	 =	

→
δθ  × v

→

Let us consider an arbitrary vector A
→

. The change in this vector in time 

dt with respect to the fixed axis differs from the corresponding change with 
respect to the axis moving with the rigid body, only by the effects of the 
rotation of the body axes. In other words, we may write

	
fixed

d A
→ 

 
 

	 = 	
moving rot

d A d A
→ →   +   

   

	
fixed

d A
→ 

 
 

	 = 	
moving

d A d A
→ →  + θ × 

 
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The time rate of change of A
→

 is then

	

fixed

d A
dt

→ 
 
   

	 = 	

moving

d A A
dt

→
→ →

 
  + Ω ×   

The six equations of motion with respect to the body-fixed system are 
thus

	 F
→

	 = 	

moving

d P P
dt

→
→ →

 
  + Ω ×   

	   K
→

	 = 	

moving

d M M
dt

→
→ →

 
  + Ω ×   

Choosing the axes of the moving system to coincide with the principal 

axes of the body and taking P = MV
→

 and Mi = IiWi, etc., we obtain

	 F1	 =	 1
2 3 3 2

dVM V V
dt

 + Ω − Ω  

	 F2	 =	 2
3 1 1 3

dVM V V
dt

 + Ω − Ω  

	 F3	 =	 3
1 2 2 1

dVM V V
dt

 + Ω − Ω  

	 K1	 =	 ( )1
1 2 3 3 2

dI I I
dt
Ω Ω Ω −

	 K2	 =	 ( )2
2 3 1 1 3

dI I I
dt
Ω Ω Ω −

	 K3	 =	 ( )3
3 1 2 2 1

dI I I
dt
Ω

Ω Ω −

Substituting the above results [Equation (2.122) to (2.145)] in Equation 
(2.121), we obtain

                             	 ( ) [ ]3 3 1 1 2 2 2 1
d I I I
dt

Ω − Ω Ω − Ω Ω = 0

or	                              (I1 – I2)W1W2 – I3W3

or	 3 3I Ω� 	 =	 (I1 – I2)W1W2	 (2.126)
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Similarly, we obtain the equations for 1Ω�  and 2Ω�  as

	 1 1I Ω� 	 =	 (I2 – I3)W2W3	 (2.127)

	 2 2I Ω� 	 =	 (I3 – I1)W3W1	 (2.128)

	 p
•→

	 =	 p f F
• → →→

= =∑ ∑ 	 (2.129)

	
dp
dt

→

	 =	 and

fixed

d MF K
dt

→
→ →

 
  =   

	 (2.130)

	 r
→

δ 	 =	 r
→ →

δ θ× 	 (2.131)

	 v
→

δ 	 =	 v
→ →

δ θ× 	 (2.132)

	
fixed

d A
→ 

 
 

	 = 	
moving rotational

d A d A
→ →   +   

   
	 (2.133)

	

fixed

d A
dt

→ 
 
   

	 =	  

moving

d A A
dt

→
→ →

 
  + Ω ×   

	 (2.134)

	 F
→

	 = 	

moving

d P P
dt

→
→ →

 
  + Ω ×   

	 (2.135)

	 K
→

 	= 	

moving

d M M
dt

→
→ →

 
  + Ω ×   

	 (2.136)

Choosing the axes of the moving system to coincide with the principal 

axes of the body and taking Pi = iM V
→

 and Mi = IiWi, i i iM I= Ω , etc., we obtain

	 F1	 =	 1
2 3 3 2

dVM V V
dt

 + Ω − Ω  
 

	 F2	 =	 2
3 1 1 3

dVM V V
dt

 + Ω − Ω  
	 (2.137)

	 F3	 =	 3
1 2 2 1

dVM V V
dt

 + Ω − Ω  
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	 K1	 =	 ( )1
1 2 3 3 2

dI I I
dt
Ω Ω Ω −

	 K2	 =	 ( )2
2 3 1 1 3

dI I I
dt
Ω Ω Ω − 	 (2.138)

	 K3	 =	 ( )3
3 1 2 2 1

dI I I
dt
Ω

Ω Ω −

Equations (2.137) and (2.138) are Euler’s equations for the motion of 
a rigid body in a force field.  

We may note that Equation (2.126) for W3 is the Lagrange’s equation 
for the coordinate y but Equation (2.127) and (2.138) are not Lagrange’s 
equations for the coordinates q and f.
Torque Free Motion of a Rigid Body
Euler’s equations obtained in the previous sections can be conveniently 
applied to describe the motion of the rigid body when no net force or no net 
torque acts on the body. We first consider the torque free motion.

Consider a rigid body rotating about an axis passing through the centre 
of mass of the body. Let us choose the centre of mass, which is a fixed point 
within the body, as the origin of the principal axes of the body. Considering 
no torque to be acting on the body, Euler’s equations given by Equation 
(2.116), (2.117) and (2.118) reduce respectively to

	 I1 1Ω
i

	 =	 (I2 – I3) W2 W3	 (2.139)

	 I2 2Ω
i

	 =	 (I3 – I1) W3 W1	 (2.140)

	 I3 3Ω
i

	 =	 (I1 – I2) W1 W2	 (2.141)

Multiplying Equation (2.139), (2.140) and (2.141) respectively by W1, 
W2 and W3 and adding, we get

	 I1 1Ω
i
W1 + I2 2Ω

i
W2 + I3 3Ω

i
W3	 =	 [I2 – I3 + I3 – I1 + I1 – I2] W1 W2 W3 = 0

or	                      2 2 2
1 1 2 2 3 3

1 1 1
2 2 2

 Ω + Ω + Ω  
d I I I
dt

 = 0

or                    	    2 2 2
1 1 2 2 3 3

1 1 1
2 2 2

Ω + Ω + ΩI I I  = a constant

Thus,	                     Trot = ( )2 2 2
1 1 2 2 3 3

1
2

I I IΩ + Ω + Ω  = a constant	 (2.142)

Equation (2.142) shows that the kinetic energy of rotation of the body 
is an integral of motion.
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Since no torque acts on the body, the total angular momentum →
J  of 

the rotating body is another integral of motion torque 0 or a constantd J J
dt

→
→

 
 = = =
  

. Thus, we have 
	

→
J 	 =	 1 1 2 2 3 3

ˆˆ ˆi I j I k IΩ + Ω + Ω  = a constant	 (2.143)

We have

	
→
Ω  . 

→
J 	 =	 1 2 3 1 1 2 2 3 3

ˆ ˆˆ ˆ ˆ ˆ   Ω + Ω + Ω ⋅ Ω + Ω + Ω   i j k iI jI k I

		  =	 2 2 2
1 1 2 2 3 3Ω + Ω + ΩI I I 	 (2.144)

Combining Equation (2.142) and (2.144) we obtain

	 2Trot	 =	
→ →
Ω⋅ J  = a constant	 (2.145)

(i) Inertia Ellipsoid

We may note that the motion of a rigid body depends on the structure of 
the body through the quantities (numbers) I1, I2 and I3. Hence, any two 
bodies which have the same principal moments of inertia move in exactly 
the same manner although they may have different shapes. The simplest 
geometrical shape for a body having three given principal moments is that of 
a homogeneous ellipsoid. Hence, it often becomes convenient to describe the 
motion of a rigid body in terms of the motion of equivalent ellipsoid. Such 
a description of a rigid body was due to Poinsot which has the advantage of 
providing a geometrical description of the motion without trying to obtain a 
complete solution of the problem.

Poinsot’s construction can be understood as explained below. The 
kinetic energy of the rotating rigid body relative to a coordinate system whose 
axes are the principal axes is given by

	 Trot	 =	 2 2 2
1 1 2 2 3 3

1 1 ( )
2 2

→ →
Ω⋅ = Ω + Ω + ΩJ I I I

We may write
	 2T	 =	 2 2 2 2

1 1 2 2 3 3Ω + Ω + Ω = ΩI I I I 	 (2.146)

where I is the moment of inertia of the body about the axis of rotation.

Let n̂  be a unit vector in the direction of →
Ω , so that

	
→
Ω 	 =	 W n̂ 	 (2.147)

Let the direction cosines of the axis of rotation be a, b and g.
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We then get
	 n̂ 	 =	 ˆˆα + β + γi j k 	 (2.148)

and we can write the moment of inertia of the body about this axis as
	 I	 =	 2 2 2 2 2 2xx yy zz xy yz zxI I I I I Iα + β + γ + αβ + βγ + γα 	

(2.149)

Let us now define a vector P
→  according to

	 P
→

	 =	 n̂
I

	 (2.150)

Using Equation (2.147) the above becomes

	 P
→

	 =	
2

→ →
Ω Ω

=
Ω ΩI I

In view of Equation (2.146) the above can be written as

	
→
P 	 =	 1 2 3

1 ˆˆ ˆ( )
2 2

i j k
T T

→
Ω

= Ω + Ω + Ω 	 (2.151)

Further, we may write →
P  in terms of its components P1, P2, P3 as

	
→
P 	 =	 1 2 3

ˆˆ ˆiP jP kP+ + 	 (2.152)

Comparing Equation (2.151) and (2.152) we obtain

	 P1	 =	 31 2
2 3, ,

2 2 2
P P

T T T
ΩΩ Ω

= = 	 (2.153)

In view of Equation (2.153), Equation (2.146) gives
	 2 2 2

1 1 2 2 3 3+ +I P I P I P 	 =	 1	 (2.154)

Equation (2.154) is the equation of an ellipsoid and is called the equation 
of inertia ellipsoid.

(ii) Invariable Plane

Consider a rigid body rotating about a fixed point, say O, without the action 
of any external force or torque. The angular momentum vector →

J  is a constant 

of motion and has a fixed direction in space as shown in Figure 2.5. The line 
along the fixed direction of →

J  is called the invariable line. We have for force/

torque free motion

	
→ →
Ω⋅ J 	 =	 2T = constant
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Clearly, the projection of →
Ω  along →

J  is W cos q which is constant and 

hence the tip of →
Ω  describes a plane called the invariable plane. To an observer 

fixed in the body-fixed coordinate system the angular velocity vector →
Ω  is 

found to precess about the angular momentum vector →
J .

�

J

O

�
�

Rotating lbody

Invariable line

�

Invariable plane

Fig. 2.5  Fixed Direction

For force-free motion of the rigid body we have

	
→ →

⋅P J 	 =	 2
2

→ →
Ω⋅

=
J T
T

 = constant	 (2.155)

The above shows that the tip of the vector →
P  also describes an invariable 

plane. It can be seen that this invariable plane is the tangent plane at the point 
P of the inertia ellipsoid.

The distance between the origin of the ellipsoid and the tangent plane 
at the point P is

                       d = 	P cos q = . 2
2

→ → → →
Ω⋅

= =
P J J T

J JJ T
 = constant	 (2.156)

As a consequence we find that as the angular velocity vector →
Ω  and 

hence →
P  changes  with time, the inertia ellipsoid rolls on the invariable plane 

with the centre of the ellipsoid at a constant height above the plane.
The curve traced out on the invariable plane by the point of contact 

with the ellipsoid is called herpolhode and the corresponding curve described 
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on the ellipsoid is called polhode. We find that the polhode undergoes pure 
rolling on the herpolhode in the invariable plane (Refer to Figure 2.6).

In the case of a symmetrical rigid body rotating about the symmetry 
axis (z-axis) we have I1 = I2 and we find the inertia ellipsoid to be an ellipsoid 
of revolution. Vector P

→  and hence vector →
Ω  remains constant in magnitude. 

As a result, the polhode becomes a circle about the symmetry axis of the 
ellipsoid and herpolhode is a circle on the invariable plane. The angular 
velocity vector →

Ω  describes a cone called the body cone. As observed by 

the observer in the space-fixed system →
Ω  moves also on the surface of a cone 

called the space cone (Refer to Figure 2.7).
Inertia ellipsoid

Polhode

Invariable plane

J

Herpolhode

2T

J

�
�

�

Fig. 2.6  Invariable Plane

Space cone

Herpolhode

Polhode

Body cone

Inertia ellipsoid

Invariable plane

J
�

�
�

Fig. 2.7  Space Cone

Force Free Motion of a Symmetrical Rigid Body
As another application, we use in the following, Euler’s equations to discuss 
force free motion of a symmetrical rigid body.
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Choosing the symmetry axis as the principal z-axis we get I1 = I2 and 
Equation (2.116), (2.117) and (2.118) give

	 I1 1Ω
i

	 =	 (I1 – I3) W2 W3	 (2.157)

	 I1 2Ω
i

	 =	 (I3 – I1) W3 W1 = – (I1 – I3) W3 W1	 (2.158)

	 I3 3Ω
i

	 =	 0	 (2.159)

Equation (2.158) yields
	 W3	 =	 constant	 (2.160)

i.e., the component of angular velocity along the symmetry axis is a constant.

Putting	 0Ω 	 =	 1 3
3

1

−
Ω

I I
I

 (which is a constant)	 (2.161)

we may write Equation (2.157) and (2.158) as

	 1Ω
i

	 =	 0Ω 2Ω 	 (2.162)

	 2Ω
i

	 =	 – 0Ω 1Ω 	 (2.163)

Differentiating Equation (2.162) with respect to time we get

	 1Ω
ii

	 =	 0Ω 2Ω
i

Substituting Equation (2.163) in the above we obtain

	 1Ω
ii

	 =	 – 2
0 1Ω Ω

or	 1Ω
ii

 +  2
0 1Ω Ω 	 = 	0	 (2.164)

Solution of Equation (2.164) can be put in the form
	 1Ω 	 =	 A sin 0Ω t	 (2.165)

where A is some constant. We have chosen the phase constant such that at  
t = 0, 1Ω  = 0.

From Equation (2.165) we get

	 1Ω
i

	 =	 AW0 cos Wt	 (2.166)
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Using the above in Equation (2.162) we obtain
	 AW0 cosW0 t	 =	 0Ω 2Ω

or	 2Ω 	 =	 A cos W0t	 (2.167)

Combining Equation (2.165) and (2.167) we obtain
	 2 2

1 2Ω + Ω 	 =	 A2	 (2.168)

which is the equation of a circle of radius A. Let us now consider the vector 
→
ΩP  in the x-y plane as

	
→
ΩP 	 =	 1 2

ˆ ˆ ˆ ˆsin cosΩ + Ω = Ω + Ωi j i A t j A t

The above gives
	

→
ΩP |	 =	 A = constant	 (2.169)

We further find that the vector →
ΩP rotates about the symmetry axis with 

constant angular frequency W given by Equation (2.61) as shown in Figure 
2.8. 

The angular velocity of the body given by

	
→
Ω 	 =	 1 2 3

ˆˆ ˆΩ + Ω + Ωi j k

can thus be written as

	
→
Ω 	 =	 3

ˆ→
Ω + ΩP k 	 (2.170)

with	 |
→
Ω |	 =	 2 2

3Ω + ΩP  = constant	 (2.171)

We find the angular velocity vector →
Ω  to have a constant magnitude 

and precessing about the axis of symmetry with the constant angular 
frequency W0 (Refer to Figure 2.9). We find the vector →

Ω  to move on the 

surface of a cone about the axis of symmetry with constant angular frequency 
W0. This motion takes place with respect to the principal axes of the body 
which are themselves rotating in space with angular frequency W. Equation 
(2.161) shows that closer the values of I1 and I3, lower becomes the precessional 
frequency W0 compared to rotational frequency W3. We may determine WP 
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and W3 from a knowledge of the constant magnitudes of kinetic energy T and 
the angular momentum J given as

	 T	 =	 2 2
1 3 3

1 1
2 2

Ω + ΩpI I 	 (2.172)

	 J2	 =	 2 2 2 2
1 3 3Ω + ΩPI I 	 (2.173)

The above results can be applied to the problem of rotation of the earth.

�
P
( = 0)t

Y

X

�

�
P

�

�
P

�
( = )t

�
�2

Z

�0

�P

�

�
�

�2 Y

�P�I

�
�

X

Fig. 2.8  Symmetric Axis with              Fig. 2.9  Symmetric Axis with 
Constant Frequencies                    Angular Frequencies

We know that the earth is almost symmetric about the north-south 
(polar) axis and slightly bulged at the equator. As a consequence we have I1 
slightly less than I3. On calculation we obtain

	 3 1

1

−I I
I

	 =	 1
306

and	 W3	 =	 2
24 60 60

π
× ×

 rad s–1

The time period of precession of the axis of rotation of the earth is thus

	 T	 =	 1

0 3 3 1 3

2 2 2 306π π π
= = ×

Ω Ω − Ω
I

I I

or	 T	 =	 306 days

Thus, an observer on the earth should find the axis of rotation of the 
earth to trace out a circle about the north pole every 306 days which agrees 
well with observation.

Motion of Symmetric Top Under the Action of Gravity

Consider the motion of a symmetric top spinning about the axis of symmetry 
namely the Z′-axis of the body-fixed system. Z′-axis is taken to be one of the 
principal axes, the other two principal axes being X′ and Y′ axes.

According to the above consideration; the principal moments of inertia 
about the X′ and the Y′ axes, namely I1 and I2 are equal.
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Let the top have its pivot at its lower tip O which is the common origin 
of the body fixed and the space-fixed coordinate system X′Y′Z′ and XYZ 
respectively.

Let G be the centre of gravity of the top at a distance l from the point O.

��

Symmetry

Axis of the

top

L
in

e
o
f

n
o
d
e
s

X
X�

Y

Y�

�

o

mg

L

G

Fig. 2.10  Symmetric Axis of Top under the Action of Gravity

The only force that acts on the top of mass m is mg which acts vertically 
downwards from the point G. Let us consider the Z-axis of the space-fixed 
system to pointing vertically upwards while the X and Y axes to lie in the 
horizontal plane (Refer to Figure 2.10).

The most convenient generalized coordinates in terms of which the 
motion of the top can be described are the Euler angles f, q and y as shown 
in the Figure 2.10.

The Lagrangian function for the top under consideration is given by

                      L = 	T – V = 2 2 2
1 1 2 3 3

1 1( ) cos
2 2

Ω + Ω + Ω − θI I mgl 	  (2.174)

Substituting for W1, W2 and W3 in terms of Euler angles, the above 
becomes

                         L = 
2

2 2 2
1 3

1 1sin cos cos
2 2

I I mgl   θ + φ θ + ψ+ φ θ − θ   
   

i i i i
	 (2.175)

The above expression for L shows that y and f are cyclic coordinates. 
As a consequence the momenta conjugate to these coordinates, namely py 
and pf are constants of motion or the first integral of motion.

We have
	 py	 =	 3 3 3 1[ cos ]∂

= ψ+ φ θ = Ω =
∂ ψ

i i

i
L I I I a 	 (2.176)
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and	             pf = 
L∂
φ∂
i  = [I1 sin2 q + I3 cos2 q] φ

i  + I3 cos qψi  = I1b	 (2.177)

In the above the integrals of motion have been expressed in terms of 
new constants a and b.

A third integral of motion is the total energy of the top given by

                  E = T + V = 2 2 2 2
1 3 3

1 1[ sin ] cos
2 2

θ + φ θ + Ω + θ
i i

I I mgl 	 (2.178)

Solving for φ
i  and ψi , the equations (2.176) and (2.177) yield

	 φ
i 	 =	 2

cos
sin
− θ

θ
b a 	 (2.179)

and	 ψi 	 =	 1
2

3

cos cos
sin
− θ − θ θ 

I a b a
I

	 (2.180)

Using Equation (2.179) and (2.180) in Equation (2.178) we get

	 E	 =	
2

2 2 2
1 1 1 2

1 1 1 ( cos ) cos
2 2 2 sin

− θ
+ θ + + θ

θ
i b aI a I I mgl 	 (2.181)

For convenience we introduce a new quantity E′ as

	 E′	 =	 1
2 21

2
−E I a 	 (2.182)

Using Equation (2.181) in Equation (2.182) we obtain

	 E′	 =	
2

2
1 1 2

1 1 ( cos ) cos
2 2 sin

− θ
θ + + θ

θ
i b aI I mgl 	 (2.183)

We may consider E′ to be the sum of the kinetic energy 2
1

1
2

θ
i

I  and an 

effective potential energy function V(q) defined as

	 V(q) =	
2

1 2
1 ( cos ) cos
2 sin

− θ
+ θ

θ
b aI mgl 	 (2.184)

In view of Equation (2.184) we may write Equation (2.183) as

	 E′	 =	 2
1

1 ( )
2

θ + θ
i

I V 	 (2.185)

The above gives

	 θ
i 	 =	 { }

1/2

1

2 ( )
 

′ − θ 
 

E V
I
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or	 dt	 =	

{ }
1/2

1

2 ( )

θ

 
′ − θ 

 

d

E V
I

Integrating the above between time limits t = 0 to t = t, we get

	
0

t

dt∫ 	 =	
( )

1/2
(0)

1

2 { ( )}

θ

θ

θ

 
′ − θ 

 

∫
t d

E V
I

	 (2.186)

The solution of the above equation to get q and hence solve for f and 
y as functions of t is however complicated and involves elliptic integrals.

For this reason, only the qualitative features of the motion of top from 
energy considerations are presented as in motion under central force.

1. Steady Precession of the Top

The variation of the effective potential V(q) with q is as shown in Figure 2.11. 
We find V(q) to assume infinite values for q = 0 and q = p and and for a 
particular value, namely q = q0, V(q) assumes the minimum value. Thus the 
physically acceptable value of q lies between 0 and p. The minimum value 
of V(q) correspondes to the condition ( )∂ θ

∂θ
V  = 0. Using the expression for 

V(q) given by Equation (2.184), the above condition yields

                   
2

0 0
1 1 03

0 0

cos ( cos )
sin

sin sin
− θ − θ

− − θ
θ θ

b a b a
I a I mgl  = 0

Solving the above we obtain

	 b – a cos q0	 =	
2

0 0
2

0 1

sin 4 cos
1 1

2cos

 θ θ
± − 

θ   

a mgl
I a

	 (2.187)

b – a cos q0 is a real quantity. Thus, for q0 < n/2, we get

	 0
2

1

4 cos
1

θ
−

mgl
I a

	≥	  0

or	                                 2 2
1I a  	≥	  4 mglI1 cos q0

We have	 I1a	 = 	I3W3.

	 2 2
3 3ΩI 	≥	 4mgl I1 cos q0

or	 W3	≥	 1 0
3

2 cosθmgl I
I

	 (2.188)
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Fig. 2.11  Steady Precession

If the energy of the top is such that E′ = Vminimum then q has only one value namely  
q = q0. Thus corresponding to this energy the precession angle q remain 
constants. This is referred to as steady precession in which case the symmetry 
axis of the top describes a right circular cone about the vertical Z-axis of the 
space-fixed system. The condition that must be satisfied for steady precession 
is that the value of W3 be given according to Equation (2.188).

2. Nutational Motion of the Top

Referring to the effective potential energy diagram we find that if the energy 
of the top be such that E ′ > Vminimum, say E = E1′, then the motion gets restricted 
between two values of q, namely q = q1 and q = q2. This means that the 
symmetry axes OZ′ of the rotating top varies its inclination q with the vertical 
such that q1 ≤ q ≤ q2. This kind of motion of the top is referred to as nutation.

We have

	 φ
i 	 =	 2

cos
sin
− θ

θ
b a

Depending upon the values of q1 and q2, φ
i  may or may not change 

sign. If φ
i  does not change sign, the top precesses constantly about the vertical 

axis Z and the axis of rotation  of the top, i.e., the Z′ axis oscillates between 
q = q1 and q = q2. This is nutational motion which is an up and down motion 
of the top.

When the rotating top is released at the angle q1, it falls slightly due to 
the gravitational torque. As a consequence, it gains in the precessional as well 
as the nutational motion. The axis of the top reaches the maximum angle q2 
with the vertical with the result of maximum precessional velocity and zero 
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nutational velocity. The precessional velocity at q = q2 can be obtained from 
the Equation (2.179) having the value

	 φ
i 	 =	 3 3

1 3 3

2Ω
=

Ω
I mgla

I I

The following are a few important results:
	 1.	Frequency of nutational motion is given by

	 W	 =	 3 3

1

ΩI
I

 = a

	 2.	Amplitude of nutation is given by

	 qm	 =	 1
2 2
3 3

sin θ
Ω

mgl
I

This shows that nutation is less if the top spins fast.
Illustrative Examples
Example 2.1: If the moment of inertia of a cube about an axis that passes 
through the centre of mass and the centre of any one face is I0, find the moment 
of inertia of the cube about an axis passing through the centre of mass and 
one corner of the cube.

Solution:
A B

C
D

E F

GH

O
2

O
1

O
3

O

Fig. 2.12  Cube

As shown in the figure, let O be the centre of mass of the cube ABCDEFGH. 
Considering the point O as the origin, let us choose a Cartesian coordinate 
system with axes X, Y and Z passing through the centres O1, O2 and O3 of 
the three adjacent faces ADHF, DCGH and ABCD, respectively. We then 
have, according to the problem
	 Ixx	= Iyy = Izz = I0	 (i)
and	 Ixy	= Iyz = Izx = 0	  (ii)

Let an axis passing through the centre of mass of the cube and one 
corner, say C, have direction cosines a, b and g, then the moment of inertia 
of the cube about this axis is given by
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	 I	 =	 a2Ixx + b2Iyy + g2Izz – 2abIxy – 2bgIyz – 2gaIzx

Using Equation (i) and (ii) in the above, we get
	 I	 =	 (a2 + b2 + g2)I0	 (iii)

The position vector of the corner C with respect to the origin O is 
given by

	 r
→

	 =	 ˆˆ ˆia ja ka+ +

Clearly,	 | r
→

|	 =	 3a 	  

We, thus, have

	 a	 =	
1 1 1, ,

3 3 3 3 3 3
a a a

a a a
= β = = γ = = 	 (iv)

Substituting Equation (iv) in Equation (iii), we obtain

	 I	 =	
1 1 1
3 3 3 o oI I + + =  

	  

Example 2.2: A thin uniform circular disc of mass m and radius r lies in the 

X–Y plane (plane of the paper). A point mass 5
4
m  is attached to the rim of 

the disc as shown in the figure. The moment of inertia of the disc about an 
axis through its centre of mass and perpendicular to the plane of the paper 
is

	 I	 = 	
2 1 0 0

0 1 0
4

0 0 2

mr
 
 
 
  

Find the moment of inertia tensor of the system of the disc and point 
mass about the point A in the coordinate system shown.

O

A

5
—
4

m

Y

X

Fig. 2.13

Solution: The moment of inertia of the disc about the axes through the centre 
of mass O and perpendicular to the plane of the disc is given to be
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	 Icm	 =	
2 1 0 0

0 1 0
4

0 0 2

Mr
 
 
 
  

	 (i)

The mass point 5
4
m  attached to the disc contributes to the moments 

and products of inertia about the origin A is

	 Iij	 =	 ( )25
4 o ij i j
m r x xδ − 	 (ii)

where ( )0 1 2 3, ,r x x x
→

=  is the radius vector of the mass point with respect to 

the origin A
In the above 	 i, j	 =	 1, 2, 3, and
	 i, j	 =	 1, 2, 3 and
	 dij	 =	 1 if i = j
	 dij	 =	 0 if i ≠ j	 (iii)

	 x1	 =	 x, x2 = r and x3 = 0
	 r0

2	 =	 x1
2 + x2

2 + x3
2 = 2r0

2

We, thus, get the moment of inertia tensor of the mass point about the 
point A as

	 5

4
mI

	 = 	

2 2 2

2 2 2

2

2 0
5 2 0
4

0 0 2

r r r
m r r r

r

 − −
 
 − −
   

or	 5

4
mI

	 = 	
2 1 1 0

5 1 1 0
4

0 0 2

mr
− 

 − 
  

	 (iv)

	 dij	 = 	1 if i = j	 (iii)
	 dij	 =	 0 if i ≠ j
	 i, j	 =	 1, 2, 3	 (iv)

Using Equation (ii), (iii) and (iv), we obtain

	 I11	 =	 ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2
1 11 2 21 3 31 4 41m r x r x r x r x − + − + − + − 

or	 I11	 =	 m[(a2 – a2) + (a2 – a2) + (4a2 – 0) + (4a2 – 0)]
	 I11	 =	 8ma2

Proceeding as above, we obtain
	 I12	 =	 0 = I13

	 I21	 =	 0 = I23

	 I31	 =	 0 = I32
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and	 I22	 =	 2ma2

	 I33	 =	 10ma2

Thus, the matrix of the inertial tensor is

	 I	 = 	

2

2

2

8 0 0

0 2 0

0 0 10

ma

ma

ma

 
 
 
   

Example 2.3. In Example 2.2 find the moment of inertia of the system about 
an axis which is inclined equally to the positive X-, Y- and Z-axes. 
Solution: Since the axis is equally inclined to the positive X-, Y- and Z-axes, 
its direction cosines a, b and g are equal.

The moment of inertia of the system about the axis is given in terms 
of the elements of the inertial tensor Iij(i, j = 1, 2, 3) as
	 I	= a2I11 + b2I22 + g2I33 – 2abI12 – 2bgI23 – 2g2I31

Using the values of Iij obtained in Example 2.2 and taking
	 a	 =	 b = g

We get, from the above equation,
	 I	 = 	a28ma2 + a22ma2 + a210ma2 = 20ma2a2

We further have
	 a2 + b2 + g2	 =	 1

	 3a2	 =	 1

or	 a2	 = 	
1
3

	  

Substituting for a2, we obtain

	 I 	= 	20ma2 × 21 20
3 3

ma=

Example 2.4: Four point masses, each equal to m, are situated in the x–y 
plane at positions (a, 0, 0), (–a, 0, 0), (0, + 2a, 0) and (0, –2a, 0). The masses 
are joined by massless rods to form a rigid body.
Find the inertial tensor and express the tensor as a matrix using X-, Y- and 
Z-axes as the reference system.
Solution: The system to be considered is as shown in the figure. Let O be 
the origin of the reference system. The particles of mass m are situated at the 
points A(a, 0), B(–a, 0), C(0, 2a) and D(0, –2a).
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Y

C (0, 2 )a

( , 0)a

A

(– , 0)a

B

D
(0, –2 )a

Fig. 2.14

By definition the elements Iij of the inertial tensor are given by

	 Iij	 =	 ( )
4

2

1
k ij i j

k
m r xk xk

=
δ −∑

or	  Iij = ( ) ( ) ( ) ( )2 2 2 2
1 1 1 2 2 2 3 3 3 4 4 4ij i j ij i j ij i j ij i jm r x x r x x r x x r x x δ − + δ − + δ − + δ −          (i)

In the above,

	 2
1r 	 =	 2 2 2 2 2

11 12 13 0 0x x x a a+ + = + + =

	 2
2r 	 =	 ( )22 2 2 2

21 22 23 0 0x x x a a+ + = − + + = 	

	 2
3r 	 =	 ( )22 2 2 2

31 32 33 0 2 0 4x x x a a+ + = + + = 	 (ii)

	 2
4r 	 =	 ( )22 2 2 2

41 42 43 0 2 0 4x x x a a+ + = + − + =

Example 2.5: Moments of inertia and products of inertia of a rigid body with 
respect to a coordinate system XYZ having the origin at some point within 
the body are Ixx, Iyy, Izz, Ixy, Iyz and Izx. Obtain the moment of inertia of the 
body about an axis inclined at angles a, b and g with the X-, Y- and Z-axes, 
respectively.
Solution: The figure shows the origin O within the rigid body and the 
coordinate system X Y Z. Let AB be the axis about which the moment of 
inertia of the body is to be found.
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Z
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A
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�

Fig. 2.15

Let the axis AB make angles of a, b and g with the X-, Y- and Z-axes, 

respectively. If n̂  be a unit vector along OB
→

, we get
	 n̂ 	 =	 ˆˆ ˆcos cos cosi j kα + β + γ 	 (i)

Let P be a particle of the body having mass mi and radius vector ir
�

.
Let PC be the perpendicular from P on the axis AB.
By definition, the moment of inertia of the particle about the axis AB 

= mi(PC)2.
Considering all the particles constituting the body, we get the moment 

of inertia of the body about the axis AB as

	 I 	=	 ( )
2

2 ˆi i im PC m r n
→

= ×∑ ∑ 	 (ii)

We have  	 ˆir n×� 	 = 	

ˆˆ ˆ

cos cos cos
i i i

i j k
x y z

α β γ
	       	

    ( ) ( ) ( )ˆˆ ˆcos cos cos cos cos cosi i i i i ii y z j z x k x y= γ − β + α − γ + β − α 	   

The above gives

	
2

ˆir n
→

× 	= ( ) ( ) ( )2 2 2cos cos cos cos cos cosi i i i i iy z z x x yγ − β + α − γ + β − α

                  	 = 	( ) ( ) ( )2 2 2 2 2 2 2 2 2cos cos cosi i i i i iy z x z y x+ α + + β + + γ 	 (iii)
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		  2 cos cos 2 cos cos 2 cos cosi i i i i iy z z x x y− γ β − α γ − β α

	 Using Equation (iii) in (ii), we obtain

	 I	=	 ( ) ( ) ( )2 2 2 2 2 2 2 2 2cos cos cosi i i i i i i i im y z m x z m y x+ α + + β + + γ∑ ∑ ∑

	     	 2 cos cos 2 cos cos 2 cos cosi i i i i i i i im x y m y z m z x− α β − β γ − γ α∑ ∑ ∑

Using the definitions of moments of inertia and products of inertia, the 
above can be expressed as
I = 2 2 2cos cos cos 2 cos cos 2 cos cos 2 cos cosxx yy zz xy yz zxI I I I I Iα + β + γ + α β + β γ + γ α

Using the theorem of parallel axes, the moment of inertia tensor disc 
about the axis through A (parallel to the axis through 0) is
	 IA	 =	 2

CMI Mr+

		  =	
2

2
1 0 0 1 0 0
0 1 0 0 1 0

4
0 0 2 0 0 1

mr Mr
   
   +   
      

	 (iv)

		  =	
2 1 0 0 4 0 0

0 1 0 0 4 0
4

0 0 2 0 0 4

mr
    
    +    
        

or	 IA	 =	
2 5 0 0

0 5 0
4

0 0 6

mr
 
 
 
  

	 (v)

In view of Equation (iv) and (v) the moment of inertia tensor of the 
disc and the mass point about the axis through A is

	 I	 =	 5

4
m

A
II =

	 	 =	
2 25 0 0 1 1 0

50 5 0 1 1 0
4 4

0 0 6 0 0 2

mr mr
−   

   + −   
      

		  =	
2 5 0 0 5 5 0

0 5 0 5 5 0
4

0 0 6 0 0 10

mr
 −    
    + −    
        
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or	 I	 =	
2 10 5 0

5 10 0
4

0 0 16

mr
− 

 − 
  

	 (b)	The frequency of the circular motion is

	 w	 =	
k

mr
	 (vi)

  ( ) ( )
2

1 2 1 2 ,
,

1, ,......, , ,......, ....
2!s o o s o k j k

k j kk j ko o

u uU q q q U q q q q q q
q q q

  ∂ ∂= + + +    ∂ ∂ ∂   
∑ ∑   

(vii)

In the above expansion, we assume that q0k = 0 and qk is the displacement 
from q0k = 0.

Using Equation (vi) in Equation (vii), we obtain

  	   ( )1 2, ,......, sU q q q  = ( )
2

1 2 ,
,

1, ,......,
2o o s o j k

j kj k o

uU q q q q q
q q

 ∂+   ∂ ∂ 
∑ 	 (viii)

Without loss of generality, we can set
	 U(q10, q20, ....., qs,0)	 = 	0	 (ix)

Hence, we get from Equation (viii)

	 U(q1, q2, ....., qs)	 =	
2

,

1
2 j k

j kj k o

u q q
q q

 ∂
 ∂ ∂ 

∑ 	 (x)

or	 U(q1, q2, ....., qs) 	=	
,

1
2 jk j k

j k
U q q∑

where	 Ujk 	= 	
2

j k o

V
q q

 ∂
  ∂ ∂ 

is constant depending upon the equilibrium values of qk′s, i.e., on qok′s.

Check Your Progress

	 11.	 What do you understand by the Eulerian angles?
	 12.	What do you understand by herpolhode and polhode?

2.9	 ANSWERS TO ‘CHECK YOUR 
PROGRESS’

	 1.	Legendre transformation refers to the mathematical method for 
changing the basis of the description of a system from one set of 
independent variables to another set of independent variables.
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	 2.	The relations given by the following equations are called the Legendre 
transformation relations for the change of basis from (x, y) to (u, y): 

		
	 3.	The Lagrangian function L that characterizes the system is, in general, 

a function of the generalized coordinates, the generalized velocities 
and time, i.e., L= L(q1, ....., qs, q1, ....., qs, t ) = L(q, q, t )

	 4.	The function H(q, p, t) given by the following equation is known as 
the Hamiltonian of the system. 

		
	 5.	Mathematically, the principle is stated as

		

		  The line integral  which has been denoted above by the symbol
		  S, is called the Hamilton’s principle function, or action integral, or 

simply the action during the time interval from t1 to t2.
	 6.	The principle states that of all possible paths along which the system 

may move from one point to another in its configuration space between 
two given time instants, say t1 and t2, which are consistent with the 
constraints imposed on the system, if any, the actual path which the 
system follows is the one for which the time integral of the Lagrangian 
of the system is an extremum (either maximum or minimum).

	 7.	 In most of the dynamical problems, the minimum condition for 
the action S is satisfied. For this reason, the principle is also called 
Hamilton’s principle of least action.	

	 8.	Consider a mechanical system of s degree of freedom. Let the system 
be described by generalized coordinates q1, ….., qs and conjugate 
momenta p1, ….., ps. Let f = f(q1, ....., qs, p1, ....., ps) = f(q, p) and g 
= g(q1, ....., qs, p1, .....,ps) = g(q, p) be two dynamical variables of the 
system.

		  The Lagrange bracket of f and g with respect to the basis (q, p) is written 
as { f, g}q, p and is defined as

		
	 9.	 [qi, qj] = 0 = [pi, pj]
		  [qi, pj] = dij
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	 10.	The quantity within the parenthesis on the right hand side of the 
following Equations (87) turns out to be of fundamental importance 
in the formal development of mechanics and is known as the Poisson 
bracket (PB) of F and H.

		
	 11.	They refer to the angles corresponding to three successive rotations 

of the space-fixed system performed in a particular sequence or order, 
such that at the end, the axes of the space-fixed system coincide with 
those of the body-fixed system.

	 12.	The curve traced out on the invariable plane by the point of contact 
with the ellipsoid is called herpolhode and the corresponding curve 
described on the ellipsoid is called polhode.

2.10	 SUMMARY	
	 •	Although the generalized velocities appear in the expression for L 

explicitly, they cannot be treated as independent variables because of 
being equal to the total time derivatives of the generalized coordinates.

	 •	The generalized momenta are derived variables defined in terms of the 
Lagrangian L as 

	 •	Every mechanical system possesses a characteristic function of 
coordinates, velocities and time called the Lagrangian of the system 
usually denoted by the symbol L.

	 •	Hamilton’s principle is concerned with the trajectory or the path which 
is followed by the system point.

		

2.11	 KEY TERMS	
	 •	 Legendre transformation: It refers to the mathematical method 

for changing the basis of the description of a system from one set of 
independent variables to another set of independent variables.

	 •	 Mechanics: The branch of science which deals with motion of objects 
under the action of forces, including the particular case in which a body 
continues at rest is called mechanics.

	 •	 Mechanical system: It is a system that manages power to complete a 
work that involves forces and movement. Here power means the rate 
of doing work or transferring heat.
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	 •	 Generalized coordinates: The coordinates in a state space that together 
absolutely describe a system are called generalized coordinates. If 
they are selected so as to be independent of each other, the number of 
independent generalized coordinates matches the number of degrees 
of freedom of the system.

	 •	 Angular momentum: The product of the moment of inertia and the 
angular velocity is known as angular momentum.

	 •	 Eulerian angles: They refer to the angles corresponding to three 
successive rotations of the space-fixed system performed in a particular 
sequence or order, such that at the end, the axes of the space-fixed 
system coincide with those of the body-fixed system.

2.12	 SELF-ASSESSMENT QUESTIONS AND 
EXERCISES	

SHORT ANSWER QUESTIONS

	 1.	Derive the Legendre transformation relations for the change of basis.
	 2.	Write about the Hamilton’s principle briefly.
	 3.	What do you understand by Hamilton’s canonical equations?
	 4.	State the properties of Lagrange brackets.

LONG ANSWER QUESTIONS

	 1.	Discuss Hamilton’s principle for a conservative system. Also state why 
it is called the principle of least action.

	 2.	Give an introduction to Hamilton’s principle and derive the Hamiltonian 
of the system.

	 3.	Give a detailed account of the Eulerian angles.
	 4.	Discuss torque free motion of a rigid body.
	 5.	 Explain motion of symmetric top under the action of gravity.

2.13	 FURTHER READING	
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UNIT 3	 HAMILTONIAN-JACOBI 
THEORY

Structure 
	 3.0	 Introduction
	 3.1	 Objectives
	 3.2	 Hamilton-Jacobi Equation for Hamilton’s Principle Function
	 3.2.1	 Abbreviated Action, or Hamilton’s Characteristic Function
	 3.3	 Harmonic Oscillator Problem Using Hamilton–Jacobi Method
	 3.3.1	 Separation of Variables in the Hamilton-Jacobi Equation: Action and 

Angle Variables
	 3.3.2	 Jacobi’s Identity
	 3.4	 Kepler’s Problem in Action and Angle Variables
	 3.5	 Answers to ‘Check Your Progress’
	 3.6	 Summary
	 3.7	 Key Terms
	 3.8	 Self-Assessment Questions and Exercises
	 3.9	 Further Reading

3.0	 INTRODUCTION
The Hamilton-Jacobi equation named for William Rowan Hamilton and 
Carl Gustav Jacob Jacobi, explains extremal geometry in generalizations 
of problems from the calculus of variations. It is an alternative formulation 
of classical mechanics, equivalent to other formulations such as Newton’s 
laws of motion, Lagrangian mechanics and Hamiltonian mechanics. It is 
a first-order partial non-linear differential equation, especially applicable 
in understanding conserved quantities for mechanical systems, which may 
be possible even when the mechanical problem itself cannot be solved 
completely. In this unit you will study characteristic function and Hamilton-
Jacobi equation. You will learn Hamilton’s principal function, Abbreviated 
action and solution of mechanical problems using Hamilton-Jacobi method. 
Application of action angle variable and Jacobi identity is also explained.

3.1	 OBJECTIVES
After going through this unit, you will be able to:
	 •	Explain characteristic function and Hamilton-Jacobi equation
	 •	Describe Hamilton’s principal function and Hamilton’s principal 

function
	 •	Solve mechanical problems using Hamilton-Jacobi method and 

calculate motion of a body falling freely under gravity
	 •	Describe action and angle variables, application of action angle variable 

to obtain the frequency of a linear harmonic oscillator
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	 •	Explain the Jacobi’s identity
	 •	Discuss the Kepler’s problem in action and angle variables

3.2	 HAMILTON-JACOBI EQUATION FOR 
HAMILTON’S PRINCIPLE FUNCTION

Consider a mechanical system of s degrees of freedom described by the 
generalized coordinates q1, ....., qs and generalized momenta p1, ....., ps. The 
Hamiltonian for the system which involves time explicitly is
                         H = H(q, p, t) = H(q1, ....., qs, p1, ....., ps, t)	 (3.1)

The Hamilton’s canonical equations are

	 kqi 	=	 ; and k
k k

H Hq
p q

∂ ∂= −
∂ ∂

i 	 (3.2)

Let us affect a canonical transformation from the old set of variables {q, p} 
to a new set {Q, P}. Let F be the generating function of the transformation. If 
K represents the transformed Hamiltonian then the following equations hold

	 kQ
i

	=	 ; k
k k

K KP
P Q

∂ ∂= −
∂ ∂

i
	 (3.3)

and	 K	=	 FH
t

∂+
∂

	 (3.4)

Let us consider the above transformation to be such that the new 
variables are constants of motion (Qk = Constant, Pk = Constant), so that

	 kQ
i

	= 0 and 0kP =
i

	 (3.5)

According to Equation (3.3) and (3.5), we then get

	
k

K
P

∂
∂

	= 	0 and 0
k

K
Q

∂ =
∂

	 (3.6)

Equation (3.6) allows us to take the transformed Hamiltonian K 
identically equal to zero. Equation (3.4) then demands the generating function 
F to be such that

	 ( ), , FH q p t
t

∂+
∂

	= 	0	 (3.7)

Let us choose the generating function F to be a function of old 
coordinates, new constant momenta and time, i.e.,
	 F	= 	F(q, P, t)	 (3.8)

From Equation F1(q, q, t) = F2(q, p, t) – SPk Qk, we then have

	 pk	= 	
k

F
q

∂
∂

	 (3.9)
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In view of Equation (3.9) we may rewrite Equation (3.7) as 

	 1
1

, ....., , , ....., ,s
s

F F FH q q t
q q t

 ∂ ∂ ∂+ ∂ ∂ ∂ 
= 	0	 (3.10)

Equation (3.10) is referred to as the Hamilton–Jacobi equation. We 
may note that the Hamilton–Jacobi equation is a first-order partial differential 
equation in (s + 1) variables, namely, q1, ....., qs, t.

By convention, solution of Equation (3.10) is denoted by S and is called 
the Hamilton’s Principal Function. 

The complete solution of Equation (3.10) involves (s + 1) constants of 
integration. We may note that if we add a constant, say a, to the solution S, so 
that the solution may be written as S + a then we find that such a replacement 
of the solution satisfies Equation (3.10). Hence, we find that out of (s + 1) 
constants mentioned above, one is an additive constant. We may thus write 
the general solution of the Hamilton–Jacobi equation as
	 S	=	 S(q1, ....., qs, a1, ....., as, t) + a	 (3.11)

In the above, a1, a2, ....., as are the s independent, non-additive 
constants of integration. Clearly, solution of the Hamilton–Jacobi equation 
S is a function of s coordinates, s constants and time. This is precisely the 
same description as that of the generating function F considered above. The 
constants can be chosen as the new momenta which are constants of motion. 
Thus,
	 ak=	pk; (k = 1, ....., s)	 (3.12)

The new momenta which are constants can conveniently be chosen to 
be the momentum values p01, p02, ....., p0s at the initial time t = t0.

Transformation equations given by Equation (3.9) can be rewritten as

	 pk	=	
k

S
q

∂
∂

	 (3.13)

Equation (3.13) can be used to determine the relations between ak, pk 
and qk at t = t0.

We also have the transformation equation

	 Qk	= k
k k

S S
P

∂ ∂= = β
∂ ∂α

 (say);      k = 1, ....., s	 (3.14)

We may choose the values of bk as the momenta and they can also be 
expressed in terms of the initial values of the coordinates, namely, q10, ....., q50.

We may write Equation (3.14) also as
	 qk	=	 qk(ak, bk, t)	 (3.15)

Equation (3.15) along with the relations
	 pk	=	 pk(ak, bk, t)	 (3.16)

gives the solutions of the problem.
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Identification of the Solution of Hamilton–Jacobi Equation 
From Equation (3.8) we get

	 dF
dt

	=	 k k
k k

F F Fq p
q p t

∂ ∂ ∂+ +
∂ ∂ ∂∑ ∑i i

Using Equation (3.5) and (3.9) in the above, we obtain

	 dF
dt

	=	 k k
Fp q
t

∂+
∂∑ � 	 (3.17)

Equation (3.7) when used in Equation (3.17) gives

	 dF
dt

	= 	 ( ), ,k kp q H q p t−∑ �

or	 dF
dt

	= 	L (q, q, t)	 (3.18)

where , ,L q q t 
 
 

i  = ( ), ,k kp q H q p t−∑ i , is the Lagrangian of the system. 

Integration of Equation (3.18) over time leads to

	 dF dt
dt∫ 	=	 , ,L q q t 

 
 ∫ i

or	 F	=	 S + constant	 (3.19)
In the above, S represents the familiar action of the system. We thus 

identify the solution of the Hamilton–Jacobi equation, i.e., the Hamilton’s 
principal function as the indefinite time integral of the Lagrangian of the 
system, plus a constant.

We may now summarize the method for solving a mechanical problem 
using Hamilton–Jacobi method. The steps are:
	 (i)	Construct the Hamiltonian H for the system in terms of old 

coordinates q, old momenta p and time t.
	 (ii)	Write the Hamilton–Jacobi equation and find its complete integral 

S, i.e., the Hamilton’s principal function.
	 (iii)	Differentiate S with respect to s arbitrary constants ak and equate 

the derivatives to the new constants bk to obtain s algebraic 
equations, such as

	
k

S∂
∂α

	= 	bk	 (3.20)

	 (iv)	Solve the s equations thus obtained to get the old coordinates qk 
as functions of time t and the 2s arbitrary constants

	  qk	= 	qk(a1, a2, ....., as, b1, b2, ......, bs, t) 	 (3.21)
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	 (v)	Obtain the old momenta according to

	 pk	= 	
k

S
q

∂
∂

	 (3.22)

	 (vi)	Use Equation (3.21) and their time derivatives to determine 2s 
initial conditions of the given mechanical system.

3.2.1	 Abbreviated Action, or Hamilton’s Characteristic Function 

Consider a conservative mechanical system. The Hamiltonian of the 
system then has no explicit dependence on time and is a constant of motion 
representing the total energy E of the system. We have

	 S	= 	
2 2

1 1
k kLdt p dq Hdt = − ∑∫ ∫

		 =	
2 2

1 1
k kp dq Hdt−∑∫ ∫

or	       S	=	 S0 – E(t2 – t1)	 (3.23)

where	 S0	=	
2

1
k kp dq∑∫ 	 (3.24)

Substituting Equation (3.23) in the Hamilton–Jacobi equation given 
by Equation (3.10), we obtain

          	           1
1

, ....., , , ....., 0o o
s

s

S S
E H q q

q q
 ∂ ∂

− + = ∂ ∂ 
	 (3.25)

The solution S0 of the time-independent partial differential Equation 
(3.25) is called abbreviated action, or Hamilton’s characteristic function. 

3.3	 HARMONIC OSCILLATOR PROBLEM 
USING HAMILTON–JACOBI METHOD

A.  One-dimensional Harmonic Oscillator Problem

Consider a one-dimensional harmonic oscillator of mass m. Let q and p be 
respectively the coordinate and momentum of the oscillator at any instant 
of time t.

The Hamiltonian function H of the oscillator is

	 H	= 	
2

2 21
2 2
p m q
m

+ ω 	 (3.26)

where w = ,k k
m

 being the force constant of the oscillator.
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The Hamilton–Jacobi equation is given by

	 H(q, p) + S
t

∂
∂

	=	 0

Using p = S
q

∂
∂

, the above equation becomes

	
2

2 21 1
2 2

S Sm q
m q t

 ∂ ∂+ ω + ∂ ∂ 
	= 	0	 (3.27)

We note that in the above equation, the only term that involves an 

explicit dependence of S on t is the term S
t

∂
∂

. We may write the solution of 

Equation (3.27) in the form
	 S(q, a, t)	=	 W(q, a) – at	 (3.28)
where a is a constant of integration.

From Equation (3.28), we get

	 S
q

∂
∂

	=	 W
q

∂
∂

and	 S
t

∂
∂

	= 	– a

Substituting the above in Equation (3.27), we get

	
2

2 21 1
2 2

W m q
m q

 ∂ + ω ∂ 
	= a

or	
2

W
q

 ∂
 ∂ 

	=	 2 212 2
2

m m m qα − × ω

or	                   W
q

∂
∂

	=	 2 2 2
2

1 22
2

m m q m q
m

α   α − ω = ω −   ω   

Integrating the above gives

	 W	= 	 2
2

2m q dq
m

α ω − ω ∫ 	 (3.29)

Using Equation (3.29), the solution given by Equation (3.28) takes 
the form

	   S 	= 	 2
2

2m q dq t
m

α ω − − α ω ∫ 	 (3.30)

We have the transformation equations

	 P	=	 andS S
q

∂ ∂=
∂ ∂

β
α

	 (3.31)
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Use of Equation (3.30) yields

	 p	=	
1
22

2
2m q

m
α ω − ω 

	 (3.32)

and	 b	=	
2

2

1
2

dq t
q

m

−
ω α −

ω

∫

or	 b + t	=	
2

11 cos
2

mq− ω−
ω α

The above gives

	 q	=	 ( )2
2 cos t

m
α ω + β
ω

	 (3.33)

The constants a and b in Equation (3.33) may be related to the initial 
values q0 and p0 of coordinate and momentum of the oscillator, respectively. 
Let at t = 0, the particle be at rest at a position displaced by q0 from the 
equilibrium position. We then get from Equation (3.27)

                             	
o

S
q

 ∂
 ∂ 

	=	

1
2 2 2

2
2

o
o

m qp m
 ω

= α −   

Since p0 = 0, the above result gives

                                   	 a	=	
2 2

2
om qω 	 (3.34)

From Equation (3.26) we find that a given by Equation (3.34) is the 
initial total energy of the system. Equation (3.34) gives

	 q0	 =	 2
2

m
α
ω

	 (3.35)

Using Equation (3.35) in Equation (3.33), we get
	 q	=	 q0 cos w(t + b)	 (3.36)

Further, since q = q0 at t = 0, according to Equation (3.36), we get
	 cos b	=	 1 or b = 0

We thus get
	 q	=	 q0 cos wt	 (3.37)

Conclusion

The Hamilton’s principal function S affects a contact transformation which 
transforms the oscillator with a canonical momentum a = H = Constant total 
energy and a coordinate b   which is zero at t = 0. We may write Hamilton’s 
principal function of the oscillator as
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	           S	=	
2 2

2 2

2
o

o
m q tm q q dq ω

ω − −∫ 	

[by using Equation (3.34) in Equation (3.30)]
Using the value of q from Equation (3.36), the above gives

	       S	=	 2 2 2 1sin
2om q t dt ω ω −  ∫ 	 (3.38)

It is now easy to show that S given by Equation (3.38) is the time 
integral of the Lagrangian (L) of the oscillator. We have
	 L	=	 Kinetic energy – Potential energy

		 =	 2 2 21 1
2 2

m q m q− ωi

Substituting from Equation (3.36), the above gives

	   L	=	
2 2

2 2sin cos
2

om q t tω  ω − ω 

		 =	
2 2

2 2sin 1 sin
2

om q t tω  ω − + ω 

or	 L	= 	
2 2

22sin 1
2

om q tω  ω − 

     Clearly, 	  Ldt∫ 	=	 2 2 2 1sin
2om q t dt ω ω −  ∫

B. Motion of a Body Falling Freely under Gravity

Consider a body of mass m falling freely under gravity. At some instant of 
time t, let v be the velocity of the body and z be its height above the ground. 
The kinetic energy of the body is 

	   T	=	
2

21
2 2

pmv
m

=  

( p being the linear momentum of the body)
The potential energy (gravitational potential energy) is

	 V	= 	mgz
The Hamiltonian which represents the total energy E of the body is thus

	 H	=	
2

2
p mgz E
m

+ = 	 (3.39)
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We may write H in the usual notation of S as

	    H	=	
21

2
S mgz

m z
∂  + ∂ 

	 (3.40)

where S is the Hamilton’s principle function.
Hamilton–Jacobi equation is given by

	    SH
t

∂+
∂

	=	 0

Using Equation (3.40), the above gives

	
21

2
S Smgz

m z t
∂ ∂  + + ∂ ∂ 

	= 	0	 (3.41)

The general solution of Equation (3.41) can be written as
	 S(z, a, t)	=	 W(z, a) – at	 (3.42)

From the above, we get

                    
S W
z z
S
t

∂ ∂ = ∂ ∂
 ∂ = −α ∂

	 S
t

∂
∂

	=	 – a	 (3.43)

Using Equation (3.43), Equation (3.41) becomes

	
21

2
W mgz

m z
∂  + − α ∂ 

	= 0

or	 W
z

∂ 
 ∂ 

	=	 ( )
1
22m mgzα −  

Integrating over the variable z, we obtain

	 W	=	 ( )
1
22m mgz dz Aα − +  ∫ 	 (3.44)

where A is the constant of integration.
Using the result given by Equation (3.44) in Equation (3.42), we get

	   S	=	 ( )
1
22m mgz dz C tα − + − α  ∫ 	 (3.45)

We obtain from the above

	 S∂
∂α

	=	 2
2
m dz t

mgz
− = β

α −∫
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or	 b + t	= 	 ( )
( )

1
222 2

2
mgzmgzm

mg m g
α −α −

= −
−

or	 ( )
1
2mgzα − 	= 	 ( )

2
mg t− β +

or	    a – mgz	= 	 ( )22

2
mg tβ +

or	             mgz 	= 	 ( )
2

2

2
mg tα − β +

or	               z 	= 	 ( )2

2
g t

mg
α − β + 	 (3.46)

Let z = z0 and p = 0, initially at t = 0.
Then we have

	           p 	= 	 ( )2 0o
W m mgz
z

∂ = α − =
∂

The above gives
	 a	= 	mgz0	 (3.47)

Using Equation (3.47) in Equation (3.46), we obtain

	 z	= 	 ( )2

2
omgz g t

mg
− β +

or	 z	= 	 ( )2

2o
gz t− β + 	

Since at t = 0, z = z0 we obtain

	 z0	= 	 2

2o
gz − β

The above gives b = 0.
Hence, we obtain

	 z	=	 21
2oz gt−

This is the equation of motion for the freely falling body.
Illustrative Examples

Example 3.1: A single particle is moving under the Hamiltonian H = 
2

2
p .

	 (a)	Solve the Hamilton-Jacobi equation for the generating function s(q, d, 
t). 

	 (b)	 If b and a are the transformed coordinate and momentum respectively, 
find the canonical transformation q = q(b, a) and p = p(b, a)
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Solution:

(a)  We have the Hamilton-Jacobi equation as

	 s
t

∂
∂

 + H(q, p, t)	= 	0	 (i)

where	 p	= 	 s
q

∂
∂

	 (ii)

In the problem, H = 
2

2
p  and hence using Equation (ii) we obtain and 

according to Equation (i)

	
2

1
2

s s
t q

 ∂ ∂+  ∂ ∂ 
	= 	0	 (iii)

As H does not depend on q and t, the two terms on the left hand side of 
Equation (iii) can be set equal to, say, – r and + r where r is a function of p.

We then get
	 S	=	 2γ  q – gt	 (iv)

Setting a = 2γ  we get the generating function

	 S	=	 21
2

q tα − α 	 (v)

(b)  Considering the constant a to be the new momentum P we have the 
transformation equations

	 p	=	 s
q

∂
∂

 = a	 (vi)

	 Q	=	 s s
P

∂ ∂
=

∂ ∂α
 = q – at	 (vii)

Example 3.2: The Hamiltonian of a system is given by

	 H	=	
2

2
p

q
µ

−

Solve the corresponding Hamilton-Jacobi equation.

Solution:

Given	 H	=	
2

2
p

q
µ

− 	 (i)

The Hamilton-Jacobi equation for the system is

	 s
t

∂
∂

 + H(q, p, t)	=	 0	 (ii)
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We have	 p	=	 s
q

∂
∂

So that using Equation (i) in Equation (ii) we get

	
2

1
2

s s
t q q

 ∂ ∂ µ
+ − ∂  ∂ 

	= 	0	 (iii)

We may set
	 S	=	 f(t) + g(q)	 (iv)
where f(t) is a function of only t while g(q) is a function of only q.
Using Equation (iv), Equation (iii) becomes

	
2

( ) 1 ( )
2

df t dg q
dt dq q

  µ
+ −  

	=	 0

or	 ( )df t
dt

	=	
2

1 ( )
2

dg q
q dq

 µ
−   

	 (v)

The L.H.S. of Equation (v) depends only on time while the R.H.S. 
depends only on q. Hence,  we may set both sides equal to a constant say µ

α

. Thus we get

	 ( )df t
dt

	=	 µ
α

Integrating, we get
	 f(t)	=	 µ

α

Also	
2

1 ( )
2

dg q
q dq

 µ
−   

	= 	 µ
α

or	
2

1 ( )
2

dg q
dq

 
  

	= 	
q
µ µ

−
α

or	 ( )dg q
dq

	=	 2
q

 µ µ
−  α

Carrying out the integration we get

	 g(q)	=	 2µα  arc 
1/22 ( )sin q q q µ α − +   α α  

Then the solution of the Hamilton-Jacobi equation is

	 S	= 	 22tµ
+ µ

α
 arc 

1/22 ( )sin q q q µ α − +   α α  
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Example 3.3: Write down the Hamilton-Jacobi equation for a three-
dimensional harmonic oscillator and obtain the solution of the equation.
Solution:
The Hamiltonian function of the three-dimensional oscillator can be written as

	 H	=	 2 2 2 2 2 2
1 2 3 1 1 2 2 3 3

1 1 1 1( )
2 2 2 2

p p p p q k q k q
m

+ + + + + 	 (i)

where we have assumed the spring constants k1, k2 and k3 along the three 
cartesian axes (referred in the above by the suffixes 1, 2, 3) to be different.

Since the oscillator is a conservative system, the Hamiltonian H does 
not depend on time explicitly and instead it is constant of motion. Thus
	 H	= 	E(say)	 (ii)

The Hamilton’s principal function S is thus
	 S(qj, Pj, t)	=	 W(qj, pj) – Et	 (iii)

We have	 pj	= 	
j

W
q

∂
∂

	 (iv)

Using the above we may write the Hamiltonian given by Equation (i) as

	 H	= 	
23

2

1

1 1
2 2 j j

jj

W k q E
m q=

  ∂ + =  ∂  
∑

The above can be alternatively written as

	
23

2

1
j j

jj

W mk q
q=

  ∂ + ⋅  ∂  
∑ 	= 	2mE	 (v)

Equation (3.5) is the Hamilton-Jacobi equation for the oscillator. It can 
be solved using the method of separation of variables according to which 
we may write
	 W 	= 	W1(q1) + W2(q2) + W3(q3)	 (vi)

Substituting Equation (vi) in Equation (v) we get three equations.

	
2

21
1 1

1

W
mk q

q
 ∂

+ ∂ 
	=	 2ma1

	
2

22
2 2

2

W
mk q

q
 ∂

+ ∂ 
	=	 2ma2	 (vii)

	
2

23
3 3

3

W
mk q

q
 ∂

+ ∂ 
	=	 2ma3

In the above
	 a1 + a2 + a3	= 	E	 (viii)
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On integrating Equation (vii) we obtain
	 W1	=	 2

1 1 1 1(2 )m mk q dqα −∫
	 W2	=	 2

2 2 2 2(2 )m mk q dqα −∫ 	 (ix)

	 W3	=	 2 2
3 3 3 3(2 )m mk q dqα −∫

The constants a1, a2, a3 are designated as the new momenta P1, P2, P3 
respectively. The new constant coordinates are given by

	 Q1	=	 1 1 1

1 1 2
1 1 1

2 1
2

W W dqm
P

k q

∂ ∂
= =

∂ ∂α
α −

∫

	 Q2	=	 2 2 2

2 2 2
2 2 2

2 1
2

W W dqm
P

k q

∂ ∂
= =

∂ ∂α
α −

∫ 	 (x)

	 Q3	=	 3 3 3

3 3 2
3 3 3

2 1
2

W W dqm
P

k q

∂ ∂
= =

∂ ∂α
α −

∫

For the conservative system
	 H	=	 K = E = a1 + a2 + a3	 (xi)

The equations of motion in the new coordinates are

	 1θ 	=	
1 1

1k E
P

∂ ∂
= =

∂ ∂α

	 2θ 	=	
2 2

1k E
P

∂ ∂
= =

∂ ∂α
	 (xii)

	 2θ 	=	
3 3

1k E
P

∂ ∂
= =

∂ ∂α
 

The above equations on integration give
	 Q1	= 	t + b1

	 Q2	=	 t + b2	 (xiii)
	 Q3	=	 t + b3

From Equation (x) and (xiii) we obtain

	 t + b1	=	 1

2
1 1 1

2 1
2

dqm

k qα −
∫

or	 1
21 1 1

1

2
1

2

dqm

k qα
−

α

∫ 	=	 t + b1

or	 1 1
1

1 1
sin

2
km q

k
−

α
	=	 t + b1
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or	 q1	=	 1
1 12

1

2
sin ( )w t

mw
α

+ β 	 (xiv)

Similarly, we obtain

	 q2	=	 2
2 22

2

2
sin ( )w t

mw
α

+ β 	 (xv)

	 q3	=	 3
3 32

3

2
sin ( )w t

mw
α

+ β 	 (xvi)

In the above

	 wj	=	 ,jk
m

 j = 1, 2, 3	 (xvii)

Example 3.4: Using Hamilton-Jacobi method discuss the motion of a particles 
of mass m  moving in a uniform gravitational field along the z-axis.
Solution:
Let at any instant of time t, px, py, pz be the components of momentum of 
the particle along the x, y and z axes, respectively. We then have the kinetic 
energy of the particle as.

	 T	=	 2 2 21 ( )
2 x y zp p p

m
+ +

If the z-coordinate of the particle at the instant t be z, is
	 V	=	 mgz

Thus, the Hamiltonian of the particle is

	 H	=	 2 2 21 ( )
2 x y zp p p mgz

m
+ + + 	 (i)

The Hamilton-Jacobi equation for the particle is thus

	
22 21

2
o o os s s

mgz
m x y z

 ∂ ∂ ∂     + + +       ∂  ∂  ∂  
	 =	 E	 (ii)

Let us set
	 s0	=	 S1(x) + S2(y) + S3(z)	 (iii)

Substituting Equation (iii) in Equation (ii) we get

	
2 22

31 21
2

ss s
mgz

m x y z

 ∂ ∂ ∂    + + +       ∂  ∂  ∂  
	 =	 E

or           	
2

2 2 3
1 2

1
2

s
mgz

m z

 ∂ α + α + +   ∂  
	 =	 E	 (iv)

From (i) we find x and y to be the cyclic coordinates and hence

	 1s
x

∂
∂

	=	 a1 = Constant	
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	 2s
y

∂
∂

	=	 a2 = Constant	 (v)

We may write Equation (iv) as 

	     
2

2 2 3
1 2

s
z

∂ α + α +   ∂
	=	 2mE – 2m2gz

or	 zs
z

∂
∂

	=	 1/22 2 2
1 22 2mE m gz − − α − α 

Integrating the above we get

	 s3	=	 1/22 2 2
1 22 2mE m g z d dz − − α − ∫ 	 (vi)

Integrating Equation (v) we obtain
	 s1	=	 1 ,dxα∫  s2 = 2dyα∫ 	 (vii)

Substituting Equation (vi) and (vii) in Equation (iii) we obtain
	 s0	=	 2 2 1/2

1 2 1 2[2 ( ) ]dx dy m E mgz dzα + α + − − α − α∫ ∫ ∫ 	 (viii)

At t = t0, x0, y0, z0 be the coordinates of the particle, we get the Hamilton-
Jacobi function for the particle as

	 s	=	
0

0

t

t

s E dt− ∫

or	     S=
0 0 0

1/22 2
1 2 1 2 02 ( ) ( )

yx z

x y z

dx dy m E mgz d dz E t t α + α + − − α − − − ∫ ∫ ∫ 	 (ix)

We now have

	 b1	=	 2 3
1 2 3

, ,s s s s
E

∂ ∂ ∂ ∂
β = β = =

∂α ∂α ∂α ∂

We thus get

	 b1	=	
0 0

2 2 1/2
1 1 1 2

1
[2 ( ) ]

x z

x z

dx m E mgz dz−∂
α + α − − α − α

∂α ∫ ∫

or	 b1	=	
0

2 2 1/2
0 1 1 2[2 ( ) ]

z

z

x x m E mgz dz−− − α − − α − α∫ 	 (x)

Similarly,
	 b2	=	

0

2 2 1/2
0 2 1 2[2 ( ) ]

z

z

y y m E mgz dz−− − α − − α − α∫ 	 (xi)

	 b3	=	 t – t0 = 
0

2 2 1/2
1 2[2 ( ) ]

z

z

m m E mgz dz−− − α − α∫ 	 (xii)

Using the initial values at t = t0 we get
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	 b1	=	 0	 (xiii)
	 b2	=	 0	 (xiv)

We may hence write

	 x – x0	=	 1 0
1 ( )t t
m

α − 	 (xv)

	 y – y0	=	 2 0
1 ( )t t
m

α − 	 (xvi)

	 z – z0	=	
1/22 2 20

0 1 2 02 ( ) ( )
2

t t gm E mgz t t
m
− − − α − α − −    (xvii)

Equation (xvii) can be written as

	 z	=	 1/22 2 2
0 0 1 2 0 0

1( ) 2 ( ) ( )
2
g t t m E mgz t t z

m
 − − + − α − α − + 

The above shows that the z-coordinate of the particle varies with time 
in a parabolic manner.
Example 3.5: Solve the problem of the motion of particle of mass m moving 
under a central force using Hamilton-Jacobi method.
Solution:
We know that such a motion takes place in a plane and is hence a two-
dimensional motion.  The convenient generalized coordinates are the polar 
coordinates r and q in terms of which the Hamiltonian of the particle is 
given by

	 H	=	 2 2
2

1 1 ( )
2 rp p U r

m r θ
 + +  

	 (i)

Where U(r) is potential corresponding to the central force, pr and pq are the 
momenta  congugate to the coordinates r and q respectively. We may write
	 s	=	 s0 – Et (since the system is conservative)	(ii)
The Hamilton-Jacobi equation for the problem is then

    
2 2

0 0
2

1 1 ( ) ( )
2 2

s s
U r U r E

m r mr
∂ ∂   + + + −      ∂ ∂θ

 = 0	 (iii)

Using the method of separation of variables and noting that q is cyclic, 
we can obtain s0 by integrating Equation (iii). The s0 thus obtained when 
substituted in Equation (ii) gives

	 s	=	 { }
2

1/2
2[2 ( ) ]

p
p m E U r d Et

r
θ

θ + θ + − − θ −∫ 	 (iv)

For the problem we have
	 a1	=	 E  and  a2 = pq.	 (v)

	 b1	=	 { }
1/22

2
1

2 ( )
ps S m m E U r dr t

E r

−
θ ∂ ∂

= = − − − ∂α ∂   
∫
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	 b2	=	 { }
1

2 2

2 2
2

2 ( )
p ps s m E U r

p r r

−
θ θ

θ

 ∂ ∂
= = θ − − − ∂α ∂   

∫ 	(vi)

Both b1 and b2 are constants. Hence we may write Equation (v) and 
(vi) alternatively as

	 t	=	 { }
1/22

22 ( )
p

m m E U r
r

−
θ 

− − 
  

∫  + constant	 (vii)

	 q	=	 { }
1/22

2 22 ( )
p p

m E U r
r r

−
θ θ 

− − 
  

∫  + constant	 (viii)

The above equations give the dependence of r on t and q and hence 
give the path of motion of the particle.

3.3.1	 Separation of Variables in the Hamilton-Jacobi Equation : 
Action and Angle Variables

Let us consider a periodic system having one degree of freedom. Let q be the 
generalized coordinate and p the generalized momentum which describe the 
system. Considering the system to be conservative we have the Hamiltonian 
of the system given by

	 H	=	 H(  q, p) = a(constant)	 (3.48)
According to the above, the momentum p for the system is a function 

of q and the constant a, i.e.,
	 p	=	 p (q, a)

A knowledge of the above function gives the trajectory of the system 
in its two-dimensional phase space.

A practical example of such a conservative one-dimensional system is 
a linear harmonic oscillator for which p is given by Equation (3.32)

	 p	=	
1
22

2
2m q

m
α ω − ω 

or	 p2 	= 	
2 2

2 2 2
2
2m m q

m
ω α − ω
ω

or	 p2 	= 	2ma – m2w2q2	 (3.49)
The above can be written as

	
2 2 2 2

2 2
p m q
m m

ω+
α α

	= 	1

or	
2 2

2
22

p q
m

m

+
αα  

 ω 

	= 	1	 (3.50)
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Clearly, the representative point in the phase space of the oscillator 
traces an ellipse as shown in the Fig. 3.1.     

2a

mw
2

p

q

2m�

Fig. 3.1

We now introduce a new variable J for the oscillator according to

	 J	=	 pdq∫� 	 (3.51)

where the integration is taken over one period round the ellipse. J has 
the dimensions of angular momentum (moment of linear momentum) and is 
called the phase integral or the action variable for the oscillator.

Substituting for p from Equation (3.49) in Equation (3.51) we get

	 J	=	 2 2 22m m q dqα − ω∫�
The above yields J as a function of a (because q is integrated out) or 

the Hamiltonian H, i.e.,
	 J	=	 J(a) = J(H)	 (3.52)

Alternatively, we obtain a or H as a function J
	 a	=	 H = H(J)	 (3.53)

The Hamilton’s characteristic function S0 can be written as
	 S0	=	 S0(q, J)	 (3.54)

The generalized coordinate conjugate to J is called the angle variable 
and is defined by the transformation equation

	 w	=	 o

J
∂δ
∂

	 (3.55)

The other transformation equation which gives p is

	 p	=	 o

q
∂δ
∂

	 (3.56)
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We thus get the equation of motion for the angle variable to be

	 w� 	= 	 ( ) ( )H J
J

J
∂

= ν
∂

	 (3.57)

where n (J) is a constant function of the action variable J only.
We may write the solution of Equation (57) as

	 w	= 	vt + b	 (3.58)
where b is a constant. We find the angle variable to vary linearly with time.

If Dw be the change in the variable w as q undergoes a change of one 
cycle, we get

	 Dw	=	 W dq
q

∂
∂∫�

or	 Dw	= 	
2

o odq dq
q J q J

∂δ ∂ δ∂ =
∂ ∂ ∂ ∂∫ ∫� �

or	 Dw	=	 od dq
dJ q

∂δ
∂∫�  (J being independent of q)  (3.59)

Using Equation (3.56) in the above, we obtain

	                    Dw = 1d dJpdq
dJ dJ

= =∫�  (using Equation(51))	 (3.60)

If T be the time required for q to complete one cycle then according 
to Equation (3.58) we get
	 w	= 	vt	 (3.61)

In view of Equation (3.61), Equation (3.60) gives
	 vt 	= 	1

or	 T	= 	 1
ν

	 (3.62)

It is clear from the above that since T represents the time period for 
one cycle q, v must represent the frequency, i.e., v gives the number of cycles 
of q in unit time.

Since v has the dimensions of frequency, according to Equation (3.58), 
w must have the dimension of angle.

We observe that use of action angle variables in periodic conservative 
mechanical systems provides simplified method of obtaining time period, or 
frequency of motion without requiring any detailed treatment. 
Application of Action Angle Variable to Obtain the Frequency of a Linear 
Harmonic Oscillator
Consider the mechanical problem of a one-dimensional harmonic oscillator. 
The action variable J for the oscillator is given by

	 J	= 	 pdq∫�
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Using p given by Equation (3.32), the above gives

	 J	= 	 2 2 22m m q dqα − ω∫� 	 (3.63)

where a = H = E = Total energy of the system and w = k
m

 being the force 

constant.
To evaluate the integral in Equation (3.63), let us define a variable q as

	 q	= 	 2
2 sin

m
α θ
ω

	 (3.64)

From Equation (3.64) and (3.63) we get

	 J	=	
2

2 2 2
2 2

0

2 22 sin cosm m d
m m

π α αα − ω θ × θ θ
ω ω∫

	 J	=	 ( )
2

2
2

0

22 1 sin cosm d
m

π αα − θ θ θ
ω∫

or		 =	
2

2
2

0

22 cos cosm d
m

π αα θ θ θ
ω∫

		 =	 ( )
2 2

2 2

0 0

2 cos 1 cosd d
π πα αθ θ = + θ θ

ω ω∫ ∫

or	 J	=	
22

0

sin2
2

π  α θ  π +  ω     

or	 J	=	 2 2 Eπα π=
ω ω

	 (3.65)

The above gives 
	 a	=	 H = 

2
Jω
π

	 (3.66)

Using Equation (3.57), we get the frequency of the oscillator to be

	 v	=	 H
J

∂
∂

or	 v	=	 1
2 2 2

J k
J m
∂ ω ω  = = ∂ π π π 

3.3.2	 Jacobi’s Identity

If f, g and k are any three functions of the coordinates (q’s) and the momenta 
(p’s) describing a mechanical system, then the following relation holds
	 [f,[g, k]] + [g, [k, f]] + [k, [f, g]]	 =	 0	 (3.67)
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The relation expressed in Equation (3.67) is known as Jacobi’s identity.
Proof: Using the definition and properties of Poisson bracket we get

	 [f, [g, k]] – [g, [f, k]]	=	 ,
j j j jj

g k g kf
q p p q

  ∂ ∂ ∂ ∂−   ∂ ∂ ∂ ∂   
∑ 			

	  ,
j j j jj

f k f kg
q p p q

  ∂ ∂ ∂ ∂− −   ∂ ∂ ∂ ∂   
∑ 	 (3.68)

Let us put

	
j jj

g k
q p

∂ ∂
∂ ∂∑ 	=	 a 

	
j jj

g k
p q

∂ ∂
∂ ∂∑ 	=	 b

	
j jj

f k
q p

∂ ∂
∂ ∂∑ 	=	 c

	 (3.69)

	
j jj

f k
p q

∂ ∂
∂ ∂∑ 	=	 d

Using Equation (3.69), we may write Equation (3.68) as
	 [ ] [ ], , , ,f g k g f k   −    	=	 [  f, (a – b)] – [g, (c – d)]

		 =	 [  f, a] – [  f, b] – [ g, c] + [ g, d]

		 =	 , ,
j j j jj j

g k g kf f
q p p q

      ∂ ∂ ∂ ∂−         ∂ ∂ ∂ ∂         
∑ ∑  

			   , ,
j j j jj j

f k f kg g
q p p q

      ∂ ∂ ∂ ∂− +         ∂ ∂ ∂ ∂         
∑ ∑

		 =	 , ,
j j j jj j j j

g k k gf f
q p p q

   ∂ ∂ ∂ ∂+   
∂ ∂ ∂ ∂      

∑ ∑ ∑ ∑

			   , ,
j j j jj j j j

g k k gf f
p q q p

   ∂ ∂ ∂ ∂− −   
∂ ∂ ∂ ∂      

∑ ∑ ∑ ∑

			   – , ,
j j j jj j j j

f k k fg g
q p p q

   ∂ ∂ ∂ ∂−   
∂ ∂ ∂ ∂      

∑ ∑ ∑ ∑

			   + , ,
j j j jj j j j

f k k fg g
p q q p

   ∂ ∂ ∂ ∂+   
∂ ∂ ∂ ∂      

∑ ∑ ∑ ∑

	 = 	 , , , ,
j j j j j ji

k f g k f gg f g f
q p p p q q

           ∂ ∂ ∂ ∂ ∂ ∂    + + +           ∂ ∂ ∂ ∂ ∂ ∂                   
∑
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      	      + , , , ,
j j j j j j j ji

g k g k f k f kf f g g
q p p q q p p q

        ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ − − +        ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂                
∑     (3.70)

		  [ ],f g
x

∂
∂

 = , ,f gg f
x x

∂ ∂   +   ∂ ∂   
	 (3.71)

Using Equation(3.71) in Equation(3.70), we get

	 [  f, [ g, k]] – [ g, [  f, k]]	=	 [ ] [ ], ,
j j j jj

k kf g f g
q p p q

 ∂ ∂ ∂ ∂ − + ∂ ∂ ∂ ∂  
∑

(the last four terms on the RHS of Equation (3.70) on expansion cancel 
each other out)
or		  [ ] [ ] [ ], , , , , ,f g k g f k k f g     − = −     

or		  [ ] [ ] [ ], , , , , , 0f g k g f k k f g     − + =     

or		  [ ] [ ] [ ], , , , , , 0f g k g f k k f g     + + =     

The above is the Jacobi’s identity.
Jacobi’s identity is helpful in finding the constants or integrals of 

motion for a system.

3.4	 KEPLER’S PROBLEM IN ACTION AND 
ANGLE VARIABLES

The Hamiltonian in terms of polar coordinate in the orbit’s plane can 
be written as

where α_θ is given as 

When E < 0, there will be oscillation in r and θ, along with rotation in ϕ. 
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Now,

For ϕ, the constant p_ϕ is taken to be periodic with period 2π. This 
refers to the which corresponds to returning of the particle at its original point.

Therefore,

where α_ϕ represents the angular momentum along z-axis. 
Similarly,

Take  , fraction of angular momentum.
From equation (3.80),

For sinθ0 =cos g, then pθ  = 0 at the turning points,  
Equation (3.81) can be written as

Substituting cosθ = sinγ  sinψ and u = tanψ in equation (3.82) and 
solving, we get 

Equation (3.84) implies that Jr = Jr (E, Jθ + Jϕ ) is a two-variable function 
for V = V(r) and for E = E(Jr,Jθ + Jϕ)
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This implies vθ = vϕ.	 (3.85)
That shows two frequencies are degenerate for any V = V(r).
When V(r) = -kr(-1), for E < 0

	
This implies

This gives the orbital frequency in bound Kepler orbit. 
Using the relations {α1=E,αθ,αϕ } and {Jr,Jθ,Jϕ}, the Hamilton’s 

characteristic function can be written for this system as below:
W=Wr+Wθ+Wϕ

The angle variables can be given as

where 
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It can be noted that, as per prediction, Jθ and Jϕ exist in combination 
as Jθ+Jϕ only. In addition, the three action variables occur in Jr+Jθ+Jϕ form 
only. Hence, all of the frequencies are equal, that is the motion is completely 
degenerate. This result also agrees with the fact that for negative energies, 
the orbit is closed with an inverse-square law of force. And the motion in a 
closed orbit is periodic in nature and hence, degenerate. If the central force 
has a term with r-3, like is given by first order relativistic corrections, then 
the orbit is in the form of a precessing ellipse and is no longer closed. In such 
a case, one of the degeneracies will vanish. However, the motion will still 
remain singly degenerate, since vθ=vϕ for all central forces. 

The degeneracy conditions can be expressed as

And the generating function can be written as

The new angle variables are

As two among the new frequencies, v1 and v2 are 0, the new action 
variables can be obtained from the transformation equations 

Thus,

And the Hamiltonian can be written as

These constants can also be derived from angular momentum L, energy 
E, and Laplace-Runge-Lenz vector A.) 

The action-angle variable treatment of the Kepler problem also leads 
to five algebraic constants of the motion. Among these five constants, two 
constants represent orbit plane (xy-plane), which are the inclination angle 
i and the longitude of the ascending node Ω. There are three constants 
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specifying the form of the ellipse, which are the semi-major axis a, eccentricity 
ε, and angle ω. These are all shown in Figure given below.

 Fig. 3.2  Schematic diagram of the orbit with the five parameters providing the 
specifications.

The relation among these constants can be given as follows:

Which provide a proper physical interpretation to (J1, J2, J3, ω1, ω2). Also 
J2  = 2παθ=2πl 
When any additional forces (such as some planet, some relativistic 

corrections, etc.) perturb the orbit, the modified orbit can be described by 
these action-angle variables. 
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Check Your Progress

	 1.	What is the Hamiltonian for the system which involves time 
explicitly?

	 2.	What are the Hamilton’s canonical equations?
	 3.	Which equation is referred to as the Hamilton-Jacobi equation?
	 4.	What will be the Hamiltonian function of the one-dimensional 

harmonic oscillator?
	 5.	Write Hamilton’s principal function of the oscillator.
	 6.	Write the equation of motion for the freely falling body.
	 7.	Define Jacobi’s identity.

3.5	 ANSWERS TO ‘CHECK YOUR 
PROGRESS’

	 1.	Consider a mechanical system of s degrees of freedom described by 
the generalized coordinates q1, ....., qs and generalized momenta p1, 
.....,ps. The Hamiltonian for the system which involves time explicitly 
is H = H(q, p, t) = H(q1, ....., qs, p1, ....., ps, t)

	 2.	The Hamilton’s canonical equations are

		

	 3.	

	 4.	Consider a one-dimensional harmonic oscillator of mass m. Let q and 
p be respectively the coordinate and momentum of the oscillator at any 
instant of time t.

		  The Hamiltonian function H of the oscillator is

		
	 5.	We may write Hamilton’s principal function of the oscillator as

	 6.	

	 7.	 If f, g and k are any three functions of the coordinates (q’s) and the 
momenta (p’s) describing a mechanical system, then the following 
relation holds
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		  [f,[g, k]] + [g, [k, f]] + [k, [f, g]] = 0
		  The relation expressed above is known as Jacobi’s identity.

3.6	 SUMMARY 
	 •	The Hamilton’s canonical equations are

		
	 •	The Hamilton–Jacobi equation is a first-order partial differential 

equation in (s + 1) variables, namely, q1, ....., qs, t.
	 •	We write the general solution of the Hamilton–Jacobi equation as

		
	 •	The Hamiltonian of the system then has no explicit dependence on 

time and is a constant of motion representing the total energy E of the 
system.

	 •	We may write Hamilton’s principal function of the oscillator as

		
	 •	The action-angle variable treatment of the Kepler problem also leads 

to five algebraic constants of the motion. Among these five constants, 
two constants represent orbit plane (xy-plane), which are the inclination 
angle i and the longitude of the ascending node Ω. There are three 
constants specifying the form of the ellipse, which are the semi-major 
axis a, eccentricity ε, and angle ω.

3.7	 KEY TERMS
	 •	 Jacobi’s identity: It is a characteristic of a binary operation which 

explains how the order of evaluation influences the result of the 
operation.

	 •	 Canonical coordinates: The sets of coordinates on phase space which 
can be used to explain a physical system at any given point in time are 
called Canonical coordinates.

	 •	 Action-angle coordinates: They are a set of canonical coordinates 
useful in solving many integrable systems. The method of action-angles 
is useful for obtaining the frequencies of oscillatory motion without 
solving the equations of motion.

	 •	 Poisson bracket: It is an important binary operation in Hamiltonian 
mechanics which governs the time evolution of a Hamiltonian 
dynamical system.
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3.8	 SELF-ASSESSMENT QUESTIONS AND 
EXERCISES

Short Answer Questions

	 1.	State the method for solving a mechanical problem using Hamilton-
Jacobi method.

	 2.	Write in brief about the Hamilton-Jacobi equation.
	 3.	Write a short note on Hamilton’s characteristic function.
	 4.	Mention the application of action angle variable to obtain the frequency 

of a linear harmonic oscillator.

Long Answer Questions

	 1.	Describe Lagrange’s equations for conservative systems.
	 2.	Discuss Hamilton’s principal function.
	 3.	Give solution of one dimensional harmonic oscillator problem using 

Hamilton-Jacobi method.
	 4.	Explain motion of a body falling freely under gravity.
	 5.	Give a detailed account of action and angle variables.

3.9	 FURTHER READING
Rao, K. Sankara. 2009. Classical Mechanics. New Delhi: PHI Learning 

Private Limited.
Upadhyaya, J.C. 2010. Classical Mechanics, 2nd Edition. New Delhi: 

Himalaya Publishing House.
Goldstein, Herbert. 2011. Classical Mechanics, 3rd Edition. New Delhi: 

Pearson Education India.
Gupta, S.L. 1970. Classical Mechanics. New Delhi: Meenakshi Prakashan.
Takwala, R.G. and P.S. Puranik. 1980. New Delhi: Tata McGraw Hill 

Publishing.
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UNIT 4	 CLASSICAL STATISTICAL 
MECHANICS

Structure 
	 4.0	 Introduction
	 4.1	 Objectives
	 4.2	 A Priori Probability 
	 4.3	 Phase Space and Liouville’s Theorem
	 4.3.1	 Liouville’s Theorem
	 4.4	 Statistical Equilibrium
	 4.5	 Maxwell Boltzmann Distribution Law of Velocity
	 4.6	 Equation of Energy, Types of Ensembles and Thermodynamic Functions 

in Different Ensembles
	 4.6.1 	Micro Canonical Ensemble	
	 4.6.2 	The Canonical Ensemble	
	 4.6.3 	The Grand Canonical Ensemble and Canonical Partition Function	
	 4.7	 Answers to ‘Check Your Progress’
	 4.8	 Summary 
	 4.9	 Key Terms
	 4.10	 Self-Assessment Questions and Exercises
	 4.11	 Further Reading

4.0	 INTRODUCTION
From the earlier discussion, we can conclude that classical mechanics is an 
approximation of quantum mechanics. Classical mechanics cannot explain 
the stability of an atom. According to classical idea, an orbital electron 
continuously revolves and keeps nucleons in the centre (nucleus having 
positively charged) with a strong attractive force and emits energy in the form 
of electromagnetic radiation (Rutherford’s model). Due to this continuous 
emission of energy, the orbital electrons should come closer to the nucleus, 
once they lose all their energy ultimately to collapse into the nucleus. So, an 
atom should be unstable but in reality we do not see that happening. So, what 
accords stability to the atom? The answer is provided by the quantum idea.

In the introduction, we have talked about the discrete energy emission 
from gaseous atom, which cannot be described and interpreted by the 
classical ideas. It is obvious to introduce quantum ideas to explain the several 
behaviours of atoms and subatomic particles (microscopic size particles).

4.1	 OBJECTIVES
After going through this unit, you will be able to:
	 •	Understand phase space, configuration space, hodograph, and 

Liouville’s theorem
	 •	Discuss the Maxwell Boltzmann Distribution Law of Velocity
	 •	Describe various types of ensembles and thermodynamic functions in 

different ensembles along with canonical partition function
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4.2	 A PRIORI PROBABILITY 
The first postulate of statistical mechanics tells us the frequency of each of 
the possible states or microstates occurring in the ensemble. This postulate 
is often called the principle of equal a priori probabilities. It says that if the 
microstates have the same energy, volume, and number of particles, then 
they occur with equal frequency in the ensemble. An isolated system, with 
N, V, E, has equal probability to be in any of the W(N,V,E) quantum states 
or Each and every one of the W(N,V,E) quantum states is represented with 
equally probability.

By priori, we mean something which exists in our mind prior to its 
actual occurrence and independent of experience.  Let us consider an example 
of a box having two compartments of equal size by means of a partition.                                    

If we throw a coin from a certain distance, the probability of the coin 
to enter into compartment A is equal to the probability of the coin to enter 
into compartment B.  

So the principal of assuming equal probabilities of equal events is 
known as principal of equal a priori probability. 

Classically a priori probability is defined as the ratio of cases favoring 
the event to the total number of cases in the sample space.

It can be given by the relation:

Example 4.1: A priori probability of rolling the number 1, 3, or 5, in a dice 
roll. 

Total number of cases in the sample space are 6 and the cases favoring 
the event are 3 (1, 3, or 5). Therefore, a priori probability is  3/6 = 0.5. 

Example 4.2: A priori probability of drawing a king of hearts in a deck 
of cards.

Total number of cases in the sample space are 52 and the cases favoring 
the event are 1 (a king of hearts). Therefore, a priori probability is 1/52

4.3	 PHASE SPACE AND LIOUVILLE’S 
THEOREM

In the Lagrangian formulation of mechanics, for describing the motion of 
a system having s degrees of freedom, the system at any instant of time t 
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is represented by a point in an abstract s-dimensional mathematical space 
called the configuration space of the system. The point is called the system 
point at the instant t.

As time passes, the system point moves in the configuration space and 
it traces out, in general, a curve that gives the trajectory or path of the system. 

In the Hamiltonian formulation, s generalized coordinates and s 
generalized momenta are independent variables for the system. An abstract 
s dimensional mathematical space, any point of which gives the s momenta 
of the system, is called the momentum space of the system. Clearly, any 
point in the momentum space represents the state of motion of the system at 
some instant of time. With progress of time, the point representing the state 
of motion moves in the momentum space. The curve traced out by the point 
is called hodograph. 

To describe a function such as the Hamiltonian function H(q, p, t) for 
the system we need a combination of the configuration space (coordinate 
space) and the momentum space for the system. Clearly, such a space is 
2s dimensional. Such an abstract 2s dimensional mathematical space, any 
point of which represents the s coordinates (q1, ….., qs) and s momenta (p1, 
….., ps) of the system at some instant of time, is called phase space of the 
system. Any point of the phase space describes not only the position of the 
system as a whole but also the state of motion of the system at some instant 
of time. As time passes, the point representing the configuration and the state 
of motion of the system in the phase space traces out a trajectory called the 
phase trajectory.

The concept of phase space and phase trajectory can be understood 
from the following example: consider a linear harmonic oscillator of mass 
m and oscillating along the X-axis.

The total energy of the oscillator when the displacement is x from the 
equilibrium position is given by

	 E	 =	
2

2 2 2 2 21 1 1
2 2 2 2

pmx m x m x
m

+ ω = + ω� 	 (4.1)

where p = mx�  is the momentum of the oscillator and k
m

ω =  is the angular 

frequency of the oscillator. 
We may express Equation (1) as

	
2 2

2
22

p x
EmE

m

+

ω

	 = 	1	 (4.2)

In view of Equation (4.2), we find that the oscillator traverses an elliptical 
path in a two-dimensional space with x and p as the axes and having the 

semi-major axis equal to 2
2E

mω
and semi-minor axis equal to 2mE . In 
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Figure 4.1 are shown different paths of the oscillator corresponding to different 
energies. We observe that the phase space of the oscillator is two-dimensional 
and phase trajectories are ellipses of different semi-axes corresponding to 
different total energies. 

p

x

Fig. 4.1  Paths of Oscillation

One important feature of phase trajectory is that no two phase trajectories can 
intersect with each other. This can be seen as follows: Let two trajectories 
cross at the phase point (xi,pi). If we consider this point to represent the 
position and the momentum at t = 0 then there will be two possible momenta 
along which the motion could start. This is not possible because the solutions 
of the oscillator equation

	 2x x+ ω�� 	 = 	0

at any instant for x�  and hence for p is unique.

4.3.1	 Liouville’s Theorem

The dynamical state of a mechanical system at any instant of time is 
represented by a point in the phase space of the system which is an imaginary 
mathematical space of 2s dimensions if ‘s’ be the degrees of freedom of 
the system. As the system develops with time, the point representing the 
dynamical state called the representative point traces a path or trajectory 
determined by the Hamilton’s canonical equations given by

	
ˆ ˆ, 1, ,i i

i i

H Hq p i s
p p

∂ −∂= = = ⋅⋅⋅
∂ ∂

Where H is Hamiltonian of the system given as 
	 H	 = 	(qi, ..., qs, pi, ..., ps, t)

As a result of motion, the density p (number of phase point per unit 
volume of the phase space at a given time in the phase space) changes with 
time. Our interest lies in the determination of the rate at which the density 

changes with time at a given point in the phase space. To obtain 
dp
dt  we use 

the theorem given by Liouville. The theorem consists of two parts:
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	 (i)	The density in phase space is a conserved quantity i.e., dp
dt

 = 0.

	 (ii)	Extension in phase space is conserved i.e., 
d
dt  (dG) = 0. This means 

that the volume available to a particular number of phase points is 
conserved throughout the phase space.

Proof of Theorem (1)

Consider the volume of phase space located between 
q1 and q1 + dq1, q2 and q2+ dq2,..., qs, and qs+ dqs,
p1 and p1 + dp1 ... , ps and ps + dps

The number of phase points located in this volume i.e., in the volume 
(dq, x ... x dqs) ×(dp1 ... x dps) changes as the coordinates q and momenta p 
vary with time.

In a time dt, the change in the number of phase points in the above 

volume is equal to p
t

∂ 
  ∂

 dt (dq1 x ... x dps).
The above change is due to the number of phase points entering and 

leaving the volume in the time dt.
Finding out the net increase dN in the number of phase in the above 

volume in time dt, we get the rate of increasing of dN to be given by

	 ( )d N
dt

δ 	 =	
1

s
ii

i i
i i i i i

pq p pq p dt
q p q p=

 ∂   ∂ ∂ ∂ − ρ + +    ∂ ∂ ∂ ∂     
∑


 

			             × dq1 x ... x dps

But	      ( )d N
dt

δ 	 =	
p dt
t

∂
∂ dq1 x ... dps

equating the above two relations we obtain

	
i s

p dt q x x p
t

∂ δ ⋅⋅⋅ δ
∂

	 =	

1

.
s

i i
i i

i i i i i

q p p pq p dt
q p q p=

    ∂ ∂ ∂ ∂ − ρ + + + ×    ∂ ∂ ∂ ∂     
∑  

 

			                 × dq1 x ... x dps

or	
p
t

∂
∂

	 =	
1

.
s

i i
i i

i i i i i

q p p pq p
q p q p=

    ∂ ∂ ∂ ∂ − ρ + + +    ∂ ∂ ∂ ∂     
∑  

 

We have the Hamilton’s equations

		
, .i i

i i

H Hq p
p q

∂ −∂= =
∂ ∂

 

Now		
2

i i

i i i i

q p H
q p q p

∂ −∂ ∂= =
∂ ∂ ∂ ∂
 

Since the order of differential is immaterial (coordinates and momenta being 
independent variables we get

			 
1

0
s

i i

i i i

p p
q p=

 ∂ ∂
+ = ∂ ∂ ∑ 
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Substituting the above in the expression for p
t

∂
∂

  we get

		  1 1,

0
s s

i i

i iq p i i

dq dpp p p
t q dt p dt= =

∂ ∂ ∂  + + =  ∂ ∂ ∂∑ ∑

The above equation is identical with this equation of continuity in 
hydrodynamics. Considering r = r(q, p, t) we get

		  1 1

.
s s

i i
i ii i

dp p p pq p
dt t q p= =

∂ ∂ ∂= + +
∂ ∂ ∂∑ ∑ 

Comparing the above two equations we get

		
0dp

dt
=

We thus find that the density in phase space is conserved.

Proof of Theorem (2)

We know that
	 	 dN = rdV
Taking total time derivative of the above equation we get

	 
( ) ( )d dp dN V V

dt dt dt
δ = δ + ρ δ

Since the number of phase points in a given region of the phase space 
is invariant i.e., phase points are neither created nor destroyed, we get

	
( ) 0d N

dt
δ =

Hence we get

		
( ) 0dp dV V

dt dt
δ + ρ δ =

But 	 0dp
dt

=  (Liouville’s theorem (1)) and hence 

		
( ) 0d V

dt
ρ δ =

Since r ≠ 0 we finally get

		
( ) 0d V

dt
δ =

The above result represents conservation of extension in phase space.

4.4	 STATISTICAL EQUILIBRIUM
In some situations, the resultant of several concurrent forces may be zero. 
In such a case, the net effect of all the forces acting on a particle will be zero 
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and the particle is said to be in equilibrium.
In other words, a body is said to be in equilibrium, when the resultant 

of the force system acting on it is zero. If a body is in equilibrium, it will 
continue to remain in a state of rest or of uniform motion.
Equilibrant
According to Newton’s second law of motion, a body starts moving with 
uniform acceleration if it is acted upon by a force. When a body is subjected 
to a number of concurrent forces, it moves in the direction of resultant force 
with uniform acceleration. However, if another force which is equal in 
magnitude of the resultant but opposite in direction is applied to the body, 
the body comes to rest. Hence equilibrant of a system of forces is a single 
force which acts along with the other forces to keep the body in equilibrium.

          

 (a) Given system of forces          (b) Resultant (R)                 (c) Equilibrant (E)

Fig. 4.2

Example 4.3: Three forces act on a particle ‘O’ as shown in Fig. 4.3(a). 
Determine the value of ‘F’ such that the resultant of these three forces is 
horizontal. Find the magnitude and direction of the fourth force which when 
acting along with the given three forces will keep ‘O’ in equilibrium.

Fig. 4.3(a)

Solution: Angle between ‘F’ and Ox is 40º + 10º = 50º and 30 kN is acting 
towards the  particle. Since the resultant is horizontal; SFy = 0.
	 SFy = 0 givess,
		  –30 sin 30°  + 18  sin 10° + F sin 50° = 0
	 F = 15.5.
	 SFx = 30 cos 30° + F = cos 50° + 18 cos 10° = 53.67

Equilibrant is –53.67 kN, as shown in Fig. 4.3(b)
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Fig. 4.3(b)

Equation and Equilibrium
The resultant of given system of forces is expressed as,
	 iR F= Σ

 

	 ...(4.)

	 ( ) ( )x yF i F j= Σ + Σ
 

	 ...(4.)
When a particle is in equilibrium, the resultant force is zero. In other 

words,

0R =


	 ...(4.)
SFx = 0 and 	 ...(4.)
SFy = 0	 ...(4.)
The x and y axes can be chosen arbitrarily through the point of 

concurrency. However, for problems involving bodies on inclined planes, 
the axes are selected along tangential and normal directions to the plane. It is 
also observed that in the case of problems involving equilibrium of particle, 
since total number of equilibrium equations are two, the number of unknowns 
can be only two. Determination of a force with magnitude and direction or 
magnitudes of two forces, whose directions are known also can be solved. 
These concepts are illustrated in numerical examples.

Check Your Progress
	 1.	What do you mean by priori probability?
	 2.	Define configuration space.
	 3.	What is momentum space?
	 4.	What do you understand by hodograph?
	 5.	What is phase trajectory?
	 6.	When is a body said to be in equilibrium?

4.5	 MAXWELL BOLTZMANN 
DISTRIBUTION LAW OF VELOCITY

The basic postulates of MB statistics are:
	 (i)	The associated particles are distinguishable.
	 (ii)	Each energy state can contain any number of praticles.
	 (iii)	Total number of particles in the entire system is constant.
	 (iv)	Total energy of all the particles in the entire system is constant.
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	 (v)	Particles are spinless.
Examples: Gas molecules at high temperature and low pressure.

Maxwell-Boltzmann Distribution Law

Consider a system composed of N distinguishable, non-interacting particles. 
Let out of these N particles N1, N2, ..., Ni particles are to be distributed in 
energy levels E1, E2, ..., Ei respectively and these energy levels have g1, g2, 
..., gi, number of quantum states correspondingly. Since the total energy E and 
total number of particles N are constant for the system, we can write

i i
i

N E∑ = E	 ...(4.3)

i
i

N∑  = N	 ...(4.4)
The number of ways in which the groups of particles N1, N2, ..., Ni could be 

chosen from N particles is

	 ...(4.5)

where P denotes the product.
Now, Ni particles can be distributed in gi state in (gi)Ni ways. Considering all 

the values of i, total number of arrangement would be

	 			  ...(4.6)
Therefore, the total number of ways W by which all the N particles could be 

distributed among the quantum states is

	 	 ...(4.7)

which is the Maxwell-Boltzmann distribution law for n distinguishable 
particles.

Now taking the natural logarithm on both sides of eqn. (4.7), we get, 

	 ln 	 ...(4.8)

Applying Stirling approximation (i.e., ln x! = x ln x – x, where x is very large), 
we get from eqn. (4.8)

	 ln     	

		  =   		  ...(4.9)

Now differentiating both sides, we get, 
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	           		  ...(4.10)

For the most probable distribution, d(in W)max = 0

Therefore	 			   ...(4.11)

Since the system is in equilibrium, total number of particle and the total 
energy of the system are constant. So, 

		  			   ...(4.12)

	 and 	 			  ...(4.13)
Multiplying eqn. (4.12) by a and eqn. (4.13) by b and then adding to eqn. 

(4.11), we get, 

		  	 ...(4.14)

Since dNi’s are independent of one another, the above equation hold only if, 

	  	
Now the Maxwell-Boltzmann distribution function is given by

	   	 ...(4.15)

which physically gives the probability of a particle to occupy the energy 
state Ei.

4.6	 EQUATION OF ENERGY, TYPES OF 
ENSEMBLES AND THERMODYNAMIC 
FUNCTIONS IN DIFFERENT 
ENSEMBLES

In this section, we will discuss the three ensembles of statistical mechanics, 
the microcanonical ensemble, the canonical ensemble and the grand 
canonical ensemble. Here canonical means simply standard or acceptable 
and the canonical ensemble therefore holds the central place in statistical 
mechanics. Logically the canonical ensemble should be introduced first. The 
microcanonical and grand canonical ensembles then follow as a special case 
(all systems having identical energies) and an extension (to systems having 
variable number of particles) of the canonical ensemble, respectively.
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4.6.1 Micro Canonical Ensemble
A system (a solid, liquid or a gas) which is completely isolated from its sur-
roundings has constant energy U and a constant number of particles N. We 
will suppose it is also contained at constant volume V . If the system has a 
number of different types of particles (a number of components), the num-
ber of each component, N1; N2 ; : : : is also constant. A micro-canonical 
ensemble is an assembly of mental copies of this isolated system. Since the 
energy of each copy is the same, E = U, the need to consider an ensemble 
is really superfluous.

One system will do the work. 
Since all the copies have the same energy, U, the probability of ob-

serving the system with energy ES is

				    (4.16)
If the quantum energy state U of the system is degenerate with de-

generacy W, then there are W states having energy U or equivalently W 
ways of forming the observed system. Using the equal a priori probability 
hypothesis and

							       (4.17)
we must have

This statistical probability and thermodynamics are related through 
the famous Boltzmann relation,

S = k log W							        (4.18)
This could be introduced as a hypothesis but it follows from the rela-

tion between S and PS developed in the next section for the central canoni-
cal ensemble.			 

Thus, as expected, the appropriate thermodynamic function is S(U; 
V; N) which is a maximum at equilibrium for an isolated system. This also 
demonstrates that Boltzmann’s relation (4.18) applies to an isolated system.

Since isolated systems are difficult to realize in practice, the microca-
nonical ensemble is not often used.
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4.6.2 The Canonical Ensemble

We consider now a system (a solid, liquid or a gas) in contact with a heat 
bath at constant temperature. A canonical ensemble is an assembly of mental 
copies of this system. Since energy can be transferred between the system and 
the heat bath, the energy of the systems in the assembly differ. To represent 
the possible energy states of the system adequately in the ensemble, we must 
have enough copies that each state is represented at least once in the ensemble.

All copies have the same temperature T, the temperature of the heat 
bath. We could imagine constructing the canonical ensemble from the single 
system in the microcanonical ensemble in the following way. We divide the 
isolated system into many (say 109) parts. If the original system contained 
1025 particles each part is still large enough to represent the macroscopic 
properties of the original system. We take one part as the system itself and 
regard the remaining parts as making up the mental copies in the canonical 
ensemble. We may also regard the one part as making up the system and the 
remaining parts as making up a heat bath. Since the new system is in good 
thermal contact with the remaining (surrounding) copies, there is exchange 
of heat between system and the heat bath. The exchange of heat serves to 
keep the system at constant T.

This canonical ensemble is the Gibbs canonical ensemble. Using the 
Boltzmann combinatorial method to find the probability of observing the 
system in energy state ES in this ensemble we found

						�       (4.19)
where   is the canonical partition function.

The canonical ensemble is generally the most useful in practice since 
we most often deal with systems in thermal equilibrium (constant T) with their 
surroundings. The energy states fluctuate and the probability of observing the 
system in a given energy state at constant T is given by (4.19). We also see 
that the microcanonical ensemble is a special case of the canonical ensemble 
in which all the systems have the same energy.

4.6.3 	 The Grand Canonical Ensemble and Canonical Partition 
Function

Here we consider an open system in contact with a heat and particle bath. 
The system is open meaning that particles as well as heat can be exchanged 
between the bath and the system. An example is a solid or liquid (the system) 
in contact with its vapor (the bath) in equilibrium so that particles are freely 
exchanged between the liquid and the vapor. Since the vapor and liquid are 
in equilibrium, the chemical potential, µ, is the same in each (and particles 
are exchanged to maintain µ the same in each phase) The grand canonical 
ensemble is an assembly of mental copies of this open system. In the ensemble 
all possible states of the system are represented; that is, all possible values 
of N and all possible energy states ES (N) for a given N.
We sub-divide the closed system having N particles in Fig. 6.1 into two parts; 
one small part having Na particles in volume Va and the second having Nb 
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particles in the remaining volume, Vb. We choose Na << Nb = N − Na . The 
small sub-system is our open system and particles can be freely exchanged 
between it and the remaining N −Na particles. The ensemble is then an 
assembly of mental copies of this open sub-system.

To develop the statistics for the open system we recall that the 
probability of observing the closed system of N particles in energy state ES 
is from (4.19)

	
Chapter 6. 7

Assuming weak mechanical contact between the sub-system (Na particles) and
the remainder of the system (Nb particles) we can write

ES = ESa (Na) + ESb (Nb)

and
F (T, V, N) = Fa(T, Va, Na) + Fb(T, Vb, Nb)

so that
PS = e−βESa(Na) × e−βESb(Nb) × eβF (T, V, N)

The probability PSa(Na) of observing the sub-system in energy state ESa(Na)
for any given state of the system b is

PSa(Na) =
∑

Sb

PS(N) = e−βESa(Na) eβ(F−Fb)

where as usual
Fb = −kT log

∑

Sb

e−βESb(Nb)

Since Na � N − Nb we may write

Fa = F − Fb =
( ∂F

∂N

)
Na +

(∂F

∂V

)
Va

= µNa − pa Va

Thus
PSa(Na) = e−βpaVa e−β(ESa(Na)−µNa) (4.20)

We have the central result that the probability of observing the open sub-
system having Na particles and in energy state ESa(Na) is proportional to exp 
(−β(ES (Na) − µNa)). We now focus our attention entirely on the sub-system 
and drop the subscript a and write this probability as

PS (N) ∝ e−β(ES (N)−µN)

We also define the grand canonical partition function by

Z =
∑

S,N

e−β(ES(N)−µN) (4.21)

Since we want the probability to be normalized so that
∑

S,N

PS(N) = 1 (4.22)

we have, from (4.20) and (4.21),
∑

S,N

PS(N) = 1 = e−βPV Z (4.23)
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8 Statistical Mechanics.

This gives
PS(N) = Z−1 e−β(ES(N)−µN) (4.24)

and our relation between thermodynamics and statistics for open systems as

pV = kT log Z (T, V, µ) . (4.25)

The thermo-dynamic potential is given as,

Ω (T, V, µ) = F (T, V, N) − µN (4.26)

In this relation µ is

µ =
( ∂F

∂N

)
T, V

=
( ∂G

∂N

)
T, P

Also µ is the Gibbs Free energy per particle, G = µN . The thermodynamic
potential is the appropriate function to describe an open system since T, V and
µ are constant so that Ω will be constant while F , for example, can fluctuate
as N fluctuates. The Ω can be directly related to Z using the thermodynamic
relation, G = F + pV so that

Ω = G − pV − µN = −pV

and
Ω = −kT log Z (T, V, µ) (4.27a)

This can be used as the fundamental relation between statistics and thermody-namics 
for open systems. It is interesting to note that in going from a closed to an open system 
(at constant µ) we transferred from F to Ω using. (4.26) This gave us a function (T, V, 
µ) of variables T , V , and µ rather than a function Ω (T, V, N) of variables T , V , and 
N. In introducing the grand canonical ensemble we have effectively made the same 
transformation of variables by summing over N. That is

Z (T, V, µ) =
∑

N

∑

S

e−β(ES(N)−µN)

=
∑

N

e−βµN Z(T, V, N) (4.27b)

This serves to eliminate the dependence on N and introduce µ.
Using the thermodynamic potential we can obtain some useful relations 

for PS (N), N , U and S. From (4.26)

Ω = U − TS − µN =
∑

S,N

PS(N) ES(N) − TS − µN
Chapter 6. 9

Hence
PS(N) =

∂Ω
∂ES(N)

= −β−1 ∂

∂ES(N)
log Z (4.28)

and

N = −
(

∂Ω
∂µ

)

T,V

= β−1 ∂

∂µ
(log Z)T,V (4.29)

Also,

∂

∂β
log Z = −Z−1

∑

S,N

(ES(N) − µN) e−β(ES(N)−µN)

= −
∑

S,N

PS(N) ES(N) + µN

so that
U = − ∂

∂β
(log Z)V, µ + µN (4.30)

The entropy is related to the grand canonical probability function PS (N) in the 
given form as that is

S = −kT
∑

S,N

PS(N) log PS(N) = −k 〈log PS(N)〉 (4.31)

This follows from eqs. (4.24) and (4.27) since

log PS(N) = − (ES(N) − µN) − log Z

and

−β−1
∑

S,N

PS(N) log PS(N) =
∑

S,N

PS(N)
[
ES(N) − µN

] − Ω

= U − µN − Ω = TS .

We could also introduce a density operator ρ̂
GC

for the grand canonical
ensemble in analogy with ρ̂

C
in eq. (6.13) the canonical ensemble. This is

ρ̂
GC

= eβΩ e−β(Ĥ−µN̂) (6.31)

Average values in the grand canonical ensemble are,

〈A〉 = Tr
{

ρ̂
GC

Â
}

(6.32)

≡
∑

S,N

〈
ES(N)

∣∣∣ρ̂GC
Â

∣∣∣ ES(N)
〉

µN

µN
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Chapter 6. 9

Hence
PS(N) =

∂Ω
∂ES(N)

= −β−1 ∂

∂ES(N)
log Z (4.28)

and

N = −
(

∂Ω
∂µ

)

T,V

= β−1 ∂

∂µ
(log Z)T,V (4.29)

Also,

∂

∂β
log Z = −Z−1

∑

S,N

(ES(N) − µN) e−β(ES(N)−µN)

= −
∑

S,N

PS(N) ES(N) + µN

so that
U = − ∂

∂β
(log Z)V, µ + µN (4.30)

The entropy is related to the grand canonical probability function PS (N) in the 
given form as that is

S = −kT
∑

S,N

PS(N) log PS(N) = −k 〈log PS(N)〉 (4.31)

This follows from eqs. (4.24) and (4.27) since

log PS(N) = − (ES(N) − µN) − log Z

and

−β−1
∑

S,N

PS(N) log PS(N) =
∑

S,N

PS(N)
[
ES(N) − µN

] − Ω

= U − µN − Ω = TS .

We could also introduce a density operator ρ̂
GC

for the grand canonical
ensemble in analogy with ρ̂

C
in eq. (6.13) the canonical ensemble. This is

ρ̂
GC

= eβΩ e−β(Ĥ−µN̂) (6.31)

Average values in the grand canonical ensemble are,

〈A〉 = Tr
{

ρ̂
GC

Â
}

(6.32)

≡
∑

S,N

〈
ES(N)

∣∣∣ρ̂GC
Â

∣∣∣ ES(N)
〉

Check Your Progress
	 7.	Name the three ensembles of statistical mechanics.
	 8.	What is considered in the grand canonical ensemble?

4.7	 ANSWERS TO ‘CHECK YOUR 
PROGRESS’

	 1.	The first postulate of statistical mechanics tells us the frequency of each 
of the possible states or microstates occurring in the ensemble. This 
postulate is often called the principle of equal a priori probabilities. It 
says that if the microstates have the same energy, volume, and number 
of particles, then they occur with equal frequency in the ensemble.

	 2.	 In the Lagrangian formulation of mechanics, for describing the 
motion of a system having s degrees of freedom, the system at any 
instant of time t is represented by a point in an abstract s-dimensional 
mathematical space called the configuration space of the system. The 
point is called the system point at the instant t.

	 3.	 In the Hamiltonian formulation, s generalized coordinates and s 
generalized momenta are independent variables for the system. An 
abstract s dimensional mathematical space, any point of which gives the 
s momenta of the system, is called the momentum space of the system.
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	 4.	Any point representing the state of motion moves in the momentum 
space. The curve traced out by the point is called hodograph.

	 5.	As time passes, the point representing the configuration and the state 
of motion of the system in the phase space traces out a trajectory called 
the phase trajectory.

	 6.	A body is said to be in equilibrium when the resultant of the force 
system acting on it is zero.

	 7.	The three ensembles of statistical mechanics are, the microcanonical 
ensemble, the canonical ensemble and the grand canonical ensemble,

	 8.	An open system in contact with a heat and particle bath is considered 
in the grand canonical ensemble.

4.8	 SUMMARY 

•	 To describe a function such as the Hamiltonian function H(q, p, t) 
for the system we need a combination of the configuration space 
(coordinate space) and the momentum space for the system.

•	 One important feature of phase trajectory is that no two phase trajec-
tories can intersect with each other.

•	 As the system develops with time, the point representing the dynam-
ical state called the representative point traces a path or trajectory 
determined by the Hamilton’s canonical equations given by

•	 The first postulate of statistical mechanics tells us the frequency of 
each of the possible states or microstates occurring in the ensemble. 
This postulate is often called the principle of equal a priori proba-
bilities. It says that if the microstates have the same energy, volume, 
and number of particles, then they occur with equal frequency in the 
ensemble.

•	 The various methods of statistical mechanics are applied to discuss some av-
erage or most probable properties of large assemblies of electrons, atoms, 
molecules, etc. Before the advent of quantum mechanics, Maxwell, Boltz-
mann, Gibbs etc., applied statistical methods with the help of classical phys-
ics. These methods are collectively known as Classical Statistics or Max-
well-Boltzmann (MB) Statistics.

•	 Canonical means simply standard or acceptable and the canonical 
ensemble therefore holds the central place in statistical mechanics.

•	 A system (a solid, liquid or a gas) which is completely isolated from 
its surroundings has constant energy U and a constant number of 
particles N. We will suppose it is also contained at constant volume 
V . If the system has a number of different types of particles (a num-
ber of components), the number of each component, N1; N2 ; : : : is 
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also constant. A micro-canonical ensemble is an assembly of mental 
copies of this isolated system.

•	 If the quantum energy state U of the system is degenerate with de-
generacy W, then there are W states having energy U or equivalently 
W ways of forming the observed system.

•	 The canonical ensemble is generally the most useful in practice since 
we most often deal with systems in thermal equilibrium (constant T) 
with their surroundings. The energy states fluctuate

4.9	 KEY TERMS
	 •	 Configuration space: The vector space explained by generalized 

coordinates is known as the configuration space of the physical system.
	 •	 Hodograph: The curve traced out by any point in the momentum space 

representing the state of motion is called hodograph.
	 •	 Ensemble: In physics, specifically statistical mechanics, an ensemble 

is an idealization consisting of a large number of virtual copies of a 
system, considered all at once, each of which represents a possible 
state that the real system might be in.

4.10	 SELF-ASSESSMENT QUESTIONS AND 
EXERCISES	

Short Answer Questions

	 1.	Write in brief about priori probability.
	 2.	What do you mean by statistical equilibrium?
	 3.	State the basic postulates of MB statistics.

Long Answer Questions

	 1.	Discuss Liouville’s theorem.
	 2.	Explain Maxwell-Boltzmann Distribution Law.
	 3.	Describe the different types of ensembles of statistical mechanics.

4.11	 FURTHER READING	
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UNIT 5	 QUANTUM STATISTICAL 
MECHANICS

Structure 
	 5.0	 Introduction
	 5.1	 Objectives
	 5.2	 General Concept of Quantum Statistical Mechanics
	 5.2.1	 Wave Nature of Microparticles: de-Broglie’s Hypothesis
	 5.3	 Bose Einstein Statistics
	 5.4	 Black-Body Radiation
	 5.5	 Pressure of an Ideal Bose Gas
	 5.6	 Einstein Condensation
	 5.7	 Theory of Liquid Helium
	 5.8	 Fermi Dirac Statistics
	 5.8.1	 Energy and Pressure of Ideal Fermi Gas
	 5.9	 Free Electron Theory of Solids
	 5.10	 Landau Theory of Phase Transition
	 5.11	 Critical Indices
	 5.12	 Scale Transformation
	 5.13	 Dimensional Analysis
	 5.14	 Density and Energy Function with Electron Spin in Hydrogen Like Atom
	 5.15	 Answers to ‘Check Your Progress’
	 5.16	 Summary 
	 5.17	 Key Terms
	 5.18	 Self-Assessment Questions and Exercises
	 5.19	 Further Reading

5.0	 INTRODUCTION
Quantum Mechanics (QM); also known as quantum physics, quantum theory, 
the wave mechanical model, or matrix mechanics, quantum field theory; is a 
fundamental theory in physics which describes nature at the smallest scales of 
energy levels of atoms and subatomic particles. In the mathematically rigorous 
formulation of quantum mechanics developed by Paul Dirac, David Hilbert, 
John von Neumann, and Hermann Weyl, the possible states of a quantum 
mechanical system are symbolized as unit vectors (called state vectors). 

In order to understand the origin of quantum physics and the subsequent 
development of an altogether new and conceptually different mathematical 
theory of quantum mechanics, it is first of all necessary to understand 
the phenomena at micro-level that what was happening at the atomic and 
subatomic levels. The new aspects of nature and phenomena that were 
revealed at these levels are referred to as quantum phenomena, the word 
‘quantum’ referring to peculiar aspects of nature that go against common 
sense. The study of quantum phenomena has come to be known as quantum 
physics. 

The Bose–Einstein (B–E) statistics explain one of two methods in 
which a group of non-interacting, indistinguishable particles might inhabit 
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a set of discrete energy levels at thermodynamic equilibrium. The cohesive 
streaming of laser light and the frictionless crawling of superfluid helium are 
explained by the aggregation of particles in the same state, which is a property 
of particles following Bose–Einstein statistics. Satyendra Nath Bose created 
the theory of this behaviour (1924–25), recognising that a group of similar 
and indistinguishable particles can be distributed in this way. Albert Einstein, 
in partnership with Bose, later embraced and expanded on the concept. The 
Bose–Einstein statistics only apply to particles that are not restricted to single 
occupancy of the same state, i.e., particles that do not obey the Pauli exclusion 
principle. These particles are known as bosons and have integer spin values. 

An ideal Bose gas is a quantum-mechanical phase of matter, analogous 
to a classical ideal gas. It is composed of bosons, which have an integer value 
of spin, and obey Bose–Einstein statistics. The statistical mechanics of bosons 
were developed by Satyendra Nath Bose for a photon gas, and extended to 
massive particles by Albert Einstein who realized that an ideal gas of bosons 
would form a condensate at a low enough temperature, unlike a classical 
ideal gas. This condensate is known as a Bose–Einstein condensate. Einstein 
condensation is the limit of high particle densities and low temperatures 
(quantum limit), where one finds important qualitative differences between 
bosons, fermions and classical particles. Liquid helium is a physical state of 
helium at very low temperatures at standard atmospheric pressures. Liquid 
helium may show superfluidity. 

A free particle is a particle that, in some sense, is not bound by an 
external force, or equivalently not in a region where its potential energy varies. 
In classical physics, this means the particle is present in a ‘Field-Free’ space. 
In quantum mechanics, it means a region of uniform potential, usually set 
to zero in the region of interest since potential can be arbitrarily set to zero 
at any point (or surface in three dimensions) in space. By a free particle we 
mean a particle which moves freely in space without the influence of any 
force. Hence, for a free particle the potential energy is zero.  Landau theory 
in physics is a theory that Lev Landau introduced in an attempt to formulate 
a general theory of continuous (i.e., second-order) phase transitions. It can 
also be adapted to systems under externally-applied fields, and used as a 
quantitative model for discontinuous (i.e., first-order) transitions. Critical 
exponents describe the behavior of physical quantities near continuous phase 
transitions. It is believed, though not proven, that they are universal, i.e., they 
do not depend on the details of the physical system, but only on some of its 
general features. In physics, mathematics and statistics, scale invariance is 
a feature of objects or laws that do not change if scales of length, energy, 
or other variables, are multiplied by a common factor, and thus represent a 
universality. The technical term for this transformation is a dilatation (also 
known as dilation), and the dilatations can also form part of a larger conformal 
symmetry. Dimensional analysis is a branch of mathematics which deals with 
dimensions of quantities. Each physical phenomenon can be expressed by 
an equation that represents the relationship between the variables governing 
the phenomenon. 

In this unit, you will learn about the general concept of Quantum 
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Statistical (QS) mechanics, Bose-Einstein statistics, black-body radiation, 
pressure of an ideal Bose gas, Einstein condensation, theory of liquid helium, 
Fermi Dirac statistics, free electron theory of solids, Landau theory of phase 
transition, critical indices, dimensional analysis and density and energy 
function with electron spin in hydrogen like atom. 

5.1	 OBJECTIVES
After going through this unit, you will be able to:
	 •	Understand the general concept of Quantum Statistical (QS) mechanics 
	 •	Analyse the Bose-Einstein statistics
	 •	Explain the black-body radiation 
	 •	Discuss the concept of Einstein condensation 
	 •	Discuss the theory of liquid helium
	 •	Elaborate on the Fermi Dirac statistics 
	 •	State the free electron theory of solids 
	 •	 Illustrate the Landau theory of phase transition
	 •	Discuss the concept of dimensional analysis

5.2	 GENERAL CONCEPT OF QUANTUM 
STATISTICAL MECHANICS

In order to understand the origin of quantum physics and the subsequent 
development of an altogether new and conceptually different mathematical 
theory of quantum mechanics, it is first of all necessary to understand the 
background of the crisis in physics which was witnessed in the beginning 
of the 20th century.

Towards the end of the 19th century and the beginning of the 20th 
century many new discoveries took place. The discovery of X-rays in 
1895, the laws of radioactivity in 1896, electron in 1897, dependence of 
electron’s mass on its velocity, the laws of photoelectric effect, the laws 
of Compton effect are a few in a very imposing list of discoveries. Many 
new experiments, such as Franck and Hertz experiment, Davisson-Germer 
experiment, Thomson’s experiment were performed during the period. Many 
new aspects of nature were encountered while dealing with physical problems 
in the domain of small particles, namely atoms and subatomic particles. What 
was astonishing was that the new discoveries, the results of new experiments 
and the phenomena at atomic and subatomic levels could not be understood 
in terms of the then existing laws of classical physics. The phenomena at 
microlevel were found to be quite strange and one had to lose one’s common 
sense in order to perceive what was happening at the atomic and subatomic 
levels. The new aspects of nature and phenomena that were revealed at these 
levels are referred to as quantum phenomena, the word ‘quantum’ referring 
to peculiar aspects of nature that go against common sense.
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The study of quantum phenomena has come to be known as quantum 
physics.

Like classical physics, quantum physics also has been provided with a 
mathematical apparatus. The entirely new conceptual structure for dynamics 
in particular and physics in general, has been evolved during the last century. 
The currently accepted structure developed by Schrödinger, Heisenberg, 
Max Born, Jordan, Dirac and many others to deal with problems in the 
microdomain, i.e., at atomic and subatomic levels is termed as quantum 
mechanics.

Scope of Quantum Mechanics

The laws of quantum physics that govern the elementary particles are, 
however, not unconcerned with the macroscopic world and instead represent 
generalization of classical laws including them as special cases. The laws 
of quantum physics have been found to be the most general laws of nature 
discovered so far.

We may note that just as theory of relativity extends the range of 
application of physical laws to the region of very high velocities and just 
as the universal constant of fundamental significance ‘c’ (speed of light in 
vacuum) characterizes relativity, so a universal constant of fundamental 
significance ‘h’ (Planck’s constant) characterizes quantum physics which 
includes classical physics as a special case.
It is often said that ‘Revolution’ was brought about through the discovery of 
quantum mechanics. The word revolution suggests that something has been 
overturned completely. We may note that the discovery of quantum mechanics 
has not overturned the laws of classical physics in any way. The motion of 
a simple pendulum is described in the same way even today as it was done 
prior to the discovery of quantum mechanics. Classical ideas embodied in the 
laws of classical physics have their own limits of applicability. The classical 
theories of physics do not find universal validity in the sense that they are 
only good phenomenological laws and are unable to tell us everything even 
about macroscopic bodies. There exists no comprehensive classical theory 
of matter. Classical physics does not provide answers to:
	 ·	Why the densities of materials are what they are?
	 ·	Why the elastic constants have the values they have?
	 ·	Why a rod breaks if the tension in the rod exceeds a certain limit?
	 ·	Why copper melts at 1083°C?
	 ·	Why sodium vapour emits yellow light?
	 ·	Why copper conducts electricity but sulphur does not?
	 ·	Why uranium atom disintegrates spontaneously releasing energy?, etc.

We find a host of observation for which classical physics has to tell us 
very little or nothing at all. Besides, the facts of chemistry are not understood 
in terms of classical laws.
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With the advent of quantum mechanics our knowledge has expanded 
enormously about the laws of physics in the realm of small particles which 
has consequently enabled us to build, if not comprehensive, at least a good 
theory of matter.

The theory of quantum mechanics has explained all kinds of details, 
such as why an oxygen atom combines with two hydrogen atoms to make 
one molecule of water, and so on. Quantum mechanics thus supplies the 
theory behind chemistry. It has been realized that fundamental theoretical 
chemistry is based on the theory of quantum mechanics.

5.2.1	 Wave Nature of Microparticles: de-Broglie’s Hypothesis

Around 1923, Louis de-Broglie suggested that the idea of duality should be 
extended not only to radiation but also to all microparticles. He hypothesized 
that just as a quantum of radiation has a wave associated with it which governs 
its motion in space, so also a quantity of matter has a corresponding wave 
(which may be called matter wave) that governs its motion in space.

The universe is essentially composed of only two entities namely 
matter and radiation. de-Broglie agreed that since one of the entities, namely 
radiation, has dual nature, the other entity matter must also exhibit dual 
character. His hypothesis is consistent with the symmetry principle of nature.

De-Broglie proposed to associate, with every microparticle, corpuscular 
characteristics namely energy E and momentum p on the one hand, and wave 
characteristics namely frequency n and wavelength l on the other hand. 
According to de-Broglie, the mutual dependence between the characteristics 
of the two kinds was accomplished, through the Planck’s constant h as

		        E = hn  and  p = ​ hn ___ c ​ = ​ h __ 
l

 ​	 ...(5.1)

This relation is known as de-Broglie’s equation. 
The wavelength l of matter wave associated with a microparticle is 

called de-Broglie wavelength of the particle. De-Broglie’s hypothesis had 
profound importance from the fact that relation in Equation (5.1) was assumed 
to be satisfied not only for photons (zero rest mass), but for all microparticles, 
particularly for those which possess rest mass and which were associated 
with corpuscles. 

Confirmation of de-Broglie’s Hypothesis

Walter Elsasser, for the first time in 1926, pointed out that the wave nature 
of matter could be tested by allowing a beam of electrons of appropriate 
energy to be incident on a crystalline solid in which periodic arrangement 
of atoms might serve as a three-dimensional array of diffracting centres for 
the electron wave (if it at all exists), when diffraction peaks in characteristic 
directions might he observed.

The above idea was confirmed experimentally by Clinton Davisson 
and Lester Germer in the United States and George Thomson in Scotland. 
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Davisson and Germer’s Experiment 

The experimental arrangement used by Davisson and Germer is schematically 
shown in the Figure 5.1.

Fig. 5.1  Davisson and Germer Experiment

F is a filament which emits electrons when heated electrically.
The emitted electrons are accelerated through a potential V whose value 

can be adjusted as required by means of a potential divider arrangement. The 
accelerated electrons having kinetic energy E are then allowed to pass through 
a system of narrow slits so as to obtain a thin collimated beam of electrons. 
The beam of electrons thus obtained is then allowed to be incident normally 
on a single crystal C of nickel enclosed in a vacuum chamber. The crystal 
can be rotated about the incident beam as the axis. D is an electron detector 
which detects only elastically scattered electrons. The detector can be moved 
along an arc of a circle about the crystal so as to measure the intensity of 
elastic scattering in different directions in front of the crystal.

The intensities of the different beam at different angles l and for 
different values of the accelerating potential were determined. The results 
obtained are shown in the Figure 5.2 and Figure 5.3. A peak in the intensity 
was observed at f = 50° for V = 54 volts. Such an observation does not find 
explanation on the basis of particle motion. However, it finds explanation 
in terms of interference phenomenon which is characteristic of wave only.

The wavelength of electrons impinging the crystal are given by l = ​ h __ p , 
according to de-Broglie’s equation. We may assume Bragg reflections for 
electron wave to occur from certain families of atomic planes as in the case 
of X-ray diffraction from crystals. Bragg reflection obeying Bragg’s equation 
is shown in the Figure 5.4. Bragg’s equation is given by:

		        2d sin q = ml;  m = 1, 2, 3	 ...(5.2)

 

	   Fig. 5.2	             Fig. 5.3	 Fig. 5.4
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Using X-ray analysis on the crystal it is found that at f = 50°, a Bragg 
reflection occurs from atomic plane having interplanar spacing d = 0.91 Å 
and the corresponding Bragg angle of reflection or glancing angle is 65° (as 
indicated in the figure). Considering m = 1 we obtain

2 × (0.91 Å) sin 65° = l

or	 l = 1.65 Å	 ...(5.3)

For electrons having kinetic energy E = 54 eV, the de-Broglie 
wavelength is,

	        	        
​
 ​	 …(5.4)

Substituting h, m and E we obtain,

			     	 l = 1.65 Å.	 …(5.5) 

The existence of electron wave and the validity of de-Broglie equation 
are thus established.

We may note that in the above calculations the value m = 1 is used. If 
m = 2 or more, then there should occur intensity peaks for different values 
of f. However, no such peaks are observed experimentally. 

GP Thomson’s Experiment

Thomson’s experiment is analogous to Debye-Scherrer X-ray diffraction 
method.

The experimental arrangement consisted of a glass envelope in 
which electrons were emitted from a heated filament. The emitted electrons 
were suitably accelerated and collimated to give a uni-directional, thin, 
monoenergetic beam of electrons. The beam thus obtained was allowed 
to fall normally on a polycrystalline material as shown in Figure 5.5. The 
scattered (diffracted) electrons were recorded on a photographic film placed 
perpendicular to the incident beam. 

Fig. 5.5  GP Thomson Experiment

On the photographic plate a set of concentric circles were observed. The 
pattern of circles obtained was found to be a characteristic of the crystal used.

On replacing the electron beam by a monochromatic X-ray beam a 
similar circular pattern was observed on the photographic plate. 

From the knowledge of the wavelength of the electron beam 
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2
h h
p mE

Ê ˆ
l = =Á ˜Ë ¯  it was possible to determine the geometry of the crystal 

lattice which was found to be in complete agreement with that obtained using 
X-ray diffraction analysis of the crystal. It is thus clear that electron beam is 
diffracted by a crystal in the same way as X-rays.

It is important to note in the experiment of Davisson and Germer and 
of Thomson the following:

•	 In the process of acceleration, an electron behaves like a particle 
of charge – e and mass m.

•	 During the process of diffraction, the same electron behaves like a 
wave of wavelength l = ​ 

Thus, the electron which shows wave-like property in one part of the 
experiment exhibits particle-like properties in two other parts of the same 
experiment. Clearly, for a complete description both the particle aspect as 
well as the wave aspect become necessary.

Conclusion

The experiments of Davisson and Germer and Thomson give clear evidence 
of the existence of wave properties of electrons. Besides, the experiments 
confirm the validity of de-Broglie equation at least for the electron.

Experiments on diffraction of molecular beam of hydrogen and atomic 
beam of helium by the lithium fluoride crystal were performed by Estermann, 
Stern and Frisch. Hydrogen molecule and helium atom being very much 
different from each other as well as from electron, their successful experiments 
led to the universality of matter waves.

Fermi, Marshall and Zinn performed interference and diffraction 
experiments with slow neutrons and obtained results confirming de-Broglie’s 
hypothesis. It is important to note that neutron diffraction is nowadays an 
important technique in crystal structure studies as a complement to X-ray 
and electron diffraction techniques.

5.3	 BOSE EINSTEIN STATISTICS
The basic postulates of BE statistics are:

	 (i)	The associated particles are identical and indistinguishable.
	 (ii)	Each energy state can contain any number of particles.
	 (iii)	Total energy and total number of particles of the entire system are 

constant.
	 (iv)	The particles have zero or integral spin, i.e., etc., where  

 is the unit of spin.
	 (v)	The wave function of the system is symmetric under the positional 

exchange of any two particles.
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Examples: Photon, phonon, all mesons (p, k, h) etc., these are known as Bosons.
[Note: Symmetric and Anti-symmetric wave function
Suppose the allowed wave function for n-particles system is y(1, 2, 3, ..., r, s, ... 
n), where the integers within the argument of y represent the coordinates of the 
n-particles relative to some fixed orgion. Now, if we interchange the position of 
any two particles, say, r and s, the resulting wave function becomes y (1, 2, 3, ..., 
s, r, ...n). The wave function y is said to be symmetric when 
	 y(1, 2, 3, ..., r, s, ... n) = y (1, 2, 3, ..., s, r, ...n)
and anti-symmetric when
	 y(1, 2, 3, ..., r, s, ... n) = –y (1, 2, 3, ..., s, r, ...n)] 

Bose-Einstein Distribution Law
Let Ni number of identical, indistinguishable, non-interacting particles are to be 
distributed among gi quantum states each having energy Ei. So, in the ith energy 
level, there are (Ni + gi) total objects. Keeping the first quantum state fixed, the 
remaining (Ni + gi – 1) objects can permuted in (Ni + gi – 1)! possible ways. But 
since the particles and the quantum states are indistinguishable, we have to deduct 
Ni! ways and (gi – 1)! ways from the all possible ways to get effective number of 
arrangements. Thus, total number of possible ways of arrangement for the ith state is

	 Wi =  		  ...(5.6)

Hence the total number of ways of the entire distribution of N particles in n number 
of energy levels of the system is

	 W = 	 ...(5.7)

where P denotes the product symbol.
If we assume that Ni and gi are very large, eqn. (5.7) reduces to 

	 W =  		  ...(5.8)

Taking natural logarithm of both the sides of eqn. (5.8) we get, 

	 ln W 	 = [ ]ln ( )! ln ! ln !i i i i
i

N g N g+ − −∑

		  = [ ]( ) ln ( ) ln lni i i i i i i i
i

N g N g N N g g+ + − −∑ 	 ...(5.9)
					     (using Stirling approximation)
Now, differentiating equation (5.9) to obtain the probable distribution, we get, 
	 d(ln W)max [ln ( ) ln ]i i i i

i
N g N dN+ −∑ 	 ...(5.10)

Also we have other two conditions given byz

	 i
i

d N∑ = 0 (conservation of total no. of particles)	 ...(5.11)

	 i i
i

E d N∑ = 0 (conservation of total energy)	 ...(5.12)
Multiplying eqn. (5.11) by (–a) and eqn. (5.12) by (–b) and then adding with eqn. 
(5.10) we get, 

	 [ ln ( ) ln ]i i i i i
i

N g N E dN+ − − α − β∑ = 0		 ...(5.13)
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Since dNi’s are independent of one another, the above equation holds only if, 

	 [ ln ( ) ln ]i i i i
i

N g N E+ − − α − β∑  = 0	

or,		  Ni = ( ) – 1α+β i

i
E
g

e
 	 ...(5.14)

Now the Bose-Einstein distribution function is given by

	 f (Ei) = ( )
1

1α+β=
−i

i
E

i

N
g e

 	 ...(5.15)

which represents the probability of finding a boson with energy Ei.

Application of Bose-Einstein statistics

Let us discuss the application of Bose-Einstein statistics.

Planck’s Law of Black-body Radiation
In quantum mechanics we have already established Planck’s law of black-
body radiation which exactly accounts for the observed energy density in 
case of a black-body radiation. Here shall re-derive the same Planck’s law 
by using Bose-Einstein statistics. In order to derive this, let us consider a 
black-body chamber of volume V kept at a constant temperature T and filled 
with radiant energy that can be considered as an assembly of photons. If the 
number of photons in the chamber is very large, the spacing between two 
successive energy levels becomes very small making the energy lavels almost 
continuous. Thus if the energy of the photons ranges from E to E + dE, the 
number of degnerate states gi should be replaced by g(E)dE and the total number of 
photons Ni in these states should be replaced by N(E)dE in the distribution function 
given by equation (5.14). Thus the total number of photons in the chamber having 
energy between E to E + dE can be written by the following eqn. (5.14).

The number of photons having energy range between E to E + dE can 
be written by using eqn. (5.14) as given by

	 N(E)dE	= ( )
( )

1α+β −E
g E dE

e
		 ...(5.16)

where g(E)dE is the number of states of photons having energy between E to  
E + dE. In case of black-body radiation, the total number of particles are not 
conserved because, photons are absorbed and re-emitted frequently by the walls of 
the chamber, i.e.,

 i
i

dN∑ 0, which implies a = 0. Also it is experimentally established 

that b =
1

kT , where, k = 1.38 × 10–23 Joule/Kelvin is known as the Boltzmann 
constant. Thus eqn. (7.48) reduces to

	 N(E)dE	= /
( )

1E kT
g E dE
e −

 			   ...(5.17)

Now the number of quantum states corresponding to the momentum 
range from p to p + dp is shown in this book

	 g(E)dE 	= gs 

2

3
4 Vp dp

h
π  		  ...(5.18)

where, gs is the spin-degeneracy or duplicity of a quantum state. Since a photon has 
two spin orientations in trensverse direction, gs = 2 for photons.
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\ 	 g(p)dp 	= 
2

3
8 Vp dp

h
π

			   ...(5.19)
The energy of a photon of frequency v is E = hv and so its momentum is p = hv/c, 
where c is the speed of a photon in free space. 

\ 	 dp = h
c

dv	  		  ...(5.20)

Substituting the value of p and dp in eqn. (5.19), we get the number of quantum 
states having frequency range between v and v + dv as

	  g(v)dv 	= 3
8 V
c
π  v2dv 			   ...(5.21)

Hence, expressing eqn. (5.16) in terms of v we get,

	 N(v)dv 	= /
( )

1h kT
g d

e ν
ν ν

−

		  = 
2

3 /
8 .

1h kT
V d

c e ν
π ν ν

−
	          		�   ...(5.22)

which represents the number of photons having frequency range between v to  
v + dv kept in a chamber of volume V at temperature T.

Therefore, the energy density (total energy per unit volume) of the 
photons within frequency range dv is given by

	 u(v)dv 	 = h
V
ν N(v)dv 

		  = 
3

3 /
8. .

1h kT
h V d
V c e ν
ν π ν ν

−

or, 	 u(v)dv 	 = 
3

3 /
8 .

1ν
π ν ν

−h kT
h d

c e
		  ...(5.23)

which is the Planck’s law of black-body radiation that we have deduced earlier in 
quantum mechanics.

5.4	 BLACK-BODY RADIATION 
In our world of material, all the objects emit thermal radiation from its surface 
at any temperature. The radiation characteristics depend on the temperature 
and properties of the surface. As the surface temperature of the object 
increases, wavelength of the radiation goes from infrared to white region.

The thermally agitated accelerating particles emits the radiation and 
distributed the energies in continuous manner, as the result continuous 
spectrum of electromagnetic radiation emitted by the object. The classical 
theory of thermal radiation was inadequate, when one consider the distribution 
of wavelengths in the thermal radiation emitted by a blackbody. 

A blackbody is defined as it absorbs all the thermal radiations, whatever 
may be the wavelength incident on it. It neither reflects nor transmits any 
radiation, and appears black.
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Fig. 5.6 Absorption of radiations in a blackbody

An isothermal enclosure behaves same as a blackbody. Let us consider 
a blackbody, placed in an isothermal enclosure. In thermal equilibrium, the 
body will emit the full radiations independent of the nature of the substance. 
The thermal radiations in an isothermal enclosure are, therefore, termed as 
‘Blackbody Radiations.’

Stefan’s Law

The frequency distribution (or wavelength distribution) of radiation from a 
blackbody cavity or an isothermal enclosure was studied in the late nineteenth 
century. Figure 5.7 shows the intensity versus wavelength curve in different 
temperature of a blackbody radiation.
According to Stefan’s law, the emissive power of the surface of a blackbody is 
given by
		  P = sAeT4		  ...(5.24)
where s is the Stefan-Boltzmann constant, and its value is 5.670 × 10–8 W/m2.K4, 
A is the surface area of the blackbody, e is the emissivity of the surface and T is the 
temperature in Kelvin. For a perfectly blackbody e = 1.
The intensity formulae is given by
		  I = sT4		  ...(5.25)

where		  I = P
A

 

The above equations are called Stefan’s laws in blackbody radiations.

Fig. 5.7 Intensity-wavelength distribution of a blackbody radiation
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Wein’s Radiation Law

To explain the observed spectral distribution (given in figure 5.7), Wein first 
found the form of El (emissive energy) as the function of wavelength (l) 
and temperature (T), i.e., 
	         El = El (l, T ).
Wein’s consider an isothermal cavity (sphere), increasing gradually. According to 
Wein, the energy density (El) of the blackbody radiation of wavelengths between 
l and l + dl from the isothermal cavity of temperature T is given by

		  Eldl = /
5

− λ λ
λ

B TA e d 	 ...(5.26)

where A and B are two constants.
The above equation is termed as “Wein’s Distribution Law” in blackbody radiation.

Fig. 5.8 Variation of El with l (Wein’s distribution raw)

Wein’s also showed that 
		  Tlmax = constant         	 ...(5.27)
where lmax is the wavelength at the maximum energy of a blackbody radiation.
The above equation is termed as “Wein’s Displacement Law” in blackbody radiation.
Numerically 
    		  Tlmax = 2.898 × 10–3 m.K

Rayleigh-Jeans’s Distribution Law

Rayleigh-Jeans’s distribution law in blackbody radiation based on the 
principle of equipartition of energy in classical limits. They consider that 
the energy is distributed in all possible modes of free vibration which might 
be assigned to radiation of energy. Thus, they considered the average energy 
(energy per mode in each degree of freedom) of an oscillator as ∈= KT 
(classical approach).
According to Rayleigh-Jeans’s law

		  Evdv = 
2

3
8πv KT dv

c 		  ...(5.28)

where the energy of the radiation varies from v to v + dv and K is the Boltzman’s 
constant. The above equation is known as “Rayleigh-Jeans’s distribution law” in 
blackbody radiation.
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In terms of wavelength. the “Rayleigh-Jeans’s distribution law” takes the form

		  Evdv = 4
8 KT dπ λ

λ
 		  ...(5.29)

where c = nl and the energy of the radiation varies from l to l + dl.
So, “Rayleigh-Jeans’s distribution law” states that the energy density (El) of a 
blackbody radiation is inversely proportional to the fourth power of its wavelength 
(l) at temperature T,

	 i.e.,		  El a 4
1

λ
 		  ...(5.30)

Ultraviolet Catastrophe

The exact explanation of blackbody spectra was first given by Rayleigh and 
Jeans. The spectral distribution of a blackbody radiation is given in Fig. 5.9.

According to Rayleigh-Jeans’s formulae Eldl = 4
8 KT dπ λ

λ
. From 

this equation, we can say, the energy density increases with decreasing 
wavelength. But the actual spectra (experimental results) shows that the 
energy density increases with increasing wavelength (for low wavelengths).
The discrepancy in theoretical drawback of Rayleigh-Jeans’s law with experimental 
results of blackbody radiation (for low wavelengths) is termed as “ultraviolet 
catastrophe”.
[Note: The words “ultraviolet” for short wavelength and “catastrophe” mean infinite 
energy occurs as the wavelength tends to zero; i.e., when l → 0, El → ¥]

Fig. 5.9 Comparison of experimental spectra with Rayleigh-Jeans’s law

Planck’s Distribution Law

In 1900, Max Planck developed the complete explanations of blackbody 
radiation that fit into experimental results. Planck developed his ideas on 
the basis of “quantum” aspects.
To explain the blackbody radiation Planck assumed that
	 (a)	The isothermal cavity (blackbody) oscillates like an atomic oscillator 

and energy radiate.
	 (b)	The cavity is vibrated only in frequency n and its full multiple; i.e., 

the energy will be hn and its full multiple upto nhn, where n is an 
integer. h is called “Planck’s Constant”.

		  So, we can say the energy will be discrete and quantited. Each quantited 
discrete energy value leads to different “quantum state”, represented 
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by the quantum number n, i.e., the discrete energy of different quantum 
state will be hn, 2hn, 3hn, ... nhn (n = 1, 2, 3, ... n). The difference of 
energy between two consecutive energy state will be hn.

	 (c)	 The oscillators emit or absorb energy when transition takes place, i.e., 
the oscillators emit or absorb energy when it changes the quantum states.

Fig. 5.10 Allowed energy levels of an oscillator

Planck consider that the energy is proportional to e–nhv/KT.
Let us consider there are N number of oscillators of total energy En. The energy 
per oscillator is given by

			   ε = nE
N 		  ...(5.31)

where	          N	= N0 + N1 + N2 + ...+ Nn + ...	 ...(5.32)
and	        En	 = 0.N0 + eN1 + 2eN2 + ... + neNn + ...	 ...(5.33)

N0, N1, N2, ... Nn + ... are the number of oscillators correspond to energy 
0, e, 2e, ... ne... respectively and e = hv.

According to Maxwell’s distribution law, the total number of oscillators 
having energy nhv is given by

	         Nn	= /
0

0

nhv KT

n
N e

α
−

=
∑ 		 ...(5.34)

where K is the Boltzmann’s constant.
According to Planck’s consideration (energy is proportional to e–nhv/KT), the total 
energy of the oscillators is given by

	        En	 = /
0

0

nhv KT

n
N e nhv

α
−

=
∑ 		  ...(5.35)

So, the average energy ε  (energy per oscillator) is given by

	          ε 	= 

/
0

0

/
0

0

nhv KT

n

nhv KT

n

N e nhv

N e

α
−

=
α

−

=

∑

∑

[from equations (5.31), (5.34) and (5.35)].

⇒       ε 	= ( )

0
ln nhv

n

d e
d

α
− β

=
−

β ∑ , where b = 
1

KT
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		  = 2ln[1 ..... ...]hv hv nhvd e e e
d

− β − β − β− + + + + +
β

		  =  
1ln

1 hv
d
d e− β

 −  β − 
= ln[1 ]hvd e

d
− β− −

β

		  =  

.
1

hv

hv
hv e

e

− β

β−  = 1hv
hv

e β −  = 
/ 1hv KT
hv

e −  	 ...(5.36)

As the number of oscillators per unit volume within the frequency range v 
and v + dv is given by

	        dN 	 = 
2

3
8 v dv

c
π ,

the emissive energy density (energy per unit volume) within the frequency 
range v and v + dv is given by

	    Ev dv	= dN ε  = 
2

3 /
8

1hv KT
v hvdv

c e
π ×

−

		  = 
3

3 /
8 1

1hv KT
hv dv
c e

π
−

		  ...(5.37)

The above equation is known as Planck’s distribution law in blackbody 
radiation.

In terms of wavelength, the Planck’s distribution law having the form

	      Eldl = 5 /
8 1

1hc KT
hc d

e λ
π λ
λ −

 		 ...(5.38)

where v  = 
c
λ  and h is called Planck’s constant.

Graphical Representation of Wein’s, Rayleigh-Jeans’s and Planck’s 
Distribution Law

Fig. 5.11 Emissive energy density-wavelength distribution of Wein’s,  
Rayleigh-Jeans’s and Planck’s law in blackbody radiation
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Corollary 1. Wein’s Distribution Law from Planck’s Law: When the 
temperature (T) or the wavelength (l) is very low of equation (5.38), then 

the term  hc
KTλ

is very much greater than unity  >> 1 
  λ

hc
KT

. Hence, the form 

of equation (5.38) will be

	    El dl	= /
5

8 hc KThc e d− λπ λ
λ

		  = /
5

B TA e d− λ λ
λ

		  ...(5.39)

which is Wein’s distribution law [Refer equation (5.26)] where A = 8phc 
(constant) and B = hc

K
 (constant).

Corollary 2. Rayleigh–Jeans Distribution Law from Planck’s Law: When 
the temperature (T) or the wavelength (l) is very much large, then  hc

KTλ
in 

equation (5.36) is very small. Then the term ehc/lKT can be expanded as 

	   ehc/lKT	 = 
211 ...

2
hc hc
KT KT

  + + +  λ λ   

		  = 1 hc
KT

+
λ

             	  [neglecting higher term for lower values]

So, the equation (4.15) having the form

	    Eldl	 =  5
8 1.

1 1

hc d
hc
KT

π λ
 λ  + −  λ  

		  = 5
8 hc KT d

hc
π λ× λ
λ

		  = 4
8 λKT dπ

λ
			   ...(5.40)

which is Rayleigh–Jeans’s distribution law (Refer equation (5.29)).
Corollary 3. Stefan’s Law from Planck’s Law: From equation (5.37), the 
Planck’s distribution law in terms of frequency is given by

	   En dn	= 
3

3 /
8 1

1hv KT
hv dv
c e

π
−

By integrating the above equation from 0 to ∞, we can obtain the total 
radiation energy. So, the total energy is given by

	          E	 =  
0

vE dv
∞

∫ = 
3

3 /
0

8
1hv KT

h v dv
c e

∞π
−∫

		  = 
4 3

3 3
0

8 ( )
1x

KT x dx
c h e

∞π
−∫ 	 Putting ,hv hx dx dv

KT KT
 = =  

		

		  = 
4 4 3 4

3 3
0

8
15 151x

KT x dx
c h e

∞ π π π× = 
−  

∫ 	 ...(5.41)

The emissive intensity of any blackbody radiation is defined as
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	            I	= 
4
cE  

    = 
5 4 4

2 3
2
15

K T
c h

π  = sT 4	 ...(5.42)

where	  s  = 
5 4

2 3
2
15

K
c h

π
 (= 5.67 × 10–8 W/m2/K4) is called Stefan’s constant.

Equation (5.42) is Stefan’s law in blackbody radiation 

Check Your Progress

	 1.	What is quantum physics?
	 2.	How does the theory of relativity characterize quantum physics?
	 3.	State the Louis de-Broglie idea of duality.
	 4.	What is mutual dependence according to de-Broglie?
	 5.	What is the wavelength of electrons impinging the crystal according 

to de-Broglie’s equation?
	 6.	What are basic postulates of BE statistics?
	 7.	Two particles are to be distributed in three cells. Find out the total 

number of possible ways both from formula and in tabular form in 
BE statistics particles.

	 8.	How will you define the Planck’s law of black-body radiation?
	 9.	Define the term blackbody.

5.5	 PRESSURE OF AN IDEAL BOSE GAS
In this section, we shall study the thermodynamic properties of a gas of non-
interacting bosons. We will show that the symmetrization of the wavefunction 
due to the indis-tinguishability of particles has important consequences on 
the behavior of the system. The most important consequence of the quantum 
mechanical symmetrization is the Bose-Einstein condensation, which is in 
this sense a special phase transition as it occurs in a system of non-interacting 
particles. We shall consider, as an example, a gas of photons and a gas of 
phonons.

Equation of state

We consider a gas of non-interacting bosons in a volume V at temperature 
T and chemical potential µ. The system is allowed to interchange particles 
and energy with the surround-ings. The appropriate ensemble to treat this 
many-body system is the grand canonical ensemble.

Chapter 14

Ideal Bose gas

In this chapter, we shall study the thermodynamic properties of a gas of non-interacting
bosons. We will show that the symmetrization of the wavefunction due to the indis-
tinguishability of particles has important consequences on the behavior of the system.
The most important consequence of the quantum mechanical symmetrization is the Bose-
Einstein condensation, which is in this sense a special phase transition as it occurs in a
system of non-interacting particles. We shall consider, as an example, a gas of photons
and a gas of phonons.

14.1 Equation of state

We consider a gas of non-interacting bosons in a volume V at temperature T and chemical
potential µ. The system is allowed to interchange particles and energy with the surround-
ings. The appropriate ensemble to treat this many-body system is the grand canonical
ensemble.

Non-relativistic Bosons. Our bosons are non-relativistic particles with spin s, whose
one-particle energies �(k)

�(k) = �(k) =
h̄2k2

2m
, �0 = �(0) = 0

include only the kinetic energy term.

Negative chemical potential. The chemical potential obeys

−∞ < µ < �0, �0 = 0 .

A chemical potential larger than the lowest energy state would lead to nonphysical level 
occupation.

n(�r) = �n̂r� =
1

eβ(�r−µ) − 1
.

Approaching the thermodynamic limit: We consider a situation when the gas is in 
a box with volume V = LxLyLz and subject to periodic boundary conditions

173
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Chapter 14

Ideal Bose gas

In this chapter, we shall study the thermodynamic properties of a gas of non-interacting
bosons. We will show that the symmetrization of the wavefunction due to the indis-
tinguishability of particles has important consequences on the behavior of the system.
The most important consequence of the quantum mechanical symmetrization is the Bose-
Einstein condensation, which is in this sense a special phase transition as it occurs in a
system of non-interacting particles. We shall consider, as an example, a gas of photons
and a gas of phonons.

14.1 Equation of state

We consider a gas of non-interacting bosons in a volume V at temperature T and chemical
potential µ. The system is allowed to interchange particles and energy with the surround-
ings. The appropriate ensemble to treat this many-body system is the grand canonical
ensemble.

Non-relativistic Bosons. Our bosons are non-relativistic particles with spin s, whose
one-particle energies �(k)

�(k) = �(k) =
h̄2k2

2m
, �0 = �(0) = 0

include only the kinetic energy term.

Negative chemical potential. The chemical potential obeys

−∞ < µ < �0, �0 = 0 .

A chemical potential larger than the lowest energy state would lead to nonphysical level 
occupation.

n(�r) = �n̂r� =
1

eβ(�r−µ) − 1
.

Approaching the thermodynamic limit: We consider a situation when the gas is in 
a box with volume V = LxLyLz and subject to periodic boundary conditions
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In the thermodynamic limit (N → ∞, V → ∞, with n = N/V = const), the sums over

the wavevector �k can be replaced by integrals as in the case of the Fermi gas.

However, here we have to be careful when µ happens to approach the value 0. In order
to see what kind of trouble we then might get into, let us calculate the ground state
occupation.

Occupation of the lowest energy state. We consider the expectation value of the
ground state for µ approaching zero from below, viz when −βµ � 1:

n(�0) =
1

e−βµ − 1
=

1

(1− βµ+ . . .)− 1
≈ − 1

βµ
, �0 = 0 ,

which means that n(�0) = �n̂r=0� diverges. The lowest energy state may hence by occupied
macroscopically. This is the case when

1

|µ|β ∼ N, |µ| ∼ kBT

N
, 1− z ∼ 1

N
. (5.43)

Density of states: The density of states D(E),

D(E) ∼
√
E, lim

E→0
D(E) = 0,

vanishes for E → 0. This is where we are going to encounter a problem: if we replace

1

V

�
r

→
�

dE D(E)

we will get that the ground state has zero weight even though, as we have just shown that
it can be macroscopically occupied. Fermionic systems do not encounter this problem due
to the Pauli principle, which imposes that �n̂r� ∈ [0, 1].

Special treatment for the ground state. The problem with the potentially macro-
scopic occupation of the ground state can be solved by giving it via

βΩ(T, V, z) =
�
r

ln
�
1− e−β(�r−µ)

�
(5.44)

= (2s+ 1)
V

(2π)3
4π

� ∞

0

dk k2 ln
�
1− ze−β�(k)

�

+ (2s+ 1) ln(1− z)� �� �
occupation of the

ground state �(0) = 0

. (5.45)

exa special treatment. For the bosonic grand canonical�
rpotential Ω(T, V, µ) we have split the into an integral over all states,

and into the �0 contribution (the last term).
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’Irrelevance’ of condensate. The ground state contribution Equation (5.45) to the grand 
canon-ical potential Ω is formally irrelevant in the thermodynamic limit as a consquence of
the scaling Equation (5.43)  of the chemical potential:

lim
V→0

ln(1− z)

V
≈ lim

V→0

− ln(N)

V
→ 0 .

We note, however, that the size of the condensate, that is the number of particles occu-
pying the ground state, determines how many particles occupy energiers E > E0, viz the
density of the normal fluid.

Dimensionless variables. With the dimensionless variable x and the thermal de Broglie
wavelength λ,

x = h̄k

�
β

2m
, λ =

�
2πβh̄2

m
,

we write (14.3) as

βΩ(T, V, z) =
2s+ 1

λ3

4V

π

� ∞

0

dx x2 ln
�
1− ze−x2

�
, (5.46)

all in parallel to the transformations performed for the Fermi gas.

Taylor expansion. We recall that the Taylor series expansion

ln(1− y) = −
∞� yn

n
, |y| < 1

n=1

may be used, to express the integral
� ∞

0

dx x2 ln
�
1− ze−x2

�
= −

√
π

4

∞�
n=1

zn

n5/2

in terms of

g5/2(z) = − 4√
π

� ∞

0

dx x2 ln
�
1− ze−x2

�
=

∞�
n=1

zn

n5/2
. (5.47)

Note that g5/2(z) and f5/2(z), differ by a sign (−1)n+1 in the summand. For later uses we
also define g3/2(z) as

g3/2(z) = z
d

dz
g5/2(z) =

∞�
n=1

zn

n3/2
. (5.48)

Note that f3/2(z) was defined analogously in as zd(f5/2)/dz.

Bosonic grand canonical potential. With (5.47), the grand canonical potential (5.46) 
takes the form

βΩ(T, V, z) = −2s+ 1

λ3
V g5/2(z) . (5.49)
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↔ f5/2,Except for the extra term on the right-hand side, and for an exchange g5/2 

Pressure. From Ω = −P V we get

βP =
2s+ 1

λ3
g5/2(z) , (5.50)

in analogy to above equation.

Particle density. For the particle density N/V we derived in this book relation

�N�
V

=
1

βV

�
∂

∂µ
lnZ

�
=

z

V

�
∂

∂z
lnZ

�
= −βz

V

�
∂

∂z
Ω

�
,

namely that βΩ = − l n Z. I n this case the condensate term (5. 45)  contributes. We then find

n =
2s+ 1

λ3
g3/2(z) +

2s+ 1

V

z

1− z
(5.51)

for the density of particles n = �N̂ �/V i n terms of the f ugacity z, where we have used (5. 49)  
and (5. 48) .

Ground state occupation. The term
n0 =

2s+ 1

V

z

1− z
(5.52)

in (5.51) describes the contribution of the ground state to the particle density n. When 
n0 becomes macroscopically large on speaks of a Bose-Einstein condensation.

Internal energy. The internal energy U is given by

U = −
�

∂

∂β
lnZ(T, z, V )

�

z,V

=

�
∂

∂β
βΩ(T, V, z)

�

z,V

. (5.53)

Note that the fugactity z is kept constant in above expression. Our result ( in 
equation 5.49) states that

βΩ(T, V, z) ∼ −λ−3 ∼ −β−3/2 ,

which then leads with (5.53) to

U

V
=

3kBT

2

2s+ 1

λ3
g5/2(z) . (5.54)

This expression is the same as the one for the Fermi gas when f5/2(z) is substituted by
g5/2(z). The reason is that the ground state energy �0 vanishes, �0 = 0. It does hence not
matter how many particle occupy the lowest energy level.
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Note that the fugactity z is kept constant in above expression. Our result ( in 
equation 5.49) states that

βΩ(T, V, z) ∼ −λ−3 ∼ −β−3/2 ,

which then leads with (5.53) to

U

V
=

3kBT

2

2s+ 1

λ3
g5/2(z) . (5.54)

This expression is the same as the one for the Fermi gas when f5/2(z) is substituted by
g5/2(z). The reason is that the ground state energy �0 vanishes, �0 = 0. It does hence not
matter how many particle occupy the lowest energy level.
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Caloric equation of state. Combining Equation (5.54) with (5.50) one can derive 
the caloric equation of state:

U =
3

2
PV ,

which is identical to the one obtained for the ideal Fermi gas.

Classical Limit

The classical limit (non-degenerate Bose gas) corresponds to low particle densities and
high temperatures. The fugacity is then small,

z = eβµ � 1 ,

with the Bose-Einstein distribution

�n̂r� =
1

z−1eβ�r − 1
=

ze−β�r

1− ze−β�r
≈ ze−β�r � 1

reducing to the Maxwell-Boltzmann distribution, just as for a fermionic system. The
differences between Bose-, Fermi- and Boltzmann statistics are in next order of the order
1/z and hence small.

Expansion in the fugacity. As z � 1, it is sufficient to retain only the first two terms
of the series for g5/2(z) and g3/2(z):

g5/2(z) ≈ z +
z2

25/2
, g3/2(z) ≈ z +

z2

23/2
.

With that, the particle density (5.51) takes the following form:

n ≈ 2s+ 1

λ3
z
�
1 +

z

23/2

�
+

2s+ 1

V

z

1− z
(5.55)

Irrelevance of the ground-state contribution. We note that the ground-state con-
tribution (5.52) vanishes generically in the thermodynamic limit, being proportional to
1/V . The number of particles occupying the ground state is finite only for z → 1. For
the case of small fugacities considered here we can neglect it generically, obtaining

n ≈ 2s+ 1

λ3
z
�
1 +

z

23/2

�
. (5.56)

Convergence radius. That ground state contributions can be generically neglected at
elevated temperatures follows also from the following consideration.

– An expansion in a physical parameter, like z or β, converges only as long as one
one remains within the same phase, here the high-temperature quasi-classical gas
phase.
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z
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�
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Convergence radius. That ground state contributions can be generically neglected at
elevated temperatures follows also from the following consideration.

– An expansion in a physical parameter, like z or β, converges only as long as one
one remains within the same phase, here the high-temperature quasi-classical gas
phase.
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– An expansion diverges once a phase boundary is encountered, in our case the tran-
sition to a phase with macroscopically occupied ground-state level. A condensed
low-temperature state can therefore not be described within a high-temperature
expansion.

Classical limit. In the strict classical limit we retain only the the terms ∼ z on the right-
hand side of (5.56) We thus have that

nλ3 ≈ (2s+ 1)z(0), z(0) ≈ nλ3

2s+ 1
. (5.57)

in the zeroth approximation.

Classical equation of state. We note that (5.57) is identical to corresponding given ex-
pression in this book for Fermions. The expression (5.60) for the pressure reduces then with 
g5/2 → z(0) to the equation of state for classical particles:

βP =
2s+ 1 nλ3

, V P = �N̂�kBT, n = �N̂�/V .
λ3 2s + 1

First order correction. We solve (5.57),

nλ3

2s+ 1
≈ z(0) ≈ z(1)

�
1 +

z(1)

23/2

�
≈ z(1)

�
1 +

z(0)

23/2

�

for z(1), obtaining

z(1) ≈ z(0)

1 + z(0)

23/2

≈ z(0)
�
1− z(0)

23/2

�
, (5.58)

which may be substituted in the pressure equation (5.50) for the ideal Bose gas:

βP ≈ 2s+ 1

λ3
g5/2(z) ≈ 2s+ 1

λ3
z(1) . (5.59)

Quantum correction. Taking all together Equation (5.59), (5.58) and (5.57), gives us

PV = �N̂�kBT
�
1− nλ3

4
√
2(2s+ 1)

�
. (5.60)

The last term in this expression are the quantum corrections.

– Equation of states for a real gas, like the van der Waals equation in this book,
posses “similar” additive corrections with respect to the ideal case, which are
however due to the interaction between particles. The additive terms present in
(5.60) originate on the other side from the indistinguishability principle and not
from the interaction among particles.

– The correcting term for the ideal Fermi gas quasi-classical equation of state  is
positive, contributing as a “repulsion” among particles. For the Bose gas, the ad-
ditive term is negative and therefore contributes as an ”attraction” among particles.

Quantitatively, the quantum corrections are much smaller than terms coming from the
interaction among particles.
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posses “similar” additive corrections with respect to the ideal case, which are
however due to the interaction between particles. The additive terms present in
(5.60) originate on the other side from the indistinguishability principle and not
from the interaction among particles.

– The correcting term for the ideal Fermi gas quasi-classical equation of state  is
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Quantitatively, the quantum corrections are much smaller than terms coming from the
interaction among particles.
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Einstein Condensation

We consider now the limit of high particle densities and low temperatures (quantum limit),
where one finds important qualitative differences between bosons, fermions and classical
particles.

Particle density. We rewrite the the particle density (5.51) as

n =

� ∞

0

D(�)d�

eβ(�−µ) − 1
+

2s+ 1

V

z

1− z
, (5.61)

where the the density of states D(�)

D(�) = A
√
�, A =

2s+ 1

(2π)2

�
2m

h̄2

�3/2

.

Dimensionless variables. The regular contribution to the particle density in (5.61) 
can be evaluated for µ = 0 as

lim
µ→0

� ∞

0

A
√
�d�

eβ(�−µ) − 1
=

A

β3/2

� ∞

0

√
xdx

ex − 1
=

A

β3/2
· 2.61 ,

where we have used the dimensionless variable x = β�. The original expression (5.62) for n 
then becomes

n = 2.61A(kBT )
3/2 +

2s+ 1

V

1

e−βµ − 1
, A =

2s+ 1

(2π)2

�
2m

h̄2

�3/2

. (5.62)

This is a mixed representation where we have taken the limes µ → 0 for the regular
contribution, but not for the occupation of the ground state.

Bose-Einstein condensation. It is evident from (5.62) that there is a critical temper-
ature Tc,

n = 2.61A(kBTc)
3/2, n = 2.61

2√
π

2s+ 1

λ3
c

, λc =

�
h2

2πmkBTc

(5.63)

for which the regular contribution would fall below the desired particle density n. We
have used that (4π)3/2/4π2 = 2/

√
π.

– Tc is the Bose-Einstein transition temperature.

– A non-vanishing negative chemical potential µ < 0 would lead to an even small
regular term in (5.61). There is therefore no way that the regular term could
account for all particle for T < Tc.

– The transition takes place when nλ3
c/(2s + 1) = 2.61 · 2/√π ≈ 2.9, viz when the

thermal wavelength λc is of the order of the inter-particle distance.



Quantum Statistical 
Mechanics

NOTES

	 Self - Learning 
172	 Material

180 CHAPTER 14. IDEAL BOSE GAS

Scaling of the chemical potential. Rewriting (5.62) for small |µ| as

n− nc(T ) ∼ 2s+ 1

V

kBT

−µ
, (−µ) ∼ 2s+ 1

V

kBT

n− nc(T )
, (5.64)

where nc(T ) = 2.61(2s + 1)/λ3. The chemical potential scales therefore like 1/V , viz it
strictly vanishes only in the thermodynamic limit V → ∞.

First excited state. The energy level are quantized for a particle in a box,

�(k) =
k2
x + k2

y + k2
z

2m
, kα =

2π

Lα

nα, α = x, y, z ,

The volume is with V = LxLyLz the product of the linear dimensions.

Diverging occupation of the first excited state. The energy �1 of one of the first 
excited states, corresponding e.g. to (nx, ny, nz) = (1, 0, 0), then scales as

�1 ∼ 1

L2
x

∼ V −2/3, �1 � |µ| ∼ V −1 .

The occupation n1 of the first excited state,

n1 =
1

eβ(�1−µ) − 1
≈ 1

eβ�1 − 1
≈ 1

1 + β�1 − 1
∼ V 2/3,

therefore diverges in the thermodynamic limit V → ∞. The ground-state occupation
n0 ∼ V diverges in contract to a macroscopic value.

Note: The Bose-Einstein condensation is characterized by 
divergences in occupation numbers. The ground state is 
however the only state with a macroscopic occupation 
number.

Experimental verification. The Bose-Einstein condensation was predicted by Satyen-
dra Bose and Albert Einstein in 1924-1925. It took almost 70 years to have an ex-
perimental corroboration of this phenomenon with the ultracold gas systems. Previous
experiments had been done with 4He as well as with hydrogen.

5.7	 THEORY OF LIQUID HELIUM
Liquid helium is a physical state of helium at very low temperatures at 
standard atmospheric pressures. Liquid helium may show superfluidity.

At standard pressure, the chemical element helium exists in a liquid 
form only at the extremely low temperature of −269 °C (−452.20 °F; 4.15 
K). Its boiling point and critical point depend on which isotope of helium is 
present: the common isotope helium-4 or the rare isotope helium-3. These are 
the only two stable isotopes of helium. See the table below for the values of 
these physical quantities. The density of liquid helium-4 at its boiling point 
and a pressure of one atmosphere (101.3 kilopascals) is about 125 g/L (0.125 
g/ml), or about one-eighth the density of liquid water.

Liquefaction: Helium was first liquefied on July 10, 1908, by the 
Dutch physicist Heike Kamerlingh Onnes at the University of Leiden in 
the Netherlands. At that time, helium-3 was unknown because the mass 
spectrometer had not yet been invented. In more recent decades, liquid helium 
has been used as a cryogenic refrigerant (which is used in cryocoolers), and 
liquid helium is produced commercially for use in superconducting magnets 



NOTES

Quantum Statistical 
Mechanics

Self - Learning
Material 	 173

such as those used in Magnetic Resonance Imaging (MRI), Nuclear Magnetic 
Resonance (NMR), Magnetoencephalography (MEG), and experiments in 
physics, such as low temperature Mössbauer spectroscopy. 

Liquefied helium-3: A helium-3 atom is a fermion and at very low 
temperatures, they form two-atom Cooper pairs which are bosonic and 
condense into a superfluid. These Cooper pairs are substantially larger than 
the interatomic separation.

Characteristics of Critical Indices

The temperature required to produce liquid helium is low because of 
the weakness of the attractions between the helium atoms. These interatomic 
forces in helium are weak to begin with because helium is a noble gas, but 
the interatomic attractions are reduced even more by the effects of quantum 
mechanics. These are significant in helium because of its low atomic mass 
of about four atomic mass units. The zero point energy of liquid helium is 
less if its atoms are less confined by their neighbors. Hence in liquid helium, 
its ground state energy can decrease by a naturally occurring increase in its 
average interatomic distance. However at greater distances, the effects of the 
interatomic forces in helium are even weaker.

Because of the very weak interatomic forces in helium, the element 
remains a liquid at atmospheric pressure all the way from its liquefaction 
point down to absolute zero. Liquid helium solidifies only under very low 
temperatures and great pressures. At temperatures below their liquefaction 
points, both helium-4 and helium-3 undergo transitions to superfluids. (Refer 
the Table 5.1 below.) 

Liquid helium-4 and the rare helium-3 are not completely miscible. 
Below 0.9 kelvin at their saturated vapor pressure, a mixture of the two 
isotopes undergoes a phase separation into a normal fluid (mostly helium-3) 
that floats on a denser superfluid consisting mostly of helium-4. [Citation 
needed] This phase separation happens because the overall mass of liquid 
helium can reduce its thermodynamic enthalpy by separating. At extremely 
low temperatures, the superfluid phase, rich in helium-4, can contain up to 
6% of helium-3 in solution. This makes the small-scale use of the dilution 
refrigerator possible, which is capable of reaching temperatures of a few 
millikelvins. 

Superfluid helium-4 has substantially different properties from ordinary 
liquid helium. 

 

Fig. 5.12 Liquid Helium 3 and 4 Isotopes in Phase Diagram, Showing the Demixing zone
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History of Critical Indices: In 1908 the Dutch physicist Kamerlingh-
Onnes succeeded in liquifying a small quantity of helium. In 1923 he provided 
advice to the Canadian physicist John Cunningham McLennan who was the 
first to produce quantities of liquid helium almost on demand. Important early 
work on the characteristics of liquid helium was done by the Soviet physicist 
Lev Landau, later extended by the American physicist Richard Feynman. 

Data of Liquid Helium: Superfluidity in liquid helium is possible. 
Only at the extraordinarily low temperature of −269 °C (−452.20 °F; 4.15 
K) does the chemical element helium exist in a liquid form at standard 
pressure.

Table 5.1 Data of Liquid Helium 

5.8	 FERMI DIRAC STATISTICS
The basic postulates of FD statistics are:
	 (i)	Particles are identical and indistinguishable.
	 (ii)	Total energy and total number of particles of the entire system is 

constant.

	 (iii)	Particles have half-integral spin, i.e., 1 3 37, ,
2 2 2
� � � , etc.

	 (iv)	Particles obey Pauli’s exclusion principle, i.e., no two particles in a 
single system can have the same value for each of the four quantum 
numbers. In other words, a single energy state can contain at best a 
single particle with appropriate spin.

	 (v)	The wave function of the system is anti-symmetric under the positional 
exchange of any two particles.

		 Example: Electron, proton, neutron, all hyperons (L, S, X, W) etc., 
these are known as Fremions.

Fermi-Dirac Distribution Law

Consider a system of N indistinguishable, non-interacting particles obeying 
Pauli’s exclusion principle. Let N1, N2, N3, ..., Ni, ..., Nn particles in the system 
have energies E1, E2, E3, ..., Ei, ..., En, respectively and let gi is the number 
of degenerate quantum state in the energy level Ei. According to Pauli’s 
exclusion principle, a single quantum state can be occupied by at best one 
particle. Since Ni particles are to be distributed among gi degenerate states 
(gi ≥ Ni) having the same energy Ei, Ni states will be filled up and (gi – Ni) 
states will remain vacant. Now gi states can be arranged in gi! possible 
ways. But since the particles and the quantum states are indistinguishable, 
we have to deduct Ni! ways and (gi – Ni)! ways from the all possible ways to 
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get effective number of arrangements. Thus, total number of possible ways 
of arrangement for the ith state is

	        Wi 	= ( )!
!( )!

i

i i i

g
N g N−

		  ...(5.65)

Hence the total number of ways for the entire distribution of N particles 
in n number of energy levels of the system is 

	        W 	= 
( )!

!( )!
n i

i i i i

g
N g N−

∏ 	 ...(5.66)

where P denotes the product symbol.
Now taking natural logarithm on both sides of eqn. (5.66) and applying 

Stirling approximation, we get, 
	    ln W 	= [ln ln ln ( )]i i i i

i
g N g N− − −∑

		  = [ ln ln ( ) ln ( )]i i i i i i i i
i

g g N N g N g N− − − −∑ 	 ...(5.67)

Now, differentiating eqn. (5.67) to obtain the most probable distribution, 
we get, 
	 d(ln W)max = [ ln ln ( )]i i i i

i
N g N d N− + −∑  = 0	 ...(5.68)

Considering the conservation of total energy and total number of 
particles, we can write 
	   i

i
dN∑ 	= 0 (conservation of total no. of particles)	 ...(5.69)

	 i i
i

E dN∑ = 0 (conservation of total energy)	 ...(5.70)

Multiplying eqn. (5.69) by a and eqn. (5.70) by b and then adding to eqn. 
(5.69) we get, 
	 [ ln ln( ) ]i i i i i

i
N g N E dN− + − − α − β∑  = 0	 ...(5.71)

Since dNi’s are independent of one another, the expression in the bracket 
in the eqn. (6.71) is zero for each Ni. Thus

	         	 Ni = ( ) 1α+β +i

i
E
g

e
	 ...(5.72)

Hence the Fermi-Dirac distribution function is given by

	        f (Ei) = ( )
1

1α+β=
+i

i
E

i

N
g e

	 ...(5.73)

which represents the probability of finding a fermion with energy Ei.

5.8.1	 Energy and Pressure of Ideal fermi Gas

Fermi Distribution at Zero and Non-zero Temperatures
The Fremi-Dirac distribution function is

	   f (Ei) = ( )
1

1α+β=
+i

i
E

i

N
g e

Now for the fermions in statistical equilibrium at absolute temperature 
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T, it is found that a = FE
kT

−
 and  b = 

1
kT

where, EF is the Fremi energy of the system (i.e., the maximum energy at 
absolute zero) k is the Boltzmann constant = 1.38 × 10–23 Joule/Kelvin.

Here i

i

N
g

 is known as the occupation index.

Thus, the F-D distribution function reduces to

	      (Ei) 	= ( ) /
1

1− +i FE E kTe
		  ...(5.74)

Now, let us discuss two distinct cases.
Case – 1 (T = 0 K)
	    f (Ei) 	= 1, when Ei < EF

		  = 0, when Ei > EF

Thus at T = 0 K, f (Ei) is a step function (see Fig. 7.3) which implies all 
the energy states up to Ei = EF  are filled up and the states above EF  are empty.

Fig. 5.13 Plot of Fermi-Dirac distribution function as a function of Ei

Case – 2 (T > 0 K)
As the temperature increases beyond T = 0 K, some of the electrons in the 
level just below the Fermi level go to levels just above EF resulting a gradual 

change in the occupation index f (Ei). If Ei = EF, (Ei) = 0
1 1

21
=

+e
, i.e., at a 

finite temperature Fermi energy of a system is that energy for which 50% 
energy states are filled and 50% states are vacant.

Fermi Energy for Electron Gas in Metals

Metals are characterised by the presence of a good number of free electrons. 
These electrons move about at random within the metals. While moving the 
free electrons collide among themselves also encounter with the fixed ion 
cores. Such behaviour of the free electrons is similar to that of molecules of 
a gas. Thus metals can be treated as electron gas. Since the electrons have 
half-integral spin angular momenta and they obey Pauli’s exclusion principle, 
they follow F-D statistics.
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Let us consider an electron gas consisting of N electrons occupying 
volume V. If N is very large, the spacing between two successive energy 
levels becomes very small making the energy levels almost continuous. Then 
if the energy of the electrons ranges between E to E + dE, the number of 
degenerate states gi should be replaced by g(E) dE and the total number of 
electrons Ni in these states should be replaced by N(E) dE in the distribution 
function given by equation (5.72). Thus the total number of electrons in the 
electron gas having energy between E to E + dE can be written eqn.(5.72) 
and eqn. (5.74) as

	           N(E)dE 	= 
( )

exp 1i F

g E dE
E E

kT
−  +  

	 ...(5.75)

Since the electrons have two allowed values of spin quantum number 
1
2

 = ±  sm , the total number of their allowed states between energy for the 

energy range E to E + dE can be written as 

	            g(E)dE 	= 2 × 3/ 2
3

1 (4 2 )V Em dE
h

π 	 ...(5.76)

Hence the density of states g(E) for a Fermionic gas is given by

	     	    g(E) = 3
1 (8 2 )V mEm
h

π 	 ...(5.77)

which shows that g(E) depends only on E for a single type of fermionic gas 
kept in a fixed volume V.
From Fig. (5.13) it is obvious that at T = 0 K, all the single-particle state up 
to energy EF are filled up. Thus at T = 0 K, 

	           N(E)dE = 
( )

1
g E dE
e−∞ +

 = g(E)dE   [e–∞ = 0]	 ...(5.78)

i.e., total number of electrons is equal to the total number of single-particle 
energy states, hence

	         N 	= 
0

( )
FE

N E dE∫

		  = 
0

( )
FE

g E dE∫ 		  [using eqn. (5.78)]

		  = 3/ 2 1/ 2
3

0

1 (8 2 )
FE

Vm E dE
h

π ∫ 	 [using eqn. (5.77)]

or,	         N	= 
3/ 2

3/ 2
3

16 2
3 F

Vm E
h
π 	�  ...(5.79)

which is the expression for the total number of electrons in the metal at 
T = 0 K.
Therefore,

	        EF 	= 
2/32 3

8
h N
m V

 
  π

		  ...(5.80)
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which is the expression for Fermi energy of the electrons in the metal.
If n = N/V denotes the concentration of the electrons in the metal, the 

Fermi energy of the electrons in the metal is

	        EF 	= 
2/32 3

8
h n
m

 
  π 		  ...(5.81)

which showns that Fermi energy of the electrons depends solely on their 
concentration.

Total Energy at Absolute Zero Temperature

The total energy of electrons at absolute zero (T = 0 K) is given by

	  (E0)tot 	= 
0

. ( )∫
FE

E N E dE

		  = 
0

. ( )
FE

E g E dE∫ 		 [using eqn. (5.81)]

		  = 3/ 2 3/ 2
3

0

1 (8 2 )
FE

Vm E dE
h

π ∫ 	 [using eqn. (5.77)]

		  = 
3/ 2

5/ 2
3

16 2
5 F

Vm E
h
π

		  = 3
5 FNE 		  [using eqn. (5.79)]	 ...(5.82)

which shows quantum effect because, classically the total energy of a system 
at absolute zero is nothing but zero.

The average energy per electron at T = 0 K can be written as

	   <E0> 	= 0 tot( ) 3
5 F

E
E

N
= 		  ...(5.83)

which shows that at absolute zero temperature, the average energy per electron 
is equal to 3

5
 times the Fermi energy.

The ground-state pressure of the system is defined by

	        P0 	= 02 2
3 5 F
E

nE
V

= 		 [using eqn. (5.82)]

Substituting for EF, the foregoing expression takes the form

	        P0 	= 
2/32

5/32 3
5 8

 
  π

h n
m

 ∝ n5/3

Thus the ground-state pressure of an electron gas at absolute zero solely 
depends on its concentration.

Fermi Temperature (TF)

Fermi temperature (TF) is the temperature equivalent of Fermi energy (FF) 

and it is defined as TF = FE
k , where k (= 1.38 × 10–23 Joule/Kelvin) is the 

Boltzmann constant.
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5.9	 FREE ELECTRON THEORY OF SOLIDS
By a free particle we mean a particle which moves freely in space without the 
influence of any force. Hence, for a free particle the potential energy is zero. 
Restricting our discussion to motion in one-dimension, say, along the x-axis, 
we have V(x) = 0 for all values of x so that the wavefunction y(x) describing 
the state of the particle of mass m and a total energy E satisfies the Schrödinger 
equation,

 
y- = y�2 2

2
( ) ( )

2
d x E x

m dx

 

or		
2

2 2
( ) 2 ( ) 0d x m E x

dx
y + y =

�

or		
2

2
2
( ) ( ) 0d x k x

dx
y + y = 	  ...(5.84)

Where			   k2 = 2
2m E
�

	 ...(5.85)

	 The most general solution of Equation (5.84) is a combination of two 
linearly independent plane wave solutions eikx and e– ikx 

			   yk (x) = Aeikx + Be–ikx  	 ...(5.86)

where A and B are arbitrary constants. The complete wavefunction is 
given by,

		  yk (x, t) = Ae i(kx – wt) + Be –i(kx + wt)	 ...(5.87) 

Where			   w = 
2

2
E k

m
= �
�

	 ...(5.88)

The first term in Equation (5.86) y+ (x, t) = Aei(kx – wt) is a wave travelling 
along the positive x-axis while the second term y–(x, t) = Be– i(kx + wt) represents 
a wave travelling along the negative x-axis. Both the waves y+(x, t) and  
y–(x, t) travelling along opposite directions are associated with the motion of 
the free partical having well defined momentum and energy. The momentum 
associated with y+(x, t) is p+ = k while that with y – (x, t) is p – = –  k. Both 

y+(x, t) and y – (x, t) belong to the energy 
2 2

2
k
m
� . Since for free particle motion 

there are no boundary conditions, there exist no restrictions on the values 
of k and E. Clearly the states of the free particle are continuous or unbound.

It is important to discuss some of the physical subtleties present in the 
free particle motion:
	 (1)	The probability density corresponding to the solution y+(x, t) is,

2 2( , ) | ( , ) | | |P x t x t A+ += y =  = Constant independent of x and t
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The probability density corresponding to the solution y – (x, t) is,

		  2 2( , ) | ( , ) | | |P x t x t B- -= y = = Constant independent of x and t.

The above result is a purely quantum mechanical result having no 
explanation according to classical mechanics. Since the particle represented 
by the waves y+(x, t) and y–(x, t) have well defined momenta and energy 
we have the uncertainty in momentum Dp = 0 and uncertainty in energy  
DE = 0. According to Heisenberg’s uncertainty principle we get the uncertainty 
in the position Dx Æ • and the uncertainty in the time Dt Æ •. Thus there 
is complete loss of information about the position and time for any state of 
the particle.
	 (2)	The speed of the plane waves y+(x, t) and y–(x, t) is given by 

		  nwave = 
2 2 / 2

2
E k m k

k k k m
w = = =� �
� �

	 ...(5.89)

The speed of the particle according to classical mechanics is given by,

	  		  nparticle = p k
m m

= � 	 ...(5.90)
We thus observe,
			   nparticle = 2nwave	 ...(5.91)

The above means that the particle travels with a speed which is double 
the speed of the waves representing the particle.
	 (3)	The wavefunction representing the particle is not normalizable. This 

is because, 

		  * 2( , ) ( , ) | |x t x t dx A dx
+• +•

+ +
-• -•

y y = = •Ú Ú 	 ...(5.92)

And	
* 2
– ( , ) ( , ) | |x t x t dx B dx

+• +•

-
-• -•

y y = = •Ú Ú 	 …(5.93)

We may conclude from the above result that the solutions of the 
Schrödinger equation y+(x, t) and y–(x, t) do not represent physical situation 
because wavefunction representing the state of any system must be 
quadratically integrable. We may make a formal conclusion that a free particle 
described by the laws of quantum mechanics cannot have sharply defined 
momentum and energy. We may further conclude that a free partical cannot 
be represented by single (monochromatic) plane wave. Physically acceptable 
representation of a free particle is a wave packet. We may further conclude 
that solutions of the Schrödinger equation which are physically acceptable 
cannot be plane waves.

The Potential Step

Consider a particle of mass m moving in a one-dimensional potential specified 
shown in the Figure (5.14). Mathematically, the potential function V(x) is 
of the form,
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      V(x) = 0    x < 0	 (Region I)	
          = V0    x > 0	  (Region II)

The particle moving freely in Region I encounters the potential V0 at 
x = 0.	

I
Vo

II

V x( )

x = 0
x

Fig. 5.14  The Potential Step

The wavefunction y(x) describing the state of the particle in general 
satisfies the Schrödinger equation,

2 2

2
( ) ( ) ( ) ( )

2
d x V x x E x

m dx
y- + y = y�

or		
2

2 2
( ) 2 [ – ( )] ( ) 0d x m E V x x

dx
y + y =

�
 	 …(5.94)

In the above, E is the total energy of the particle.
In the Region I, if y1(x) is the wavefunction, Equation (5.94) takes the 

form
				    2

1
12 2

( ) 2 ( ) 0
d x m E x

dx
y

+ y =
�

	            ...(5.95)

or		
2

21
12

( )
( ) 0

d x
k x

dx
y

+ y =

where		  k2 = 2
2m E
�

	  ...(5.96)

If y2(x) be the wavefunction of the particle in Region II, Equation 
(5.94) gives,

			 
2

2
22 2

( ) 2 [ – ] ( ) 0o
d x m E V x

dx
y

+ y =
�

or		
2

22
22

( )
( ) 0

d x
x

dx
y

+ a y = 	 ...(5.97)

Where		  a2 = 2
2 [ – ]o

m E V
�

	 ...(5.98)

Most general solutions of Equations (5.95) and (5.96) can be written as, 
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			   y1(x) = Aeikx + Be–ikx	  ...(5.99)

			   y2(x) =  Ceiax + De–iax 	  ...(5.100)

In the above A, B, C and D are constants which may be determined using 
the boundary conditions on the wavefunctions. The first term in Equation 
(5.99), y1+ (x) = Aeikx represents a plane wave travelling along the positive x-axis 
in the Region I and can be considered as an incident wave, while the second 
term y1 –(x) = Be– ikx representing a plane wave in Region I travelling along the 
negative x-axis can be considered as the wave reflected at the potential step at  
x = 0. The first term in Equation (5.100) y2 +(x) = Ce iax represents a plane wave 
travelling in Region II along the positive x-axis and can be considered as the wave 
transmitted in Region II from the potential step at x = 0, while the second term y2 – (x) =  
De– iax represents a plane wave in Region II travelling along the negative 
x-axis. Since throughtout the Region II there exists no potential boundary 
from which reflection can occur, y2 –(x) must vanish which requires D to be 
equal to zero so that Equation(5.100) reduces to, 

			         y2(x) = C eiax 	 ...(5.101)
We have the following boundary conditions in view of single valuedness 

and continuity of wavefunction at a potential boundary:

(i)			   y1 (x) = y2(x)  at x = 0 	 ...(5.102)

Using the above we obtain from Equations (5.99) 

			         A + B = C 	 ...(5.103)

(ii)			   1( )d x
dx

y  = 2 ( )d x
dx

y
  at x = 0 	 ...(5.104)

From Equation (5.99) we have 

			   1( ) ikx ikxd x
ikAe ikBe

dx
-y

= - 	 ...(5.105)

	 From Equation (4.18) we have

			   2 ( ) i xd x
i Ce

dx
ay

= a  	 ...(5.106)

Using Equations (5.105) and (5.106) we get using Equation (5.104)	

			   k (A – B) = aC	 ...(5.107)

Solving Equations (5.103) and (5.107) we obtain, 

			   C = 2k A
k + a

	 ...(5.108)

			   B = k A
k

- a
+ a

	 ...(5.109)

If we consider the constant A as the amplitude of the incident 
wave, constants B and C can respectively be interpreted as the reflected 
and the transmitted amplitudes. We now consider the results on 



NOTES

Quantum Statistical 
Mechanics

Self - Learning
Material 	 183

reflection and transmission in two cases, namely when E > V0 and when  
E < V0.
Case 1:  E > V0 

The wavefunction in Region I is,
			   y1(x) = Aeikx + Be– ikx	 ...(5.110)
We get on differentiating Equation (5.110) with respect to x 

			   1( )d x
dx

y  = ik [Aeikx – Be– ikx]	 ...(5.111)

Taking complex conjugate, Equation (5.110) becomes

			   y*
1(x) = A*e– ikx + B*eikx	 ...(5.112)

Taking complex conjugate, Equation (5.111) we get

			 
*
1 ( )d x

dx
y  = – ik[A*e– ikx – B*eikx] 	 ...(5.113)

The general expression for probability current density is given by 

			   J = – * *[ – ]
2

i
m

y —y y —y� 	 ...(5.114)

Since we are considering one-dimensional motion we get from Equation 
(5.114) the probability current density in Region I to be 

			   J1 = 
*

1 1*
1

( )– ( ) – ( )
2

d x di x x
m dx dx

È ˘y yy yÍ ˙
Î ˚

�

Substituting from Equations (5.110), (5.111) (5.112), and (5.113) in 
the above we obtain 

			   2 2
1 (| | – | | )kJ A B

m
= �  	  ...(5.115)

The first term on the right hand side of Equation (5.115) gives the 
probability current density of the incident wave / beam 

			   (J1)incident = 2| |k A
m
� 	 ...(5.116)

while the second term gives the probability current density of the 
reflected wave / beam

			   (J1)reflected = 2| |k B
m
� 	 ...(5.117)

Let us now consider Region II in which the wavefunction is given by

			   y2(x) = C eiax	 ...(5.118)
The above gives

			   2 ( )d x
dx

y  = ia C eidx	 ...(5.119)

Taking complex conjugate of Equation (5.119) we get
			   y*

2 (x) = C* e– iax	 ...(5.120)
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and taking complex conjugate of Equation (5119) we get

			 
*
2 ( )d x

dx
y  = – ia C* e– iax	 ...(5.121) 

The probability current density in Region II by definition is given by

			   J2 = 
*

2 2*
2 2

– ( ) –
2

d di x
m dx dx

È ˘y y
y yÍ ˙

Î ˚

� 	 ...(5.122)

Substituting from Equations (5.118), (5.119, (5.120) and (5.121) in 
Equation (5.122) we obtain 

			   J2 = 2| |C
m
a� 	 ...(5.123)

Since in Region II, there exists only the transmitted wave we get the 
probability current density of the transmitted wave / beam,

			   (J2)transmitted = 2| |C
m
a� 	 ...(5.124)

The reflectance or the reflection coefficient is, by definition, given by

		  R = Probability current density for reflected beam
Probability current density for incident beam

          = 1 reflected

1 incident

( )
( )
J
J

Using Equations (5.116) and (5.117) we obtain 

		  R = 
2

2

2
2

| | | |
| || |

k B Bm
k AAm

=
�

�

Using Equation (5.109) in the above we obtain

			   R = 
2

–k
k

Ê ˆa
Á ˜+ aË ¯

	 ...(5.125)

Similarly, the transmittance or transmission coefficient is 

			   T = 2 transmitted

1 incident

( )
( )
J
J

Using Equations (5.116) and (5.124), the above gives 

			   T = 
2

2

2
2

| | | |
| || |

C Cm
k k AAm

a
a=

�

�

Using Equation (5.108) in the above we get 

			   T = 
2

2k
k k

Ê ˆa
Á ˜+ aË ¯
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or		  T = 2
4

( )
k

k
a

+ a
	 ...(5.126)

We note the following:

	 1.	We have k = 
2

2m E
�

, a real positive quantity

		   	 a = 0
2 ( – )m E V
�

, a real positive quantity under the condition E 
> V0 

		  Equation (5.125) then shows that R is a real positive quantity, 
meaning that a certain fraction of the incident particles gets reflected 
on encountering the potential step at x = 0. This result is in contrast 
to classical mechanics, according to which a particle going over a 
potential step, under the condition E > V0, would slow down in order 
to conserve energy but would never be reflected. The observed result 
is a consequence of the wave properties of the particle. In other words, 
we can say that reflection under the condition E > V0 is a quantum 
mechanical effect. 

	 2.	For E >> V0, that is for a Æ k from below, the ratio of the reflected 
flux to the incident flux, that is, |R|2 approaches zero. This agrees with 
intution which tells us that at very high incident energies, the presence 
of the step is but a small perturbation on the propagation of the wave.

Case 2:  E < V0

In this case, a given by a = 02
2 ( – )m E V
�

 becomes imaginary. We may write 

		  a = 0 02 2
2 2– ( – ) ( – )m mV E i V E i= = b
� �

	 ...(5.127)

hence	 b = 0
2 ( – )m V E
�

 is real positive.	 ...(5.128)

The solution of the Schrödinger equation in Region II is now given by

			   y2(x) = C eiibx = C e– bx 	 ...(5.129) 

We find that y2(x) does not blow up at x = + •
The reflection coefficient given by Equation (5.125), in this case 

becomes

		  R = 
*

– – –
–

k i k i k i k i
k i k i k i k i

Ê ˆ Ê ˆ Ê ˆ Ê ˆb b b + b=Á ˜ Á ˜ Á ˜ Á ˜+ b + b + b bË ¯ Ë ¯ Ë ¯ Ë ¯
	 ...(5.130)

or		  R = 1 

Thus, when E < V0, as in classical mechanics there is total reflection.
It can, however, be seen that the transmission coefficient given by 
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Equation (5.126) does not vanish. Clearly, a part of the incident wave 
penetrates into the classically forbidden region, Such penetration phenomenon 
again is characteristic of waves permitting a ‘tunneling’ through barriers 
that would totally block particles in classical description.

Asymmetric Square Well

Consider a particle of mass m moving in a one-dimensional infinitely deep 
asymmetric potential well as shown in the Figure (5.15), the potential function 
V(x) being of the form,

		  V(x) = +  •	
for  x < 0	 [Region I]

			   = 0	
for  0 £ x £ a	 [Region II]

			   = +  •	
for  x > a	 [Region III]

I II III

V x( )

+• +•

x = 0 x a=

0
x

Fig. 5.15  Asymmetric Square Well

Classically, the particle remains confined within the well and moves 
with constant momentum back and forth as a result of repeated reflections 
from the walls of the well at x = 0 and at x = a.

Since V(x) = +  • for x < 0 (i.e., in Region I) as well as for x > a (i.e., 
in Region III), the wavefunctions of the particle in these two regions are 
zero, i.e.,

			   y (x = 0) = 0 = y (x = a)	 ...(5.131)

If y (x) represents the wavefunction for the particle inside the well  
(0 £ x £ a), we have the Schrödinger equation 

			 

2

2 2
( ) 2 ( ) 0d x m E x

dx
y + y =

�

or		
2

2
2
( ) ( ) 0d x k x

dx
y + y = 	  ...(5.132) 

Where 	 k = 2
2m E
�

	 ...(5.133)

The general solutions of Equation (5.132) are

			   y(x) = C eikx + De– ikx
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or		  y(x) = A sin kx + B cos kx	 ...(5.134)

where A and B are constants.
Using the boundary condition given by Equation (5.131), namely  

y(0) = 0 in Equation (5.134) we get

					     B = 0

so that the solution becomes
				        y(x) = A sin kx	 ...(5.135)

Further, applying the other boundary condition namely y(a) = 0, we 
get from Equation (5.135)

				      A sin ka = 0

The above gives either A = 0 or sin ka = 0. However, A = 0 leads to 
y(x) = 0 everywhere which is not possible. Hence, we obtain

			   sin ka = 0 
The above gives
			   ka = np;  n = A positive integer 

                = 1, 2, 3, ...	 ... (5.136)

We may note that n cannot be 0 because that would make k = 0 so that 
wavefunction would vanish everywhere.

From Equation (5.136) we thus get

				    k = n
a
p 	 ...(5.137)

Using Equation (5.137) in Equation (5.135) we get the energy 
eigenfunctions of the particle to be given by

			   yn(x) = A sin n x
a
pÊ ˆ

Á ˜Ë ¯
  ; n = 1, 2, ...	 ...(5.138)

Constant A can be determined from the requirement that the 
eigenfunctions are normalized, i.e.,

			 
*

0

( ) ( ) 1
a

n nx x dxy y =Ú

The above gives,

			 

2 2

0

sin 1
a nA x dx

a
pÊ ˆ =Á ˜Ë ¯Ú

or		  2 1
2
aA =

or		  2A
a

= 	 ...(5.139)
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The energy eigenfunctions are thus 

		  yn(x) = 2 sin ;n x
a a

pÊ ˆ
Á ˜Ë ¯

  n = 1, 2, ...	 ...(5.140)

Using Equation (5.133) in Equation (5.137) we get the energy 
eigenvalues of the particle to be given by

		  2
2

n
m nE

a
p=

�

or		  En = 
2 2

2
2 ,

2
n

ma
p �   n = 1, 2, ...	 ...(5.141)

We find the energy to be quantized, only certain values of energy are 
permitted. This is as expected because the states of a particle which are 
confined within a limited region of space are bound states and the energy 

eigenvalue spectrum is discrete. This result is in sharp contrast to the result 
in classical physics in which the energy of the particle given by E = ​ p

2

 ___ 2m ​ (p 
being the momentum of the particle) can assume any value continuously 
from a minimum to a maximum.

From Equation (5.141) we get

	  		  En + 1 – En = 
2 2

2 (2 1)
2

n
ma
p +� 	 ...(5.142)

Clearly, the energy levels are not equispaced. 
We have

			 
1

2 2

– 2 1 2 1n n

n

E E n
E nn n

+ += = +

Clearly, in the classical limit, the above gives,

			 

1
2

– 2 1Lt Lt 0n n

n nn

E E
E n n

+

Æ• Æ•

Ê ˆ Ê ˆ= + =Á ˜Á ˜ Ë ¯Ë ¯ 	 ...(5.143)
meaning that the levels become so close together that they become 

practically indistinguishable forming a continuum. 
The lowest energy state or the ground state corresponds to n = 1. The 

ground state energy is given by,

			   E1 = 
2 2

22ma
p� 	 ...(5.144)

And the ground state wavefunction is given by,

			   y1(x) = 2 sin x
a a

pÊ ˆ
Á ˜Ë ¯

	 ...(5.145)
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Energy given by Equation (5.144) is called the zero point energy 
because there exists no state with zero energy.

The plot of some of the eigenfunctions with x are shown in Figure 
(5.16). We observe from the plots that the eigenfunction yn

 (x) has (n – 1) 
nodes.

0

y( )x

2
a

2
a–

a /4 a /2 3a
4

a

y1( )x

y3( )x

x

y2( )x

Fig. 5.16  Plot of Engenfunctions

Discussion on Zero Point Energy 

If the particle inside the well has zero energy then it will come to rest and 
will be localized within the limited region defining the well. Heisenberg’s 
uncertainty relation then will require the particle to acquire a finite momentum 
and hence a minimum kinetic energy. Since the particle is confined in the 
region 0 < x < a, it has a maximum position uncertainty Dx = a and hence 

a minimum momentum uncertainty Dp ~ 
a
�  which in turn corresponds to 

a minimum kinetic energy 
2 2

2
( )

2 2
p
m ma

D = �  which is in qualitative agreement 
with the exact value E1 = 

2 2

22ma
p � .

The minimum momentum uncertainty given by Dp ~ ,
a
�  is inversely 

proportional to the width of the well. Smaller the width, more the particle 

becomes localized, and Dp increases. This causes the particle to move faster 
thereby increasing the zero point energy. If on the other hand, width of the 
well increases, the zero point energy decreases but never becomes zero. Thus 
localization of a particle forces a minimum motion and hence a minimum 
energy to the particle.

Symmetric Square-Well Potential of Infinite Depth 

A symmetric infinite square well potential is defined as

	 V(x) = + •	 for  x < – a

	 = 0	 for  – a £ x £ a

	 = + •	 for  x > a 

and is represented in the Figure (5.17)
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Consider the motion of a particle of mass m in the one-dimensional 
potential described above.

Fig. 5.17  Symmetric Infinite Square

If y(x) is the wavefunction describing the state of the particle in the 
region – a £ x £ a then it satisfies the time-independent Schrödinger equation, 

			 

2

2 2
( ) 2 ( ) 0d x m E x

dx
y + y =

�

or		
2

2
2
( ) ( ) 0d x k x

dx
y + y = 	 ...(5.146)

Where		  k = 2
2m E
�

	 ...(5.147)

The most general solution of Equation (5.146) is given by,

		  y(x) = A sin (kx) + B cos (kx)	 ...(5.148)

Where A and B are constants.
Since V(x) = • for x < – a and x > a, the wavefunctions in these two 

regions vanish giving, 
			   y(– a) = 0  and  y (+ a) = 0	 ...(5.149)

Using the conditions given by Equation (5.149) in Equation (5.148) 
we get

			   A sin ka + B cos ka = 0	 ...(5.150)

and
			   – A sin ka + B cos ka = 0	 ...(5.151)
For the above two equations to hold simultaneously we must have
			   A sin ka = 0	 ...(5.152) 

and	 B cos ka = 0	 ...(5.153)

In view of Eqations (5.151) and (5.153) we may have A = 0 and B = 0 
but these are physically unacceptable because y(x) given by Equation (5.148) 
would then vanish.

Since B π 0, we have from Equation (5.153), 
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		  cos ka = 0 = cos , 1, 3, 5, ...
2

n np =

or		  ka = or
2 2

n nk
a

p p=  	 ...(5.154)

Using Equation (5.147) in the above we obtain the energy eigenvalues 

		  En = 
2 2 2 2 2

2
2 2 ,

2 8
n n

m a ma
p p=� �   n = 1, 3, 5, ...	 ...(5.155)

The energy eigenfunctions corresponding to the above energy 
eigenvalues are

		  yn(x) = B cos kx = cos ,
2
nB x

a
pÊ ˆ

Á ˜Ë ¯
  n = 1, 3, 5	 ...(5.156)

The condition given by Equation (5.152) gives

		  sin ka = 0 = sin np	 (since A π 0)

or		  ka = np  or  k = ​ np ___ a ​;  n = 2, 4, 6	  ...(5.157)

Using the above value of k in Equation (5.147) we get the energy 
eigenvalues

			   En = 
2 2 2 2

2
2 ,

2 8
nk

m ma
p=� �   n = 2, 4, 6, ...	 ...(5.158)

The corresponding energy eigenfunctions are 

		  yn (x) = A sin ,
2
n x

a
pÊ ˆ

Á ˜Ë ¯
  n = 2, 4, 6, ...	 ...(5.159)

The normalization conditions of the wavefunctions, 

			 

*

–

( ) ( ) 1
a

n n
a

x x dx
+

y y =Ú

lead to 

			       	 ...(5.160)

We can thus write the set of energy eigenfunctions for the particle in 
the symmetric infinite square well potential as,

		  yn(x) = 1 sin ,
2
n x

aa
pÊ ˆ

Á ˜Ë ¯
  n = 2, 4, ...	 ...(5.161) 

yn(x) = 1 cos ,
2
n x

aa
pÊ ˆ

Á ˜Ë ¯
  n = 1, 3, 5, ...	 ...(5.162) 

and the discrete set of energy eigenvalues as

		  En = 
2 2

2
2 ,

8
n

ma
p �   n = 1, 2, 3, ...	 ...(5.163)
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Discussion 

The wavefunctions corresponding to n = 1, 3, 5, ..., i.e., corresponding to 
odd quantum numbers are symmetric, y(– x) = y(x).

•	 The wavefunctions corresponding to n = 2, 4, 6, ... i.e., corresponding 
to even quantum numbers are antisymmetric, y(– x) = – y(x) 

•	 In other words, for symmetric potentials V(– x) = V(x), the 
wavefunctions of bound states are either even (symmetric) or odd 
(antisymmetric).

•	 The energy spectrum for the particle is discrete and non-degenerate.
•	 The ground state energy or the zero point energy is, 

				    E1 = 
2 2

28ma
p �

Corresponding to the eigenfunction,

			   y1(x) = 1 cos
2

x
aa

p

Symmetric Square-Well Potential of Finite Depth 

A symmetric square well potential of finite depth is described by potential 
function V(x) of the form 

	 V(z) = V0	 for  x < – a	 (Region I)
	 = 0	for  – a £ x £ a 	 (Region II)
	 = V0	 for  x > a 	 (Region III)
The potential function is shown in the Figure (5.18)

Fig. 5.18  Potential Function

Consider the motion of a particle of mass m in the potential well 
described above.

The Schrödinger equation in Regions I and III is, 

		

2 2

02
– ( ) ( ) ( )
2

d x V x E x
m dx

y + y = y�
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or		
2

02 2
( ) 2 ( – ) ( )d x m E V x

dx
y + y

�
 = 0	 ...(5.164)

In Region II the Schrödinger equation is 

			 

2

2 2
( ) 2 ( ) 0d x m E x

dx
y + y =

�

which can be put in the form 

			 

2
2

2
( ) ( ) 0d x k x

dx
y + y =

	 ...(5.165) 

where		  k = 2
2m E
�

	 ...(5.166)

Let us consider the cases where: E < V0,  and  E > V0

Case  E < V0: We may write Equation (5.164) in the form

			 
2

2
2
( ) – ( ) 0d x x

dx
y a y = 	 ...(5.167)

where	 a = 02
2 ( – ) is real positivem V E
�

	 ...(5.168)

The most general solution of Equation (5.167) is

		  y(x) = Ae+ ax + Be– ax,  A and B are constants	 ...(5.169)

Specific solution in Region I	 y1 (x) = A eax	 ...(5.170)

Specific solution in Region III	 y3(x) = B e– ax	 ...(5.171)

Solution of Equation (5.165) gives the wavefunction in region II	

		  y2 (x) = C sin (kx) + D cos (kx)	 ...(5.172)

y2(x) is either symmetric or antisymmetric about x = 0. The first term in 
Equation (5.172) is antisymmetric because sin (kx) = – sin (– kx). The second 
term is symmetric because cos (kx) = cos (– kx).

For the symmetric function in Region II, the coefficient C = 0 so that 
we may write the symmetric wavefunction in Region II as 

			   (y2(x))symmetric = D cos (kx)	 ...(5.173)

At x = ± a, we have, using the single valuedness of wavefunction

			   Ae – aa = D cos ka	 ...(5.174)

			   Be– aa = D cos ka	 ...(5.175)
Similarly, using the continuity of wavefunction at x = ± a gives 

			   a A e– aa = + D k sin (ka)	 ...(5.176)
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			   + a B e– aa = D k sin (ka)	 ...(5.177)
The above equations give

			   A = B	 ...(5.178)

and 	  k tan ka = a	 ...(5.179)

Let us now consider the antisymmetric wavefunctions in Region II. 
In the case D = 0 so that we may write the antisymmetric wavefunction in 
Region II as

			   (y2(x))antisymmetric = C sin (kx)	 ...(5.180)

Using the single valuedness and continuity of wavefunction at the 
boundaries at x = ± a we get

		  A e– aa = – C sin (ka)	 ...(5.181)

		  B e– aa = C sin (ka)	 ...(5.182)

		  a A e– aa = – C k cos (ka)	 ...(5.183)

		  – a Be– aa = C k cos (ka)	 ...(5.184)

From the above four equations, we obtain
			   A = – B 	 ...(5.185)
and
		  k cot ka = – a	 ...(5.186)
The energy eigenvalues for the particle can be obtained by solving 

Equations (5.177) and (5.186) graphically as explained in the following:
Let us put	 ka = x	 ...(5.187)
		  aa = y	 ...(5.188)

From the above we get
			   x2 + y2 = (k2 + a2) a2

Substituting for k and a from Equations (5.166) and (5.168), the above 
becomes 

		  x2 + y2 = 2
02 2

2 2 ( – )m mE V E aÈ ˘+Í ˙Î ˚� �

or		  x2 + y2 = 
2

02
2ma V
�

	 ...(5.189)

Substituting Equations (5.187) and (5.188) in Eqations (5.179) and 
(5.186), respectively, we obtain 

		  x tan x = y	 ...(5.190)

		  – x cot x = y	 ...(5.191)
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We plot x tan x against x, x cot x against x and x2 + y2 for different 
values of V0 a

2 (which are circles of different radii). Since both x and y can 
take only positive values, the sections of the circles have been shown in the 
first quadrant only in Figure (5.19).

y a= a

o
p
2

p
2

3p 2p x ka=

Fig. 5.19  Graph

In the Figure 5.19,	
Full line curves Æ x tan x against x plots
Dashed curves Æ – x cot x against x plots
Circular sections Æ Different values of V0 a

2

The energy levels and the energy eigenvalues for the symmetric 
wavefunction are given by the intersections of the x tan x against x curves 
and the circular sections. Similarly, the energy eigenfunctions and the energy 
eigenvalues when the wavefunction in the well is antisymmetric are given 
by the intersections of – x cot x against x curves and the circular sections.

If the intersections of x tan x against x curves and circles occur at values 
of x equal to x1, x2, ..., xn, ... then we get

		​  x​n​ 2​ = k2a2 = 2
2

2 nm E a
�

or		  En = 
2

2
2 ,

2 nx
ma
�   n = 1, 3, 5, ...

Similarly, if the intersections of – x cot x against x curves and the circles 
occur at values of x equal to x1¢, x2¢, ... xn¢ …, then we get

		​  x​n     ¢​ 
 2 ​ = 2 2 2

2
2 nmEk a a¢=
�

 

or		  En¢ = 
2

2
2 ;

2 nx
ma ¢
�   n¢ = 2, 4, 6, ...

The number of bound states are seen to depend upon the height V0 and 
the width a of the well through the factor V0 a

2. From the Figure (5.19) we 
find the following 

	 (i)	Only one energy level of symmetric type, if 0 < V0 a
2 < 

2 2

8m
p �

	 (ii)	Two energy levels of which one is of symmetric type and the other of 

antisymmetric type, if 
2 2 2 2

2
0

4
8 8

V a
m m

p p< <� �
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	 (iii)	Three energy levels of which two are of symmetric type and one of 

antisymmetric type, if 
2 2 2 2

2
0

4 9
8 8

V a
m m

p p< <� �  and so on.
Some of the energy eigenfunctions corresponding to bound states are 

shown in the Figure (5.20).

V0V0

V x( )

n = 3

n = 2

n = 1

–a o a
x

Fig. 5.20  Eigenfunctions for Bound State

Unlike in the case of infinite potential well, both the symmetric as 
well as the antisymmetric eigenfunctions extend beyond the well, i.e., in the 
regions x < – a and x > a which define the classical turning points. Clearly, 
there exists finite probability of finding the particle outside the well. This is 
a quantum mechanical effect. 
Case  E > V0:
The Schordinger equation in Regions I and III is given by,

			 

2

02 2
( ) 2 ( – ) ( ) 0d x m E V x

dx
y + y =

�

Since E is greater than V0, 02
2 ( – )m E V
�

 is a real positive quantity. As 
such the solution of the above equation is sinusoidal in nature. The probability 
density for the particle is distributed over all space in regions I and III. It is 
also distributed in Region II, i.e., within the well. Thus we do not get bound 
state for the particle.

5.10	 LANDAU THEORY OF PHASE 
TRANSITION

Landau theory in physics is a theory that Lev Landau introduced in an at-
tempt to formulate a general theory of continuous (i.e., second-order) phase 
transitions. It can also be adapted to systems under externally-applied fields, 
and used as a quantitative model for discontinuous (i.e., first-order) transi-
tions.

Mean-Field Formulation (no long-range correlation)

Landau was motivated to suggest that the free energy of any system should 
obey two conditions:

•	 It is analytic.

•	 It obeys the symmetry of the Hamiltonian.
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Given these two conditions, one can write down (in the vicinity of the criti-
cal temperature, Tc) a phenomenological expression for the free energy as a 
Taylor expansion in the order parameter.

Second-Order Transitions

Consider a system that breaks some symmetry below a phase transition, 
which is characterized by an order parameter η. This order parameter is a 
measure of the order before and after a phase transition; the order param-
eter is often zero above some critical temperature and non-zero below the 
critical temperature. In a simple ferromagnetic system like the Ising model, 
the order parameter is characterized by the net magnetization m, which be-
comes spontaneously non-zero below a critical temperature Tc. In Landau 
theory, one considers a free energy functional that is an analytic function 
of the order parameter. In many systems with certain symmetries, the free 
energy will only be a function of even powers of the order parameter, for 
which it can be expressed as the series expansion

	

	 In general, there are higher order terms present in the free energy, 
but it is a reasonable approximation to consider the series to fourth order in 
the order parameter, as long as the order parameter is small. For the system 
to be thermodynamically stable (that is, the system does not seek an infinite 
order parameter to minimize the energy), the coefficient of the highest even 
power of the order parameter must be positive, so b(T) > b0, a constant, near 
the critical temperature. Furthermore, since a(T) changes sign above and 
below the critical temperature, one can likewise expand a(T) ≈ a0(Τ − Tc), 
where it is assumed that a > 0 for the high-temperature phase while a < 
0 or the low-temperature phase, for a transition to occur. With these as-
sumptions, minimizing the free energy with respect to the order parameter 
requires 

	

The solution to the order parameter that satisfies this condition is either η 
= 0, or 

                                    

It is clear that this solution only exists for T < Tc, otherwise η = 0 is the only 
solution. Indeed, η = 0 is the minimum solution for T > Tc, but the solution 
h0 minimizes the free energy for T < Tc, and thus is a stable phase. Further-
more, the order parameter follows the relation 

		

	 below the critical temperature, indicating a critical exponent β = 1/2 
for this Landau mean-theory model. 
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	 The free-energy will vary as a function of temperature given by

 

From the free energy, one can compute the specific heat, 

	

  which has a finite jump at the critical temperature of size 

This finite jump is therefore not associated with a discontinuity that would 
occur if the system absorbed latent heat, since Tc DS = 0. It is also notewor-
thy that the discontinuity in the specific heat is related to the discontinuity 
in the second derivative of the free energy, which is characteristic of a sec-
ond-order phase transition. Furthermore, the fact that the specific heat has 
no divergence or cusp at the critical point indicates its critical exponent for 
c ∼ |T - Tc| 

-α is α = 0.

Applied Fields

In many systems, one can consider a perturbing field h that couples linearly 
to the order parameter. For example, in the case of a classical dipole moment 
µ,  the energy of the dipole-field system is -µΒ. In the general case, one can 
assume an energy shift of -mh due to the coupling of the order parameter to 
the applied field h, and the Landau free energy will change as a result:

	

	 In this case, the minimization condition is

		

	 One immediate consequence of this equation and its solution is that, 
if the applied field is non-zero, then the magnetization is non-zero at any 
temperature. This implies there is no longer a spontaneous symmetry break-
ing that occurs at any temperature. Furthermore, some interesting thermo-
dynamic and universal quantities can be obtained from this above condition. 
For example, at the critical temperature where a(Tc) = 0, one can find the 
dependence of the order parameter on the external field:

		                                                                                                                       

	 indicating a critical exponent δ = 3.

	 Furthermore, from the above condition, it is possible to find the ze-
ro-field susceptibility 
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which must satisfy 

		            

	 In this case, recalling in the zero-field case that η2 = - a / b  at low 
temperatures, while η2 = 0 for temperatures above the critical temperature, 
the zero-field susceptibility therefore has the following temperature depen-
dence:

	

	 which is reminiscent of the Curie-Weiss law for the temperature de-
pendence of magnetic susceptibility in magnetic materials, and yields the 
mean-field critical exponent λ = 1.

First-Order Transitions

Landau theory can also be used to study first-order transitions. There are 
two different formulations, depending on whether or not the system is sym-
metric under a change in sign of the order parameter. 

Symmetric Case

Here we consider the case where the system has a symmetry and the energy 
is invariant when the order parameter changes sign. A first-order transition 
will arise if the quartic term in F is negative.  To ensure that the free energy 
remains positive at large η, one must carry the free-energy expansion to 
sixth-order,

	 .

Nonsymmetric Case

Next we consider the case where the system does not have a symmetry. In 
this case there is no reason to keep only even powers of η  in the expan-
sion of F. And a cubic term must be allowed (The linear term can always 
be eliminated by a shift η → + χ constant.) We thus consider a free energy 
functional 

	 		

Once again are all positive. 
The sign of the cubic term can always be chosen to be negative as we have 
done by reversing the sign of η if necessary.

Applications of Landau Theory of Phase Transition

It was known experimentally that the liquid–gas coexistence curve and the 
ferromagnet magnetization curve both exhibited a scaling relation of the 
form |T - Tc|β, where β was mysteriously the same for both systems. This is 
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the phenomenon of universality. It was also known that simple liquid–gas 
models are exactly mappable to simple magnetic models, which implied 
that the two systems possess the same symmetries. It then followed from 
Landau theory why these two apparently disparate systems should have the 
same critical exponents, despite having different microscopic parameters. It 
is now known that the phenomenon of universality arises for other reasons 
(see Renormalization group). In fact, Landau theory predicts the incorrect 
critical exponents for the Ising and liquid–gas systems.

	 The great virtue of Landau theory is that it makes specific predic-
tions for what kind of non-analytic behavior one should see when the un-
derlying free energy is analytic. Then, all the non-analyticity at the critical 
point, the critical exponents, are because the equilibrium value of the order 
parameter changes non-analytically, as a square root, whenever the free en-
ergy loses its unique minimum.

	 The extension of Landau theory to include fluctuations in the order 
parameter shows that Landau theory is only strictly valid near the critical 
points of ordinary systems with spatial dimensions higher than 4. This is the 
upper critical dimension, and it can be much higher than four in more finely 
tuned phase transition. In Mukhamel’s analysis of the isotropic Lifschitz 
point, the critical dimension is 8. This is because Landau theory is a mean 
field theory, and does not include long-range correlations.

	 This theory does not explain non-analyticity at the critical point, but 
when applied to superfluid and superconductor phase transition, Landau’s 
theory provided inspiration for another theory, the Ginzburg–Landau theory 
of superconductivity. 

Including Long-Range Correlations

Consider the Ising model free energy above. Assume that the order parame-
ter Ψ and external magnetic field, H, may have spatial variations. Now, the 
free energy of the system can be assumed to take the following modified 
form:

	 where D is the total spatial dimensionality. So,

		

	 Assume that, for a localized external magnetic perturbation 
	 the order parameter takes the form 			 
	 Then,

	

	 That is, the fluctuation φ (x) in the order parameter corresponds to 
the order-order correlation. Hence, neglecting this fluctuation (like in the 
earlier mean-field approach) corresponds to neglecting the order-order cor-
relation, which diverges near the critical point. 
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	 One can also solve for φ (x) from which the scaling exponent, v, for 
correlation length can deduced. From these, the Ginzburg 
criterion for the upper critical dimension for the validity of the Ising mean-
field Landau theory (the one without long-range correlation) can be calcu-
lated as: 

		

	 In our current Ising model, mean-field Landau theory gives β = 
1/2 = v  and so, it (the Ising mean-field Landau theory) is valid only for 
spatial dimensionality greater than or equal to 4 (at the marginal values of 
D=4, there are small corrections to the exponents). This modified version 
of mean-field Landau theory is sometimes also referred to as the Landau–
Ginzburg theory of Ising phase transitions. As a clarification, there is also 
a Landau-Ginzburg theory specific to superconductivity phase transition, 
which also includes fluctuations. 

5.11	 CRITICAL INDICES
Critical exponents describe the behavior of physical quantities near continuous 
phase transitions. It is believed, though not proven, that they are universal, 
i.e., they do not depend on the details of the physical system, but only on 
some of its general features. For instance, for ferromagnetic systems, the 
critical exponents depend only on:
	 •	The dimension of the system
	 •	The range of the interaction
	 •	The spin dimension
These properties of critical exponents are supported by experimental data. 
Analytical results can be theoretically achieved in mean field theory in high 
dimensions or when exact solutions are known such as the two-dimensional 
Ising model. The theoretical treatment in generic dimensions requires the 
renormalization group approach or the conformal bootstrap techniques. Phase 
transitions and critical exponents appear in many physical systems such as 
water at the liquid-vapor transition, in magnetic systems, in superconductivity, 
in percolation and in turbulent fluids. The critical dimension above which 
mean field exponents are valid varies with the systems and can even be 
infinite. It is 4 for the liquid-vapor transition, 6 for percolation and probably 
infinite for turbulence. Mean field critical exponents are also valid for random 
graphs, such as Erdős–Rényi graphs, which can be regarded as infinite 
dimensional systems.

Definition of Critical Indices: The control parameter that drives phase 
transitions is often temperature but can also be other macroscopic variables 
like pressure or an external magnetic field. For simplicity, the following 
discussion works in terms of temperature; the translation to another control 
parameter is straightforward. The temperature at which the transition occurs 
is called the critical temperature Tc. We want to describe the behavior of a 
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physical quantity f in terms of a power law around the critical temperature; 
we introduce the reduced temperature

which is zero at the phase transition, and define the critical exponent k: 

This results in the power law we were looking for:

 
It is important to remember that this represents the asymptotic behavior 

of the function f(τ) as τ → 0. 
More generally one might expect 
The most important critical exponents
Let us assume that the system has two different phases characterized 

by an order parameter Ψ, which vanishes at and above Tc.
Consider the disordered phase (τ > 0), ordered phase (τ < 0) and critical 

temperature (τ = 0) phases separately. Following the standard convention, the 
critical exponents related to the ordered phase are primed. It is also another 
standard convention to use superscript/subscript + (−) for the disordered 
(ordered) state. In general spontaneous symmetry breaking occurs in the 
ordered phase. 

 The following entries are evaluated at J = 0 (except for the δ entry)
 

The critical exponents can be derived from the specific free energy 
f(J,T) as a function of the source and temperature. The correlation length 
can be derived from the functional F[J;T].
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These relations are accurate close to the critical point in two- and 
three-dimensional systems. In four dimensions, however, the power laws are 
modified by logarithmic factors. These do not appear in dimensions arbitrarily 
close to but not exactly four, which can be used as a way around this problem. 

Mean Field Critical Exponents of Ising-Like Systems

The classical Landau theory (also known as mean field theory) values of 
the critical exponents for a scalar field (of which the Ising model is the 
prototypical example) are given by 

 If we add derivative terms turning it into a mean field Ginzburg–Landau 
theory, we get

 One of the major discoveries in the study of critical phenomena 
is that mean field theory of critical points is only correct when the space 
dimension of the system is higher than a certain dimension called the upper 
critical dimension which excludes the physical dimensions 1, 2 or 3 in most 
cases. The problem with mean field theory is that the critical exponents do 
not depend on the space dimension. This leads to a quantitative discrepancy 
below the critical dimensions, where the true critical exponents differ from 
the mean field values. It can even lead to a qualitative discrepancy at low 
space dimension, where a critical point in fact can no longer exist, even 
though mean field theory still predicts there is one. This is the case for the 
Ising model in dimension 1 where there is no phase transition. The space 
dimension where mean field theory becomes qualitatively incorrect is called 
the lower critical dimension.

Experimental Values

The most accurately measured value of α is −0.0127 for the phase transition of 
superfluid helium (the so-called lambda transition). The value was measured 
on a space shuttle to minimize pressure differences in the sample. This value is 
in a significant disagreement with the most precise theoretical determinations 
coming from high temperature expansion techniques, Monte Carlo methods 
and the conformal bootstrap.

Theoretical Predictions

Critical exponents can be evaluated via Monte Carlo simulations of lattice 
models. The accuracy of this first principle method depends on the available 
computational resources, which determine the ability to go to the infinite 
volume limit and to reduce statistical errors. Other techniques rely on 
theoretical understanding of critical fluctuations. The most widely applicable 
technique is the renormalization group. The conformal bootstrap is a more 
recently developed technique, which has achieved unsurpassed accuracy for 
the Ising critical exponents.

Scaling Functions

In light of the critical scalings, we can reexpress all thermodynamic quantities 
in terms of dimensionless quantities. Close enough to the critical point, 
everything can be reexpressed in terms of certain ratios of the powers of the 
reduced quantities. These are the scaling functions.
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The origin of scaling functions can be seen from the renormalization 
group. The critical point is an infrared fixed point. In a sufficiently small 
neighborhood of the critical point, we may linearize the action of the 
renormalization group. This basically means that rescaling the system by a 
factor of a will be equivalent to rescaling operators and source fields by a 
factor of aΔ for some Δ. So, we may reparameterize all quantities in terms 
of rescaled scale independent quantities.

Scaling Relations

It was believed for a long time that the critical exponents were the same above 
and below the critical temperature, e.g., α ≡ α′ or γ ≡ γ′. It has now been shown 
that this is not necessarily true: When a continuous symmetry is explicitly 
broken down to a discrete symmetry by irrelevant (in the renormalization 
group sense) anisotropies, then the exponent’s γ and γ′ are not identical.

Critical exponents are denoted by Greek letters. They fall into 
universality classes and obey the scaling and hyperscaling relations

 
These equations imply that there are only two independent exponents, 

e.g., ν and η. All this follows from the theory of the renormalization group.

Anisotropy

There are some anisotropic systems where the correlation length is direction 
dependent. Directed percolation can be also regarded as anisotropic 
percolation. In this case the critical exponents are different and the upper 
critical dimension is 5.

Multicritical Points

More complex behavior may occur at multicritical points, at the border or on 
intersections of critical manifolds. They can be reached by tuning the value 
of two or more parameters, such as temperature and pressure.

Static Versus Dynamic Properties
The above examples exclusively refer to the static properties of a critical 
system. However dynamic properties of the system may become critical, 
too. Especially, the characteristic time, τchar, of a system diverges as τchar ∝ ξ 
z, with a dynamical exponent z. Moreover, the large static universality class-
es of equivalent models with identical static critical exponents decompose 
into smaller dynamical universality classes, if one demands that also the 
dynamical exponents are identical.  The critical exponents can be computed 
from conformal field theory.

Transport Properties

Critical exponents also exist for transport quantities like viscosity and heat 
conductivity. A recent study suggests that critical exponents of percolation 
play an important role in urban traffic.
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Self-Organized Criticality

Critical exponents also exist for self organized criticality for dissipative 
systems.

Percolation Theory

Phase transitions and critical exponents appear also in percolation processes 
where the concentration of occupied sites or links play the role of temperature. 
The simplest example is perhaps percolation in a two dimensional square 
lattice. Sites are randomly occupied with probability p. For small values of 
p the occupied sites form only small clusters. At a certain threshold pc a 
giant cluster is formed, and we have a second-order phase transition. Refer 
percolation critical exponents. For percolation the critical exponents are 
different from Ising. For example, in the mean field d = 2for percolation 
compared to d = 3 for Ising. In network theory, the strength of interactions 
between communities has been found to behave analogous to an external 
field in magnets near the phase transition or as ghost field in percolation.

5.12	 SCALE TRANSFORMATION
In physics, mathematics and statistics, scale invariance is a feature of objects 
or laws that do not change if scales of length, energy, or other variables, 
are multiplied by a common factor, and thus represent a universality. The 
technical term for this transformation is a dilatation (also known as dilation), 
and the dilatations can also form part of a larger conformal symmetry.
	 •	 In mathematics, scale invariance usually refers to an invariance of 

individual functions or curves. A closely related concept is self-
similarity, where a function or curve is transformation under a discrete 
subset of the dilations. It is also possible for the probability distributions 
of random processes to display this kind of scale invariance or self-
similarity.

	 •	 In classical field theory, scale invariance most commonly applies to the 
invariance of a whole theory under dilatations. Such theories typically 
describe classical physical processes with no characteristic length scale.

	 •	 In quantum field theory, scale invariance has an interpretation in terms 
of particle physics. In a scale-transformation theory, the strength of 
particle interactions does not depend on the energy of the particles 
involved.

	 •	 In statistical mechanics, scale invariance is a feature of phase transitions. 
The key observation is that near a phase transition or critical point, 
fluctuations occur at all length scales, and thus one should look for 
an explicitly scale-transformation theory to describe the phenomena. 
Such theories are scale-transformation statistical field theories, and are 
formally very similar to scale-transformation quantum field theories.

	 •	Universality is the observation that widely different microscopic 
systems can display the same behaviour at a phase transition. Thus 
phase transitions in many different systems may be described by the 
same underlying scale-transformation theory.
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	 •	 In general, dimensionless quantities are scale transformation. The 
analogous concept in statistics are standardized moments, which are 
scale transformation statistics of a variable, while the unstandardized 
moments are not.

Scale-Transformation Curves and Self-Similarity

In mathematics, one can consider the scaling properties of a function or curve 
f (x) under rescalings of the variable x. That is, one is interested in the shape 
of f (λx) for some scale factor λ, which can be taken to be a length or size 
rescaling. The requirement for f (x) to be transformation under all rescalings 
is usually taken to be 

 
for some choice of exponent Δ, and for all dilations λ. This is equivalent 

to f   being a homogeneous function of degree Δ.
Examples of scale-transformation functions are the monomials                     

for which Δ = n, in that clearly 

 
An example of a scale-transformation curve is the logarithmic spiral, 

a kind of curve that often appears in nature. In polar coordinates (r, θ), the 
spiral can be written as

 
Allowing for rotations of the curve, it is transformation under all 

rescalings λ; that is, θ(λr) is identical to a rotated version of θ(r).

Projective Geometry

The idea of scale invariance of a monomial generalizes in higher dimensions 
to the idea of a homogeneous polynomial, and more generally to a 
homogeneous function. Homogeneous functions are the natural denizens of 
projective space, and homogeneous polynomials are studied as projective 
varieties in projective geometry. Projective geometry is a particularly rich 
field of mathematics; in its most abstract forms, the geometry of schemes, it 
has connections to various topics in string theory.

Fractals

It is sometimes said that fractals are scale-transformation, although more 
precisely, one should say that they are self-similar. A fractal is equal to itself 
typically for only a discrete set of values λ, and even then a translation and 
rotation may have to be applied to match the fractal up to itself. Thus, for 
example, the Koch curve scales with ∆ = 1, but the scaling holds only for 
values of λ = 1/3n for integer n. In addition, the Koch curve scales not only 
at the origin, but, in a certain sense, ‘Everywhere’: miniature copies of itself 
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can be found all along the curve. Some fractals may have multiple scaling 
factors at play at once; such scaling is studied with multi-fractal analysis. 
Periodic external and internal rays are transformation curves. 

Scale Invariance in Stochastic Processes

If P(f ) is the average, expected power at frequency f , then noise scales as

 
with Δ = 0 for white noise, Δ = −1 for pink noise, and Δ = −2 for 

Brownian noise (and more generally, Brownian motion). More precisely, 
scaling in stochastic systems concerns itself with the likelihood of choosing 
a particular configuration out of the set of all possible random configurations. 
This likelihood is given by the probability distribution. 

Examples of scale-transformation distributions are the Pareto 
distribution and the Zipfian distribution. 

Scale Transformation Tweedie Distributions 

Tweedie distributions are a special case of exponential dispersion models, 
a class of statistical models used to describe error distributions for the 
generalized linear model and characterized by closure under additive and 
reproductive convolution as well as under scale transformation. These 
include a number of common distributions: the normal distribution, Poisson 
distribution and gamma distribution, as well as more unusual distributions 
like the compound Poisson-gamma distribution, positive stable distributions, 
and extreme stable distributions. Consequent to their inherent scale invariance 
Tweedie random variables Y demonstrate a variance var(Y) to mean E(Y) 
power law: 

 
where a and p are positive constants. This variance to mean power law 

is known in the physics literature as fluctuation scaling, and in the ecology 
literature as Taylor’s law.

Random sequences, governed by the Tweedie distributions and 
evaluated by the method of expanding bins exhibit a biconditional relationship 
between the variance to mean power law and power law autocorrelations. 
The Wiener–Khinchin theorem further implies that for any sequence that 
exhibits a variance to mean power law under these conditions will also 
manifest 1/f noise. 

The Tweedie convergence theorem provides a hypothetical explanation 
for the wide manifestation of fluctuation scaling and 1/f noise. It requires, in 
essence, that any exponential dispersion model that asymptotically manifests 
a variance to mean power law will be required express a variance function 
that comes within the domain of attraction of a Tweedie model. Almost all 
distribution functions with finite cumulant generating functions qualify as 
exponential dispersion models and most exponential dispersion models 
manifest variance functions of this form. Hence many probability distributions 
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have variance functions that express this asymptotic behavior, and the Tweedie 
distributions become foci of convergence for a wide range of data types. 

Much as the central limit theorem requires certain kinds of random 
variables to have as a focus of convergence the Gaussian distribution and 
express white noise, the Tweedie convergence theorem requires certain 
non-Gaussian random variables to express 1/f noise and fluctuation scaling.

Cosmology

In physical cosmology, the power spectrum of the spatial distribution of 
the cosmic microwave background is near to being a scale-transformation 
function. Although in mathematics this means that the spectrum is a 
power-law, in cosmology the term ‘scale-transformation’ indicates that the 
amplitude, P(k), of primordial fluctuations as a function of wave number, k, 
is approximately constant, i.e. a flat spectrum. This pattern is consistent with 
the proposal of cosmic inflation. 

Scale Invariance in Classical Field Theory

Classical field theory is generically described by a field, or set of fields, φ, 
that depend on coordinates, x valid field configurations are then determined 
by solving differential equations for φ, and these equations are known as 
field equations.

For a theory to be scale-transformation, its field equations should be 
transformation under a rescaling of the coordinates, combined with some 
specified rescaling of the fields, 

 
The parameter Δ is known as the scaling dimension of the field, and 

its value depends on the theory under consideration. Scale invariance will 
typically hold provided that no fixed length scale appears in the theory. 
Conversely, the presence of a fixed length scale indicates that a theory is 
not scale-transformation. A consequence of scale invariance is that given a 
solution of a scale-transformation field equation, we can automatically find 
other solutions by rescaling both the coordinates and the fields appropriately. 
In technical terms, given a solution, φ(x), one always has other solutions of 
the form  

 Scale Invariance of Field Configurations

For a particular field configuration, φ(x), to be scale-transformation, we 
require that 

 
where Δ is, again, the scaling dimension of the field.
We note that this condition is rather restrictive. In general, solutions 

even of scale-transformation field equations will not be scale-transformation, 
and in such cases the symmetry is said to be spontaneously broken. 
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Classical Electromagnetism

An example of a scale-transformation classical field theory is electromagnetism 
with no charges or currents. The fields are the electric and magnetic fields, 
E(x,t) and B(x,t), while their field equations are Maxwell’s equations.

With no charges or currents, these field equations take the form of 
wave equations 

 where c is the speed of light. These field equations are transformation 
under the transformation 

 
Moreover, given solutions of Maxwell’s equations, E(x, t) and B(x, t), 

it holds that E(λx, λt) and B(λx, λt) are also solutions.

Massless Scalar Field Theory

Another example of a scale-transformation classical field theory is the 
massless scalar field (note that the name scalar is unrelated to scale 
invariance). The scalar field, φ(x, t) is a function of a set of spatial variables, 
x, and a time variable, t.

Consider first the linear theory. Like the electromagnetic field equations 
above, the equation of motion for this theory is also a wave equation,

 
and is transformation under the transformation 

 
The name massless refers to the absence of a term ∝m2 ϕ in the field 

equation. Such a term is often referred to as a ‘Mass’ term, and would break 
the invariance under the above transformation. In relativistic field theories, 
a mass-scale, m is physically equivalent to a fixed length scale through 

 
and so it should not be surprising that massive scalar field theory is 

not scale-transformation.
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φ4 Theory: The field equations in the examples above are all linear 
in the fields, which has meant that the scaling dimension, Δ, has not been 
so important. However, one usually requires that the scalar field action is 
dimensionless, and this fixes the scaling dimension of φ. In particular,

 
where D is the combined number of spatial and time dimensions.
Given this scaling dimension for φ, there are certain nonlinear 

modifications of massless scalar field theory which are also scale-
transformation. One example is massless φ4 theory for D = 4. The field 
equation is

 
(Note that the name φ4 derives from the form of the Lagrangian, which 

contains the fourth power of φ.) 
When D = 4 (e.g., three spatial dimensions and one time dimension), the 

scalar field scaling dimension is Δ=1. The field equation is then transformation 
under the transformation 

 
The key point is that the parameter g must be dimensionless, otherwise 

one introduces a fixed length scale into the theory: For φ4 theory, this is only 
the case in D = 4. Note that under these transformations the argument of the 
function φ is unchanged. 

Scale Invariance in Quantum Field Theory

The scale-dependence of a Quantum Field Theory (QFT) is characterised 
by the way its coupling parameters depend on the energy-scale of a given 
physical process. This energy dependence is described by the renormalization 
group, and is encoded in the beta-functions of the theory. For a QFT to be 
scale-transformation, its coupling parameters must be independent of the 
energy-scale, and this is indicated by the vanishing of the beta-functions of 
the theory. Such theories are also known as fixed points of the corresponding 
renormalization group flow.

Quantum Electrodynamics

A simple example of a scale-transformation QFT is the quantized 
electromagnetic field without charged particles. This theory actually has no 
coupling parameters (since photons are massless and non-interacting) and is 
therefore scale-transformation, much like the classical theory.
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However, in nature the electromagnetic field is coupled to charged 
particles, such as electrons. The QFT describing the interactions of photons 
and charged particles is Quantum Electrodynamics (QED), and this theory 
is not scale-transformation. We can see this from the QED beta-function. 
This tells us that the electric charge (which is the coupling parameter in the 
theory) increases with increasing energy. Therefore, while the quantized 
electromagnetic field without charged particles is scale-transformation, QED 
is not scale-transformation. 

Massless Scalar Field Theory

Free, massless quantized scalar field theory has no coupling parameters. 
Therefore, like the classical version, it is scale-transformation. In the language 
of the renormalization group, this theory is known as the Gaussian fixed point. 
However, even though the classical massless φ4 theory is scale-transformation 
in D = 4, the quantized version is not scale-transformation. We can see this 
from the beta-function for the coupling parameter, g.

Even though the quantized massless φ4 is not scale-transformation, 
there do exist scale-transformation quantized scalar field theories other than 
the Gaussian fixed point. One example is the Wilson-Fisher fixed point, below. 

Conformal Field Theory

Scale-transformation QFTs are almost always transformation under the full 
conformal symmetry, and the study of such QFTs is Conformal Field Theory 
(CFT). Operators in a CFT have a well-defined scaling dimension, analogous 
to the scaling dimension, ∆, of a classical field discussed above. However, 
the scaling dimensions of operators in a CFT typically differ from those of 
the fields in the corresponding classical theory. The additional contributions 
appearing in the CFT are known as anomalous scaling dimensions. 

Scale and Conformal Anomalies

The φ4 theory example above demonstrates that the coupling parameters 
of a quantum field theory can be scale-dependent even if the corresponding 
classical field theory is scale-transformation (or conformally transformation). 
If this is the case, the classical scale (or conformal) invariance is said to 
be anomalous. A classically scale transformation field theory, where scale 
invariance is broken by quantum effects, provides an explication of the nearly 
exponential expansion of the early universe called cosmic inflation, as long 
as the theory can be studied through perturbation theory. 

Phase Transitions

In statistical mechanics, as a system undergoes a phase transition, its 
fluctuations are described by a scale-transformation statistical field theory. For 
a system in equilibrium (i.e., time-independent) in D spatial dimensions, the 
corresponding statistical field theory is formally similar to a D-dimensional 
CFT. The scaling dimensions in such problems are usually referred to as 
critical exponents, and one can in principle compute these exponents in the 
appropriate CFT. 
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The Ising Model

An example that links together many of the ideas in this article is the phase 
transition of the Ising model, a simple model of ferromagnetic substances. 
This is a statistical mechanics model, which also has a description in terms of 
conformal field theory. The system consists of an array of lattice sites, which 
form a D-dimensional periodic lattice. Associated with each lattice site is a 
magnetic moment, or spin, and this spin can take either the value +1 or −1. 
(These states are also called up and down, respectively.)

The key point is that the Ising model has a spin-spin interaction, making 
it energetically favourable for two adjacent spins to be aligned. On the other 
hand, thermal fluctuations typically introduce a randomness into the alignment 
of spins. At some critical temperature, Tc, spontaneous magnetization is said 
to occur. This means that below Tc the spin-spin interaction will begin to 
dominate, and there is some net alignment of spins in one of the two directions.

An example of the kind of physical quantities one would like to 
calculate at this critical temperature is the correlation between spins separated 
by a distance r. This has the generic behaviour: 

 
for some particular value of η, which is an example of a critical 

exponent. 

CFT Description

The fluctuations at temperature Tc are scale-transformation, and so the 
Ising model at this phase transition is expected to be described by a scale-
transformation statistical field theory. In fact, this theory is the Wilson-Fisher 
fixed point, a particular scale-transformation scalar field theory.

In this context, G(r) is understood as a correlation function of scalar 
fields, 

 
Now we can fit together a number of the ideas seen already.
From the above, one sees that the critical exponent, η, for this phase 

transition, is also an anomalous dimension. This is because the classical 
dimension of the scalar field,

 
is modified to become
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 where D is the number of dimensions of the Ising model lattice. So 
this anomalous dimension in the conformal field theory is the same as a 
particular critical exponent of the Ising model phase transition. Note that 
for dimension D ≡ 4−ε, η can be calculated approximately, using the epsilon 
expansion, and one finds that 

 
In the physically interesting case of three spatial dimensions, we 

have ε = 1, and so this expansion is not strictly reliable. However, a semi-
quantitative prediction is that η is numerically small in three dimensions. 
On the other hand, in the two-dimensional case the Ising model is exactly 
soluble. In particular, it is equivalent to one of the minimal models, a family 
of well-understood CFTs, and it is possible to compute η (and the other 
critical exponents) exactly,

 

Schramm–Loewner Evolution

The anomalous dimensions in certain two-dimensional CFTs can be related 
to the typical fractal dimensions of random walks, where the random walks 
are defined via Schramm–Loewner Evolution (SLE). As we have seen above, 
CFTs describe the physics of phase transitions, and so one can relate the 
critical exponents of certain phase transitions to these fractal dimensions. 
Examples include the 2d critical Ising model and the more general 2d critical 
Potts model. Relating other 2d CFTs to SLE is an active area of research. 

Universality

A phenomenon known as universality is seen in a large variety of physical 
systems. It expresses the idea that different microscopic physics can give rise 
to the same scaling behaviour at a phase transition. A canonical example of 
universality involves the following two systems:

•	The Ising model phase transition, described above.
•	The liquid-vapour transition in classical fluids.
Even though the microscopic physics of these two systems is completely 

different, their critical exponents turn out to be the same. Moreover, one can 
calculate these exponents using the same statistical field theory. The key 
observation is that at a phase transition or critical point, fluctuations occur 
at all length scales, and thus one should look for a scale-transformation 
statistical field theory to describe the phenomena. In a sense, universality is the 
observation that there are relatively few such scale-transformation theories.

The set of different microscopic theories described by the same scale-
transformation theory is known as a universality class. Other examples of 
systems which belong to a universality class are:
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	 •	Avalanches in piles of sand. The likelihood of an avalanche is in power-
law proportion to the size of the avalanche, and avalanches are seen to 
occur at all size scales.

	 •	The frequency of network outages on the Internet, as a function of size 
and duration.

	 •	The frequency of citations of journal articles, considered in the network 
of all citations amongst all papers, as a function of the number of 
citations in a given paper.[citation needed]

	 •	The formation and propagation of cracks and tears in materials ranging 
from steel to rock to paper. The variations of the direction of the tear, 
or the roughness of a fractured surface, are in power-law proportion 
to the size scale.

	 •	The electrical breakdown of dielectrics, which resemble cracks and 
tears.

	 •	The percolation of fluids through disordered media, such as petroleum 
through fractured rock beds, or water through filter paper, such as in 
chromatography. Power-law scaling connects the rate of flow to the 
distribution of fractures.

	 •	The diffusion of molecules in solution, and the phenomenon of 
diffusion-limited aggregation.

	 •	The distribution of rocks of different sizes in an aggregate mixture that 
is being shaken (with gravity acting on the rocks).
The key observation is that, for all of these different systems, the 

behaviour resembles a phase transition, and that the language of statistical 
mechanics and scale-transformation statistical field theory may be applied 
to describe them.

Other Examples of Scale Transformation 

Newtonian Fluid Mechanics with No Applied Forces: Under certain 
circumstances, fluid mechanics is a scale-transformation classical field theory. 
The fields are the velocity of the fluid flow, u(x, t), the fluid density, r(x, t), 
and the fluid pressure, P(x, t). These fields must satisfy both the Navier–Stokes 
equation and the continuity equation. For a Newtonian fluid these take the 
respective forms 

 
where m is the dynamic viscosity. 
In order to deduce the scale invariance of these equations we specify an 

equation of state, relating the fluid pressure to the fluid density. The equation 



NOTES

Quantum Statistical 
Mechanics

Self - Learning
Material 	 215

of state depends on the type of fluid and the conditions to which it is subjected. 
For example, we consider the isothermal ideal gas, which satisfies 

 where cs is the speed of sound in the fluid. Given this equation of 
state, Navier–Stokes and the continuity equation are transformation under 
the transformations 

 
Given the solutions u(x, t) and r(x, t), we automatically have that λu 

(λx, λ2t) and r(λx, λ2t), are also solutions.

5.13	 DIMENSIONAL ANALYSIS
Dimensional analysis is a branch of mathematics which deals with dimensions 
of quantities. Each physical phenomenon can be expressed by an equation that 
represents the relationship between the variables governing the phenomenon. 
In general, such quantities may be dimensional or non-dimensional (absolute 
numerals). Any physical variable can be described using qualitative and 
quantitative approaches. The qualitative description is known as dimension 
and quantitative description is known as unit.

	 The dimensions of basic quantities are selected as basic dimensions 
and dimensions of other variables are derived. Dimensions are classified as 
Absolute system (MLT system) and Gravitational System (FLT System),

Where	      MLT is Mass, Length and Time and
	                  FLT is Force, Length and Time.
	 Mass is independent of location and hence MLT system is known as 

absolute system. Force is based on gravitational acceleration which depends 
upon the location and hence FLT system is known as gravitational system.

Using Newton’s second law,
In MLT system,

		   2T
MLF=             	 ...(5.192)

In FLT system,

		   
L

FTM
2

=            	 ...(5.193)

	 The basic and derived dimensions of various quantities in MLT and 
FLT systems are shown in Table 5.2
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Table 5.2  Dimensions of quantities in MLT and FLT systems

Dimensional Homogeneity

An equation is said to be dimensionally homogeneous, if the dimensions of 
various terms on the left and right side of the equation are identical.

In other words, if d = a + b		  ...(5.194)
Dimension of d = Dimension of a ≡ Dimension of b
If	 d = a (k + r)            	 ...(5.195)
where  	  ‘k’ = constant,
then	  ‘r’ = dimensionless quantity
Therefore dimension of d = Dimension of a.

Example 5.1: Verify whether the following equations are dimensionally 
homogeneous or not.
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where S is distance, u is velocity, t is time, a is acceleration and r is radius 
of curvature.
Solution:
	 (a)	Substituting dimensions in  the above eqn, we get

		
( ) ( )( )

LLL
TLT(T)LTL 221

≡≡
+=

  
		  Hence it is dimensionally homogeneous.
	 (b)	Substituting dimensions in the above eqn, we get

		

( ) ( )
2

21

LLL
T(T) LTL

≡/≡
+=

  
		  Hence it is dimensionally not homogeneous.	

	 (c)	






=












=











=





=

==

L
1

L
1

L
1

L
L

L
1

d
d

constant
L
L

2

2

dx
dy

dx
d

x
y

dx
dy

 

	   
Hence it is dimensionally homogeneous.
Dimensions of Unknown Variables
In some physical phenomena, dimensions of unknown variables can be 
determined using dimensional analysis. Similarly, a homogeneous equation 
can also be converted to non-dimensional form. For example, discharge 
equation is expressed as,

	     	 2/5)(tan2)15/8( HgCQ d θ=                    	 ...(5.196)
where Q is discharge, H is height of water level and Cd is Coefficient of 
discharge (dimensionless constant). 

	 Substituting dimensions in the above eqn. 5.196,

                
[ ]

1313

5/21/2213

TLTL
[L]LTTL

−−

−−

≡
=

      	 ...(5.197)
Hence it is dimensionally homogeneous.
The same equation can be written in non-dimensional form as,

 θtan2
15
8

2/5 dC
Hg
Q






= 	              	 ...(5.198)

Example 5.2: A physical phenomenon is expressed as,

βραδ gVp +




+= 2

2
1

	       
where,		 r = mass density,

	       	 p = pressure,
	       	 g = acceleration due to gravity and
	      	 V = velocity	
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Find the dimensions of d, a and b. Use (a) MLT System (b) FLT 
System.
Solution:
	 (a)	MLT System (Refer Table 5.2)

		

3 1

1 2 2

ML LT
ML T LT

V
p g
ρ − −

− − −

= =
= =

		  Dimension of d ≡ Dimension of p ≡ Dimension of aV2 ≡  Dimension 
of rgb

		  ( ) ( )( )βαδ 232121 LTMLLTTML −−−−− ≡≡≡

		 Hence

		  L
ML

TML
3

21

=
=
=

−

−−

β
α
δ

	 (b)	 FLT System (Refer Table 5.2)

		  ( ) ( )( )βαδ

ρ

243212

22

143

LTLFTLTFL

LTFL
LTLFT

−−−−

−−

−−

≡≡≡

==
==

gp
V

		 Hence

		
2FLδ −=

		
4 2FL Tα − −=

		  Lβ = 	

5.14	 DENSITY AND ENERGY FUNCTION 
WITH ELECTRON SPIN IN HYDROGEN 
LIKE ATOM

Consider a H2 atom, which has the simplest atomic configuration with a 
single electron revolving round the nucleus. The total energy of such an 

electron is given by 
4

2 2
0

–
8ε

me
h n

, where m and e are mass and charge of the 

electron respectively, e0 is the permittivity of free-space, h is the Planck’s 
constant and n is known as principal quantum number. Thus, the total energy 
for such an electron solely depends on n. We know that for a given value 
of n, we get other three quantum numbers whose values depend on n in the 
following manner:

l (orbital quantum number) = 0, 1, 2, 3, ..., (n – 1)
m1 (magnetic orbital quantum number) = –1, (–1 + 1), (–1 + 2), ..., –2,
							       –1, 0, 1, 2, ..., (1–1), 1
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ms (magnetic spin quantum number) = – 1
2

, + 1
2

  (for each value of m1)
All n, l and m1 are integers or zero (but n ≠ 0).
A specific energy level corresponds to a specific value of n. For different 

integral values of n, we get different discrete energy levels. On the other hand, 
each discrete set of the four quantum numbers, i.e.{n, l, m1, ms}, designates 
each energy state. Let’s have an example to make these concepts clear.

Consider n = 2 energy level. 	
l-value m1-value ms-value Energy states No. of energy 

states
2 0 0 1 1,

2 2
− 12,0,0,

2
 −    

12,0,0,
2

 +  

2

2 1 –1 1 1,
2 2

− 12,1, 1,
2

 − −    
12,1, 1,
2

 − +  

0 1 1,
2 2

− 12,1,0,
2

 −    
12,1,0,
2

 
  

6

+1 1 1,
2 2

− 12,1, 1,
2

 + −    
12,1, 1,
2

 +  

For n = 2, l = 0, 1.
For l = 0,  ml = 0 and  ms = –, + 

For l = 1,  ml = –1, 0, +1  and  ms = – 1
2

, + 1
2

 for each value of ml.

Thus for n = 2 energy level, we get eight distinct energy states, But all 
these eight energy states have the same value of the total energy because, 
the total energy, as already stated, depends only on the principal quantum 
number. Such type of distinct energy states having the same total energy 
are known as degenerate states and it is said that the energy level n = 2 is 
8-fold degenerate. Similarly, we can show that n = 3 energy level is 18-fold 
degenerate. Note that this type of degenerate states are direct consequence 
of the symmetry of the respective system.
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Check Your Progress

	 10.	How will you define the non-relativistic bosons? 
	 11.	Give the experimental verification for Einstein condensation.
	 12.	What do you mean by the liquid helium?
	 13.	What are the basic postulates of Dirac statistics?
	 14.	How will you define the Fermi energy for electron gas in metals?
	 15.	Define the term Fermi temperature.
	 16.	What is free particle?
	 17.	Define the Heisenberg’s uncertainty principle.
	 18.	What is potential function V(x)?
	 19.	What is reflection coefficient?
	 20.	How will you define the Landau theory of phase transition?
	 21.	Give short note on critical indices.
	 22.	What is cosmology in scale transformation?
	 23.	Define dimensional analysis.
	 24.	Define the density and energy function with electron spin in hydrogen 

like atom.

5.15	 ANSWERS TO ‘CHECK YOUR 
PROGRESS’

	 1.	The study of quantum phenomena has come to be known as quantum 
physics.

	 2.	The theory of relativity extends the range of application of physical laws 
to the region of very high velocities and just as the universal constant 
of fundamental significance ‘c’ (speed of light in vacuum) characterizes 
relativity, so a universal constant of fundamental significance ‘h’ 
(Planck’s constant) characterizes quantum physics.

	 3.	Louis de-Broglie suggested that the idea of duality should be extended 
not only to radiation but also to all microparticles. He hypothesized 
that just as a quantum of radiation has a wave associated with it 
which governs its motion in space, so also a quantity of matter has a 
corresponding wave (which may be called matter wave) that governs 
its motion in space.  

		  The universe is essentially composed of only two entities namely 
matter Postulates and radiation. De-Broglie agreed that since one of 
the entities, namely radiation, has dual nature, the other entity matter 
must also exhibit dual character. His hypothesis is consistent with the 
symmetry principle of nature.

	 4.	De-Broglie proposed to associate, with every microparticle, corpuscular 
characteristics namely energy E and momentum p on the one hand, 
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and wave characteristics namely frequency n and wavelength l on the 
other hand. According to de-Broglie, the mutual dependence between 
the characteristics of the two kinds was accomplished, through the 
Planck’s constant h as

		        E = hn  and  p = ​ hn ___ c ​ = ​ h __ 
l

 ​	
		  This relation is known as de-Broglie’s equation. 
		  The wavelength l of matter wave associated with a microparticle is 

called de-Broglie wavelength of the particle. 
	 5.	The wavelength of electrons impinging the crystal are given by l = ​ h __ p , 

according to de-Broglie’s equation.
	 6.	The basic postulates of BE statistics are:
	 (i)	The associated particles are identical and indistinguishable.
	 (ii)	Each energy state can contain any number of particles.
	 (iii)	Total energy and total number of particles of the entire system 

are constant.
	 (iv)	The particles have zero or integral spin, i.e., 0, 1, 5, 50, etc., where 

is the unit of spin.
	 (v)	The wave function of the system is symmetric under the positional 

exchange of any two particles.
		 Examples: Photon, phonon, all mesons (p, k, h), etc., these are 

known as Bosons.
	 7.	The total number of possible ways (microstates) in BE statistics are 

respectively given by  

		 WBE = 

		 Here, N = 2, Ni = 2, gi = 3. Thus,

		 WBE = = 6

		  For BE statistics, the particles are indistinguishable and any state can 
contain any number of particles. Let particles be a, a.

		
	 8.	 In quantum mechanics we have already established Planck’s law of 

black-body radiation which exactly accounts for the observed energy 
density in case of a black-body radiation. Here shall re-derive the same 
Planck’s law by using Bose-Einstein statistics.
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	 9.	A blackbody is defined as it absorbs all the thermal radiations, whatever 
may be the wavelength incident on it. It neither reflects nor transmits 
any radiation, and appears black. 

	 10.	Our bosons are non-relativistic particles with spin s, whose one-particle 
energies e(k) 

		
		  include only the kinetic energy term.
	 11.	The Bose-Einstein condensation was predicted by Satyendra Bose 

and Albert Einstein in 1924-1925. It took almost 70 years to have an 
experimental corroboration of this phenomenon with the ultracold gas 
systems. Previous experiments had been done with 4He as well as with 
hydrogen.

	 12.	Liquid helium is a physical state of helium at very low temperatures at 
standard atmospheric pressures. Liquid helium may show superfluidity.

	 13.	The some basis postulates of FD statistics are:
	 (i)	Particles are identical and indistinguishable.
	 (ii)	Total energy and total number of particles of the entire system is 

constant.
	 14.	Metals are characterised by the presence of a good number of free 

electrons. These electrons move about at random within the metals. 
While moving the free electrons collide among themselves also 
encounter with the fixed ion cores. Such behaviour of the free electrons 
is similar to that of molecules of a gas. 

	 15.	Fermi temperature (TF) is the temperature equivalent of Fermi energy 
(FF) and it is defined as TF = , where k (= 1.38 × 10–23 Joule/Kelvin) is 
the Boltzmann constant.

	 16.	The study of quantum phenomena has come to be known as quantum 
physics.

	 17.	The theory of relativity extends the range of application of physical laws 
to the region of very high velocities and just as the universal constant 
of fundamental significance ‘c’ (speed of light in vacuum) characterizes 
relativity, so a universal constant of fundamental significance ‘h’ 
(Planck’s constant) characterizes quantum physics. 

	 18.	Louis de-Broglie suggested that the idea of duality should be extended 
not only to radiation but also to all microparticles. He hypothesized 
that just as a quantum of radiation has a wave associated with it 
which governs its motion in space, so also a quantity of matter has a 
corresponding wave (which may be called matter wave) that governs 
its motion in space. 

		  The universe is essentially composed of only two entities namely matter 
and radiation. De-Broglie agreed that since one of the entities, namely 
radiation, has dual nature, the other entity matter must also exhibit dual 
character. His hypothesis is consistent with the symmetry principle of 
nature.
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	 19.	De-Broglie proposed to associate, with every microparticle, corpuscular 
characteristics namely energy E and momentum p on the one hand, 
and wave characteristics namely frequency n and wavelength l on the 
other hand. According to de-Broglie, the mutual dependence between 
the characteristics of the two kinds was accomplished, through the 
Planck’s constant h as

		        E = hn  and  p = ​ hn ___ c ​ = ​ h __ 
l

 ​	
		  This relation is known as de-Broglie’s equation. 
		  The wavelength l of matter wave associated with a microparticle is 

called de-Broglie wavelength of the particle. 
	 20.	Landau theory in physics is a theory that Lev Landau introduced in an 

attempt to formulate a general theory of continuous (i.e., second-order) 
phase transitions. It can also be adapted to systems under externally-
applied fields, and used as a quantitative model for discontinuous (i.e., 
first-order) transitions.

	 21.	Critical exponents describe the behavior of physical quantities near 
continuous phase transitions. It is believed, though not proven, that 
they are universal, i.e., they do not depend on the details of the physical 
system, but only on some of its general features. For instance, for 
ferromagnetic systems, the critical exponents depend only on:
•	 The dimension of the system
•	 The range of the interaction
•	 The spin dimension

	 22.	 In physical cosmology, the power spectrum of the spatial distribution 
of the cosmic microwave background is near to being a scale-
transformation function. Although in mathematics this means that the 
spectrum is a power-law, in cosmology the term ‘scale-transformation’ 
indicates that the amplitude, P(k), of primordial fluctuations as a 
function of wave number, k, is approximately constant, i.e. a flat 
spectrum. This pattern is consistent with the proposal of cosmic 
inflation. 

	 23.	Dimensional analysis is a branch of mathematics which deals with 
dimensions of quantities. Each physical phenomenon can be expressed 
by an equation that represents the relationship between the variables 
governing the phenomenon.

	 24.	Consider a H2 atom, which has the simplest atomic configuration with 
a single electron revolving round the nucleus. The total energy of such 

an electron is given by 
4

2 2
0

–
8ε

me
h n

, where m and e are mass and charge 

of the electron respectively, e0 is the permittivity of free-space, h is the 

Planck’s constant and n is known as principal quantum number. Thus, 
the total energy for such an electron solely depends on n. We know 
that for a given value of n,
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5.16	 SUMMARY 
	 •	The study of quantum phenomena has come to be known as quantum 

physics.
	•	 Like classical physics, quantum physics also has been provided with a 

mathematical apparatus. The currently accepted structure developed by 
Schrödinger, Heisenberg, Max Born, Jordan, Dirac and many others to 
deal with problems in the microdomain, i.e., at atomic and subatomic 
levels is termed as quantum mechanics.

	•	 The theory of relativity extends the range of application of physical laws 
to the region of very high velocities and just as the universal constant 
of fundamental significance ‘c’ (speed of light in vacuum) characterizes 
relativity, so a universal constant of fundamental significance ‘h’ 
(Planck’s constant) characterizes quantum physics which includes 
classical physics as a special case.

	•	 Around 1923, Louis de-Broglie suggested that the idea of duality should 
be extended not only to radiation but also to all microparticles. He 
hypothesized that just as a quantum of radiation has a wave associated 
with it which governs its motion in space, so also a quantity of matter 
has a corresponding wave (which may be called matter wave) that 
governs its motion in space. 

	•	 The universe is essentially composed of only two entities namely matter 
and radiation. De-Broglie agreed that since one of the entities, namely 
radiation, has dual nature, the other entity matter must also exhibit dual 
character. His hypothesis is consistent with the symmetry principle of 
nature.

	 •	De-Broglie proposed to associate, with every microparticle, corpuscular 
characteristics namely energy E and momentum p on the one hand, 
and wave characteristics namely frequency n and wavelength l on the 
other hand. According to de-Broglie, the mutual dependence between 
the characteristics of the two kinds was accomplished, through the 
Planck’s constant h as

		        E = hn  and  p = ​ hn ___ c ​ = ​ h __ 
l

 ​	
		  This relation is known as de-Broglie’s equation. 
	 •	The wavelength l of matter wave associated with a microparticle is 

called de-Broglie wavelength of the particle. 
	 •	The wavelength of electrons impinging the crystal are given by l = ​ h __ p , 

according to de-Broglie’s equation.
	 •	 In quantum mechanics we have already established Planck’s law of 

black-body radiation which exactly accounts for the observed energy 
density in case of a black-body radiation. Here shall re-derive the same 
Planck’s law by using Bose-Einstein statistics.

	 •	The Bose-Einstein condensation was predicted by Satyendra Bose 
and Albert Einstein in 1924-1925. It took almost 70 years to have an 
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experimental corroboration of this phenomenon with the ultracold gas 
systems. Previous experiments had been done with 4He as well as with 
hydrogen.

	 •	Liquid helium is a physical state of helium at very low temperatures at 
standard atmospheric pressures. Liquid helium may show superfluidity.

	 •	Metals are characterised by the presence of a good number of free 
electrons. These electrons move about at random within the metals. 
While moving the free electrons collide among themselves also 
encounter with the fixed ion cores. Such behaviour of the free electrons 
is similar to that of molecules of a gas. 

	 •	 Fermi temperature (TF) is the temperature equivalent of Fermi energy 
(FF) and it is defined as TF = , where k (= 1.38 × 10–23 Joule/Kelvin) 
is the Boltzmann constant.

	 •	Critical exponents describe the behavior of physical quantities near 
continuous phase transitions. It is believed, though not proven, that 
they are universal, i.e., they do not depend on the details of the physical 
system, but only on some of its general features.

	 •	 In physical cosmology, the power spectrum of the spatial distribution 
of the cosmic microwave background is near to being a scale-
transformation function. Although in mathematics this means that the 
spectrum is a power-law, in cosmology the term ‘scale-transformation’ 
indicates that the amplitude, P(k), of primordial fluctuations as a 
function of wave number, k, is approximately constant, i.e. a flat 
spectrum. This pattern is consistent with the proposal of cosmic 
inflation. 

	 •	Dimensional analysis is a branch of mathematics which deals with 
dimensions of quantities. Each physical phenomenon can be expressed 
by an equation that represents the relationship between the variables 
governing the phenomenon.

	 •	 In general, such quantities may be dimensional or non-dimensional 
(absolute numerals). Any physical variable can be described using 
qualitative and quantitative approaches. The qualitative description is 
known as dimension and quantitative description is known as unit.

	 •	The dimensions of basic quantities are selected as basic dimensions and 
dimensions of other variables are derived. Dimensions are classified 
as Absolute system (MLT system) and Gravitational System (FLT 
System).

5.17	 KEY TERMS
	 •	Quantum physics: The study of quantum phenomena has come to be 

known as quantum physics.
	 •	Blackbody: A blackbody is defined as it absorbs all the thermal 

radiations, whatever may be the wavelength incident on it. It neither 
reflects nor transmits any radiation, and appears black.
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	 •	Liquid helium: Liquid helium is a physical state of helium at very low 
temperatures at standard atmospheric pressures. Liquid helium may 
show superfluidity.

	 •	Fermi temperature: Fermi temperature (TF) is the temperature 
equivalent of Fermi energy (FF).

	 •	Free particle: Free particle means a particle which moves freely in 
space without the influence of any force. Hence, for a free particle the 
potential energy is zero.

	 •	Critical indices: Critical exponents describe the behavior of physical 
quantities near continuous phase transitions. It is believed, though not 
proven, that they are universal, i.e., they do not depend on the details 
of the physical system, but only on some of its general features.

	 •	Dimensional analysis: Dimensional analysis is a branch of mathematics 
which deals with dimensions of quantities. Each physical phenomenon 
can be expressed by an equation that represents the relationship between 
the variables governing the phenomenon.

5.18	 SELF-ASSESSMENT QUESTIONS AND 
EXERCISES

Short-Answer Questions

	 1.	When was quantum mechanics developed?
	 2.	Name the areas where the quantum mechanics is used.
	 3.	Define Bose-Einstein distribution law.
	 4.	Give the application of Bose-Einstein statistics.
	 5.	What is blackbody radiation?
	 6.	How will you define the pressure of an ideal Bose gas?
	 7.	Define the term Einstein condensation.
	 8.	What is the theory of liquid helium?
	 9.	State the Fermi Dirac statistics.
	 10.	What do you mean by free electron theory of solids?
	 11.	Define Landau theory of phase transition.
	 12.	How will you define the critical indices?
	 13.	Give a short note on scale transformation.
	 14.	Define the term dimensional homogeneity.
	 15.	What do you mean by the density an energy function with electron 

spin in hydrogen like atom?

Long-Answer Questions
	 1.	Discuss the origin, history and significance of quantum mechanics.
	 2.	Describe the wave nature of microparticles as stated by de-Broglie’s 

hypothesis.
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	 3.	Explain Davisson and Germer’s experiment with the help of a diagrams.
	 4.	Prove that the Thomson’s experiment is analogous to Debye-Scherrer 

X-ray diffraction method.
	 5.	What do you understand by the Bose-Einstein distribution law? Discuss 

the application of Bose-Einstein statistics with the help of giving 
examples.

	 6.	Discuss the graphical representation of Wein, Rayleigh-Jeans and 
Planck’s distribution law. Give appropriate examples.

	 7.	Explain briefly about the pressure of an ideal Bose gas with the help 
of relevant examples.

	 8.	Analysis the theory of liquid helium with the help of giving examples.
	 9.	What are the basic postulates of Fermi Dirac statistics? Explain with 

appropriate examples.
	 10.	Describe the free electron theory of solids with the help of relevant 

examples.
	 11.	What do you understand by the Landau theory of phase transition? 

Discuss the first and second-order transitions with the help of giving 
examples.

	 12.	Discuss the definition and types of critical indices. Give appropriate 
examples.

	 13.	Explain the dimensional analysis with the help of relevant examples.
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