
M.Sc. (IT) Final Year

MIT - 10

ADVANCED JAVA

MADHYA PRADESH BHOJ (OPEN) UNIVERSITY - BHOPAL

Vikas® is the registered trademark of Vikas® Publishing House Pvt. Ltd.

VIKAS® PUBLISHING HOUSE PVT. LTD.
E-28, Sector-8, Noida - 201301 (UP)
Phone: 0120-4078900 Fax: 0120-4078999
Regd. Office: A-27, 2nd Floor, Mohan Co-operative Industrial Estate, New Delhi 1100 44
 Website: www.vikaspublishing.com Email: helpline@vikaspublishing.com

All rights reserved. No part of this publication which is material protected by this copyright notice
may be reproduced or transmitted or utilized or stored in any form or by any means now known or
hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording
or by any information storage or retrieval system, without prior written permission from the Registrar,
Madhya Pradesh Bhoj (Open) University, Bhopal

Information contained in this book has been published by VIKAS® Publishing House Pvt. Ltd. and has
been obtained by its Authors from sources believed to be reliable and are correct to the best of their
knowledge. However, the Madhya Pradesh Bhoj (Open) University, Bhopal, Publisher and its Authors
shall in no event be liable for any errors, omissions or damages arising out of use of this information
and specifically disclaim any implied warranties or merchantability or fitness for any particular use.

Copyright © Reserved, Madhya Pradesh Bhoj (Open) University, Bhopal

Published by Registrar, MP Bhoj (open) University, Bhopal in 2020

COURSE WRITERS

Rohit Khurana, CEO, ITL Education Solutions Ltd., 2nd Floor, GD-ITL Tower, Netaji Subhash Place, Pitampura, New Delhi
Units (1.0-1.2.1, 1.2.4, 1.3-1.3.1, 1.3.3, 1.4, 1.4.1, 1.4.3, 1.4.4, 1.4.6, 1.4.7, 1.4.8-1.5.3, 1.5.5, 1.5.6-1.11, 2.0-2.2, 2.2.4. 2.2.6,
2.2.9, 2.3.1, 2.3.3-2.3.4, 2.3.7-2.3.8, 2.4, 2.6.1-2.6.4, 3.3-3.3.2, 3.3.3-3.3.5, 3.3.6-3.5.1, 3.5.2-3.5.3, 3.6.3-3.14, 4.4, 4.4.3-4.4.5,
4.5.3, 4.6-4.6.1, 4.6.4-4.6.5, 4.7-4.7.1, 5.2.1-5.2.2, 5.2.3, 5.4, 5.4.1-5.5, 5.5.1, 5.5.2, 5.6, 5.6.1-5.7, 5.7.1, 5.8-5.12)

Kalapatapu Kalyani, Asstt. Professor, Matrusri Institute of Post Graduate Studies, Affiliated to Osmania University & Recognized by
AICTE, Hyderabad
Units (1.2.2-1.2.3, 1.4.2, 1.4.5, 1.5.4, 2.2.1-2.2.3, 2.2.5, 2.2.7, 2.6, 2.6.5-2.6.6, 3.0-3.2, 3.6)

Rashmi Kanta Das, Microsoft Certified Systems Engineer, Senior Faculty, Leading Coaching Institutes, Bhubaneswar, Odissa.
Units (1.2.5, 1.3.2, 2.2.8, 2.2.10, 2.3, 2.3.2, 2.3.5, 2.3.6, 2.3.9, 2.5, 2.6.7-2.11, 3.6.1, 4.0-4.3, 4.4.1-4.4.2, 4.5-4.5.2, 4.5.4, 4.6.2-
4.6.3, 4.7.2-4.12, 5.0-5.2, 5.3, 5.7.2-5.12)

3. Dr. Sharad Gangale
Professor
RKDF University, Bhopal

Reviewer Committee
1. Dr. Amit Kumar Mandle

Assistant Professor
IEHE, Bhopal

2. Dr. Romsha Sharma
Professor
Shri Sathya Sai College for Women, Bhopal

Advisory Committee
1. Dr. Jayant Sonwalkar

Hon'ble Vice Chancellor
Madhya Pradesh Bhoj (Open) University, Bhopal

2. Dr. L.S. Solanki
Registrar
Madhya Pradesh Bhoj (Open) University, Bhopal

3. Dr. Kishor John
Director
Madhya Pradesh Bhoj (Open) University, Bhopal

4. Dr. Amit Kumar Mandle
Assistant Professor
IEHE, Bhopal

5. Dr. Romsha Shrama
Professor
Shri Sathya Sai College for Women, Bhopal

6. Dr. Sharad Gangale
Professor
RKDF University, Bhopal

SYLLABI-BOOK MAPPING TABLE
Advanced Java

Syllabi Mapping in Book

UNIT – I
The Genesis of Java, Introduction and Creation, Applets and Applications,
Security, Bytecodes, Java Buzzwords, Simple, Multi-Threaded,
Architecture Neutral, Java and JavaScript, New in JDK, An Overview of
Java, What is an Object, Features of Object Oriented Programming, the
First Simple Programme, Compiling, Data Types, Variables and Arrays,
Data Types in Java, Literals, Characters, Variable Declaration, Symbolic
Constants, Type Casting, Arrays, Vectors, Array Declaration Syntax,
Operating in Java, Arithmetic Operators, Basic Assignment Operators,
Relational Operators, Boolean Logical Operators, Ternary Operator,
Operator Precedence, Control Statements, Java’s Selection Statements,
Switch, Nested Switch, Iteration Constructs, Continue, Return.

UNIT - II
Class an Introduction, What is a Class, What are Methods, Methods and
Classes in Details, Methods Overloading, Constructor Overloading,
Objects as Parameters, Returning Objects, Recursion, Access Control/
Visibility, Understanding Static, Final, Nested and Inner Classes, the String
Class, Command Line Arguments, Inheritance, Inheritance Basic, Member
Access and Inheritance, Super Class Variable and Sub Class Object, Using
Super to Call Superclass Constructors, Another Use of Super, Multilevel
Hierarchy, Calling Constructor, Overriding Methods, Abstract Classes
Method, Final and Inheritance, Object Class, Interfaces and Packages,
Defining Interface, What is a Package, Class Path Variable, Access
Protection, Important Packages, Exception Handling, Fundamentals of
Exception Handling, Types of Exceptions, Uncaught Exceptions, Try and
Catch Keywords, Throw, Throws and Finally, Nested Try Statements,
Java Built-In Exceptions, User Defined Exceptions.

UNIT – III
Multithreaded Programming, the Java Thread Model, Priorities,
Synchronization, Messaging, Thread Class and Runnable Interface,
Creation of Threads, Creating Multiple Threads, Synchronization and
Deadlock, Suspending, Resuming and Stopping Threads, Applets and
Input/Output, Input/Output Basics, Streams (Byte and Character), Reading
From and Writing To Console, Reading and Writing Files, PrintWriter
Class, Fundamentals of Applets, Transient and Volatile Modifier,
Strictfp, Native Methods, Problems with Native Methods, Handling
Strings, String Length, Operations on Strings, Extract Character Methods,
String Comparison Methods, Searching and Modifying, Data Conversion
and Value of () Methods, Changing Case of Characters, String Buffer,
Exploring Java. Lang, Wrapper Classes and Simple Type Wrappers, Void,
Abstract Process Class, Runtime Class and Memory Management, Other
Programme Execution, System Class, Environment Properties, Using
Clone () and Clonable () Interfaces, Class, Class Loader, Math
Class, Thread, Thread Group and Runnable Interface, Throwable Class,
Security Manager, java.lang.ref and java.lang.reflect
Packages, Java.Util - The Utility Classes, the Enumeration Interface,
Vector, Stack, Dictionary, Hash Table, Properties, Using the Store ()
and Load (), String Tokenizer, Bitset Class, Date and Date Comparison,
Time Zones, Random Class, Observe.

Unit 1: Overview of Java, Data
Types and Variables, Arrays,

Operators and Control Statements
(Pages: 3-63)

Unit 2: Class, Inheritance, Interfaces,
Packages and Exception Handling

(Pages: 65-154)

Unit 3: Multithreaded Programming,
Applets, Handling String,

java.lang and Utility Classes
(Pages: 155-299)

UNIT – IV
Input/Output Classes, File in Java, Directory, File Name, Filter Interface,
Creating Directory, the Stream Classes, Input Stream and Output Stream,
File Input Stream and File Output Stream, Byte Array Input Stream and
Byte Array Output Stream, Filtered Byte Stream, Buffered Byte Stream,
Print Stream, Random Access File, Stream Tokenizer, Stream Benefits,
Networking, Basic of Networking, Proxy Server, Domain Naming Services,
Networking Classes and Interfaces, InetAddress Class, TCP/IP Sockets,
Datagram Packet, Networth, Applet Class, Applet Basics, Applet Life
Cycle, a Simple Banner Applet, Handling Events, getDocumentBase(),
getCodeBase(), showDocumentBase(), Audio Clip and Applet
Stub Interface, AWT: Windows, Graphics and Text, AWT Classes, Window
Fundamentals, Working With Frame Windows, Frame Window in An
Applet, Event Handling in a Frame Window, Window Program, Displaying
Information while Working with Graphics and Color, Working with Fonts,
Managing Text Output using Font Metrics, Exploring Text and Graphics,
AWT: Controls, Layouts and Menus, Control Fundamentals, Layouts,
Menus, Dialog Class, Other Controls.

UNIT - V
Images, File Formats, Image Fundamentals, ImageObserver ,
MediaTracker, JDBC, JDBC Introduction to Class and Methods,
Register, Driver, Establish a Session, Execute a Query, ResultSet,
Closing the Session, Swings, JAPPLET, Java Beans, What is a Java Bean?
Advantages of Java Beans, Application Builder Tools, the Bean Developer
Kit (BDK), JAR Files, Introspection, Developing a Simple Bean, Using
Bound Properties, Using the Bean Info Interface, Constrained Properties,
Persistence, Customisers, The Basic Servlet API, the Get Method, the
POST Method, Mime Content Types, Java and CORBA Connectivity, the
Compatibility Problem, an Overview of IDL and IIOP, Working with CORBA
System, CORBA Servers, CORBA Clients, a Simple CORBA Service, Legacy
Applications and CORBA.

Unit 4: Input/Output Classes,
Networking, AWT Graphics and

Text, Controls, Layouts and Menus
(Pages: 301-418)

Unit 5: Images, JDBC, Java Beans,
Servlet API and CORBA

Connectivity
(Pages: 419-521)

CONTENTS
INTRODUCTION 1-2

UNIT 1 OVERVIEW OF JAVA, DATA TYPES AND VARIABLES, ARRAYS,
OPERATORS AND CONTROL STATEMENTS 3-63

1.0 Introduction
1.1 Objectives
1.2 Introduction and Creation of Java

1.2.1 Java Applets
1.2.2 Bytecodes
1.2.3 Java Buzzwords
1.2.4 Java and JavaScript
1.2.5 Generics of Java

1.3 Overview of Java
1.3.1 What is Object?
1.3.2 Features of Object Oriented Programming
1.3.3 Java: Simple Program and Compiling

1.4 Data Types in Java
1.4.1 Literals
1.4.2 Characters
1.4.3 Variables Declaration
1.4.4 Symbolic Constants
1.4.5 Type Casting
1.4.6 Arrays
1.4.7 Array Declaration Syntax
1.4.8 Vectors

1.5 Operators in Java
1.5.1 Arithmetic Operators
1.5.2 Basic Assignment Operators
1.5.3 Relational Operators
1.5.4 Boolean Logical Operators
1.5.5 Ternary Operators
1.5.6 Operator Precedence

1.6 Control Statements
1.6.1 Nested Switch
1.6.2 Iteration Constructs and Return

1.7 Answers to ‘Check Your Progress’
1.8 Summary
1.9 Key Terms

1.10 Self Assessment Questions and Exercises
1.11 Further Reading

UNIT 2 CLASS, INHERITANCE, INTERFACES,
PACKAGES AND EXCEPTION HANDLING 65-154

2.0 Introduction
2.1 Objectives
2.2 Introduction to Class

2.2.1 Method and Classes
2.2.2 Method and Constructor Overloading

2.2.3 Objects as Parameters
2.2.4 Returning Objects
2.2.5 Recursion
2.2.6 Access Control/ Visibility
2.2.7 Static and Final Classes
2.2.8 Nested and Inner Classes
2.2.9 String Class

2.2.10 Command Line Arguments
2.3 Inheritance

2.3.1 Member Access
2.3.2 Super Class Variable
2.3.3 Subclass Object
2.3.4 Using Super to Call Superclass Constructors
2.3.5 Multilevel Hierarchy
2.3.6 Calling Constructor
2.3.7 Overriding Methods
2.3.8 Abstract Classes Method
2.3.9 Final Class in Inheritance

2.4 Interface
2.5 Packages
2.6 Fundamentals of Exception Handling

2.6.1 Types of Exception
2.6.2 Try and Catch Keyword
2.6.3 Finally Keywords
2.6.4 Throw and Throws
2.6.5 Nested Try Statements
2.6.6 Java Build-In Exceptions
2.6.7 User Defined Exceptions

2.7 Answers to ‘Check Your Progress’
2.8 Summary
2.9 Key Terms

2.10 Self Assessment Questions and Exercises
2.11 Further Reading

UNIT 3 MULTITHREADED PROGRAMMING, APPLETS,
HANDLING STRING, java.lang AND UTILITY CLASSES 155-299

3.0 Introduction
3.1 Objectives
3.2 Multithreaded Programming
3.3 Java Thread Model

3.3.1 Thread Priorities
3.3.2 Synchronization Messaging
3.3.3 Thread Class
3.3.4 Runnable Interface
3.3.5 Creating Multiple Threads
3.3.6 Suspending, Resuming and Stopping Threads

3.4 Basic Input/Output
3.4.1 Streams (Byte and Character)
3.4.2 Reading From and Writing To Console
3.4.3 Reading and Writing Files
3.4.4 PrintWriter Class

3.5 Fundamentals of Applets
3.5.1 Transient and Volatile Modifier
3.5.2 Modifier Strictfp
3.5.3 Native Interface

3.6 String Handling
3.6.1 Operations on String and Extract Character Methods
3.6.2 StringBuffer

3.7 Wrapper Classes
3.7.1 Memeory Management
3.7.2 java.lang Environment Properties
3.7.3 Security Manager and SecurityManager Class

3.8 Java Utility Class
3.9 Enumeration Interface

3.9.1 Using Store () and Load ()
3.10 Answers to ‘Check Your Progress’
3.11 Summary
3.12 Key Terms
3.13 Self Assessment Questions and Exercises
3.14 Further Reading

UNIT 4 INPUT/OUTPUT CLASSES, NETWORKING, AWT GRAPHICS AND
TEXT, CONTROLS, LAYOUTS AND MENUS 301-418

4.0 Introduction
4.1 Objectives
4.2 File and File Name in Java

4.2.1 Directory and Creating Directory
4.3 Stream Classes
4.4 Basic of Networking

4.4.1 Proxy Server
4.4.2 Domain Naming Services
4.4.3 Networking Classes and Interfaces
4.4.4 InetAddress Class
4.4.5 Datagram Packet Network

4.5 Applet Basic
4.5.1 Applet Life Cycle
4.5.2 Simple Banner Applet
4.5.3 Handling Events
4.5.4 AudioClip

4.6 AWT Classes
4.6.1 Window Fundamentals
4.6.2 Working With Frame Windows
4.6.3 Frame Window and Event Handling in a Frame Window
4.6.4 Display Information While Working with Graphics and Color
4.6.5 Working with Fonts

4.7 AWT Controls and Layout Managers
4.7.1 AWT Menus
4.7.2 Dialog Class

4.8 Answers to ‘Check Your Progress’
4.9 Summary

4.10 Key Terms
4.11 Self Assessment Questions and Exercises
4.12 Further Reading

UNIT 5 IMAGES, JDBC, JAVA BEANS, SERVLET API AND CORBA
CONNECTIVITY 419-521

5.0 Introduction
5.1 Objectives
5.2 Images in Java

5.2.1 File Formats
5.2.2 Image Fundamentals
5.2.3 ImageObserver and MediaTracker

5.3 JDBC: An Introduction
5.4 Swings

5.4.1 Components of Swing
5.5 Java Beans

5.5.1 What is Java Beans?
5.5.2 JAR Files and Introspection

5.6 Basic Servlet API
5.6.1 MIME Content Types

5.7 CORBA Connectivity in Java
5.7.1 Working CORBA System
5.7.2 Simple CORBA Service

5.8 Answers to ‘Check Your Progress’
5.9 Summary

5.10 Key Terms
5.11 Self Assessment Questions and Exercises
5.12 Further Reading

Introduction

NOTES

Self - Learning
Material 1

INTRODUCTION

Java is a high-level, class-based, Object-Oriented Programming (OOP) language
that is specifically designed to have as few implementation dependencies as
possible. It is a general-purpose programming language intended to let programmers
Write Once, Run Anywhere (WORA), meaning that compiled Java code can run
on all platforms that support Java without the need for recompilation. Java
applications are typically compiled to bytecode that can run on any Java Virtual
Machine (JVM) regardless of the underlying computer architecture. The syntax of
Java is similar to C and C++, but Java has fewer low-level facilities than either of
them. The Java runtime provides dynamic capabilities, such as reflection and runtime
code modification that are typically not available in traditional compiled languages.

Java was originally developed by James Gosling at Sun Microsystems (which
has since been acquired by Oracle) and released in 1995 as a core component of
Sun Microsystems’ Java platform. The original and reference implementation Java
compilers, virtual machines, and class libraries were originally released by Sun
under proprietary licenses. As of October 2021, Java 17 is the latest version. The
Java 8, Java 11 and Java 17 are the current Long-Term Support (LTS) versions.

The Java platform consists of several programs, each of which provides a
portion of its overall capabilities. For example, the Java compiler, which converts
Java source code into Java bytecode, an intermediate language for the JVM, is
provided as part of the Java Development Kit (JDK). The Java Runtime Environment
(JRE), complementing the JVM with a Just-In-Time (JIT) compiler, converts
intermediate bytecode into native machine code on the fly. The Java platform also
includes an extensive set of libraries. The essential components in the platform are
the Java language compiler, the libraries, and the runtime environment in which
Java intermediate bytecode executes according to the rules laid out in the virtual
machine specification.

Java is divided into two parts, i.e., Core Java (J2SE) and Advanced Java
(JEE). The core Java part covers the fundamentals (data types, functions, operators,
loops, thread, exception handling, etc.) of the Java programming language and is
used to develop general purpose applications. Whereas Advanced Java covers
the standard concepts, such as database connectivity, networking, Servlet, Web-
Services, JSP (Java Server Pages), JDBC (Java DataBase Connectivity), RMI
(Remote Method Invocation), Socket Programming, etc. It is a specialization in
specific domain.

This book is divided into five units which explains the genesis and basic
concepts of Java, class, methods, inheritance, multilevel hierarchy, overriding
methods, interfaces and packages, exception handling, Java built-in exceptions,
user defined exceptions, multithreaded programming, Java thread model, runnable
interface, synchronization and deadlock, Applets and Input/Output (I/O), handling
strings, exploring Java.Lang, packages, Java.Util class, I/O classes, networking,
interfaces, Applet class, Applet life cycle, AWT classes and controls, JDBC, Java

Introduction

NOTES

Self - Learning
2 Material

Beans, Bean Developer Kit (BDK), JAR files, Basic Servlet API, Java and
CORBA Connectivity. The book follows the Self-Instruction Mode or the SIM
format wherein each unit begins with an ‘Introduction’ to the topic followed by an
outline of the ‘Objectives’. The content is presented in a simple and structured
form interspersed with Answers to ‘Check Your Progress’ for better understanding.
A list of ‘Summary’ along with a ‘Key Terms’ and a set of ‘Self-Assessment
Questions and Exercises’ is provided at the end of the each unit for effective
recapitulation.

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 3

UNIT 1 OVERVIEW OF JAVA, DATA
TYPES AND VARIABLES,
ARRAYS, OPERATORS AND
CONTROL STATEMENTS

Structure

1.0 Introduction
1.1 Objectives
1.2 Introduction and Creation of Java

1.2.1 Java Applets
1.2.2 Bytecodes
1.2.3 Java Buzzwords
1.2.4 Java and JavaScript
1.2.5 Generics of Java

1.3 Overview of Java
1.3.1 What is Object?
1.3.2 Features of Object Oriented Programming
1.3.3 Java: Simple Program and Compiling

1.4 Data Types in Java
1.4.1 Literals
1.4.2 Characters
1.4.3 Variables Declaration
1.4.4 Symbolic Constants
1.4.5 Type Casting
1.4.6 Arrays
1.4.7 Array Declaration Syntax
1.4.8 Vectors

1.5 Operators in Java
1.5.1 Arithmetic Operators
1.5.2 Basic Assignment Operators
1.5.3 Relational Operators
1.5.4 Boolean Logical Operators
1.5.5 Ternary Operators
1.5.6 Operator Precedence

1.6 Control Statements
1.6.1 Nested Switch
1.6.2 Iteration Constructs and Return

1.7 Answers to ‘Check Your Progress’
1.8 Summary
1.9 Key Terms

1.10 Self Assessment Questions and Exercises
1.11 Further Reading

1.0 INTRODUCTION

Java, initially, named ‘Oak’ was developed by a team which was headed by James
Gosling, at Sun Microsystems, USA in 1991. Java is a third generation programming
language which implements the concepts of Object-Oriented Programming (OOP).

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
4 Material

It inherits most of the features of the existing languages, C and C++. Also it has
new features to make it one of the simple object oriented languages that is easy to
learn. One of the most important features of Java is that it is a language independent
of a platform, that is, a program written for one system can be executed on any
other system. This feature of Java makes it a popular language for developing
Internet-based applications.

A data type determines the type of operations that can be performed on the
data. Java provides various data types and each is represented differently with in
a computer’s memory. Operators are symbols which perform operations on various
data items known as operands. For example, in a + b, a and b are operands and
+ is an operator. Note that to perform an operation, operators and operands are
combined together forming an expression. Arrays are defined as a sequence of
the same type of data elements of a fixed size. These data elements can be primitive
or non-primitive data types. The elements of an array are stored in contiguous
memory locations and each individual element can be accessed using one or more
indices or subscripts.

By default, statements are executed in the same order in which they appear
in the program and each statement is executed only once. However, the serial
execution of statements makes a program inflexible and unsuitable for most practical
applications. To make a program more flexible, control statements are used to
alter the flow of control of the program. In Java, the control statements are broadly
classified into three categories, namely conditional statements, iteration statements
and jump statements. All these control statements are commonly used with logical
tests or test conditions to alter the flow of control conditionally or unconditionally.

In this unit, you will study about the introduction and creation of Java, Java
applets and applications, security, bytecodes, Java buzzwords, multi-threaded,
architecture neutral, Java and JavaScript, genesis of Java, overview of Java, object,
features of object oriented programming, first Java program and compiling, data
types and literals, characters, variables declaration and symbolic constants, type
casting, arrays, vectors, arrays declaration syntax , arithmetic operators, assignment
operators, relational operators, Boolean logical operators, ternary operators,
operator precedence, control statements, selection statements, switch and nested
switch, iteration constructs, continue and return.

1.1 OBJECTIVES

After going through this unit, you will be able to:

 Discuss the introduction and creation of Java

 Understand the Java applets and applications

 Describe the security and bytecodes

 Explain the Java buzzwords and multi-threaded

 Define the architecture neutral, Java and JavaScript

 Elaborate the genesis of Java

 Understand the overview of Java and object

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 5

 Elaborate the features of object oriented programming

 Analyse the first Java program and compiling

 Explain the data types and literals

 Define the characters, variable declaration and symbolic constants

 Elaborate the type casting , arrays and vectors

 Discuss the array declaration syntax and arithmetic operators

 Describe the basic assignment operators and relational operators

 Define the Boolean logical operators and ternary operators

 Explain the operator precedence and control statements

 Analyse the selection statement, switch and nested switch

 Understand the iteration constructs, continue and return

1.2 INTRODUCTION AND CREATION OF JAVA

Java, initially, named ‘Oak’ was developed by a team which was headed by James
Gosling, at Sun Microsystems, USA in 1991.

History

One of the reasons for the development of Java was the need for a software that
would not be dependent on any platform and would be portable enough to be
embedded in electronic devices like remote controls and microwave ovens. Another
reason that led to the growth of Java was the Internet and the media’s need for
portable programs that would not be dependent on any platform. Gosling and
other team members developed Web applets by using a new language that could
run on all types of computers. In 1993, the first Web browser named ‘HotJava’
was developed to locate and run applet programs. This development made Java
language popular on the Internet. By the year 1996, Java became a general-purpose,
object-oriented programming language which was used for the Internet
programming. Soon, Java became popular and many Web browsers like Internet
Explorer and Netscape Navigator incorporated the ability to run Java applets.

Features

Java has become a popular language for Internet applications because of the
following features:

 It is Simple: Java inherits the syntax of C/C++ and many of the OOPs
features of C++. Thus, one can understand the concepts of object-oriented
language and learn Java with minimum effort. Moreover, Java omits the
complex and unreliable codes of C and C++. These codes include operator
overloading, pointers and preprocessor header files. Java provides a short
and convenient means to accomplish a given task.

 It can be Easily Interpreted: Unlike other languages Java uses a system
with both a compiler and an interpreter for program execution. First, the
compiler converts the program code to bytecode which in turn is converted

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
6 Material

to machine code on any machine, using the interpreter. The machine code
thus generated can be executed irrespective of the system on which it is
being executed.

 It has Neutral Architecture (Independent of Platform): This feature
makes Java very special. Java programs can run on any platform, which
means that they can run on different CPUs and operating system
architectures. The bytecode produced by the Java compiler can run on any
machine which has Java run-time environment.

 It is an Object-Oriented Language: Java is an object-oriented language
as it bounds code and data together in the form of objects. The objects and
classes contain the program code and data. The Java object model is easily
extensible and classes can be used anywhere in the program in the form of
packages.

 It is Robust: Java is a robust language because of two main reasons, first,
it is a language typed strictly that checks the code at the time of compilation;
second, it manages memory in an effective way. In C++, the programmer
has to manually de-allocate the dynamic memory used by objects. Java
does this automatically (with the help of a feature known as garbage collector).

 It can be Distributed: Since Java is not dependent on any platform, it is
suitable for developing applications for networks. Java can handle TCP/IP
protocols and hence applications developed in it can access remote objects
on the Internet like any object on a local system.

 It is Multithreaded: Java supports multithreaded programming which
allows us to write a program that can perform more than one task
simultaneously. A user need not to wait for one program to finish a task,
before starting the next task for example, a user can listen to an audio clip
while downloading the applet. This feature helps to improve the performance
of graphical applications.

 Its Quality of Performance is High: As stated earlier, a Java program is
converted to bytecode which is then converted to machine code using an
interpreter. Since bytecode is highly optimized, it enables the JVM to execute
programs at a faster rate.

 It is dynamic: Java programs can link to new class libraries, objects,
methods, etc., at the run-time. Java also provides the facility to include
functions of other languages like C and C++. These are referred to as
native methods. These methods are also linked dynamically at run-time.

Java versus C++

Both C++ and Java are object-oriented languages but they are very different from
each other. Some of the features of C++ were deliberately removed and other
new features were added to make Java more flexible and reliable. Some of the
differences between Java and C++ are as follows:

 Java does not support multiple inheritances of classes directly.

 The concept of multithreading is supported by Java.

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 7

 The ‘Destructor’ function in Java is replaced by the ‘finalize’ method.

 The keyword ‘typedef’ is not supported by Java.

 Java does not support pointers, instead it uses implicit object references.

 The virtual keyword is not supported in Java.

 Java does not support the concept of global variables.

 Java supports exception handling in a different way than C++. It provides a
final clause for a clean-up.

 Non-primitive data types are allocated memory by using the new operator.

 Java adds many features that are necessary for object-oriented programming.

Java Virtual Machine

As discussed earlier, Java uses both compiler and interpreter. The source code
written in Java is compiled to generate bytecode and then this bytecode is
interpreted to machine instructions for a specific machine. The bytecode generated
by the compiler is not machine specific. It is generated for a virtual machine known
as JVM (Java Virtual Machine). It exists only inside the computer memory. This
virtual machine is designed in such a way that it can be implemented on any existing
processor and itself acts as a virtual processor chip. It hides the underlying operating
system details from Java applications.

Source Bytecode
Compile

r
Interpreter

Machine
Code

JVM

Fig. 1.1 Execution of a Java Program

Java Development Kit

The JDK (Java Development Kit) consists of various tools that are used to develop
and execute Java programs. The tools included in JDK are listed in Table 1.1.

Table 1.1 Tools in Java Development Kit

Tool Function
javac Java compiler that converts source code to Java bytecode
java Java interpreter that interprets class files generated by Java

compiler and converts it to machine code
javadoc Document generator which automatically generates

documentation form source code
javah Generates C headers and a stub generator used for writing

native methods
javap This class file disassembler enables to convert bytecode files to

a program description
jdb Java debugger which helps in tracking errors in the program
appletviewer Used for running and debugging Java applets without a Web

browser

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
8 Material

1.2.1 Java Applets

In recent years, Java has become a popular language for the programs that are
required to run on different systems. Java’s new innovation named ‘applet’ has
completely changed Internet programming. Applets are tiny programs that are
designed in such a way that they can be transmitted over the Internet. They can be
downloaded on demand and executed automatically by the Java compatible web
browser. They are used to handle user input, data supplied by the server and
simple functions that execute locally on the client machine.

Applet is a dynamic, self-executing program and is intelligent enough to
change it with the user inputs. The dynamic programs, when downloaded and
executed, can cause serious harm to the computer as it may contain viruses like
Trojan horse and other malicious programs. These programs may search for the
contents on the local file system of the client computer and may gather private
information like credit card numbers, passwords, etc. Earlier, viruses were scanned
before executing the downloaded program but Java has resolved the issue by
confining the Java programs to Java execution environment only.

Java Compiler

In most of the programming languages, the program is converted to the machine
code either by using the compiler or interpreter (Figure 3.1). The machine code
so generated is machine-dependent, that is, it may not run on any other machine
than the one on which it is generated. Unlike other programming languages, the
Java compiler does not convert source code to machine code, it converts source
code to a special intermediate code known as bytecode. The bytecode so
generated are in the form of class files that can be interpreted. The command used
for compilation in Java is javac which converts the corresponding Java file into
class file. The bytecode is machine-independent, that is, it can be run on any
machine with the help of a Java virtual machine (JVM). Figure 1.2 shows the
compilation of a Java program.

Source Code Bytecode

Compiler

.java file .class file

Fig. 1.2 Compilation of a Java Program

1.2.2 Bytecodes

You have just learned that the output of a Java compiler is not an executable code.
Rather, it is a bytecode. In Java bytecode is a highly optimized set of instructions
planned to be executed by the Java run-time system, which is referred to as the
Java Virtual Machine (JVM). A Java program executed by the JVM helps solve
problems associated with Web-based programs. Since the JVM is in control, it
can hold the program and check it from generating side effects outside the system.

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 9

1.2.3 Java Buzzwords

As mentioned earlier, portability and security is the innovation of Java. Some
additional factors too played significant roles in moulding the final form of Java.
The list of buzzwords summed up by the Java team is as follows:

 Simplicity: Programmers find it easy to write applications as it avoids the
use of the concepts of C/C++, such as pointers, operator overloading,
multiple inheritance, etc. String manipulations can be implemented very easily
without any explicit concatenation procedure.

 Portability: Java is famous for its unique feature—platform-independence
(architecture-neutral). This means that a Java program compiled on one
machine could be ported to any other machine/operating system and
executed without any modifications. Thus, the class file, which is the result
of compilation say on a DOS platform, can run on a UNIX platform unlike
the .exe file of C/C++. This is an important feature for which Java is preferred
for Internet applications.

 Robust and Object-Oriented: Java is a highly object-oriented language
where reusability is of utmost importance. Java programs are very reliable
on different platforms with the special features of memory allocation and
de-allocation, and exception handling. Memory management, especially de-
allocation, is taken care of by the Java environment, which is not the case in
C/C++, where programmers have to deal with it explicitly with extra code.
Exception handling is a mechanism that helps the execution of a code, even
if an error occurs at run-time, by handling the exception.

Robustness is also achieved because Java is a strongly typed language.
It signifies that you must declare the variable type before you use it. This is
different from languages, such as PERL, JavaScript, etc., which are loosely
typed.

 Multithreaded: Java with its multithreaded approach can run many
programs concurrently, thereby saving processor time. Synchronization of
code is an added feature of Java to run non-erroneous interactive
applications.

 Distributed and Dynamic: Java is also popular for its distributed
environment, as it supports the Transmission Control Protocol/Internet
Protocol (TCP/IP). With Java, you can access a Uniform Resource Locator
(URL) or a file on a remote server in some other country with the same
ease, as you can access a file on your local system.

Java can also validate the code at run-time, which is more important for
applets. Therefore, it is feasible to dynamically connect the code in a secure and
practical manner.

1.2.4 Java and JavaScript

JavaScript was the first client-side Web scripting language. It first appeared in
1995 in Netscape 2.0. You can use JavaScript directly within a Web page without
using any special tools to create or compile scripts and it works on most of today’s

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
10 Material

browsers. Despite the name, JavaScript has little to do with the Java language.
Some of the commands are similar but it is a different language with a different
purpose.

JavaScript can be defined of as an extension to HTML, which allows authors
to incorporate some functionality in their Web pages. So now, whenever the user
presses the submit button, you do not necessarily have to invoke a Common
Gateway Interface (CGI) script to do the processing. Simply, you can do the
processing locally using JavaScript and give back the results. JavaScript can also
be used in a number of ways to spice up your Web page. You can, for example,
use JavaScript to change a button’s color when the mouse cursor moves over it.

This draws visitors’ eyes to the button and indicates that they can follow this
link. You can also use JavaScript to validate forms before visitors submit them.
You can, for example, use JavaScript to ensure that a visitor completes an e-mail
field before actually submitting the form. The JavaScript language offers features
common to other programming languages. These features include variables, loops,
conditional statements, various numeric and string operators, such as +, -, /, ++,
––, user defined functions (similar to subroutines) and comments.

Client Side Features of JavaScript

The following are the client side features of JavaScript:

 Simple to use.

 Dynamic (responds to events).

 Object based.

New Features of JavaScript in Netscape Navigator 3.0

Some of the latest features of JavaScript are as follows:

 It can change GIF and JPEG images automatically, at specified time intervals,
by clicking a button or icon or moving the mouse over an object.

 It can detect the presence of plug-ins on a Web page and tailor the user
interface accordingly.

 It can communicate with plug-ins on the same page.

 Java applets can communicate with JavaScripts.

 The server-side of JavaScript requires LiveWire for Server Side Includes
(SSI) or Internet Information Server/Personal Web Server (IIS/PWS) for
Application Server Pages (ASPs).

Usage of JavaScript

The various uses of JavaScript are as follows:

 It moves action from the server to the client.

 It can locally validate form fields before submitting the form to the server.

 HTML documents can respond to local events.

 Web page developer can communicate information to/from applets and
plug-ins.

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 11

 It supports unique personalized user profiles.

 It enables users to access databases.

Java is an Object Oriented Programming (OOP) language created by James Gosling
of Sun Microsystems. The people at Netscape created JavaScript. It is also an
OOP language. Many of the programming structures of Jawa and JawaScript are
similar. However, JavaScript contains a much smaller and simpler set of commands
than Java. It is easier for the average computer educated person to understand
JavaScript.

What is OOP? Object Oriented Programming is a relatively new concept,
whereas the sum of the parts of a program makes up the whole. Think of it this
way, you are building a model car. You build the engine first. It can standalone. It
is an engine and everyone can see it is an engine. Next you build the body. It can
also standalone. Finally, you build the interior including the seats, steering wheel
and other components. Each, by itself is an object. However, it is not a fully
functioning car until all the pieces are put together. The sum of the objects (parts)
makes up the whole.

Continuing with the model car example, when you built the engine, you did
not use any of the parts that would later build the seats (a 350 four barrel engine
with a seat belt sticking out of the piston). The point is that all the parts that made
up the engine were of a certain class of parts. They all went together. Some is
applicable with the body and then the interior. The point is that in these languages,
you build objects out of classes of commands to create the whole.

The main difference is that Java can stand on its own while JavaScript must
be placed inside an HTML document to function. Java is a much larger and more
complicated language that creates ‘Standalone’ applications. A Java ‘applet’ is a
fully contained program. JavaScript is text that is fed into a browser that can read
it and then is enacted by the browser.

Another major difference is how the language is presented to the end user.
Java must be compiled into what is known as a ‘Machine Language’ before it can
be run on the Web. Basically what happens is after the programmer writes the
Java program and checks it for errors, he or she hands the text over to another
computer program that changes the text code into a smaller language. That smaller
language is formatted so that it is seen by the computer as a set program with
definite beginning and ending points. Nothing can be added to it and nothing can
be subtracted without destroying the program.

JavaScript is text based. You write it to an HTML document and it is run
through a browser. You can alter it after it runs and run it again and again. When
Java is compiled, you can go back to the original text and alter it, but then you
need to compile again.

Java applets run independent of the calling HTML document. Sure, they
appear on the page but the HTML document did little more than call for the
application and place it. If the programmer allows, parameters can be set many
times by the HTML document. This includes the background color of the applet,

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
12 Material

the type of text it displays, etc. The applet is executed through a download on the
Web page. The HTML document calls for the application, it downloads to the
user’s cache and waits to run. JavaScript is wholly dependent on the browser for
its execution:

What are the benefits of using one over the other? There are several
advantages. If you can understand Java, it is amazingly versatile. Due to the size
and structure of the language, it can be used to create anything from small Web
page events to entire databases to full browsers.

JavaScript’s main benefit is that it can be understood by a common computer
literate person. It is much easier and more robust than Java. It allows for fast
creation of Web page events. Many JavaScript commands are known as event
handlers, i.e., they can be embedded right into existing HTML commands.
JavaScript is a little more flexible than Java. It allows more freedom in the creation
of objects. Java is very rigid and requires all items to be denoted and spelled out.
JavaScript allows you to call on an item that already exists, like the status bar or
the browser itself and play with just that part. JavaScript is geared to Web pages.
Java is geared towards where it is needed most at the time.

Both will create Web page events and both can offer interaction between
the user and the Web page. However, they are not created equally by any means.
Thus, one can use whichever fits in one’s requirement.

1.2.5 Generics of Java

Generics is a new addition to Java. Before the evolution of generics, a programmer
had to design different programs to deal with different data types having the same
logic. If one had to design a swapping program for an integer object, then it could
not work for other data types. Generics has solved these overheads.

Generics is a powerful feature of Java. It was introduced by JDK 5. Using
generics, a programmer can create classes, interfaces and methods that will work
for various types of data in a type safe manner. One can define a single algorithm
which is independent of data; then apply the same algorithm for various data types,
without any changes.

The Need for Generics

Generally, type specific classes, interfaces and methods are created. However,
using generics, it is possible to create classes, interfaces and methods which are
type independent.

Previously, this was being done by using an object class, because it is the
super class of other classes and an object reference can refer to any type of
object. In order to get the actual data, one had to explicitly typecast it to the
required type. Generics overcomes this overhead. In generics all typecasts are
done implicitly. This makes the use of generics more secure. This is illustrated by
the following example.

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 13

Example 1.1
// Definition of the generic class Gener
class Gener<S>

{
S obj;
Gener(S o)

{
obj =o;

}
void showClass()
{

System.out.println(“Type of S is “+
obj.getClass().getName());

}
void showData()
{

System.out.println(“Data is “+obj);
}

}
public class GenericDemo

{
public static void main(String[] args)

{
// Create a Gener reference for Integer
Gener<Integer> ob1 = new Gener<Integer>(100);
// prints the type of data held by it
ob1.showClass();
// prints the data held by it
ob1.showData();
// Create a Gener reference for Sting
Gener<String> ob2 = new Gener<String>(“SAMITA , LORY”);
// prints the type of data held by it
ob2.showClass();
// prints the data held by it
ob2.showData() ;
}

}

The output of the program:
Type of S is Java.lang.Integer
Data is 100
Type of S is Java.lang.String
Data is SAMITA, LORY

In the preceding example, S is the name of a type parameter. S holds the type
parameter of which the Gener class object is created. S is written inside <>.
Whenever one specifies the type of class object which is required to be created, it
is specified inside <>. Everywhere in the class definition, S behaves like the type
specified for that object.

Gener<Integer> ob1 = new Gener<Integer>(100);

In the above line, the object of Gener class, of Integer type, has been
created. The type has been specified inside <> while calling the constructor. Here
S holds an integer; so, for ob1, S behaves as an integer. Therefore, the argument
has been passed according to the type.

Gener<String> ob2 = new Gener<String>(“SAMITA , LORY”);

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
14 Material

Here, the object of Gener class of string type was created. S holds string;
so, for ob2, S behaves as string. So the argument has been passed according to
the type.

Generics works only on objects. This means that the type argument
passed to type parameter must be a class type but it cannot be any primitive type.
For example,

Gener<int> ob1 = new Gener<int>(100); // Error

The above example will result in an error because primitive type (int , char,
etc.) cannot be used.

It must be understood that a reference of one specific type of generic
type is different from another generic type. For example,

ob1 = ob2 ; // wrong

This is wrong because although both ob1 and ob2 are of type Gener<S>, yet
they are references of different types because of their type parameters.

A Generic Class with Two Types of Parameters

A programmer can use more than one type of parameter in a generic type. If
two or more type parameters are to be specified, these just have to be separated
with commas. This can be seen in the example that follows:

Example 1.2
//Definition of the generic class Gener
class Gener<A, B>{

A ob1;
B ob2;
Gener(A o1 ,B o2)
{

ob1 =o1;
ob2 =o2;

}
void showClass()
{

System.out.println(“Type of A is “+
ob1.getClass().getName());

System.out.println(“Type of B is “+
ob2.getClass().getName());

}
void showData()
{

System.out.println(“Data in ob1 “+ ob1);
System.out.println(“Data in ob2 “+ ob2);

 }
}
public class GenericDemo {

public static void main(String[] args) {
// Create a Gener reference for Integer and String

Gener<Integer,String> obj1 = new
Gener<Integer,String>(100,”SAMITA , LORY”);
// prints the type of data held by it
obj1.showClass();

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 15

// prints the data held by it
obj1.showData();

}
}

The output of the program:
Type of A is Java.lang.Integer
Type of B is Java.lang.String
Data in ob1 100
Data in ob2 SAMITA , LORY

In the two type parameters T and V are separated by a comma. Therefore, if one
wants to create a reference of Gener, he has to pass two type arguments.

Bounded Type Generic Class

This is a feature of generics in which we can restrict the type argument passed
to the type parameter of generic class to a particular type. This can be seen in
the example that follows.

Example 1.3
// Definition of the generic class Gener
class Gener<A extends Integer >{

A ob1;
Gener(A o1)
{

ob1 =o1;
}
void showClass()
{

System.out.println(“Type of A is “+
ob1.getClass().getName());

}
 void showData()
 {

System.out.println(“Data in ob1 “+ ob1);
 }
}
public class GenericDemo {

public static void main(String[] args) {
// Create a Gener reference for Integer

Gener<Integer> obj1 = new Gener<Integer>(100);
// prints the type of data held by it
obj1.showClass();
// prints the data held by it
obj1.showData();

}
}

The output of the program:
Type of A is Java.lang.Integer
Data in ob1 100

Though the preceding will work well but the following program will not work. This
can be illustrated with the following example.

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
16 Material

Example 1.4
// Definition of the generic class Gener
class Gener<A extends Integer >{

A ob1;
Gener(A o1)
{

ob1 =o1;
}
void showClass()
{

System.out.println(“Type of A is “+
ob1.getClass().getName());

}
void showData()
{

System.out.println(“Data in ob1 “+ ob1);
}

}
public class GenericDemo {

public static void main(String[] args) {
// Create a Gener reference for String
Gener<String> obj2 = new Gener<String>(“SAMITA , LORY”);
// prints the type of data held by it
obj2.showClass();
// prints the data held by it
obj2.showData();
}

}

The output of the program:
Exception in thread “main” Java.lang.Error: Unresolved compilation
problems:
Bound mismatch: The type String is not a valid substitute for the
bounded parameter <A extends Integer> of the type Gener<A>
Bound mismatch: The type String is not a valid substitute for the
bounded parameter <A extends Integer> of the type Gener<A>

at GenericDemo.main(GenericDemo.Java:27)

The preceding program will result in an error because the programmer has bounded
the type of A to an integer. If one tries to give it any other type except the child
classes of integer, then it will result in an error.

One can declare interfaces as bound for A. One can also declare one class
and multiple interfaces as bound for A. For example,

 class Gener<A extends Myclass and Myinterface>

Here, Myclass is a class and Myinterface is an interface. An operator
has been used to connect them.

Wildcard Arguments

These are a special feature of generics. Suppose one wants to define a method
inside the generic class which compares the value of different type of generic class
objects and returns the result, irrespective of their types. Previously, it was not
possible because a method defined inside the generic class could only act upon
the data types which were the same as that of the object calling it. However, this

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 17

can be done using wildcard arguments. Students can understand the use of wildcard
arguments from the next example.

Example 1.5
// Definition of the generic class Gener
class Gener<T>{

T ob1;
Gener(T o1)
{

ob1 =o1;
}
// wildcard argument is used
void Equals(Gener<?> o2)
 {

if(ob1 == o2.ob1)
System.out.println(“TRUE”);

else
System.out.println(“False”);

}
}

public class GenericDemo {
public static void main(String[] args) {

// Create a Gener reference for Integer
Gener<Integer> obj2 = new Gener<Integer>(100);
// Create a Gener reference for Double
Gener<Double> obj1 = new Gener<Double>(100.0);
// Create a Gener reference for String
Gener<String> obj3 = new Gener<String>(“100”);
obj2.Equals(obj1);
obj2.Equals(obj3);
obj1.Equals(obj3);

}
}

The output of the pragram:
False
False
False

In the preceding program, a wildcard argument has been used. <?>
represents the wildcard argument, i.e., it will work irrespective of types.
It can be seen that the equals method, checks the values of different objects,
irrespective of their types and prints the result.

Wildcards can also be bounded. In the above example, suppose one
wants the equals method to only execute the numbers, otherwise results in an
error. For this, a little change would be required in the method definition.

void Equals(Gener<? extends Number> o2)
{

if(ob1 == o2.ob1)
System.out.println(“TRUE”);

else
System.out.println(“False”);

}
Now, if the following statements are executed:
 obj2.Equals(obj3);

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
18 Material

 obj1.Equals(obj3);

It will result in an error because one can create an object reference of Gener
class for string type, but cannot use the equals method for the string type.

Creating a Generic Method and Generic Constructor

How will you define a generic method and generic class? A
generic method can be created inside a non-generic class which
acts on multiple types of data independently. One can also define a generic
constructor inside a non-generic class which can act on multiple
types independently. An example to illustrate this is given below.

Example 1.6
public class GenericDemo {
 double db;
 // Generic constructor
 <T extends Number> GenericDemo(T o1)

{
db= o1.doubleValue();

}
// Generic Method

 static < V > void Display(V o2)
{
System.out.println(o2);
}
void show()

{
System.out.println(db);

}
public static void main(String[] args) {
GenericDemo g1 = new GenericDemo(100);
g1.show();
GenericDemo g2 = new GenericDemo(1025.54);
g2.show();
GenericDemo g3 = new GenericDemo(103.9F);
g3.show();
Display(100);
Display(125.56);
Display(“SAMITA , LORY”);
}

}

The oputput of the program :
100.0
1025.54
103.9000015258789
100
125.56
SAMITA , LORY

From the preceding example, one can observe the output. The generic
constructor takes the numbers of different types of argument as type parameters
and stores its double value in the variable db of each reference, which is similar to
the Display method, taking different type of arguments as type parameters and
displaying the values.

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 19

Erasure or Raw Types

A raw type is a parameterized type stripped of its parameters. The official term
given to the stripping of parameters is type erasure. Raw types are necessary to
support the legacy code that uses non-generic versions of classes. It is because of
type erasure, that it is possible to assign a generic class reference to a reference
of its non-generic (legacy) version. Therefore, the following code compiles without
an error:

Example 1.7
Gener ob1 ;
Gener<Integer> ob2 ;
ob1=ob2; // valid
ob2=ob1 ; // will cause a unchecked warning

It must be remembered that during compilation, all types of parameters are erased
and only the raw types actually exist.

Example 1.8
// Definition of the generic class Gener
class Gener<T>{

T obj;
Gener(T o)
{

obj =o;
}
void showClass()
{

System.out.println(“Type of T is “+
obj.getClass().getName());

}
 void showData()
 {

System.out.println(“Data is “+obj);
 }
}
public class GenericDemo {

public static void main(String[] args) {
// Create a Gener reference for Integer
Gener ob1 = new Gener(100);
System.out.println(“Type of ob1 is “+

ob1.getClass().getName());
// prints the type of data hold by it
ob1.showClass();
// prints the data hold by it
ob1.showData();
 // Create a Gener reference for Sting
Gener<String> ob2 = new Gener<String>(“SAMITA , LORY”);
System.out.println(“Type of ob2 is “+

ob2.getClass().getName());
// prints the type of data held by it
ob2.showClass();
// prints the data held by it
ob2.showData();

}
}

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
20 Material

The output of the program:
Type of ob1 is Gener
Type of T is Java.lang.Integer
Data is 100
Type of ob2 is Gener
Type of T is Java.lang.String
Data is SAMITA , LORY

From the preceding example, it can be seen that both ob1 and ob2 are not of
integer class or string class. They are of gener class. However, according to the
parameters, the variables inside ob1 and ob2 are typecasted accordingly. When
a programmer writes the code:

Gener<Integer> ob1 = new Gener<Integer>(100);
int i = ob1.obj;

It is compiled as if it is written like:
Gener ob1 = new Gener(100);
int i = (Integer)ob1.obj;

Restrictions While using Generics
These various are as follows:

Type Parameters cannot be Instantiated

class Gener<T>{
T obj;
Gener(T o)
{

obj =newT(); // error
}

}

The preceding code will result in an error because T does not exist at runtime. So
the compiler will not know the type of object which is to be created.

Restrictions on static members
Below are some facts which should be taken care of while using the keyword
static.

class Gener<T>{
// error , cannot make a static reference to a non-static

type
static T obj ;
// error, non-static method can use T
Static T show()
{
// error, non-static method can acces T type object

System.out.println(obj);
}
}

1.3 OVERVIEW OF JAVA

Java is a high-level, class-based, object-oriented programming language that is
designed to have as few implementation dependencies as possible. It is a general-
purpose programming language intended to let application developers Write Once,

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 21

Run Anywhere (WORA), meaning that compiled Java code can run on all platforms
that support Java without the need for recompilation. Java applications are typically
compiled to bytecode that can run on any Java Virtual Machine (JVM) regardless
of the underlying computer architecture. The syntax of Java is similar
to C and C++, but has fewer low-level facilities than either of them. The Java
runtime provides dynamic capabilities, (such as reflection and runtime code
modification) that are typically not available in traditional compiled languages. As
of 2019, Java was one of the most popular programming languages in use according
to GitHub, particularly for client-server web applications, with a reported 9 million
developers.

1.3.1 What is Object?

Objects are small, self-contained and modular units with a well-defined boundary.
An object consists of a state and behaviour. The state of an object is one of the
possible conditions that an object can exist in and is represented by its characteristics
or attributes or data. The behaviour of an object determines how an object acts or
behaves and is represented by the operations that it can perform. In OOP, the
attributes of an object are represented by the variables and the operations are
represented by the functions.

For example, an object Biscuit may consist of data product code P001,
product name Britania Biscuits, price 20 and quantity in hand 50.
These data values specify the attributes or features of the object. Similarly, consider
another object Maggi with product code P002, product name Maggi
Noodles, price 10, and quantity in hand 20. In addition, the data in the object
can be used by the functions such as check_qty() and
display_product(). These functions specify the actions that can be
performed on data. Figure 1.3 shows how class and its objects are represented.

Data:
 p_code
 p_name
 p_price
 qty_in_hand

Functions:

display_product()
 check_qty()

Data:
 P001
 Britania biscuits
 20
 50

Data:
 P002
 Maggi Noodles
 10
 20

Class: Product

Objcet: MaggiObjcet: Biscuits

Fig. 1.3 Class and its Objects

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
22 Material

Objects are what actually run in the computer and are the basic run-time
entities in object-oriented systems. They are the building blocks of object-oriented
programming. Although, two or more objects can have same attributes, still they
are separate and independent objects with their own identity. In other words, all
the objects in a system take a separate space in the memory, independent of each
other. The main objective of breaking down complex software projects into objects
is that changes made to one part of a software should not adversely affect the
other parts.

1.3.2 Features of Object Oriented Programming

You need to define an object, its variables and members to represent any real-
world object in a Java program for the implementation of this object in a program.
This object can be a person, a place or a record of a database. A class is a
collection of data members and methods that are used to perform desired
calculations and operations. Objects are the variables of type class. In object-
Oriented Programming (OOP), first the classes are defined then the objects are
created, and finally the objects communicate with one another to accomplish the
desired programming tasks. The object-oriented approach involves grouping of
data and functions into modular entities known as objects. You can group more
than one object having similar attributes in a program using the class concept.
Classes are user-defined data types that contain objects of similar types. You can
create any number of objects of a class. Some important features of OOP as
applied on objects are explained in the following sections.

Encapsulation

The technique of wrapping of data and methods into a single entity is termed as
encapsulation. The data is accessed only by the methods which are encapsulated
in the class. Encapsulation provides an interface between the data objects and the
Java program.

Inheritance

Inheritance provides a mechanism to acquire properties of one object of a class
from the object of another class. OOP uses the feature of inheritance for sharing
the attributes and functions among various classes.

Inheritance provides re-usability of codes in the programs, as it allows you
to add additional features to an existing class without changing the class. The
derived class inherits features, such as variables and methods from a super class.
This is the class from which a derived class inherits the variables and methods. A
class that inherits the instance variables and methods from another class is termed
as the sub-class. Instance variables are created when the objects are instantiated
and, therefore, are associated with the objects. Instance variables take different
values for different objects. In Java programming, the feature of inheritance is
divided into the following categories:

 Implementation Inheritance

 Interface Inheritance

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 23

For example, vehicles can be classified as motorized vehicles and non-motorized
vehicles. Motorized vehicles include scooter and car and non-motorized vehicles
include rickshaw and cycle. Scooter and car inherit the properties of motorized
vehicles and rickshaw and cycle inherit the properties of non-motorized vehicles.
This example corresponds the feature of inheritance. Figure 1.4 shows the concept
of inheritance.

Fig. 1.4 Implementing Inheritance

Polymorphism

Polymorphism allows operators and functions to be used in different forms
depending upon the parameters and operands. Parameters are the variables that
are used to pass values in the function calls and the operands are the variables that
are used with operators, such as addition operator, subtraction operator, etc.
Polymorphism enables various entities, such as objects, variables and methods to
have more than one form. For example, while multiplying an integer value with a
floating point, the polymorphism technique allows the Java compiler to convert the
variable of integer type into floating-point value, otherwise an error will occur due
to variable mismatch.

1.3.3 Java: Simple Program and Compiling

You will learn about Java with a simple program that prints a string on the screen.

Example 1.9: A simple Java program

class Sample
{

public static void main (String args[])
{

System.out.println(“Welcome to Java Programming”);
System.out.println(“Its easy and simple.”);

}
}

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
24 Material

Though this program is the simplest one, it includes the basic features that
every Java program has. Now you will look at the features of Java.

Class Definition

The first statement class Sample declares a class where class is a
keyword and Sample is the identifier that indicates the name of the class. The
opening and closing curly braces ‘{ }’ enclose the definition of a class.

The Main Statement

The statement public static void main (String args[])
indicates the main method. This method is the point where the execution of the
Java program begins. Since, it is the startup point for any Java program, it is the
most essential part of any Java program.

This statement has certain keywords, namely, public, static and
void. The descriptions of these keywords are as follows:

 public: It is the access specifier which specifies that the main method
is accessible to all other classes.

 static: The main method is declared static which specifies that this
method belongs to the entire class. This interpreter use this method before
the creation of objects.

 void: The void keyword specifies that the main method does not
return a value. The pair of parentheses contain the declaration of the
parameters of the methods. In the given statement, the String args[]
declares a parameter args, that contains an array of objects of the class
type String.

The Output Statement

The statements System.out.println(“Welcome to Java
Programming.”); and System.out.println(“Its easy and
simple.”); are used to display information on the standard output device,
that is the println() is a method of the out object, which is the static member
of class System. These statements will display the following strings on the monitor.

Welcome to Java Programming.
Its easy and simple.

The statements will be printed in separate lines as the method println()
appends a newline character at the end of the string. However, if we use the
print() method instead of the println(),the newline character is not
appended at the end of the string. A point to be noted is that like C++, every
statement in Java must end with a semicolon.

Running Java Applications

A program can be created using any text editor. Nowadays, there are several text
editors available for writing programs like Notepad, Jcreator, etc. After creating
the file, save the file with the name <filename>.Java. The name of the file
must be the same as that of the class name containing the main() method.

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 25

For example, once the file is created, it can be compiled to generate the
bytecode using Java compiler javac as given here.

javac Sample.java

If the source code is error-free then the compiler creates a file containing,
bytecode and the file will be named as <filename>.class. In the given
example, the name of file will be Sample.class.

Even after compilation when the source code is converted into its equivalent
bytecode, it cannot be executed. To execute this bytecode, it needs to be converted
to machine code using the interpreter. The command for converting bytecode to
machine code and run it is as follows:

java Sample

After giving this command, the interpreter searches for the main() method
in the source code and starts executing the instructions written in this method and
displays the corresponding output.

1.4 DATA TYPES IN JAVA

A data type determines the type of operations that can be performed on the data.
Java provides various data types and each is represented differently within a
computer’s memory. The type of data selected by a programmer depends on a
particular application. Various data types provided by Java are categorized into
primitive and non-primitive data types. (Refer Figure 1.5).

 Data Types

Primitive
Data types

Non-primitive
Data types

Classes Arrays Interface Integer Floating-point Character Boolean

Fig. 1.5 Data Types

1. Primitive Data Types

Primitive data types also known as ‘Built-in’ data types. These are fundamental
data types provided by a programming language. In Java, primitive data types
include integer, floating-point, character and Boolean.

(i) Integer Type

The integer data type is used to store integers like: 4, 42, 5233, -32, -745. Java
supports four types of integers, namely, byte, short, int and long. The
default value of these integer types is 0. There is no concept of unsigned integer in
Java. Various integer data types with their sizes and ranges are listed in Table 1.2.

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
26 Material

Table 1.2 Size and Range of Integer Types

Type Size(bytes) Range
byte One -128 to 127
short Two -32,768 to 32,767
int Four -2,147,483,648 to 2,147,483,647
long Eight -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

Note: It is recommended to use smaller data type wherever possible. This is because larger
the data type we choose, more time the program will take for execution.

(ii) Floating-Point Type

A floating-point data type is used to store real numbers, such as: 3.28, 64.755765,
-8.01, -24.53. Java supports two floating-point data types namely, float and double.

 float: The float type represents a single precision number. Single precision
occupies lesser space than double precision but becomes inaccurate when
the values are large. For example, it can be used to represent the value of
marks of the students. The default value of float data type is 0.0f.

 double: The double type specifies a double-precision number. It is the
best choice when numbers of large values are to be stored. For example, it
can be used in case of mathematical functions like sin(), cos(), sqrt(). The
default value of double data type is 0.0d.

The various floating-point data types with their size and range are listed in Table
1.3.

Table 1.3 Size and Range of Floating-Point Types

Type Size(bytes) Range
float Four 3.4e-038 to 3.4e+038
double Eight 1.7e-308 to 1.7e+308

(iii) Character Type

The ‘Character’ data type is used to store single characters enclosed in single
quotes. It is represented by using the keyword, char. It occupies 16 bits of
memory. The range of the character data type is 0 to 65,536. The default value of
char data type is null character.

(iv) Boolean Type

The Boolean data type can hold only Boolean values, that is, either true or false.
The keyword Boolean is used to denote the Boolean data type. The default
value of Boolean data type is false.

2. Non-Primitive Data types

Non-primitive data types (user-defined data types) also known as reference types
are derived from primitive data types. In Java, these include classes, interface and
arrays.

1.4.1 Literals

Integer constants are whole numbers that must have at least one digit and should not
have any decimal point. The three types of integer literals that Java provides are:

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 27

(i) Decimal contains a set of digits, from 0 to 9. You cannot insert commas,
spaces, and non-digit characters between digits. For example, 1234, 78,
+98 and –67 are decimal integer literals.

(ii) Octal contains a combination of digits, from 0 to 7, that starts with 0. For
example, 045, 0 and 0524.

(iii) Hexadecimal contains a sequence of digits starting with 0x or 0X. The
hexadecimal integer includes alphabets from A to F, where letters A to F
refer to numbers 10 to 15. For example, 0X3, 0X3F and 0xdef.

1.4.2 Characters

Character data type is used to store a single Unicode character. Unicode character
sets are 16-bits values. Therefore, the space required to store a single character is
16 bits. A character variable can be declared as:

char ch;
char ch1, ch2;

1.4.3 Variables Declaration

A variable is an identifier that represents a memory location that is used to store
data values. Data stored at a particular location can be accessed using the variable
name. The value of the variable can be changed anytime during execution of the
program. The variable name that is chosen must be meaningful so as to understand
what it represents in the program.

Declaring Variables

Variables must be declared in a program before they are used. The declaration of
a variable informs the compiler about the specific data type with which the variable
is associated and the compiler allocates sufficient memory to it.

The syntax for declaring a variable is:
data_type variable_name;

For example, a variable ‘a’ of type int can be declared using the following
statement:

int a;

At the time of declaration of variables, more than one variable of the same data
type can be declared in a single statement. This is displayed in the following statement:

int x, y, z;

Initializing Variables

The declaration of variables allocates memory for variables but it does not store
any data at the time of declaration. To store data in the variables, they need to be
initialized. For example, consider these statements.

int i;
i=10;

Here, a variable i of the integer type is declared and the value 10 is assigned to
it. We can combine both the statements into a single statement as follows:

int i=10;

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
28 Material

Besides initializing the variable with constant values, it can also be initialized at
run-time by using expressions. Initialization of variables at run-time is known as
dynamic initialization.

Example 1.10: A program to demonstrate initialization of the variable public
class using dynamic_initializaton is as follows:

{
public static void main(String[] args)

{
int x=40,y=40,z=10; //initialization with constant values

int result=(x*y)+z; //dynamic initialization
System.out.println(“The value of z is:”+result);

}
}

The output of the program is:
The value of z is:1610

Receiving Input through Keyboard

Variables can also be given values interactively through a keyboard by using the
readLine() method. This can be understood with the help of Example 1.11.

Example 1.11: A program to demonstrate reading data from the keyboard is as
follows:

//importing package for using DataInputStream class
import Java.io.*;
public class ReadingData
{

public static void main(String[] args)
{

DataInputStream in=new DataInputStream(System.in);
int num1=0;
float num2=0;
try
{

System.out.println(“Enter integer value”);
num1=Integer.parseInt(in.readLine());

System.out.println(“Enter float value”);
num2=Float.valueOf(in.readLine()).floatValue();

}
 catch(Exception e)
{
}
System.out.println(“The integer value is “+num1);
System.out.println(“The float value is “+num2);

}
}

The output of the program is:
Enter integer value
4
Enter float value
6.7
The integer value is 4
The float value is 6.7

The method readLine() of class DataInputStream is used to read a
string from the keyboard which is then converted to the corresponding data type,

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 29

int and float. To handle the error which may occur while reading data from
the keyboard, try and catch statements have been provided.

1.4.4 Symbolic Constants

The format for symbolic constant is as follows:
#define name constant

For example, we can define:
#define INITIAL 1

It defines INITIAL as 1.

The INITIAL type of definition is called symbolic constants. They are not
variables and hence, they are not defined as part of the declarations of variables.
They are specified on top of the program before the main() function. The
symbolic constants are to be written in capital or upper case letters. Wherever the
symbolic constant names appear in the program, the compiler will replace them
with the corresponding replacement constants defined in the #define statement.
In this case, 1 will be substituted wherever INITIAL appears in the program.
Note that there is no semicolon at the end of the #define statement.

1.4.5 Type Casting

The process of converting one data type to another is called typecasting. Typecasting
becomes inevitable on many occasions. The return type of function function2(
) may be a character. The return value of function2() has to go as an
argument to another function function1() which accepts only the integer
argument. The solution here is to typecast the return value of function2()
to integer and then use it as argument for function function1().

Function1 ((int) function2())

Typecasting is performed by placing the desired type in parentheses to the
left of the value to be converted.

For example:
(char) value

The storage size of the type you are attempting to cast is very important.
Attempting to cast from a larger size to a smaller size may result in loss of data.
Attempting to cast from a smaller size to a larger size is always safe.

The table that follows lists the casts that are guaranteed to result in no loss
of information.

Typecasting that results in no loss of information.
From type To type

byte short, char, int, long, float, double

short int, long, float, double

char int, long, float, double

int long, float, double

long float, double

float double

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
30 Material

1.4.6 Arrays

Java uses variables of different primitive data types to store data. However, these
variables are incapable of holding more than one value at a time. For example, a
single variable cannot be used for storing the marks of all students in a class. For
such purposes, Java provides a different kind of data type known as arrays.

Arrays are defined as a sequence of the same type of data elements of a
fixed size. These data elements can be primitive or non-primitive data types. The
elements of an array are stored in contiguous memory locations and each individual
element can be accessed using one or more indices or subscripts. A subscript or
an index is a positive integer value, which indicates the position of an element in an
array. Arrays are used when a programmer wants to store multiple data items of
the same type into a single list and also wants to access and manipulate individual
elements of the list. Arrays can be either single-dimensional or multi-dimensional,
depending upon the number of subscripts used.

Single-Dimensional Arrays

A single-dimensional array is the simplest form of an array that requires only one
subscript to access an array element. Like an ordinary variable, an array must be
declared before it is used in the program.

The syntax for declaring a single-dimensional array is as follows:
data_type array_name[];
or
data_type[]array_name;

where,

data_type is any data type.

array_name is the name of the array.

For example, an array marks[] of type int can be declared using either of
the two statements.

int marks[];

or
int[] marks;

After an array is declared, we need to create it by allocating space to it in the
memory. Arrays are created using new operator.

The syntax for creating an array is as follows:

array_name=new data_type[size];

where,

size is the size of the array.

For example, an array marks[] of type int and size five can be created
using the following statement:

marks=new int[5];

The above two steps of declaration and creation of an array can be combined into
a single statement as shown below.

data_type array_name=new data_type[size];

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 31

Similarly, the statement to declare and create an array marks[] of type int
and size five is:

int marks[]=new int[5];

Note: All the elements created using new operator in the array will be automatically initialized
to zero.

Initialization of a Single-Dimensional Array
Once an array is declared and memory is allocated to it, the next step is to initialize
each array element with a valid and appropriate value. An array can be initialized at
the time of its declaration.

The syntax for initializing an array at the time of its declaration is as follows:
 data_type array_name[]={value_1,value_2,......,value_n};

Values are assigned to array elements in the order in which they are listed.
That is, value_1, value_2 and value_n are assigned to the first, second
and nth element of the array, respectively. If an array is declared and initialized
simultaneously, then specifying its size is optional. For example, the statement
int marks[]={51,62,43,74,55} is also valid. The size of an array,
marks, can be obtained by using the marks.length() method.

Note: If you try to store or access values outside the range of an array (index with negative
value or value greater than the length of the array), a run-time error is generated.

Accessing Single-Dimensional Array Elements

Once an array is declared and initialized, the values stored in the array can be
accessed any time. Each individual array element can be accessed using the name
of the array and the subscript value. Every element in an array is associated with a
unique subscript value, starting from 0 to size-1 (where, size refers to the
maximum number of elements that can be stored in the array).
The syntax for accessing the values stored in a single-dimensional array is:

array_name[subscript]

For example, the elements of the array marks can be referred to as marks[0],
marks[1], marks[2], marks[3] and marks[4], respectively. Note
that index of an array starts with 0.

Note: The memory location, where the first element of an array is stored, is known as the base
address, which is generally referred to by the name of the array.

Single-dimensional arrays are always allocated contiguous blocks of memory. This
implies that every element in an array is always stored in sequential manner next to
each other. The memory representation of the array marks is shown in Figure
1.6. As each element is of the type int (that is, 4 bytes long), the array marks
occupies twenty contiguous bytes in the memory and these bytes are reserved in
the memory at the time of compilation.

marks

 marks[3]

 marks[2]

 marks[1]

 marks[0]

74 62 51

 marks[4]

2001

2005

2009

2013

2017

55 43

Fig. 1.6 Memory Representation of an Array marks

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
32 Material

Manipulation of Single-Dimensional Array Elements

An array can be manipulated with the help of various operations. These operations
include finding the sum, average, maximum or minimum, sorting and searching of
the array elements, and so on.

Example 1.12: A program to sort the array elements is as follows:
class SortingArray
{
public static void main(String args[])
{
int a[]={67, 34, 12, 98, 26}; //array initialization
//at the time of declaration
int n=a.length; //returns the length of the array

System.out.print(“The list of numbers:”);
for(int i=0;i<n;i++)
{
System.out.print(“ “+a[i]);
}

//sorting elements of an array
for(int i=0;i<n;i++)
{
for(int j=i+1;j<n;j++)
{
if(a[i]>a[j])
{
int temp=a[i];
a[i]=a[j];
a[j]=temp;
}
}
}
System.out.print(“\n”);
System.out.print(“The sorted list of given numbers:”);
for(int i=0;i<n;i++) //displaying sorted array

{
System.out.print(“ “ +a[i]);

}
}
}

The output of the program is:
The list of numbers: 67 34 12 98 26
The sorted list of given numbers: 12 26 34 67 98

Multi-Dimensional Arrays

Multi-dimensional arrays can be described as ‘An array of arrays’, that is, each
element of the array is itself an array. A multi-dimensional array of dimension n is
a collection of items that are accessed with the help of n subscript values.

Two-Dimensional Array

A two-dimensional array is the simplest form of a multi-dimensional array that
requires two subscript values to access an array element. These arrays are useful
when the data being processed is to be arranged in the form of rows and columns
(matrix form).

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 33

The syntax for declaring a two-dimensional array is as follows:
data_type array_name[][];

or
data_type[][] array_name;

The syntax for creating a two dimensional array is as follows:
array_name[][]=new data_type[row_size][column_size];

The above two steps of declaration and creation can be combined into one, using
a single statement as shown below:

data_type array_name[][]=new data_type[row_size] [column_size];

For example, an array a[][] of type int having three rows and two columns
can be declared and created using the following statement:

int a[][]=new int[3][2];

Here, 3 is the row size and 2 is the column size.

 Initialization of a Two-Dimensional Array

Like a single-dimensional array, a two-dimensional array can also be declared
and initialized at the same time. To understand how to initialize a two-dimensional
array, consider the following statement:

int a[3][2]={ {101,51},
 {102,67},
 {103,76} };

In this statement, an array a[][] of type int, having three rows and two
columns is declared and initialized. This type of initialization is generally used to
increase the readability.

Now, consider another statement:
int b[][]={ { 2,3,4}, {1,1,1} };

In this statement, an array b[][] of type int, having two rows and three
columns is initialized.

 Accessing Two-Dimensional Array Elements

Once a two-dimensional array is declared and initialized, the value stored in the
array elements can be accessed using two subscripts. The syntax for accessing a
two-dimensional array element is:

array_name[row][column]

The first subscript value (row) specifies the row number and the second subscript
value (column) specifies the column number. Both the subscript values specify
the position of the array element within the array. For example, the elements of
array a (declared earlier) are referred to as a[0][0], a[0][1], a[1][0],
a[1][1], a[2][0] and a[2][1], respectively.

Generally, two-dimensional arrays are represented with the help of a matrix.
However, in actual implementation, two-dimensional arrays are always allocated
contiguous blocks of memory. Figure 1.7 shows a matrix and memory
representation of two-dimensional array a.

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
34 Material

101 51

105 67

103 76

101 51 105 67 103 76

a[0][0] a[0][1] a[1][0] a[1][1] a[2][0] a[2][1]

2001 2005 2009 2013 2017 2021

 first row second row third row

Matrix Representation Memory Representation

Fig. 1.7 Matrix and Memory Representation of Array a[][]

 Manipulation of Two-Dimensional Array Elements

A two-dimensional array can be manipulated in many ways. Some of the common
operations that can be performed on a two-dimensional array include finding the
sum of row elements, column elements and diagonal elements, finding the maximum
and minimum values, etc.

Example 1.13: A program to calculate the sum of two matrices is as follows:
class MatricesSummation
{
public static void main(String args[])
{
int a[][]={{3,4,5},{3,2,7}}; //initializing matrix a
int b[][]={{2,4,7},{1,2,2}}; //initializing matrix b

int l=a.length;
System.out.println(“First matrix is:” + “ ”);
for(int i=0;i<l;i++) //displaying first matrix
{
for (int j=0;j<3; j++)
{
System.out.print(“ ” +a[i][j]);
}
System.out.println();
}

int m=b.length;
System.out.println(“Second matrix is:”+ “ ”);
for (int i=0;i<m;i++) //displaying second matrix
{
for(int j=0;j<3;j++)
{
System.out.print(“ ” + b[i][j]);

}
System.out.println();
}
System.out.println(“Summation of the two matrices is: “);
//displaying sum of two matrices
for(int i=0;i<m;i++)
{
for(int j=0;j<=m;j++)
{
System.out.print(“ ”+(a[i][j]+b[i][j]));
}

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 35

System.out.println();
}
}
}

The output of the program is:
First matrix is:
 3 4 5
 3 2 7
Second matrix is:
 2 4 7
 1 2 2
Summation of the two matrices is:
 5 8 12
 4 4 9

Variable Size Arrays

As already mentioned, multi-dimensional arrays are arrays of arrays. In such multi-
dimensional arrays the size of each array can vary. For example, consider the
following statements:

data_type array_name[][]=new data_type[size][];
array_name[0]=new data_type[size_1];
.
.
.
array_name[n-1]=new data_type[size_n];

where,

size is the number of rows in a two-dimensional array.

size_1, . . . , size_n represents the number of columns in each row of a
two-dimensional array.

Example 1.14: A program to demonstrate a variable size array is as follows:
class VariableArray
{

public static void main(String args[])
{

int a[][]=new int[4][];
a[0]=new int[2];
a[1]=new int[4];
a[2]=new int[3];
a[3]=new int[5];
int i,j;
System.out.println(“The variable sized array is: ”);
for(i=0;i<4;i++)
{

for (j=0; j<a[i].length; j++)
{

a[i][j]=j;
System.out.print(“ ”+a[i][j]);

}
System.out.println();

}
}

}

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
36 Material

The output of the program is:

The variable sized array is:

 0 1

 0 1 2 3
 0 1 2
 0 1 2 3 4

1.4.7 Array Declaration Syntax

We can declare an array by specifying its data type, name and the number of
elements the array holds between square brackets immediately following the array
name. The following syntax is required to declare an array:

data_type array_name[size];

For example, to declare an integer array which contains 100 elements following
statement is required:

int a[100];

There are some rules on array declaration. The data type can be any valid C data
types including structure and union. The array name has to follow the rule of variable
and the size of array has to be a positive constant integer. A value stored into an
element in the array simply by specifying the array element on the left hand side of
the equals sign. The declaration int values[10]; would reserve enough space
for an array called values that could hold up to 10 integer values. Initializing arrays
is like a variable in which an array can be initialized. To initialize an array, you
provide initializing values which are enclosed within curly braces in the declaration
and placed following an equals sign after the array name. The following statement
is required to initialize an integer array:

int list[5] = {2,1,3,7,8};

1.4.8 Vectors

The Vector class contained in the Java.util package defines methods
to store objects into a single unit. It can be used to implement a dynamic array
of vectors which can accommodate any number and type of objects. Consider
the following statements:

Vector v1=new Vector(); //creating vector without specifying its //
initial capacity
Vector v2=new Vector(n); //creating vector having initial capacity
//‘n’

Here, the first statement creates a vector v1 having an initial capacity of 10. That
is, when you create a vector without specifying its initial capacity, it is automatically
set to 10. Similarly, the second statement creates a vector v2 with an initial capacity
of n. Although, we have created the vector v2 by specifying its initial capacity but
this specification does not pose any limitation on the size of the vector. Since, the
size of the vector can be increased or decreased by adding objects to it or removing
them from it.

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 37

The Vector class provides a variety of methods which can be used to
perform different operations on vectors some of which are listed in Table 1.4.

Table 1.4 Vector Methods and Their Description

Methods Description
vect1.addElement(object) adds the specified object at the end of the vector list

vect1
vect1.size() returns the number of objects currently present in the

vector vect1
vect1.capacity() returns the maximum capacity of the vector vect1
vect1.removeElement(object) removes the specified object from the vector vect1
vect1.elementAt(n) returns the name of the nth object of the vector vect1
vect1.removeElementAt(n) removes the item at the nth position of the vector vect1
vect1.removeAllElements() removes all the elements in the vector vect1
vect1.firstElement() returns the first element of the vector vect1
vect1.lastElement() returns the last element of the vector vect1
vect1.trimToSize() sets the capacity of the vector vect1 to the number of

objects it is currently holding

Example 1.15: A program to demonstrate the use of some of the methods of the
Vector class is as follows:

import Java.util.*; //importing package for using vectors
public class VectorMethods
{

public static void main(String[] args)
{

Vector vect1 = new Vector();
String str1 = “Hello!!!”;
String str2 = “How are you?”;
String str3= “All the best!”;

//adding string object to the vector
vect1.addElement(str1);

vect1.addElement(str2);
vect1.addElement(str3);

System.out.println(“The initial capacity of the vector is:
”+vect1.capacity());

System.out.println(“The elements of vector: ” +vect1);
System.out.println(“The size of vector is: ” +vect1.size());
System.out.println(“The first element of vector is: ”
+vect1.firstElement());
System.out.println(“The last element of vector is: ”
+vect1.lastElement());
}

}
The output of the program is:

The initial capacity of the vector is: 10
The elements of vector: [Hello!!!, How are you?, All the best!]
The size of vector is: 3
The first element of vector is: Hello!!!
The last element of vector is: All the best!

Note: A string class is used to create string objects.

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
38 Material

Check Your Progress

1. When and where was Java developed and who headed the development
team?

2. What is JDK?

3. Define on the term multithreaded in Java.

4. What is JavaScript?

5. What are the uses of generics?

6. What are JavaScript dialog box and its types?

7. State about the objectives.

8. What is the default value of a Boolean data type?

9. Define a variable.

10. How many subscripts does a single-dimensional array require to access
an array element?

1.5 OPERATORS IN JAVA

As stated earlier, operators are symbols which perform operations on various
data items known as operands. For example, in a + b, a and b are operands and
+ is an operator. Note that to perform an operation, operators and operands
are combined together forming an expression. For example, to perform an
addition operation on operands a and b, the addition (+) operator is combined
with the operands a and b forming an expression.

Depending on the function performed, Java operators can be classified into
various categories. These include arithmetic operators, increment and decrement
operators, relational operators, logical operators, conditional operator, assignment
operators, bitwise operators and special operators.

1.5.1 Arithmetic Operators

Arithmetic operators perform the basic arithmetic operations on operands. They
can work on any built-in data type of Java except on Boolean type. Java provides
various arithmetic operators that are, + (addition or unary plus), – (subtraction or
unary minus), * (multiplication), / (division) and % (modulus). For example, some
of the expressions which involve arithmetic operators are x + y, x – y, x * y, x / y
and x % y. When the unary minus operator is used with a single operand, the
operand is multiplied by –1.

Expressions formed by using arithmetic operators can be of the following types:

 Integer Expression: An arithmetic expression where both the operands
are integers is called an integer expression.

 Real Expression: An arithmetic expression where both the operands are
real is called a real expression.

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 39

 Mixed Mode Expression: An expression is known as mixed mode if one
operand is real and the other is an integer. In this case, the integer operand
is converted to real and the result is also of type real.

Note: Unlike C and C++, the modulus operator can also be applied to the floating-point data

type in Java.

1.5.2 Basic Assignment Operators

An assignment operator assigns the value of an expression to a variable. Assignment
operators are of two types, namely simple and compound assignment operators.

Simple Assignment Operator

The simple assignment operator assigns a value on its right side to the variable on
its left. Note that the left hand side of an assignment expression should be a variable.
It cannot be a constant or an expression. However, the right side of an assignment
expression can be a variable, or a constant or an expression.

To understand the simple assignment operator, consider Example 1.16.

Example 1.16: Evaluate the following statement:
x=8;

In this example, the value 8 is assigned to the variable x.

With the help of the assignment operator, a common value can be assigned to
several variables. This is accomplished by using multiple assignments in a single
statement. For example, in the statement x=y=z=5, the value 5 is assigned to
the three variables x, y and z.

Compound Assignment Operators

Java provides compound assignment operators (also known as Java shorthands)
which are in the following format:

v op=exp;

Here, v is a variable, op is the binary operator and exp is an expression. This
form is equivalent to the following statement:

v=v op(exp);

where v is needed to be accessed only once. For example, the expression x=x+6
can be written as x+=6. In this expression, x is incremented by 6 and then the
result is assigned to x. The various compound assignment operators used in Java
are ‘+=’, ‘-=’, ‘*=’, ‘/=’ and ‘%=’.

1.5.3 Relational Operators

Relational operators are used for comparing two values or expressions. Various
relational operators provided by Java are less than ‘<’, less than or equal to ‘<=’,
greater than ‘>’, greater than or equal to ‘>=’, equal to ‘==’ and not equal to ‘!=’
operator. They return the values of Boolean type, that can either be true or false. Let
us consider an example of two variables, a and b having values 20 and 30 respectively.
In this case, the expression a<b returns true whereas the expression a>b returns
false. The operators == and != are also known as equality operators as they are
used for checking the equality of operands.

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
40 Material

Note: All relational operators can work on integer, floating-point and character data types.

1.5.4 Boolean Logical Operators

These operators work on logical values that are either true or false. The logical
operators are:

Logical Operator Java Operation Java Expression

& Logical AND a & b

| Logical OR a | b

! = Not equal to a ! = b

^ Logical XOR a ^ b

| | Short circuit OR a | | b

& & Short circuit AND a & & b

& = AND assignment a & = b

| = OR assignment a | = b

! Logical unary NOT a ! b

^ = XOR assignment a ^ = b

= = Equal to a = = b

?: Ternary if-then-else a ? b : c

For example:
{
int a = 5;
int b = 7;
if ((a>b)&&((b=19)>10))
System.out.println (“” +b);
else
System.out.println (“” +a);
System.out.println (“” +b);
}

Output of the program:
5

This example displays 5 and then 7 because the first expression in the if
condition is false and so the next expression is not evaluated that is b, which does
not become 19.

1.5.5 Ternary Operators

It can be said that we can execute an if else statement using ternary if-then-
else operator (?:). The syntax is given below:

Evaluation_Part ? codes_of_section_1
:codes_section_2;

First Evaluation_Part is evaluated if it is true, then
codes_of_section_1 is executed else codes_section_2 is executed.

Program 1.1

class demo1

{

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 41

public static void main(String args[])

{

int i = 64;

int k=0;

k =(i>k)? 10 : 5;

System.out.println(k);

k= (i<k)? 10: 5;

System.out.println(k);

}

}
The output of the program:

10

5

From the above example, it can be checked that the ternary if-then-
else operator (?:) works like if else.

Table 1.5: Operator Precedence Table

Highest Associativity

() [] Left to right

! ~ - + ++ – – Right to left

* / % Left to right

+ - Left to right

<< >> >>> Left to right

< <= > >= Left to right

== != === !== Left to right

& Left to right

^ Left to right

| Left to right

&& Left to right

|| Left to right

?: Right to left

= += -= *= /= %= <<= >>= >>>= &= =̂ |= Right to left

Lowest

In case there are more than one operators in an expression, they are
evaluated according to their precedence.

1.5.6 Operator Precedence

An expression consisting of more than one operator leads to a confusion as to
which operator is to be evaluated first. For example, consider the expression:

a + b * c - d

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
42 Material

In this expression, the compiler needs to know which operator is evaluated first.
For this, it is important to determine the precedence and associativity of operators.

 Precedence: The order or priority in which various operators in an
expression are evaluated is known as precedence. Every operator in Java
has a precedence associated with it. The operators with a higher precedence
are evaluated before the operators with a lower precedence. For example,
multiplication is performed before addition as the multiplication operator
has higher precedence than the addition operator.

 Associativity: The order or priority in which operators of the same
precedence are evaluated is known as associativity. For example, addition
and subtraction operators have the same precedence. However, addition
or subtraction may be performed on an expression depending upon the
order of its occurrence.

The associativity of an operator can be either from left to right or from right to left.
The operators with left to right associativity are evaluated from the left side while
the operators with right to left associativity are evaluated from the right side. The
precedence and the associativity of Java operators are listed in Table 1.6. Note
that the precedence of operators decreases from top to bottom, that is, the priority
is highest at the top.

Table 1.6 Precedence and Associativity of Java Operators

Operators Description Associativity
 .
 ()
 []

 Direct member selector
 Function Call
 Array subscript

 Left to right
 Left to right
 Left to right

 -
 ++
 --
 !
 ~
 (type)

 Unary minus
 Increment
 Decrement
 Logical negation
 Ones complement
 Casting

 Right to left
 Right to left
 Right to left
 Right to left
 Right to left
 Right to left

 *
 /
 %

 Multiplication
 Division
 Modulus

 Left to right
 Left to right
 Left to right

 +
 -

 Addition
 Subtraction

 Left to right
 Left to right

 <<
 >>
 >>>

 Left shift
 Right shift
 Right shift with zero fill

 Left to right
 Left to right
 Left to right

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 43

 <
 <=
 >
 >=

instanceof

 Less than
 Less than or equal to
 Greater than
 Greater than or equal to
 Type comparison

 Left to right
 Left to right
 Left to right
 Left to right
 Left to right

 = =
 =!

 Equal to
 Not equal to

 Left to right
 Left to right

 & Bitwise AND Left to right
 ^ Bitwise XOR Left to right
 | Bitwise OR Left to right
 && Logical AND Left to right
 || Logical OR Left to right
 ?: Conditional operator Right to left
 =
 Op=

 Assignment Operator
 Shorthand assignment

 Right to left

Note: The operators in the same row have same precedence.

1.6 CONTROL STATEMENTS

Conditional statements, also known as selection statements, are used to make
decisions based on a given condition. If the condition evaluates to true, one set
of statements is executed, otherwise another set of statements is executed.

The if Statement

The if statement selects and executes statement(s) based on a given condition.
The syntax of the if statement is:

For a Single Statement
if(condition)
statement1;
nextstatement;

For a Set of Statements
if(condition)
{
statement1;
statement2;
}
nextstatement;

Here, if the condition evaluates to true, then a given set of statement(s) is
executed. However, if the condition evaluates to false, then the given set of
statements is skipped and the program control passes to the statement following
the if statement. This is illustrated in Figure 1.8.

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
44 Material

Is
condition

true?

nextstatement

statement1
No

Yes

Fig. 1.8 Flow of Control in if Statement

The if-else Statement

The if-else statement causes one of the two possible statement(s) to execute,
depending upon the result of the condition. The syntax of the if-else statement
is:

if(condition) //if part
{
statement1;
}
else //else part
statement2;
nextstatement;

Here, the if-else statement comprises two parts, namely, if and else. If
the condition is true, the statements within the if part is executed. However, if
the condition is false, the statements within the else part is executed (Refer
Figure 1.9).

Is
condition

true?

nextstatement

statement1

No Yes

statement2

Fig. 1.9 Flow of Control in if-else Statement

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 45

Example 1.17: A program to demonstrate the use of if-else statement is as
follows:

class ConditionalStatement
{
public static void main (String args[])
{
int i=5;
if (i > 0)
System.out.println(“i is a positive number”);
else
System.out.println(“i is a negative number”);
}
}

The output of the program is:
i is a positive number

Nested if-else Statement

A nested if-else statement contains one or more if-else statements. In
other words, an if-else statement within another if-else statement is
called a nested
if-else statement. The if-else statement can be nested in three different
ways which are discussed as follows:

 The if-else statement is nested within the if part.

The syntax is
if(condition1)
{
statement1;

if(condition2)
statement2;

else
statement3;

}
else
statement4;
 nextstatement;

 The if-else statement is nested within the else part.

The syntax is
if (condition1)

statement1;
else
{

statement2;
if (condition2)

statement3;
else

statement4;
}
nextstatement;

 The if-else statement is nested within both, the if and the else
parts.

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
46 Material

The syntax is:
if(condition1)
{

statement1;
if(condition2)

statement2;
else

statement3;
}
else
{

statement4;
if(condition3)

statement5;
else

statement6;
}
nextstatement;

The if-else-if Ladder

The if-else-if ladder, also known as the if-else-if staircase, has
an if-else statement within the outermost else statement. The inner else
statement can further have other if-else statements.

The syntax of the if-else-if ladders is:

Example 1.18: A program to demonstrate if-else-if statement is as follows:
import Java.io.*;
public class Grade
{

public static void main(String[] args)
{

int marks=0;
DataInputStream cin=new DataInputStream(System.in);
try
{

System.out.print(“Enter the marks: “);
//reading integer from keyboard
marks=Integer.parseInt(cin.readLine());
if(marks>90)

System.out.println(“Grade is A”);
else

if(marks>75)
System.out.println(“Grade is B”);

else
if(marks>60)

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 47

 System.out.println(“Grade is C”);

else
 System.out.println(“Grade is D”);

}
catch(Exception e)
{}

}
}

The output of the program is:
Enter the marks: 78
Grade is B

Conditional Operator as an Alternative

The conditional operator, ‘? :’ selects one of the two values or expressions
based on a given condition. Due to this decision-making nature of the conditional
operator, it is sometimes used as an alternative to if-else statements. Note
that the conditional operator selects one of the two values or expressions and not
the statements as in the case of an if-else statement. In addition, it cannot
select more than one value at a time, whereas the if-else statement can select
and execute more than one statement at a time. For example, consider this statement.

max=(x>y ? x : y)

This statement assigns x and y to maximum.

The switch Statement

The switch statement selects a set of statements from the available sets of
statements. The switch statement evaluates the value of an expression and
compares it with the list of integer, character, short or byte constants. It should be
noted that the case constants must be compatible with the expression type. When
a match is found, all statements associated with that constant are executed (Refer
Figure 1.10).

The syntax of the switch statement is:
switch(expression)
{
case <constant1>: statement1;
[break;]
case <constant2>: statement2;
[break;]
case <constant3>: statement3;
[break;]
[default: statement4;]
}
nextstatement;

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
48 Material

Is
constant1=
expression?

expression

statement1

Is
constant2=
expression?

Is
constant3=
expression?

statement2

statement3

nextstatement

No

No

Yes

Yes

Yes

No

Fig 1.10 Flow of Control in switch Statement

The Java keywords case and default provide a list of alternatives. Note
that it is not necessary for every case label to specify a unique set of statements.
The same set of statements can be shared by multiple case labels. The keyword
default specifies the set of statements to be executed in case no match is
found. Note that there can be multiple case labels but there can be only one
default label. However, default is an optional statement.

The break statements in the switch block are optional. However, it is
used in the switch block to prevent a fall through. Fall through is a situation that
causes execution of the remaining cases even after a match has been found. In
order to prevent this, break statements are used at the end of statements specified
by each case and default. This causes the control to immediately break out
of the switch block and execute the next statement.

Similar to if and if-else statements, switch statements can also
be nested within one another. A nested switch statement contains one or more
switch statements within its case label or default label (if any).

Note: Switch statements cannot be used for testing floating-point values or string values.

Example 1.19: A program to demonstrate the use of switch statement is as
follows:

class SwitchStatement
{

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 49

public static void main(String args[])
{

int x=2;
switch(x)
{

case 1: System.out.println(“Day is Monday”);
break;

case 2: System.out.println(“Day is Tuesday”);
break;

case 3: System.out.println(“Day is Wednesday”);
break;
case 4: System.out.println(“Day is Thursday”);
break;
case 5: System.out.println(“Day is Friday”);
break;
case 6: System.out.println(“Day is Saturday”);
break;
case 7: System.out.println(“Day is Sunday”);

break;
default: System.out.println(“Invalid option!”);

}
}

}

The output of the program is:

Day is Tuesday

In Example 1.19, since the value of x is 2, therefore the message Day is
Tuesday is displayed. In case the value of x is 8, the output Invalid
option! will be displayed.

1.6.1 Nested Switch

break and continue statements allow the programmer to break out of the
loop. However, they do not allow one to simply jump to another part of the program
or out of the nested loop or switch statement. Java allows the user to jump
from one block of statements to another with the help of labels. A label is an
identifier which must follow the rules for naming identifiers in Java. It can be placed
before the block of statements or loop followed by a colon (:). For example,
consider the following statement:

LabelName: for(; ;)
{

.

.
}

The break statement passes control out of the innermost loop or the innermost
switch statement and the continue statement continues with the next iteration
of the innermost loop only. However, with the help of labels, the break statement
can be used to cause the control to jump out of the outer loop or switch
statement. For example, consider the following statements:

outerloop: for(i=0;i<5;i++)
{

innerloop: for(j=1;j<5;j++)

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
50 Material

{
System.out.println(“*”);
if(i=j)
break outerloop;
.
.

}
}

In this case, the break statement placed inside the innerloop will force the
control to jump out of both the inner and outer loops. Similarly, with the help of
labels, continue statement can be used to continue with the next iteration of
the outer loop.

Example 1.20: A program to demonstrate use of the continue statement in
a labeled loop is as follows:

class LabelExample
{

public static void main(String args[])
{

outerloop: for(int i=0;i<3;i++)
 {

for(int j=0;j<5;j++)
{

if(j>i)
continue outerloop;

System.out.println(“ i “+i+” j “+j);
}

}
System.out.println(“Loop Ends”);

}
}

The output of the program is:
i 0 j 0
i 1 j 0
i 1 j 1
i 2 j 0
i 2 j 1
i 2 j 2
Loop Ends

In this program, if we substitute the continue statement with the break
statement, the following output will be generated:

i 0 j 0
Loop Ends

1.6.2 Iteration Constructs and Return

Statements that cause a set of statements to be executed repeatedly either for a
specific number of times or until some condition is satisfied are known as iteration
statements. That is, as long as the condition evaluates to true, the set of statement(s)
is executed. Various iteration statements used in Java are: for loop, while loop
and do-while loop.

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 51

The for Loop

The for loop (Refer Figure 1.11) is one of the most widely used loops in Java.
The for loop is a deterministic loop, that is, the number of times the body of the
loop is executed, is known in advance.

The syntax of the for loop is:
for(initialize; condition; update)
{

//body of the for loop
}

initialize

Is
condition

true?

statement

update

nextstatement

No

Yes

Fig 1.11 Flow of Control in for Loop

The initialize expression in the for loop can initialize one or more control variables.
A loop can also update more than one variable in its update expression. Note that
initialize, condition and update are optional expressions and
are always specified in parentheses. All the three expressions are separated by
semicolons. We can also create an infinite loop by excluding all the three expressions
as follows:

for(; ;)
{
.
.
}

Example 1.21: A program to display a count down using for loop is as follows:

class UpdateStatement
{
public static void main(String args[])

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
52 Material

{
for (int i=10;i>=1;i—)
{
System.out.print(“ “+i);
}
System.out.println();
System.out.print(“This is an example of for loop”);

}
}

The output of the program is:
10 9 8 7 6 5 4 3 2 1
This is an example of for loop

The for Loop using Comma Operator

The for loop allows multiple variables to control the loop using a comma operator.
That is, two or more variables can be used in the initialize and the update
parts of the loop. For example, consider the following statement:

for (i=1,j=50;i<10;i++,j––)

This statement initializes two variables, namely i and j and updates them. Note
that for loop cannot have more than one condition separated by a comma.

The while Loop

The while loop (Refer Figure 1.12) is used to perform looping operations
when the number of iterations is not known in advance. That is, unlike for loop,
the while loop is non-deterministic in nature.

The syntax of the while loop is as follows:
while(condition)
{

// body of the while loop
}

Is
condition

true?

statement

nextstatement

No

Yes

Fig 1.12 Flow of Control in while Loop

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 53

The following points should be noted about the while loop:

 Unlike for loops where explicit initialize and update expressions
are specified, while loops do not specify any explicit initialize
and update expressions. This implies that the control variable must be
declared and initialized before the while loop and needs to be updated
within the body of the while loop.

 The while loop executes as long as condition evaluates to true.
If condition evaluates to false, then the body of while loop
does not execute.

Example 1.22: A program to determine the sum of first n consecutive positive
integers is as follows:

import Java.io.*;
public class Sum
{
public static void main(String[] args)

{
int n;
int sum=0;

DataInputStream cin=new DataInputStream (System.in);
try
{

System.out.print(“Enter n: “);
//reading input from the user

n=Integer.parseInt(cin.readLine());
//loop to calculate the sum

while(n>0)
{

sum=sum+n;
n=n-1;

}
System.out.print(“The sum is “ + sum);

}
catch(Exception e)
{}

}
}

The output of the program is:
Enter n: 7
The sum is 28

The do-while Loop

As discussed earlier, in a while loop, the condition is evaluated at the beginning
of the loop and if the condition evaluates to false, the body of the loop is not
executed even once. However, if the body of the loop is to be executed at least
once, no matter whether the initial state of the condition is true or false, the
do-while loop is used. This loop places the condition to be evaluated at the
end of the loop (Refer Figure 1.13).

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
54 Material

The syntax of the do-while loop is as follows:
do
{
//body of do-while loop
}
while(condition);

Is
condition

true?

statement

Yes

nextstatement

No

Fig 1.13 Flow of Control in do-while Loop

Example 1.23: A program to calculate the sum of an Arithmetic Progression
(AP) is as follows:

class APSeries
{

public static void main(String args[])
{

int first_term=1;
int number_of_terms=5;
int term=0;
int i=1;
int common_difference=2;
int sum=0;
System.out.print(“The terms are: “);
do
{

term =first_term+(i-1)*common_difference;
sum+=term;
System.out.print(“ “+term);
++i;

}
while(i<=number_of_terms);
System.out.println();
System.out.println(“The sum of A.P is: “ +sum);

}
}

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 55

The output of the program is:
The terms are: 1 3 5 7 9
The sum of A.P is: 25

Nested Loops

Loops present within the body of another loop are known as nested. All the three
loops (for, while and do-while) can be nested.

Example 1.24: A program to demonstrate the nested for loop is as follows:
class NestedLoop
{

public static void main(String args[])
{

int a,b;
for(a=0;a<5;a++) //outer loop
{

for(b=a;b<5;b++) //inner loop
{

System.out.print(“*”);
}

System.out.println();
}

}
}

The output of the program is:

**
*

Jump Statements

Jump statements are used to alter the flow of control unconditionally. That is, jump
statements transfer the control of a program unconditionally. The jump statements
defined in Java are break, continue and return.

The break Statement

The break statement is extensively used in loops and switch statements. It
immediately terminates the loop or the switch statement, by passing the remaining
statements. Control then passes to the statement that immediately follows the loop
or the switch statement. A break statement can be used in any of the three
Java loops. In case of nested loops, a break will exit only a single loop, that is, the
loop in which it is placed.

The continue Statement

The continue statement is used to continue the loop with its next iteration. In
other words, it skips any remaining statements in the current iteration and
immediately passes control to the next iteration. It does not terminate the loop (as
in the case of break statements) rather it only terminates the current iteration of
the loop. Like a break statement, a continue statement can be used in any
of the three loops.

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
56 Material

The return Statement

The return statement is used to transfer control out of the method explicitly. It
transfers the control back to the caller and terminates the method in which it is
present. When the return statement is encountered in the main() method, it
transfers control back to the Java run-time system and terminates execution of the
program.

Example 1.25: A program to add the factors of a number using break and
continue statements is as follows:

class Jump
{

public static void main(String args[])
{

int factor=0, number=10, sum=0;
System.out.println(“Number=” +number);
while(true)
{

factor++;
if(factor>number)

break;
if(number%factor!=0)

continue;
sum=sum+factor;

}
System.out.println(“Sum of factors=” +sum);
if(sum>0)

return;
System.out.println(“This statement is not executed”);

}
}

The output of the program is:
Number=10
Sum of factors=18

Check Your Progress

11. What does the vector class contain?

12. Define the term relational operators.

13. Define the term operator precedence.

14. What is the other term used for conditional statements?

15. Which operator can be used as an alternative to the if-else statement?

16. What are labels?

17. What is iteration statement?

18. Write the difference between the while and the do-while loops.

19. Define the term nested loop.

20. Why are jump statements used?

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 57

1.7 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Java was developed at Sun Microsystems in 1991 by a team headed by
James Gosling.

2. JDK is a set of various tools used to develop and execute Java programs.

3. Java with its multithreaded approach can run many programs concurrently,
thereby saving processor time. Synchronization of code is an added feature
of Java to run non-erroneous interactive applications.

4. JavaScript can be thought of as an extension to HTML, which allows authors
to incorporate some functionality in their Web pages. It is the most popular
scripting language on the Internet and works in all major browsers, such as
Internet Explorer, Firefox, Chrome, Opera and Safari.

5. Generics is a powerful feature of Java. It was introduced by JDK 5. Using
generics, a programmer can create classes, interfaces and methods that will
work for various types of data in a type safe manner. One can define a
single algorithm which is independent of data; then apply the same algorithm
for various data types, without any changes.

6. JavaScript dialog boxes are interesting little ‘Pop-up’ boxes that can be
used to display a message, ask for confirmation, user input, etc. They are
very easy to create. Three types of dialog boxes exist in JavaScript—(i)
ALERT, (ii) CONFIRM and (iii) PROMPT.

7. Objects are small, self-contained and modular units with a well-defined
boundary. An object consists of a state and behaviour. The state of an
object is one of the possible conditions that an object can exist in and is
represented by its characteristics or attributes or data. The behaviour of an
object determines how an object acts or behaves and is represented by the
operations that it can perform.

8. The default value of a Boolean data type is False.

9. A variable is an identifier which represents a memory location that is used
to store data values. Data stored at a particular location can be accessed
by using a variable name.

10. A single-dimensional array requires one subscript to access an array element.

11. The vector class contains methods to store any number and any type of
objects in a single unit called vectors.

12. Relational operators are used for comparing two values or expressions.
Various relational operators provided by Java are less than ‘<’, less than or
equal to ‘<=’, greater than ‘>’, greater than or equal to ‘>=’, equal to ‘==’
and not equal to ‘!=’ operator.

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
58 Material

13. An expression consisting of more than one operator leads to a confusion as
to which operator is to be evaluated first called operator precedence.

14. Conditional statements are also known as selection statements.

15. The conditional operator can be used as an alternative to the if-else statement.

16. Labels are names given to a block of code which allows a user to jump
from one loop to another, within a nested loop.

17. The control statement that executes a set of statements repeatedly, based
on a condition is known as iteration statement.

18. In the while loop, the condition is evaluated at the beginning of the loop and
if the condition evaluates to false, the body of the loop is not executed even
once. The do-while loop is used if the body of the loop is to be executed at
least once, no matter whether the initial state of the condition is true or false.

19. Placing a loop within the body of another loop is known as nesting of loops.

20. Jump statements are used to transfer the control from one part of a program
to another.

1.8 SUMMARY

 One of the reasons for the development of Java was the need for a software
that would not be dependent on any platform and would be portable enough
to be embedded in electronic devices like remote controls and microwave
ovens.

 Java was developed at Sun Microsystems in 1991 by a team headed by
James Gosling.

 JDK is a set of various tools used to develop and execute Java programs.

 In Java bytecode is a highly optimized set of instructions planned to be
executed by the Java run-time system, which is referred to as the Java
Virtual Machine (JVM).

 JavaScript was the first client-side Web scripting language. It first appeared
in 1995 in Netscape 2.0. You can use JavaScript directly within a Web
page without using any special tools to create or compile scripts and it
works on most of today’s browsers.

 JavaScript can be defined of as an extension to HTML, which allows authors
to incorporate some functionality in their Web pages. So now, whenever
the user presses the submit button, you do not necessarily have to invoke a
Common Gateway Interface (CGI) script to do the processing.

 Generics is a new addition to Java. Before the evolution of generics, a
programmer had to design different programs to deal with different data
types having the same logic.

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 59

 A raw type is a parameterized type stripped of its parameters. The official
term given to the stripping of parameters is type erasure. Raw types are
necessary to support the legacy code that uses non-generic versions of
classes.

 Java is a high-level, class-based, object-oriented programming
language that is designed to have as few implementation dependencies as
possible.

 Objects are small, self-contained and modular units with a well-defined
boundary. An object consists of a state and behaviour. The state of an
object is one of the possible conditions that an object can exist in and is
represented by its characteristics or attributes or data.

 A data type determines the type of operations that can be performed on the
data.

 Primitive data types also known as ‘Built-in’ data types. These are
fundamental data types provided by a programming language. In Java,
primitive data types include integer, floating-point, character and Boolean.

 The Boolean data type can hold only Boolean values, that is, either true or
false. The keyword Boolean is used to denote the Boolean data type. The
default value of Boolean data type is false.

 A variable is an identifier which represents a memory location that is used
to store data values. Data stored at a particular location can be accessed
by using a variable name.

 Arrays are defined as a sequence of the same type of data elements of a
fixed size. These data elements can be primitive or non-primitive data types.

 A single-dimensional array is the simplest form of an array that requires
only one subscript to access an array element.

 Multi-dimensional arrays can be described as ‘An array of arrays’, that is,
each element of the array is itself an array. A multi-dimensional array of
dimension is a collection of items that are accessed with the help of n subscript
values.

 A two-dimensional array is the simplest form of a multi-dimensional array
that requires two subscript values to access an array element.

 Conditional statements, also known as selection statements, are used to
make decisions based on a given condition. If the condition evaluates to
true, one set of statements is executed, otherwise another set of statements
is executed.

 A nested if-else statement contains one or more if-else statements. In other
words, an if-else statement within another if-else statement is called a nested
if-else statement

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
60 Material

 The if-else-if ladder, also known as the if-else-if staircase, has an if else
statement within the outermost else statement.

 The switch statement evaluates the value of an expression and compares it
with the list of integer, character, short or byte constants.

 Labels are names given to a block of code which allows a user to jump
from one loop to another, within a nested loop.

 Statements that cause a set of statements to be executed repeatedly either
for a specific number of times or until some condition is satisfied are known
as iteration statements.

 The while loop is used to perform looping operations when the number of
iterations is not known in advance. That is, unlike for loop, the while loop is
non-deterministic in nature.

 Loops present within the body of another loop are known as nested. All the
three loops (for, while and do-while) can be nested.

 Jump statements are used to alter the flow of control unconditionally. That
is, jump statements transfer the control of a program unconditionally. The
jump statements defined in Java are break, continue and return.

1.9 KEY TERMS

 Genesis: Generics is a new addition to Java.

 Bytecode: A simpler code made up of instructions that are one-byte long.

 Native method: A way to gain and merge the power of C or C++
programming into Java.

 Architecture neutral: The ability to work in diverse environments.

 Compiler: A computer program that transforms human readable source
code of another computer program into the machine readable code that a
CPU can execute.

 Interpreter: A computer program that reads the source code of another
computer program and executes that program.

 Java Virtual Machine (JVM): A platform-independent execution
environment that converts Java bytecode into machine language and executes
it.

 JavaScript: A scripting language that reflects the object orientation of Web
pages. It allows Web site authors to incorporate some functionality in their
9 Web pages.

 JavaScript dialog boxes: Interesting little ‘Pop-up’ boxes that can be
used to display a message, ask for confirmation, user input, etc. They are
very easy to create.

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 61

 Java: An Object Oriented Programming (OOP) language created by James
Gosling of Sun Microsystems.

 Data types: A data type determines the type of operations that can be
performed on the data.

 Array: A sequence of the same type of data elements of a fixed size.

 Subscript: A positive integer value which indicates the position of an element
in an array.

 Single-dimensional array: The simplest form of an array that requires
only one subscript to access an array element.

 Multi-dimensional array: An array of arrays, that is, each element of the
array is itself an array.

 Operators: A symbol or function which represents an operation.

 Selection statement: Statements used to make decisions based on a given
condition.

 Switch statement: Selects a specific set of statements from an available
set of statements.

 Iteration statement: Causes a set of statements to be executed repeatedly
either for a specific number of times or until some condition is satisfied.

 Break statement: Immediately terminates the loop or the switch
statement, by passing the remaining statements.

 Continue statement: Continues the loop with its next iteration.

 Return statement: Transfers control explicitly out of the method.

1.10 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Mention some of the differences between Java and C++.

2. What is the role of Java compiler in the execution of a program?

3. State about the Java applets.

4. What do you understand by JavaScript?

5. Write a JavaScript code in <HEAD>.

6. Define the term raw types in Java.

7. Define the term inheritance.

8. What do you understand by the term primitive data types.

9. what are types of literals?

10. State about the symbolic constants.

11. Define the term array.

12. Give one difference between single-dimensional and multi-dimensional
arrays.

Overview of Java, Data
Types and Variables,
Arrays, Operators and
Control Statements

NOTES

Self - Learning
62 Material

13. What are vectors?

14. State about the arithmetic operators.

15. Define the term ternary operators.

16. What are control statements?

17. State the difference between the execution of the while and the do-while
loops.

18. Differentiate between break, return and continue statements.

Long-Answer Questions

1. Discuss about the features of Java in detail.

2. Describe the purpose of JDK. Mention some tools of JDK and their
purposes.

3. Explain the Java buzzwords giving appropriate examples.

4. Describe the JavaScript objects that are used for processing the HTML
form.

5. Briefly the differences between Java and JavaScript.

6. Briefly explain the genesis of Java giving appropriate examples.

7. Write the features of object oriented programming giving appropriate
examples.

8. Discuss and write the Java simple program and compiling.

9. Explain the data types and its types with the help of diagram.

10. What are the different ways of initializing a variable? Explain with example.

11. Analyse the types casting with the help of examples.

12. Briefly explain the array and its types giving appropriate examples.

13. Write the array declaration syntax in details.

14. Discuss how vectors are different from arrays.

15. Briefly explain the basic assignment operators and Boolean logical operators
with the help of example.

16. Describe the operator precedence and its types with the help of table.

17. Discuss briefly if-else statement and conditional statement with the help of
diagram.

18. Briefly explain the iteration statements and its types with the help of diagram.

1.11 FURTHER READING

Balagurusamy, E. 2007. Programming with Java, 3rd Edition. New Delhi: Tata
McGraw-Hill.

Naughton, Patrick and Herbert Schidt. 1999. Java 2: The Complete Reference,
3rd Edition. New Delhi: Tata McGraw-Hill.

Overview of Java, Data
Types and Variables,

Arrays, Operators and
Control Statements

NOTES

Self - Learning
Material 63

Das, Rashmi Kanta. 2013. Core Java for Beginners, 3rd Edition. New Delhi:
Vikas Publishing House Pvt. Ltd.

Schildt, Herbert. 2006. Java: The Complete Reference, 7th Edition. New Delhi:
Tata McGraw-Hill.

Hunter, Jason and William Crawford. 2001. Java Servlet Programming, 2nd
Edition. California: O’Reilly Media.

Arnold, Ken, James Gosling and David Holmes. 2005. The Java Programming

Language, 4th Edition. Boston: Addison-Wesley.

Wigglesworth, Joe and Paula Lumby. 1999. Java Programming Advanced
Topics, 2 Edition. Boston: Course Technology.

Deitel, Paul and Harvey Deitel. 2011. Java: How to Program, 9th Edition. New
Delhi: Prentice-Hall of India.

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 65

UNIT 2 CLASS, INHERITANCE,
INTERFACES, PACKAGES
AND EXCEPTION
HANDLING

Structure

2.0 Introduction
2.1 Objectives
2.2 Introduction to Class

2.2.1 Method and Classes
2.2.2 Method and Constructor Overloading
2.2.3 Objects as Parameters
2.2.4 Returning Objects
2.2.5 Recursion
2.2.6 Access Control/ Visibility
2.2.7 Static and Final Classes
2.2.8 Nested and Inner Classes
2.2.9 String Class

2.2.10 Command Line Arguments
2.3 Inheritance

2.3.1 Member Access
2.3.2 Super Class Variable
2.3.3 Subclass Object
2.3.4 Using Super to Call Superclass Constructors
2.3.5 Multilevel Hierarchy
2.3.6 Calling Constructor
2.3.7 Overriding Methods
2.3.8 Abstract Classes Method
2.3.9 Final Class in Inheritance

2.4 Interface
2.5 Packages
2.6 Fundamentals of Exception Handling

2.6.1 Types of Exception
2.6.2 Try and Catch Keyword
2.6.3 Finally Keywords
2.6.4 Throw and Throws
2.6.5 Nested Try Statements
2.6.6 Java Build-In Exceptions
2.6.7 User Defined Exceptions

2.7 Answers to ‘Check Your Progress’
2.8 Summary
2.9 Key Terms

2.10 Self Assessment Questions and Exercises
2.11 Further Reading

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
66 Material

2.0 INTRODUCTION

The key objective of object-oriented programming is to represent various real-
world objects as program elements. In Java, this objective is accomplished with
the help of class that binds data and methods to manipulate that data together
under a single entity. All OOP (Object Oriented Programming) concepts, such as
data abstraction, encapsulation, inheritance and polymorphism are implemented
with the help of classes. A class serves as a template that provides a layout which
is common to all its instances known as objects. Thus, a class is only a logical
abstraction that specifies what data and methods its objects will have, whereas
objects are physical entities using which those data and methods can be used in a
program.

Inheritance is one of the fundamental concepts of object-oriented
programming. Using inheritance, you can create a general class that defines traits
common to a set of related items. Other, more specific, classes can then inherit
this class, each adding those things that are unique to it. In the terminology of Java,
a class that is inherited is called a super class, and the class that inherits the properties
of super class is known as derived class or child class. Java uses extend keyword
to support inheritance. An interface is defined just like a class but rather than using
the keyword class, the keyword interface is used.

An exception signifies an illegal, invalid or unexpected issue during a
program. Since exceptions are almost always assumed to be anticipated, you
need to provide an appropriate exception handling. Exception handling means
diverting the processing to a part of the program when an exception occurs. Java
provides several built-in classes which define all types of exceptions. These
exception classes are arranged in a hierarchy having Throwable class on the top.
That is, the Throwable class is the superclass and all the exception classes Inherit
methods defined by it. Two immediate subclasses of the Throwable class are
Exception class and Error class.

In this unit, you will study about the introduction to class, method and class
in details, method and constructor overloading, objects as parameters, returning
objects, recursion, access control/ visibility , static and final, nested and inner
classes, string class and command line argument, inheritance and member access,
super class variable and subclass object, super to call superclass constructors
and multilevel hierarchy, calling constructor and overriding methods, abstract classes
method and final in inheritance, interface and packages, fundamental of exception
handling and types, try and catch keyword, finally keywords, throw and throws,
nested try statements, Java build in exceptions and user defined exceptions.

2.1 OBJECTIVES

After going through this unit, you will be able to:

 Discuss the introduction to class

 Analyse the method and class in details

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 67

 Understand the method and constructor overloading

 Describe the objects as parameters

 Explain the returning objects and recursion

 Analyse the access control/ visibility

 Understand the static and final

 Elaborate the nested and inner classes

 Describe the string class and command line arguments

 Explain the inheritance and member access

 Define the super class variable and subclass object

 Understand the super to call superclass constructors and multilevel hierarchy

 Discuss the calling constructor and overriding methods

 Describe the abstract classes method and final in inheritance

 Define the interface and packages

 Explain the fundamental of exception handling and types

 Analyse the try and catch keywords

 Understand the finally keywords

 Explain the throw and throws

 Define the nested try statements

 Elaborate the Java build in exceptions and user defined exceptions

2.2 INTRODUCTION TO CLASS

A class is a user-defined data type that can be used to create instances of its type
called objects. Like any other user-defined data type, it also needs to be declared
and defined in a program. A class definition specifies a new data type that can be
treated as a built-in data type.
The syntax for defining a class is as follows:

class class_name
{

//variables declaration
//methods declaration

}

The variables declared in the class are known as instance variables. The variables
and methods declared within the curly braces are collectively known as members
of the class.

A class can also be empty, for example, the class definition given below is also
valid.

class class_name
{
}

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
68 Material

Here, since the body of the class is empty, it does not contain any variables and
methods so it cannot perform any useful action. However, this class can be
successfully compiled and we can also create objects using it.

Note: In Java, there is no semicolon after closing brace in class definition.

Example 2.1: A simple class definition without any method is as follows:
class Cuboid
{
int length;
int width; //variables declaration
int height;
}

In this example, a class named Cuboid with three instance variables of type
int, namely, length, width and height is created.

Defining Methods

As discussed earlier, a class consists of instance variables and methods. A class
which consists of only variables (and without methods which manipulate them)
cannot perform any useful operation. Therefore, to access the instance variables
of a class and manipulate them, we must add methods in the class.

The syntax for defining a method is as follows:
return_type method_name(parameter_list)
{
body of the method
}

where,

return_type is the type of data that is returned by the method.

method_name specifies the name of the method. This can be any name other
than the keywords in Java.

parameter_list consists of a series of pairs of data type and identifiers
separated by commas.

Note: The parameter_list can be empty and if a method does not return any value, its
return type must be void.

For example, consider the following method definition:
int volume()
{
body of the method
}

Here, the method volume() does not accept any parameter and returns a
value of type int.

Example 2.2: A class definition with method is as follows:
class Cuboid
{
int length;
int width; //variables declaration
int height;
int volume() //method definition
{

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 69

return(length*width*height);
}
}

Note: Methods must be declared immediately after the declaration of instance variables
inside the body of the class.

2.2.1 Method and Classes

Objects are data and methods bundled together into one logical software unit.
The next question is how objects get into our software system and how objects
get created.

A blue print that describes the techniques and variables common to all objects
of a certain kind is called a class. Similarly, many objects can be constructed from
a single class. A class outlines the properties of an object. Objects created from
the same class show similar characteristics.

Declaring Classes

The syntax for declaring classes in Java is as follows:
class identifier

{
class body
}

Here identifier specifies the name of the class. Class body consists of
declarations and method definitions. Curly braces surround the class body.

For example:

Look at the following Java class declaration.
class ExampleClass
{

char cc;
int ii;
double dd;
void exampleMethod1()

{
System.out.println (“Hello World”);
}

void exampleMethod2()
{
System.out.println(“Welcome to India”);
}

}

In the above example. ExampleClass is the class name. Class body consists
of three data item declarations:

char cc;
int ii;
double dd;

and two method implementations:

Method 1
void exampleMethod1()
{
System.out.println (“Hello World”);
}

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
70 Material

Method 2
void exampleMethod 2()
{
System.out.println (“Welcome to India”);
}

The New Operator

Here is how you can create instances of classes or object variables and invoke
methods or member functions in Java.

ExampleClass ec;
ec = new ExampleClass();
ec.exampleMethod1();
ec.exampleMethod2();

The declaration ‘ExampleClass ec’ simply states what type of
object variable ec will be. The object is actually created when the new operator is
called.

The first two statements can be combined into a single statement as follows.
ExampleClass ec = new ExampleClass();

A complete Java program is shown in which you declare a class and create
objects of that class and invoke class member functions.

A Java program to show class declaration in class object creation:
public class Example1
 {
 public static void main(String argv[])
 {
 ExampleClass ec = new ExampleClass();
 ec.exampleMethod1();
 ec.exampleMethod2();
 }
}

 class ExampleClass
{
// char ch
// int ii
// double dd
void exampleMethod1()
 {
 System.out.println(“Hello World”);
 }
void exampleMethod2()
 {
 System.out.println(“Hello Beautiful World”);
 }

 }

On compiling and running, this program will print an output shown as follows:

Output of the program:
Hello World
Hello Beautiful World

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 71

Java Objects as Class Member Variables

Java class member variables are of two types. One is the built-in type, like char,
int, float, double, etc. In the examples you have seen so far, all the class member
variables were of built-in types. The other type of class member variables are Java
objects. A Java program in which a Java object is used as class member variable
is shown as follows

A Java program illustrates that Java objects can be used as class members:
public class Example
{
 public static void main(String argv[])
 {
 ExampleClass ec1=new ExampleClass();
 ExampleClass ec2=new ExampleClass(“Hello World”);
 ec1.exampleMethod();
 ec2.exampleMethod();
 }
}

 class ExampleClass
{
 String ss; / / class number is an object here

String class is defined in
 / / JDK Library

ExampleClass()
 {
 ss=”HelloBeautiful World”; / / default constructor

 }
ExampleClass(String s)
 {
 ss=s;
 }
void exampleMethod()
 {
 System.out.println(ss);
 }
}

Output of the program:
Hello World
Hello Beautiful World

Deriving Classes

A class can be built on another class that is already defined and existing. The
newly built class is called the derived class or child class. The child class inherits all
the properties of the parent class. That is to say that the child class inherits all the
member variables and methods of the parent class. In addition, the child class can
have its own member variables and methods.

The syntax for deriving a class from another class is as follows:
class ChildClass extends ParentClass

{
/ / body of the child class
}

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
72 Material

Here the ChildClass is the newly derived class. ParentClass is the already
existing and previously defied class. extends is a keyword. body of the child
class is the extra feature the ChildClass has over that of the ParentClass.

The Java program in which a child class is derived from a parent class is as
follows. It also exhibits that the derived class inherits the member variables and
member functions of the parent class.

A Java program illustrates class inheritance.
public class Example

{
public static void main(String argv[])
 {
 ChildClass ch=new ChildClass();
 System.out.println(“ch.pi=”+ch.pi); / / inherited from

parent
 System.out.println(“ch.ci=”+ch.ci);
 ch.parentMethod(); / / inherited

from parent
 ch.childMethod();
 }
}

class ChildClass extends ParentClass
{

 int ci;
ChildClass()
 {
 ci=100;

 }
void childMethod()
 {
 System.out.println(“Hello World”);
 }
 }

 int pi;
class ParentClass()
 {
 pi=10;

 }
void parentMethod()
 {
 System.out.println(“Hello Beautiful World”);
 }
 }

Output of the program:
ch.pi=10
ch.ci=100
Hello World
Hello Beautiful World

2.2.2 Method and Constructor Overloading

Two or more methods can be defined within the same class that shares the same
name, till the time their parameter declarations are different in Java. Renaming the

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 73

same method name with different arguments with the same or different return type
is known as overloading method.

The Java program that shows the method of overloading is as follows.
public class Overloading
{
public static void main (String argv[])

 {
 ExampleClass ec=new ExampleClass ();
 ec.exampleMethod (); / / calling the method
 ec.exampleMethod (10); / / calling the overloaded

method
 }

}
class ExampleClass

{
void exampleMethod () / / a method to be overloaded
 {
 System.out.println (“Hello World”);
 }
void exampleMethod (int i) / / overloading
 {
 System.out.println (“Welcome to India”);
 }

}

Output of the program:
Hello World
Welcome to India

 Constructors Overloading

In addition to overloading normal methods, you can also overload constructor
methods. Remember constructors do not return any value and even void should
not be included in the constructor header.

The Java program that shows the constructor overloading is as follows.
public class Box

{
double width;
double height;
double depth;

Box (double w, double h, double d) / / This is the constructor
for Box.
{

width = w;
height = h;
depth = d;

 }
double volume () / / Compute and return volume

{
return width * height * depth;

}
}

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
74 Material

2.2.3 Objects as Parameters

So far, you have only been using simple types as parameters to methods. Class
member variables can be Java objects as well.

A Java program to illustrate that Java objects can be used as class members:
public class ObjParameter
{
public static void main (String argv[])

 {

 ExampleClass ec1=new ExampleClass ();
 ExampleClass ec2=new ExampleClass (“Hello World”);
 ec1.exampleMethod ();
 ec2.exampleMethod ();
 }

}
class ExampleClass

{
 String ss; / / Class number is an object here

/ / String class is defined in JDK Library

 ExampleClass ()
 {
 ss = “Welcome to India”; / / default

constructor
 }

 ExampleClass(String s)
 {
 ss = s;
 }
 void exampleMethod()

{
 System.out.println(ss);

}
}

Output of the program:
Hello World
Welcome to India

2.2.4 Returning Objects

The return data type is declared in the function declaration in the main() function
or the calling function and the declarator is indicated in the first line of the function
definition. If no value is to be returned, the return data type void is specified.
Void simply means NULL or nothing. Therefore, it does not fall in any other
data types, such as integer or float or char.

The return value as you have seen is the result of computation in the called
function. You return a value, which is stored in a data type in the called function.
The return value means that the value, thus stored in the called function is assigned
or copied to a variable in the main() or calling function. Therefore, to receive

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 75

the result, a data type should have been declared and preferably initialized in the
calling function.

The return statement can be any of the following types:
return (sum) ;
return V1;
return “ true” ;
return ‘Z’ ;
return 0;
return 4.0 + 3.0;

In some examples, you have returned variables whose values are known
when they are returned and in other examples, you return constants. You can even
return expressions. If the return statement is not present, it means the return data
type is void.

You can also have multiple return statements in a function. However, for
every call, only one of the return statements will be active and only one value will
be returned.

Arrays and Functions

There is no restriction in passing any number of values to a function; the restriction
is only in the return of values from a function. Therefore, arrays can be passed to
a function without any difficulty, one element at a time, as follows:

#include <stdio.h>
int main()
{

int a[]={1,2,3,4,5};
int j;
int func(int a);
for (j=0; j<=4; j++)

func (a[j]);
..........

}
int func(int c)
{

......
}

Here, func has been declared as a function passing a single integer. Note
here that the declaration or the prototype gives only the format of the parameters
passed. The values are only indicative and are not actual values. They are the
formal values. Therefore, the parameters declared inside the parentheses act only
as a checklist. They cannot be used in the main function elsewhere without actually
declaring them on top of the function. But, for this rule, there would have been a
conflict between a[] which is an array and a which is a simple variable. Here, no
conflict arises because a is not recognized in the main function. It is only a
checklist to see that whenever the function calls func, an integer has to be passed.
If we try to pass a float, the compiler will detect an error. This is not so in the
case of variables defined in the function declarator above the functions body, as
they are recognized as actual names. In this case, int c is declared as a variable
in func. The initial value will be the same as passed by the calling function. Thus,
since a is used in the function declaration, only one integer can be passed to the

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
76 Material

function func. Actually, the entire array can be passed to a function irrespective
of its size, by suitable declaration, as the following example indicates.
/*Example 2.3*/

To find the greatest number in an array*/
#include <stdio.h>
int main()
{

int array[]= {8, 45, 5, 911, 2};
int size=5, max;
int fung(int array[], int size);
max=fung(array, size);
printf(“%d\n”, max);

}
int fung(int a1[], int size)
{

int i, j, maxp=0;
for (j=0; j<size; j++)
{

if (a1[j] > maxp)
{

maxp=a1[j];
}

}
return maxp;

}

Result of the program
911

The objective of Example 3.7 is to find the greatest number in an array. In
the program, an array called array is initialized with 5 values as given below:

int array[]= {8, 45, 5, 911, 2}; size is declared as 5 and
a function called fung has been declared. It will pass an array and an integer to
the called function. The array size has been kept open and the called function will
return an integer. The next statement calls fung and passes all elements of the
array and an integer 5 equal to size. The function gets the actual values and
size=5. The maximum value in the array is found in the for loop and stored in
maxp. The value maxp is returned to the main function and printed there. Thus,
the function is called by value.

Call by Value

In this section, you have been calling functions by passing values. For example,
function calls in some of the above programs are as follows:

change(a, b);
rev = reverse(num);

The values passed to the function change are a & b which are known.
Similarly, while calling function reverse, we pass num. This is called call by
value. When you call functions by value, the called functions can return only one
value.

Call by Reference

You can enable a function to return more than one value. One way of accomplishing
it is by call by reference.

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 77

2.2.5 Recursion

Java supports recursion. Recursion is the process of defining a method that calls
itself.

An example of recursion is the computation of the factorial of a number.

A Java program that illustrates the recursion of the factorial of a number is
as follows:

class Factorial
{

int fact (int n); / / this is a recursive method
 int res;

if (n = = 1)
return 1;
res = fact (n-1) * n;
return res;

}
}
class Recursion
{

public static void main (String args [])
{
 Factorial f = new Factorial ();
 System .out. println (“Factorial of 3 is “ + f.fact(3));

}
}

Output of the program:
Factorial of 3 is 6.

2.2.6 Access Control/ Visibility

In the programs discussed so far, the class members are accessible everywhere in
the program and the subclass can inherit all the variables and methods of a superclass
by using the keyword extends. However, there might be certain situations
when you want to restrict the accessibility of the members of a class for various
reasons with security being one of them. For this, Java provides three types of
visibility controls— public, private and protected. They are also
known as access modifiers.

 Public: When a member of a class is declared as public, it can be
accessed everywhere in the program.

 Private: A member declared as private can be accessed only within
a class.

 Protected: A member declared as protected is accessible not
only to all the classes and subclasses in the same package but also to
subclasses in other packages.

If no visibility control is specified, the data member of a class is visible only
within the same package by default. You may use the word ‘friendly’, in connection
with the default access, however, it is not a Java keyword.

Apart from the visibility controls discussed, there is another visibility control
namely private protected which was used with the release of Java 1.0.

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
78 Material

However it has been dropped in Java 1.1 and further versions. If data members
are declared as private protected, they can be accessed by all the subclasses
irrespective of the package to which they belong. However, they are not visible in
other classes of the same package (Refer Table 2.1).

Table 2.1 Visibility of Field Inside a Class

Access location

Access modifier

Same
class

Subclass
in same
package

Non-
subclasses
in same
package

Subclass
in other
packages

Non-
subclasses
in other
packages

Public ? ? ? ? ?
Private ? х х х х
Protected ? ? ? ? х
Default ? ? ? х х

These are certain rules that can be followed to select the appropriate visibility
control. If the data member is to be made:

 Visible everywhere in the program, use public visibility control.

 Invisible everywhere except within the same class, use private visibility
control.

 Visible everywhere in the same package and subclasses in other package,
use protected visibility control.

 Visible everywhere in the same package only, use the default visibility control.

 Sisible only in the subclasses irrespective of packages, use private
protected.

Example 2.4: A program to demonstrate the use of private, public and default
visibility controls

class FirstClass
{

int i; //default variable
private int j; //private variable
public int k; //public varaible
int get_data(int l)
{

j=l;
return j;

}
}
class VisibilityTest
{
 public static void main(String[] args)

{
FirstClass obj=new FirstClass();
obj.i=20; //i can be accessed directly
obj.k=60; //k can be accessed directly

//this will cause error as j cannot be
//accessed directly
//obj.j=60;

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 79

//j can be accessed through its method
int a=obj.get_data(40);
System.out.println(“The value of i,j and k are:

“+obj.i+” ,”+a+” and “+obj.k+” respectively.”);
}

}

The output of the program is:

The value of i,j and k are: 20,40 and 60 respectively.

In this example, variable i is set to default access, variable j is declared as
private and variable k is declared as public . In the class
VisibilityTest, only variables i and k can be accessed directly. The
variable j can be accessed through its method get_data().

2.2.7 Static and Final Classes
A variable which has a constant value or a method that cannot be overridden in
a subclass or a child class is specified by a final keyword. The syntax for a final
keyword is shown as follows:

final public int a = 10;
final public void classMethod();

This keyword is used to reference the current object inside a class definition
by passing the need for an instance variable.

Static Keyword

Sometimes you need a common variable or method for all the objects derived
from a class. The static keyword specifies that a variable or a method is the same
for all objects of a particular class.

Each time you create an object from a class, space is allocated for the
variables. If a variable is declared static, space is allocated only once, i.e., the first
time when you create the object. This space is shared by all subsequent objects.
Static method is one whose mention is the same for all objects. Static method has
access to static variables only. The syntax for declaring a static variable or method
is as follow:

static int a;
static void classMethod();

The possibility of defining a class within another class is called as nested
classes. The range of a nested class is enclosed by the extent of its enclosing class.
Nested classes are of two types which are static and non-static. A static class has
a static modifier applied i.e., it must contact the members of its surrounding class
through an object.

A non-static nested class which is an inner class, is very important because
all the variables and methods of its outer class can be accesses and referred directly.

The following program shows how to define and use an inner class:
class Outer
{

int outer_x = 10;
 void test()

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
80 Material

 {
Inner inner = new Inner();
inner.display();

 }
class Inner
{

void display()
{
System.out.println(“Display : outer_x =” + outer_x);
}
}

}

class InnerClass
{

public static void main(String args [])
{
Outer outer = new Outer();
outer.test();
}

}

Output of the program:
Display : outer_x = 10

2.2.8 Nested and Inner Classes

In Java, four types of inner classes are used. These are:

 static Inner Class

 Non-static Inner Class

 Local Inner Class

 Anonymous Inner Class

Suppose X is the outer class and Y is the corresponding inner class present
in X. When the source code containing these class definitions is compiled, then
two class files are created. One is class X and the other is X$Y.

A nested or inner class is the member of its enclosing class. Nested
class can be declared by using any access modifier. In Java, outer class or
enclosing class is declared by using a public or a no access modifier. Nested
class is able to access private, protected, no access or public member
of enclosing class.

Advantages

The advantages of using inner class are as follows:
 Logical grouping of classes
 Increased encapsulation

 More readable, maintainable code

static Inner Class/Nested Class

static inner class is popularly known as nested class. If an inner class uses
static modifier, then the inner class is treated as a static inner class.
The following example clarifies this:

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 81

Program 2.1

class X

{

static class Y

{

}

}

 Here Y class is treated as static inner class.

Key Points of static Inner Class

The key points are as follows:

 A programmer declares the static inner class by using any access
specifier.

 A static inner class accesses the static member of outer or
enclosing class through the outer class name or directly.

 A static inner class accesses the non-static member of the outer or
enclosing class through the instance or object of the outer class.

 A static member of the static inner class accesses the non-static
member of the inner class through the instance of static inner class.

 A static member of the static inner class accesses the static
member of the inner class through the name of the static inner class
or directly.

 A non-static member of the static inner class accesses the static
member of the inner class through the inner class name or directly.

 A non-static member of the static inner class accesses the non-static
member of the inner class directly.

 A static inner class supports inheritance.

Program 2.1

public class demo {

static class X

{

static int j=90;

}

public static void main(String[]args){

System.out.println(demo.X.j);

}

}

Output of the program:

90

In this program, the class demo contains a static inner class X. X
has a static member j. static members can be accessed through class name.
So to access the member variable j of the static inner class X, one has to
write demo.X.j or simply X.j. The following example clarifies this:

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
82 Material

Program 2.4

public class demo {

static class X

{

 int j=90;

}

public static void main(String[]args){

X a=new X();

System.out.println(a.j);

}

}

Output of the program:

90

Here the static inner class X contains a non-static instance variable j.
Non-static instance variables can only be accessed through object name. Therefore,
the object of class X has been created. Have a look at the following example:

Program 2.4

public class Inner2

{

String name;

static int roll;

private String getName(String n)

{

name=n;

return name;

}

static int getRoll(int r)

{

roll=r;

return roll;

}

static class Test

{

int age=10;

static String add=”Cuttack”;

static void display()

{

Inner2 i1=new Inner2();

Test t=new Test();

System.out.println(“Name Is “+i1.getName(“Sai”));

System.out.println(“Roll Number Is
“+Inner1.getRoll(1));

System.out.println(“Age Is “+t.age+”\t”+”Address Is
“+Test.add);

}

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 83

}

public static void main(String args[])

{

Test.display();

}

}

Output of the program:

F:\>java Inner 2

Name Is Sai

Roll Number Is 1

Age Is 10 Address Is Cuttack

Here Test is a static inner class and display() is a static
method. So display() is called through a class name. Inside the body of
display(), the getRoll() method is called through a class name, i.e.,
Inner2 since it is a static method. The following example shows this:

Program 2.5

public class Inner3

{

String name;

static String add;

static int age;

private static class Test1

{

int roll;

String getName(String n)

{

Inner3 i3=new Inner3();

i3.name=n;

return i3.name;

}

int getAge(int a)

{

Inner3.age=a;

return Inner3.age;

}

}

protected static class Test2 extends Test1

{

int getRoll(int r)

{

roll=r;

return roll;

}

String getAddress(String a)

{

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
84 Material

Inner3.add=a;

return Inner3.add;

}

}

public static void main(String args[])

{

Test2 t=new Test2();

System.out.println(“Name Is “+t.getName(“Sai”));

System.out.println(“Age Is “+t.getAge(10));

System.out.println(“Roll Number Is “+t.getRoll(1));

System.out.println(“Address Is “+t.getAddress(“Cuttack”));

}

}

Output of the program:

F:\>java Inner 3

Name Is Sai

Age Is 10

Roll Number Is 1

Address Is Cuttack

In this program, Test1 is a static private inner class and Test2
is a protected static inner class. Since Test2 is private, it can
only be accessed within the outer class object, and since Test2 extends
Test1, the object of Test2 can call the methods of Test1. The next example
clarifies this further.

Program 2.6

class X

{

static class Y

{

static int j=10;

}

}

public class demo

{

public static void main(String[]args)

{

System.out.println(X.Y.j);

}

}

Output of the program:

10

Y is a static inner class present in class X. Y contains a static
variable j. A static member can be accessed through a class name. Therefore,
to access j, one has to write X.Y.j. This is shown in the following example:

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 85

Program 2.7

class X

{

static class Y

{

 int j=10;

}

}

public class demo {

public static void main(String[]args){

X.Y a=new X.Y();

System.out.println(a.j);

}

}

Output of the program:

10

Y is a static inner class having an instance variable j present in class x.
In order to access j, one has to create the object of Y. However, it is not possible
to create the object of Y directly, because Y is inside class; hence not visible to
class demo. One has to create the reference of class Y through the outer class X.
To create the object, the constructor of class Y has to be called through the outer
class X, as shown in the above program.

Non-static Inner Class

Class declared within another class without using static modifier is treated as
a non-static inner class. A non-static inner class is popularly known as an
inner class. A non-static inner class is declared by using any access modifier.
This can be seen in Program 2.8.

Program 2.8

class X

{

class Y

{

}

}

Here class Y is treated as non-static inner class.

Key Points of Non-Static Inner Class

 A non-static inner class non-static member, accesses the static member
of the outer class either directly or through the outer class name.

 A non-static inner class non-static member, accesses the non-static member
of the outer class directly without creating any instance of the outer class.

 Within the non-static inner class, one cannot declare any static member.

 This inner class is very popularly used.

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
86 Material

Program 2.9

public class Inner4

{

String name;

static int age;

private String getName(String n)

{

name=n;

return name;

}

static int getAge(int a)

{

age=a;

return age;

}

private class Test1

{

int roll;

String add;

int getRoll(int r)

{

roll=r;

return roll;

}

String getAddress(String s)

{

add=s;

return add;

}

void display()

{

System.out.println(“Name Is “+getName(“Sai”));

System.out.println(“Age Is “+Inner4.getAge(10));

System.out.println(“Roll Number Is “+getRoll(1));

System.out.println(“Address Is
“+getAddress(“Cuttack”));

}

}

public static void main(String args[])

{

Inner4 t1=new Inner4();

t1.show();

}

void show()

{

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 87

Test1 t1=new Test1();

t1.display();

}

}

Output of the program:

Name Is Sai

Age Is 10

Roll Number Is 1

Address Is Cuttack

In the above example, the main class is Inner4 which contains a
private inner class Test1. Inside the main class, the programmer has
created an Inner4 class object which then calls the show() method present
inside Inner4 class In show(), the programmer has created an object of the
private inner class Test1 and through that object, the display() method
present inside the inner class Test1 has been called. In display, the programmer
has called the getName() method directly to print the name and then the static
getName() method of outer class by using the outer class name.

Program 2.10

public class Outer1

{

String name;

int roll;

public class Inner1

{

String getName(String n)

{

name=n;

return name;

}

int getRoll(int r)

{

roll=r;

return roll;

}

}

public static void main(String args[])

{

Outer1 o1=new Outer1();

Inner1 i1=o1.new Inner1();

System.out.println(“Name Is “+i1.getName(“Asit”));

System.out.println(“Roll Number Is “+i1.getRoll(4));

}

}

Run the program by: C:\>java Outer1

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
88 Material

Output of the program:

Name Is Asit

Roll Number Is 4

Program 2.11

class X

{

class Y

{

int j=10;

}

}

public class demo

{

public static void main(String []args)

{

X a=new X();

X.Y z=a.new Y();

System.out.println(z.j);

}

}

Output of the program:
10

Y is a non-static inner class present in X. Y is not visible to class demo.
To create the reference of class Y, one has to use the outer class X as shown in the
program. Since Y is non-static inner class, its constructor cannot be called through
the outer class name X. For this purpose, an object of outer class X is needed.
Here a is the object of outer class X. Through the object of outer class, constructor
of Y is invoked (see the program). Once the object of class Y is created, one can
access its instance variable j. The following example program shows this.

Program 2.12

public class demo

{

class Y

{

int j=10;

}

public static void main(String[]args)

{

demo a=new demo();

Y z=a.new Y();

System.out.println(z.j);

}

}

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 89

Output of the program:
10

Since the inner class Y is present inside the demo, one can simply use the
class name Y to create the reference of class Y. However, to create an object, one
needs the object of class demo. It is only through the object of class demo that
it is possible to call the constructor of class Y.

Local Inner Class

Class declared within the method is treated as a local inner class.

Program 2.13

class X

{

void show()

{

class Y

{

}

}

}

Here class Y is treated as local inner class as it is declared within the
method show().

Key Points of Local Inner Class

 A local inner class is declared through a no-access modifier, but cannot
be declared through public, private and protected access modifier.

 A local inner class accesses the private member of the outer class.

 A local inner class non-static member directly accesses the static member
of the outer class.

Program 2.14

public class demo

{

static int a=10;

public static void main(String[] args} {

class X

{

int j=a;

}

System.out.println(new X().j);

}

}

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
90 Material

Output of the program:

10

A local inner class non-static member directly accesses the non-static
member of the outer class, if the inner class is inside a non-static method.
Otherwise, a compilation error will be generated.

Program 2.15

public class demo

{

int a=10;

public static void main(String[]args)

{

demo d=new demo();

d.fun();

}

void fun()

{

class X

{

int j=a;

}

System.out.println(new X().j);

}

}

Output of the program:

10

A local inner class can only access the final member of the method
where the class is declared. If one tries to access any other local variable, then
compile time error will be generated. This can be seen in the following example:

Program 2.16

public class demo

{

public static void main(String[]args)

{

final int a=50;

class X

{

int j=a;

}

System.out.println(new X().j);

}

}

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 91

Output of the program:

50

A programmer creates the object of a local inner class within the method
where the class is declared.

A local inner class present in a method can be static and abstract.
The given example shows this.

Program 2.17

public class Local

{

String name;

private static int roll;

protected static int age;

String add;

void go(final int a,int b)

{

final int x=a+b;

int y=a-b;

class Inner

{

String getName(String n)

{

name=n;

return name;

}

int getAge(int a)

{

age=a;

return age;

}

int getRoll(int r)

{

roll=r;

return roll;

}

String getAddress(String s)

{

add=s;

return add;

}

void show()

{

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
92 Material

System.out.println(“Name Is “+getName(“Sai”));

System.out.println(“Age Is “+getAge(10));

System.out.println(“Roll Number Is “+getRoll(1));

System.out.println(“Address Is
“+getAddress(“Cuttack”));

}

void display()

{

System.out.println(“Value of A Is “+a);

System.out.println(“Value of X Is “+x);

}

}

Inner i1=new Inner();

i1.show();

i1.display();

}

public static void main(String args[])

{

Local1 l1=new Local1();

l1.go(10,2);

}

}

Output of the program:

Name Is Sai

Age Is 10

Roll Number Is 1

Address Is Cuttack

Value of A Is 10

Value of X Is 12

Anonymous Inner Class

One can also declare an inner class within the body of a method without naming
it. Such classes are known as anonymous inner classes. In other words, the
declaration and initialization of the class is done on the same line. Have a look at
the following program:

The main advantage of anonymous inner class is we create the object of
abstract class and interface. As a programmer we know that we
never instantiated abstract class and interface.

Program 2.18

public abstract class Test

{

public abstract void show();

void fun()

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 93

{

System.out.println("Good Morning");

}

public static void main (String args[])

{

Test tt=new Test ()

{

public void show ()

{

System.out.println ("Hi Everybody");

}

};

tt.fun ();

tt.show();

}

}

Output of the program:

Good Morning

Hi Everybody

Here we know abstract class cannot be instantiated but within the main()
method we construct abstract class through anonymous inner class.

2.2.9 String Class

The String class is more commonly used to display messages and when strings
need to be compared, searched or individual characters in a string have to be
extracted as a substring.

The syntax to declare string is:

String string_name;

The syntax for creating a string is:

string_name=new String(“Sequence_of_characters”);

These two steps of declaration and creation can be combined into a single statement
as shown:

String string_name=new String(“Sequence_of_characters”);

For example, the statement to declare and create a string str1 using String
class is,

String str1=new String(“Java Programming Language”);

The String class provides various methods for manipulating strings. Some of
the most commonly used methods of String class along with their descriptions
are listed in the Table 2.2.

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
94 Material

Table 2.2 String Class Methods and their Description

Methods Description
str1.length() Returns the length of the string str1.
str1.equals(str2) Returns ‘true’ if string str1 is equal to string

str2.
str1.compareTo(str2) Returns negative if str1<str2, positive if

str1>str2, otherwise 0 .
str1.concat(str2) Concatenates string str1 and string str2.
str1=str2.trim() Removes all the white spaces at the beginning and

end of the string str2 and assigns it to str1.
str1=str2.replace(‘a’,’b’) Replaces all a appearing in the string str2 with b

and assigns it to str1.
str1=str2.toLowerCase() Converts uppercase letters in a string str2 to

lowercase and assigns it to str1.
str1=str2.toUpperCase() Converts lowercase letters in a string str2 to

uppercase and assigns it to str1.
str1.indexOf(‘a’) Gives the position of the first occurrence of

character ‘a’ in the string str1.
str1.indexOf(‘a’,n) Gives the position of the first occurrence of

character ‘a’ that occurs after nth position in the
string str1.

Program 2.18: A program to demonstrate the use of some of the methods of a
String class

class StringDemonstrate
{

public static void main(String args[])
{

String str1=new String(“New”); //creating string str1
String str2=new String(“Delhi”); //creating string

str2
String str3=str1.concat(str2); //concatenating strings
str1 and str2
String str4=str3.toUpperCase();
String str5=str3.toLowerCase();

System.out.println(“Combined String is: “ +str3);
System.out.println(“Combined String in UPPER CASE

is: “ +str4);
System.out.println(“Combined String in LOWER Case

is: “ +str5);
}

}

Output of the program:

Combined String is: NewDelhi
Combined String in UPPER CASE is: NEWDELHI
Combined String in LOWER Case is: newdelhi

2.2.10 Command Line Arguments

A command line argument is the information that directly follows the program’s
name on the command line when it is executed. They are stored in String array
passed to the args parameter main (). The first command-line argument is
stored at args [0], the second at args [1], and so on.

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 95

The following program displays the command line arguments:
class CommandLine
{

public static void main (String args[])
{
for (int a=0; a<args.length; a++)
 System.out.println (“args[“ + a + “]: “ + args[a]);

}

Try executing this program as follows:
Java CommandLine This is a test 10 -1

The output of the program:
args [0] : This
args [1] : is
args [2] : a
args [3] : test
args [4] : 10
args [5] : -1

2.3 INHERITANCE

Inheritance is an important concept in Java. It facilitates code reusability. It
is one of the corner-stones of object-oriented programming principles. The
philosophy of inheritance is inculcated from the life cycle of a creature.
Just like a child acquires some of the characteristics of a parent, the child class
inherits codes that include variables, and methods from the parent class. A
programmer needs to know the basics of inheritance in order to have an
object-oriented model of business logic. Inheritance is one of the
fundamental concepts of object-oriented programming. Using inheritance,
one can create a general class that defines traits common to a set of related items.
This class can then be inherited by other more specific classes, each adding those
things that are unique to it. In the terminology of Java, the class that is inherited is
called super class and the class that inherits the properties of super class is
known as derived class or child class. Java uses the extends keyword
to support inheritance.

Getting into the Concept

The general syntax of inheritance is
class X
{

//Codes
}

class Y extends X
{

//Codes
}
class baseClass extends superClass{

//Codes
} should be the syntax.

Here X is the super class and Y is the child class or derived class.

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
96 Material

Benefit of Inheritance

One of the benefits of inheritance is code reusability because the derived
class (child class) copies the member of the super class (parent class).

Restriction: However, if the super class members are private, then the
child class cannot copy them. Another thing to be remembered is that Java
class does not support multiple inheritances.

To inherit a class, the definition of one class has to be incorporated into
another by using the extends keyword. This can be seen in the following example.

Codes to Show Inheritance

Example 2.5
class X{

void show()
{
System.out.println(“Hello, Java I am inherited”);
}

}
class Y extends X

{
}

class Demo
{
public static void main(String argts[])

{
Y a=new Y();
a.show();
}

}

Output of the program:
Hello, Java I am inherited

In the above example, X is known as the super class and Y is the derived
class or the child class. Inside the main() method, the object of child class is
created but the show() method of parent class is invoked. The show()
method is not a member of Y. In case of inheritance, the child class
copies those members of the parent class that are not private, to itself.
show()method belongs to class X. It has a default access specifier. Therefore,
it can be inherited within a package. By using extends keyword, show()
method is copied to class Y. Hence, any object of class Y can invoke show()
method.

Multi-Level Inheritance

This can be shown by the following example:

Example 2.6
class X
{

void show()
{

System.out.println(“Hello, Java”);

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 97

}
}
class Y extends X
{
}
class Z extends Y
{

Z()
{

super.show();
}

}
public class Demo extends Z
{
 public static void main(String args[])
 {
 Z obj=new Z();
 }
}

Output of the program:
Hello, Java

Here show() method of X is copied to class Y and from class Y to
class Z. Hence the object of class Z can invoke show() method which is
written in class X. In this way, inheritance facilitates code reusability.

2.3.1 Member Access

Each object of a class has its own set of variables. These variables should be assigned
values before being used in the program. The instance variables and methods added
in the program cannot be accessed directly outside the class using their names. To
access the variables and methods outside the class, the dot (.) operator is used as
follows:

object_name.variable_name

object_name.method_name(parameter_list)

where,

object_name is the name of the object.

variable_name is the name of the instance variable that is to be accessed.

method_name is the name of the method which is to be called.

parameter_list is the series of pairs of data types and their respective
identifiers.

For example, the instance variable length of Cuboid class can be accessed as
follows:

cobj.length;

Similarly, the method volume()of Cuboid class can be accessed as follows:
cobj.volume();

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
98 Material

Program 1.19: A program to demonstrate the accessing of members of a class.
class Cuboid

{

int length;

int width;

int height;

int volume() //method definition

{

return(length*width*height);

}

}

class ClassDemo

{

public static void main(String args[])

{

Cuboid cobj=new Cuboid(); //object creation

cobj.length=60;

cobj.width=20; //accessing variables

cobj.height=40;

int vol=cobj.volume(); //calling method

System.out.println(“The volume of the cuboid is: “
+vol);

}

}

Output of the program:

The volume of the cuboid is: 48000

In this example, the instance variables length, width and height of the object
cobj are assigned values outside the class using the dot operator. Alternatively, the
instance variables can be assigned values by using a parameterized method.

2.3.2 Super Class Variable

In Java, the concept of inheritance is implemented through super class. The super
class is used to save the work of an existing class that can inherit the property of
general class. It introduces better data analysis, reduces development time and
gives fast performance. The Java super class is a type of class that provides methods
to Java subclass. Other classes can extend the super class. It allows the extended
class to build behaviour and state upon it. For example, Color class is the super
class of Car:

public class Car extends Colour
{
}

The keyword ‘Super’ is used to point the super class instance. For example, the
following code shows how to use super key:

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 99

class Number
//Class Number is declared
{
 int num = 20;
//Variable num is defined as integer data type
}
class DisplayNum extends Number
{
 public void num_function()
{
System.out.println(super.num);
//Prints the value of num variable accessing by super keyword
}
}

In the previous example, the super keyword is used to access the super class
variable.

The following code is written in Java using super class:

import java.util.ArrayList;
//Importing java.util.ArrayList
import java.util.Vector;
//Importing java.util.Vector
public class Main {
//Constructor
Public Main()
{
 checkObjectSuperClass(new Vector());
 checkObjectSuperClass(new ArrayList());

 checkObjectSuperClass(“Test String”);
 checkObjectSuperClass(new Integer(1));
 }
//Checking which superclass the object has.
public void checkObjectSuperClass(Object testObject)
{
 System.out.println(“Object has the superclass “ +
testObject.getClass().getSuperclass().getName());
 }
//Starting the main program
 public static void main(String[] args)
 {
 new Main();
 }
}

Output of the program:

Object has the superclass java.util.AbstractList
Object has the superclass java.util.AbstractList
Object has the superclass java.lang.Object
Object has the superclass java.lang.Number

The super class of Vector and ArrayList classes reside in the
java.util.AbstractList class. The String class is derived from
java.lang.Object class. The Integer class is derived from the
java.lang.Number class.

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
100 Material

Every object has instance variables of super classes, such as parent class,
grandparent class, etc. These super classes are initialized before the instance variable
of class. The various methods are used for super class as follows:

Method I: Automatic insertion of super class constructor call:

Automatic insertion of super class takes place if created object is necessary to call
the constructors, otherwise Java automatically performs this task.

public Two_Var(int aa, int bb)
{
 super();
 // Automatically inserted
 a = aa;
 b = bb;
}

Method II: Explicit call to super class constructor:
class my_Window extends JFrame
{
 . . .
 //Constructor
public my_Window (String s_title)
{
 super(s_title);

 . . .
}

A parent constructor is called having parameters but the default constructors has
basically no parameters.

2.3.3 Subclass Object

The class that is inherited by other classes is called a base class or superclass or
parent class. The class that inherits the properties of the superclass is called a
subclass or derived class or child class. The subclass inherits all of the instance
variables and methods that are defined by the superclass and at the same time it
also contains its own members. For example, in Figure 2.1, animal is the superclass
which is inherited by three subclasses—carnivore, herbivore and omnivore. Hence,
carnivore, herbivore and omnivore inherit all the members of the superclass animal.

 Superclass

 Subclasses

 Animal

 Carnivore Herbivore Omnivore

Fig. 2.1 Superclass and Subclass

Defining a Subclass

Inheritance is implemented while defining the subclass. The name of the superclass
is specified in the subclass definition. A subclass can be defined by using extends
keyword.

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 101

The syntax to define a subclass is

class sub_class extends super_class
{

//variables and methods declaration
}

where,

sub_class is the name of the subclass that inherits the superclass

super_class is the name of the superclass that is being inherited

extends is the keyword that indicates that the super_class properties
have been extended to the sub_class

2.3.4 Using Super to Call Superclass Constructors

In Java, you can use the subclass constructor to initialize instance variables of both
the superclass and the subclass.

Example 2.7: A program to explicitly initialize the instance variables of superclass
inside the subclass constructor

class FirstClass
{
int x,y;

int func1()
{

return (x+y);
}

}
class SecondClass extends FirstClass
{

int z;
SecondClass(int a, int b, int c) //subclass constructor
{

// initializing instance variables of superclass
x=a;
y=b;
// initializing instance variable of subclass
z=c;

}
int func2()
{

return (x+y+z);
}

}
class ExplicitInitialization
{

 public static void main (String args[])
{

SecondClass obj=new SecondClass(10,20,30);
int result1=obj.func1();
int result2=obj.func2();
System.out.println(“The first result is: “+result1);
System.out.println(“The second result is:

“+result2);
}

}

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
102 Material

The output of the program is

The first result is: 30
The second result is: 60

In this example, the subclass SecondClass explicitly initializes the instance
variables x and y of the superclass. However, if instance variables of the superclass
are declared as private, then subclass cannot access or initialize these instance
variables of superclass. For this, Java provides a keyword super that can be
used by the subclass to pass values to the private variables of superclass by calling
its constructor.

The syntax for using super keyword is

super(parameter_list);

Here, parameter_list specifies the parameters required by the superclass
constructor.

These are certain points that should be kept in mind while using super keyword.
These points are as follows:

 It is used only within a subclass constructor.

 It should be the first statement to be executed inside the subclass constructor.

 The parameters specified in the super() method must match the order
and type of the variables declared in the superclass’ constructor.

2.3.5 Multilevel Hierarchy

You have been using simple class hierarchies that consist of only a superclass and
a subclass. However, you can build hierarchies that contain many layers of
inheritance. To see how a multilevel hierarchy can be useful, consider the following
program.

class Worker
{

int salary;
float overtime;
double total;

Worker() { }

publicWorker(int x, float y)
{

salary = x;
overtime = y;

}
public double totalSalary()
{

return total = salary + overtime;
}
public double netSalary()
{

return totalSalary() – totalSalary() * 30 / 100;
}

}
public class Supervisor extends Worker
int supervisory_allowance;

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 103

public Supervisor(int x, float y, int z)
{
salary=x;
overtime=y;
supervisory_allowance = z;
}
public static void main (String args[])
{
Worker shopfloor =new worker (2500,376.5f);
Worker frontoffice=new worker(2200,85.00f);
Supervisor gmoffice=new supervisor(5700,459.25f.1876);
Supervisor planningdept=newsupervisor(6780.145.85f,2567);

double d;
d=shopfloor.totalSalary();
System.out.println(“Total Salary of shopfloor worker is Rs.” +d);
System.out println(“Total Salary of frontoffice worker is Rs”+
frontoffice.totalSalary());
d=gmoffice.total Salary();
System.out println (“Total Salary of GM office supervisor is Rs”
+ d);
System.out.println(“Total Salary of Planning department supervisor
is Rs.” + planning dept.totalSalary());
System. out. println(“Supervisory allowance of gmoffice is Rs.”
+gmoffice. supervisory _ allowance);
System.out.println (“Supervisory allowance of planningdept is
Rs.” +
 planningdept.supervisory_allowance);
}

Output of the program:
Total Salary of shopfloor worker is Rs. 2876.5
Total Salary of frontoffice worker is Rs. 2285.0
Total Salary of GM office supervisor is Rs. 6159.25
Total Salary of Planning department supervisor is Rs. 6925.85009765625
Supervisor allowance of gmoffice is Rs. 1876
Supervisor allowance of planningdept is Rs. 2567

2.3.6 Calling Constructor

In case of inheritance the super class default constructor is implicitly invoked
when the programmer creates the child class object by calling the child class
constructor through a new operator. This can be shown by the following example:

Program 2.20

class X

{

X()

{

System.out.println(“Inside super class default
constructor”);

}

X(int i)

{

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
104 Material

System.out.println(“Inside super class parameterized
constructor”);

}

}

class Y extends X

{

}

class Demo

{

public static void main(String args[])

{

Y d=new Y();

}

}

Output of the program:

Inside super class default constructor

If the super class parameterized constructor is defined but the super class
default constructor is not defined, then compile time error arises. The following
example program shows this.

Program 2.21

class X

{

X(int i)

{

System.out.println(“Inside super class parameterized
constructor”);

}

}

class Y extends X

{

}

 class Demo

{

public static void main(String args[])

{

 Y d=new Y();

}

}

Output of the program:

The compile time error will arise as follows:
Exception in thread “main” java.lang.Error: Unresolved

compilation problem:

Implicit super constructor X() is undefined for default
constructor. Must define an explicit constructor

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 105

at demo.Y.<init>(Demo.java:12)

at demo.Demo.main(Demo.java:20)

If the child class parameterized constructor is called, the parent class default
constructor is also called at that time. This can be shown by the given program.

Program 2.22

class X

{

X()

{

System.out.println(“Inside super class default
constructor”);

}

X(int i)

{

System.out.println(“Inside super class parameterized
constructor”);

}

}

class Y extends X

{

Y(int i)

{

System.out.println(“Inside child class parameterized
constructor”);

}

}

 class Demo

{

public static void main(String args[])

{

Y d=new Y(6);

}

}

Output of the program:

Inside super class default constructor

Inside child class parameterized constructor

If the super class default constructor is not defined, then inside child class
constructor calls the parent class parameterized constructor as shown in the
following example.

Program 2.23

class X

{

X(int i)

{

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
106 Material

System.out.println(“Inside super class parameterized
constructor”);

}

}

class Y extends X

{

Y(int i)

{

super(8);

System.out.println(“Inside child class parameterized
constructor”);

}

}

 class Demo

{

public static void main(String args[])

{

 Y d=new Y(6);

}

}

Output of the program:

Inside super class parameterized constructor

Inside child class parameterized constructor

Here, parent class parameterized constructor is called through the super
keyword and it is the first statement inside the child class constructor.

2.3.7 Overriding Methods

If a subclass method has the same name, same parameter list and same return
type as a superclass method, then we say that the method in the subclass overrides
the method in the superclass. When the overridden method is called, the version
of the method defined in the subclass will be invoked instead of the method defined
in the superclass. That is, the method in the subclass will hide the method defined
in the superclass.

Example 2.8: A program to demonstrate method overriding is as follows:
class Person
{
String name=”John”;

int age=30;
void result()
{

System.out.println(“The name and the age of the person are: “+name+”
and “+age+ “respectively ”);
}
}
class Employee extends Person
{

int salary=40000;

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 107

void result() //result() is overridden
{

System.out.println(“The name and the salary of the employee are:
“+name+” and “+salary+ “respectively ”);
}
}
public class MethodOverriding
{
public static void main(String[] args)
{
Employee obj=new Employee();
obj.result(); // invokes Employee’s result()

}
}

The output of the program is:
The name and the salary of the employee are: John and 40000, respectively

In this example, when the method result() is invoked through an object
obj of type Employee , the method result()defined within Employee
is executed. That is, the method result() of the subclass Employee
overrides the method result() of the superclass Person.

2.3.8 Abstract Classes Method

As discussed earlier, a method can be prevented from being overridden in the
subclass by using the final keyword. However, sometimes there might be a
situation, when the method in the superclass always needs to be redefined in the
subclass and for this overriding becomes necessary. This kind of situation can
arise when the superclass is not able to provide meaningful implementation of its
methods. In such a case, the superclass provides a generalized structure of the
method and leaves the implementation part to its subclass. To deal with this type
of a situation, Java allows us to specify that a method must always be overridden
in the subclass by using the keyword abstract in the method declaration.

The syntax for declaring an abstract method is as follows:
abstract data_type method_name();

If a class has one or more abstract methods, the class must also be declared as
abstract by using the keyword abstract.

The syntax for declaring an abstract class is as follows:
abstract class class_name

{

:
abstract data_type method_name();
}

The class which inherits the abstract class must provide implementation for all
methods or the class should declare itself as abstract.

The following points should be kept in mind while using an abstract class:

 An abstract class cannot be instantiated.

 Abstract methods of an abstract class must always be implemented in the
subclass.

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
108 Material

 Abstract methods must end with semicolon (;) because they do not have
any functionality.

 There can be both defined and undefined methods in an abstract class.

 Constructors or static methods cannot be declared as abstract.

2.3.9 Final Class in Inheritance

When a class is declared as final then the class cannot be inherited. A final
class cannot be declared through the abstract keyword.
final class X

{

} /*X is a final class. No class cannot be inherited from the final
class. In java String, StringBuffer, Math, Array, All wrapper classes
are treated as final class.*/

class Y extends from X

{

}

//generates compile time error.

What is final Method?

final method cannot be overriden. When we define a final method we
never use abstract keyword.

What is final Variable?

As a programmer we declare local variable, static variable and instance
variable as final. But when we declare static variable as final then in
Java it is treated as constant. As it is a final variable it must be initialized.
final static int i=10;//it's a constant

In Java we never declare a constant by using const keyword. We are
bound to declare a constant by using two modifiers static and final. If an
instance variable is declared through final keyword then the programmer is
bound to initialize it. final variable is bound to be initialized.

The Volatile Keyword

volatile is a keyword or modifier used for variable. In Java volatile
variable is used in multithreaded application. When multiple numbers of threads
use the same variable then the thread will have its own copy of the local cache for
that variable. When the thread updates the value for the variable, the updated
value is stored in local cache but not in the main memory.

Restriction

volatile variable is never used in final modifier.

volatile int i;

Here i is a volatile variable.

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 109

Check Your Progress

1. Give the definition of class.

2. Define the term method overloading.

3. Write the defination of the term return data type.

4. What is recursion?

5. Write the advantage of inner classes.

6. State about the string class.

7. Write the one benefit of inheritance.

8. What do you understand by the term super class.

9. How inheritance in defined in a sub class?

10. When the overriding method in called in a sub class?

11. What happens when a class in declared as final?

2.4 INTERFACE

An interface is just like a class. The only difference is that it contains only final
variables and method declarations. Hence, we can think of an interface as a ‘fully
abstract class’. There is no limitation to the number of interfaces that a class can
implement.

Defining an Interface

An interface is defined just like a class but rather than using the keyword class,
the keyword interface is used.

The syntax to define an interface is as follows:
interface interface_name
{
//variables and methods declaration
}

where,

interface is the Java keyword.

interface_name is the name of the interface.

If there is no access specifier included in the interface definition, then the default
access is used and the interface is visible only to members of the same package.
However, to make the interface accessible in any other code, it can be declared as
public. The variables in an interface are by default static and final.
Hence, they cannot be altered by the implementing class. The methods are
abstract by default. All methods must be implemented by the class which
implements the interface. For example, consider the following code segment:

interface Area
{
double pi=3.142;
void compute();
}

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
110 Material

Here, Area is the name of the interface. The variable pi is initialized with a
constant value. Note that the method compute() does not have the body part
and its declaration ends with a semicolon.

Note: If the interface is declared as public then, all variables and methods are implicitly
public.

Implementing an Interface

Once an interface is defined, it can be used as a superclass whose members and
properties can be inherited by other classes. One or more classes can implement
the interface by using the keyword implements in the class definition.

The syntax for implementing an interface is as follows:
class class_name implements interface_name
{
//variables and methods declarartion
}

For example, consider the following code segment which implements the interface
Area:

class Circle implements Area
{
float r=4.3F;

public void compute()
{

double carea=pi*r*r;
System.out.println(“The area of circle is: ” +carea);

}
}

When the methods in an interface are defined in the implementing class, the
public keyword must be used. Also, the signature of the method implementing
the interface must exactly match the signature of the method declaration in the
interface.

A class can implement more than one interface as shown below.
class class_name implements interface1, interface2
{
:
}

A class can extend another class while implementing interfaces as shown below.
class class_name extends superclass implements interface_name
{
:
}

Partial Implementations

If a class that implements the interface does not provide complete implementation
of the methods declared in the interface, then it is necessary for the class to be
declared as abstract. For example, consider another class, Square which
implements the interface, Area.

abstract class Square implements Area
{

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 111

float side=2.4;
double sqarea=side*side;
void display()
{
 System.out.println(“The area of square is: “+sqarea);
}
}

Here, the class Square is declared as abstract as it does not implement
the method compute() declared in Area. Any class that inherits Square
must implement compute() method or the class itself must be declared as
abstract.

Extending Interfaces

An interface can inherit another interface by using extends keyword in the
same way as a class inherits from another class. Like a class, a subinterface will
inherit all the properties of the superinterface and also adds its own data members.
For example, consider the following code segment.

interface Interface1
{

:
}
interface Interface2 extends Interface1
{
:
}

An interface can also inherit from more than one interface. To define an interface
that extends several interfaces, the names of superinterfaces are separated by
commas (,) as shown here:

interface Interface3 extends Interface1, Interface2
{
:
}

Note that the methods declared in the superinterfaces cannot be implemented by
the subinterfaces. They must be implemented only by the class which implements
the interface. When a class implements an interface which is inherited from another
interface then the class must provide implementation for all the methods declared
in both the interfaces.

Note: An interface cannot extend classes. It can only extend another interface. Also, an
interface cannot implement another interface.

After being familiar with the concept of interface, we look at how interface can be
used to implement multiple inheritance by looking at a simple example. In this
example, the class Faculty extends a class Employee and implements an
interface Bonus.

Example 2.9: A program to demonstrate implementation of multiple inheritance
through interface is as follows:

class Person
{

String name;
int age;

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
112 Material

String address;
void persondetails(String nm, int ag, String add)
{

name=nm;
age=ag;
address=add;

}
void displayperson()
{

System.out.println(“Name: ”+name);
System.out.println(“Age: ”+age);
System.out.println(“Address: ”+address);

}
}
class Employee extends Person
{

int empid;
int salary;
void empdetails(int id,int sal)
{

empid=id;
salary=sal;

}
void displayemployee()
{

System.out.println(“Empid: ”+empid);
System.out.println(“Salary: ”+salary);

}
}
interface Bonus
{

int bonus=1000;
void compute();

}
class Faculty extends Employee implements Bonus
{

int amount;
public void compute()
{

System.out.println(“The bonus is: ”+bonus);
amount=salary+bonus;

}
void facultydetails()
{

displayperson();
displayemployee();
compute();
System.out.println(“The total amount is: ”+amount);

}
}
public class MultipleInheritance
{
public static void main(String[] args)
{

Faculty obj=new Faculty();

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 113

obj.persondetails(“Surabhi”,23,”115,Greenfield Apartment.
Patparganj,New Delhi-110092");

obj.empdetails(001,20000);
obj.facultydetails();

System.out.println(“”);

obj.persondetails(“Mili”,27,”D-50,Old Gupta Colony,Delhi-110009");

obj.empdetails(002,30000);
obj.facultydetails();

}
}

The output of the program is:
Name: Surabhi
Age: 23
Address: 115, Greenfield Apartment, Patparganj,New Delhi-110092
Empid: 1
Salary: 20000
The bonus is: 1000
The total amount is: 21000

Name: Mili
Age: 27
Address: D-50,Old Gupta Colony,Delhi-110009
Empid: 2
Salary: 30000
The bonus is: 1000
The total amount is: 31000

2.5 PACKAGES

A software development, a task is divided into different modules and then each
module is developed by different programmers. After that, all the modules are
integrated together. If the software is developed in Java, then each module is
definitely a class or combination of classes. A collection of such classes is called a
package. From the point of view of software development, a package is quite
important. A Java library consists of various packages. Package is a container
and consists of classes and interfaces grouped together according to functionality.
It contains a set of classes in order to ensure that the class names are unique. The
classes and interfaces are in a hierarchical order and the packages are imported
when the programmer wants to access classes or interfaces within it.

Advantages

The following are advantages of packages:

(a) Classes contained in the packages of other programs can be easily reused.

(b) Two classes in two different packages can have the same name.

(c) Packages provide a way to hide classes.

(d) Packages provide a way for separating design from coding.

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
114 Material

Creating Packages

Classpath Variable

If the programmer has not declared the package name, then the class files are
stored by default, in the current working directory included in the classpath variable.
At the run-time, the Java interpreter searches the class files in the path specified in
the classpath environmental variable. For creating a user-defined package, it must
be ensured that the root directory of the package is included in the classpath
variable.

A package program follows three steps:
(a) Package declaration
(b) Import statement
(c) Class definition

The format of package declaration is quite simple. The keyword the
‘package’ is followed by the package name. The package name must be the same
as the directory name. When class files are created, they must be placed in a
directory hierarchy that reflects the package name.

package p1;

Import is a keyword in Java that is used to access the class files of the user-
defined package and the predefined package.

import p1.*;
import java.util.*;

Here ‘*’ is used to import all the classes and interfaces present in the package
which are not those of its sub-package.

Naming Convention

(a) Package begins with lower case letter.

(b) Every package name must be unique, to the best use of package.

(c) To ensure uniqueness in naming packages, domain name is used as prefix
to the package name.

The following example shows this:

Example 2.10
package p2;
class Test
{

public static void main(String [] args)
{

System.out.println(“hello”);
} }

Compiling this program will generate Test.class file. This class file can be
kept inside the directory p2. Assume that p2 is present in D drive.

This program can be run using:

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 115

Example 2.11
D:\>java p2.Test
This will produce the desired output
hello
If p2 is a subdirectory of p1
package p1.p2;
 class Test
{

public static void main(String [] args)
{

System.out.println(“hello”);
} }

The above code may be compiled to create Test.class file. Keep it inside
p2 directory which is inside p1. Run the class file by the following command.

D:\>java p1.p2.Test

Access Protection

Java has four different types of access specifiers, namely; private, no access,
protected, and public. In Java, if the methods and variables are declared without
any access specifier, then, it is called ‘No access by default’. Methods and variables
are accessed to all the classes within the same package.

Table 2.3 Accessibility of Members Inside and Outside the Package

Members private no access protected public

Same class Yes Yes Yes Yes

Within the same package class
is inherited No Yes Yes Yes

Within the same package class
is not inherited No Yes Yes Yes

Outside the package class
is inherited No No Yes Yes

Outside the package class is
not inherited No No No Yes

(a) If the members are private, then data is only accessed within the class,
but it is not accessed outside the class.

(b) If the members are no access, then data is accessed within the class
and accessed within the same package, whether the class is inherited
or not.

(c) If the members are protected, then the data is accessed within the
class and accessed within the package, whether the class is inherited
or not, but outside the package only when the class is inherited.

(d) If the members are public, then the data is freely accessed within the
package and outside the package, with or without inheritance or without
inheritance.

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
116 Material

Fig. 2.2 Setting the Classpath in the Environmental Variable for Smooth
Operation of the Package Program

Program:
(a) Create a directory named as pack.
(b) Open a file Name.Java.

Example 2.12
package pack;
class Name

{
String n;
String setName(String name)

{
n=name;
return n;
}

}

In Name class, the class, method and variable are declared without using
any access specifier. This means that the members are only accessed within the
same package pack. Consider the following example:

Example 2.13

In the same package open Roll.Java
package pack;
public class Roll

{
protected int roll;
protected int getRoll(int r)

{
roll=r;
Name n1=new Name();
System.out.println(“Name Is “+n1.setName(“Amit”));
return roll;

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 117

}
}

As the Roll class members are protected, it is accessed outside the package
through inheritance.

(a) Inside the pack directory, create a subdirectory named subpack.
(b) Inside the subpack directory, create a file named Address.Java.

Consider the following example:

Example 2.14
package pack.subpack;
import pack.Roll;
public class Address extends Roll

{
public String address;
public String getAddress(String a)

{
address=a;
Address a1=new Address();
System.out.println(“Roll Number Is “+a1.getRoll(7));
return address;
}

}

In this class, the members are public; so it can be freely accessed within the
package and outside the package, either through inheritance or without inheritance.
Here, c:\Java is the root directory.

In the root directory, write the main application PackDemo.Java.

In c:\Java open PackDemo.Java

Consider the following example clarifies this more:

Example 2.15
import pack.subpack.Address;
public class PackDemo

{
public static void main(String args[])

{
Address a1=new Address();
System.out.println(“Address Is “+a1.getAddress
(“Nayabazar, Cuttack”));
}

}

Output of the program:

Using Packages

A Java package is used in the program after creating it. It can be used within the
program or in the Java Application Programming Interface (API). Three steps are
required to use the resources in a package. In a package, interfaces along with

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
118 Material

classes are grouped together because they provide similar functionalities. A new
name space is created while creating a package. A package will be nested in
other packages if classes are defined at the same level of the package. Package
works with inline member declarations and also with a single package member.
These steps are defined as follows:

Inline Member Declarations

In this step, the package member is declared that is to be used with fully qualified
package name. For example, the Vector class is used in java.util package
by defining a vector using java.util.Vector vector; statement. The
public class Vector provides a growable array of objects. The size of Vector
can increase or decrease if the items are added or removed after creating Vector.
The code for inline member declaration is written as follows:

class vec_test
{
 java.util.Vector vector;
 vec_test()
 {
 vec_test() = new java.util.Vector();
 }
}

Importing a Single Package Member

Once the inline declaration is implemented, you need the source code; hence, it is
better to use member name wherever it is needed. This mechanism can be achieved
easily by import keyword followed by fully qualified name of the member to
be used. The code for importing single package member is written as follows:

import java.util.LinkedList;
import java.util.Vector;
class vector_test
{
 Vector vector;
 vec_test()
 {
 Vector = new Vector ();
 }
}

Importing a Package

A number of members from a package can be imported by import keyword. So,
you can import the entire package if it is needed in the program. The code for
importing single package member is written as follows:

import java.util.Vector;
//Import Vector class
import java.util.LinkList;
//Import only LinkedList class
import java.util.Hashtable;
//Import only Hashtable class
import java.util.Stack;
//Import stack class
import java.util.Set;
class vec_test

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 119

{
 …
}

You can use wildcard (*) symbol to replace all the import statements to import the
entire packages. For example,

import java.util.*;
//Import all public classes from java.util package
class vec_test
{
 …
}

The Java packages can be used to specify the package that you want to use. The
following example shows how to use the various java packages ‘package’
along with declaration:

package java.awt.event;

If you use package in Java program, the first step required is to import classes
from package. For this, you can use ‘import’ keyword. The statement is
written as follows:

import java.awt.event.*;

The statement written as java.awt.event package imports all classes.
import java.awt.event.ActionEvent;

This statement imports ActionEvent class from package.

This ActionEvent class is referenced by itself. For example,
ActionEvent myEvent = new ActionEvent();

The following figure shows the graphical representation of the java package
that shows the level of nesting. It contains the sub-packages, the classes in sub-
packages and subroutines of the classes.

Figure 2.3 shows that java.lang.Math class contains two methods
as sqrt() for getting the square root value of double data type the specified
number value and random() method generates the random number. The
jav.awt.Graphics class contains the two methods as drawRect()
and setColor(). The drawRect()draws the outline of rectangle and
drawRect() sets the graphics context with current colour.

Fig.2.3 Graphical Representation of Java Package Defined in Class

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
120 Material

Interfaces

Interface is a keyword. An Interface declaration is same as class
declaration. Interface is designed to support multiple inheritance in Java.

For example:
public interface X {
}
interface X {
}

The interface is implicitly abstract in nature. It cannot be instantiated.
In interface all the methods are public and abstract by default. Therefore,
these methods have to be overridden in their corresponding child class. The methods
belonging to an interface are looked up at run-time. In interface the
variables are implicitly public, static and final. The advantage of declaring variables
within an interface is that they become globally available to all the classes
and need not be declared explicitly in classes implementing them. If a programmer
is not overriding the methods present in the interface then a compilation
error will be generated. Have a look at the codes in the following example.

Example 2.16
interface P{

String fun();
}

public class Demo implements P {
public static void main(String []args){
}

}

Output of the program:
The above program generates a compilation error. The message that
pops up is:
Demo is not abstract and does not override abstract method fun()
in P.

When one implements an interface, the methods present in the
interface have to be overridden or the class has to be made abstract.

The following points are to be remembered about an interface:
(a) An interface can only extend one interface.
(b) It cannot extend a class.
(c) A class can implement more than one interface and extend

only one class.
(d) An interface cannot implement an interface. Have a look

at the following example:

Example 2.17
interface p{

String fun();
}

public class demo implements p {
public static void main(String []args){
demo d=new demo();
System.out.println(d.fun());
}

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 121

public String fun()
{

return “Hello Interface”;
}

}

Output of the program:
Hello Interface

Here p is an interface containing an abstract method fun()
which returns a string object. This interface is implemented in class demo.
Hence, the fun() method is overridden there. Once the method is overridden,
it is possible to create the object of demo class and invoke the fun() method.
Consider the following example:

Example 2.18
interface p{

String fun();
}

public class demo implements p {
public static void main(String []args){
p obj=new demo();
System.out.println(obj.fun());
}
public String fun()
{

return “Hello Interface”;
}

}

Output of the program:
Hello Interface
In this program consider the statement
p obj=new demo();

Here, obj is a reference of the interface p and p holds the object
of demo class. This is because the parent class reference can hold the object of
child class.

2.6 FUNDAMENTALS OF EXCEPTION
HANDLING

An exception is an error that can occur in the course of execution of a program,
which may put a stop it from continuing. If exceptions are not handled properly,
the program will meet with an abrupt end and an error message will come up.

Exception Handling

An exception signifies an illegal, invalid or unexpected issue during a program.
Since exceptions are almost always assumed to be anticipated, you need to provide
an appropriate exception handling. Exception handling means diverting the
processing to a part of the program when an exception occurs. This part of the
program will try to cope with the error or at least will allow the program to die
peacefully. The error can be anything like ‘unable to open the file’, ‘array subscript

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
122 Material

out of range’, ‘no memory left to allocate’, ‘division by zero’, etc. When an
exception occurs, the Java run time system creates an object.

Keywords Frequently Used in Exception Handling

The important keywords of exception handling are try, catch, throw, throws and
finally. They are not methods, but termed as try block and catch block and in
these blocks the handling codes are written.

As usual, each block contains statements delimited by braces ({ }).
Statements that are suspected to raise the exceptions (like c = a / b) are written in
try block and the statements to handle the situation when the try block statements
raise an exception are written in catch block (like catch ArithmeticException).

The general form of an exception-handling block:
try
{
 / / block of code
}

catch (ExceptionType1 exOb)
{
 / / exception handler for ExceptionType1
}

catch (ExceptionType2 exOb)
{
 / / exception handler for ExceptionType2
}
/ /…
finally
{
 / / block of code
}

For example:
public class ArrayIndex
{

public static void main(String args[])
 {

int marks[] = { 10, 20, 30, 40 ,50};
try

 {
System.out.println (marks[10]);

}
catch(ArrayIndexOutOfBoundsException ai)

{

System.out.println(“Hello! Exception is caught by me” +
ai);

}
finally {

System.out.println(“This executes irrespective of raising
an exception”);

}

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 123

System.out.println(“marks[4] =” + marks[4]);
}

}

Output of the program:
Hello! Exception is caught by me java.lang.
ArrayIndexOutOfBoyndException : 10
This executes irrespective of raising of an exception
marks [4] = 50

Every try block must be followed by at least one catch block. ‘Finally’
block is optional and if present, its execution is guaranteed whether exception is
raised or not. The ‘finally’ block is useful when ‘Cleanup’ must be performed after
the related try. Operations such as closing files and releasing resources are often
performed in a ‘finally’.

Triggering a Predefined Exception

A predefined exception is generated when a program does some illegal operation,
e.g., division by zero.

A Java program which will trigger an exception is as follows:
public class Example 2.19

{
public static void main(String argv[])

{
int i=1, j=0, k;

k=i/j;
System.out.println(“Hello World”);
}

}

Compiling and running the above program will give the following result:
java.lang.ArithmeticExceptions: / by zero

In this example, division by zero is an illegal operation and it caused an
exception and the program came to an abrupt halt with an error message.

Handling the Exception

The exception thrown in the earlier program can be captured and handled properly.
The Java program that shows how to do it is as follows:

public class Example 2.20
{
public static void main(String argv[])
 {
 int i=1, j=0, k;
 try
 {
 k=i/j;
 } catch(ArithmeticException ae)

 {
 System.out.println(“Divison by zero, illegal

operation”);
 }

System.out.ptintln(“Hello World”);
}

}

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
124 Material

Output of the program:
Division by zero, illegal operation
Hello World

Here the exception created does not end the program. The program runs to
complete itself as is evident from the second line Hello World of the output.

Throwing an exception is equivalent to a break statement. The statement
below the point where exception occurred in the try-catch segment will not be
executed. A java program to illustrate that an exception is equivalent to a break
statement is as follows:

public class Example 2.21
 {

public static void main(String argv[])
{
int i=1, j=0, k;
try
 {
 k=i/j;
 System.out.println(“Welcome”);
 }

catch(ArithmeticException ae)
{
System.out.println(“Division by zero, illegal

operation”);
}

System.out.println(“Hello World”);
}

}

Output of the program:
Division by zero, illegal operation
Hello World

Notice that this program does not print a line Welcome. This indicates that
the statement below the statement k=i/j; i.e., 1/0, where the exception occurred
is not executed.

Try-Catch Construct

The try-catch construct is the technique used to capture and handle exceptions.
The statements between try and catch will be executed.

While executing, if an exception occurs which matches with the argument of
catch, the statements in the curly braces that follow the catch keyword will be
executed. After executing these statements, the program will continue with the
next statement.

If the exception created does not match with the argument of catch, what
will happen? This program gives the answer.

A Java program in which the exception created does not match with the
argument of catch:

public class Example 2.22
{
 public static void main(String argv[])

{
 int i=1, j=0, k;

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 125

 try
{
 k=i/j;
 }
catch(ClassCastException cce)

{
System.out.println(“Division by zero, illegal

operation”);
}

System.out.println(“Hello World”);
}

}

Output of the program:
Java.lang.ArithmeticException : / by zero

This output is exactly the same as program Example 2.19.

The group of statements between the try-catch clauses may be generating
several exceptions. Because the first catch clause that matches is executed, you
can build chains of catch clauses.

try
{
 ————
 ————
}
catch(NullPointerException npe)

{
 ———
 ———
}

 catch(RuntimeException re)
{
 ———
 ———
}

catch(IOException ioe)
{
 ———
 ———
}

catch(Exception e)
{
 ———
 ———

catch(Throwable t)
{
 ———
 ———
}

User Created Exceptions

Exceptions can be set in motion explicitly by the user with the throw statement.
The throw statement has the following format:

throws ExceptionObject

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
126 Material

The ExceptionObject is an object of the class that extends Exception class.

For example:
class OutofRange extends Exception

{
————
————
}

—————————
—————————
int i=10;
try
 {

if(i<12) throw new OutofRange ();
}

catch (OutofRange oor)
{
————
————-
}

Any method that throws a user-defined exception must also catch the
exception. This program shows an example.

A Java program to illustrate user created exceptions and its handling:
class Out ofRange extends Exception

{
OutofRange(String ss)

{
super(ss);
}

}
public classs Example 2.23

{
public static void main(String argv[])

{
int i=10;
try

{
if(i<12) throw new OutofRange(“10 is the limit”);

}
catch(OutofRange o)

{
System.out.println(“Error:”+o.getMessage());
}

}
}

Output of the program:
Error: 10 is the limit

Handling Related Exceptions

Exception thrown should match with the argument exception of the catch clause.
Exception thrown can be a subclass of the ArgumentException. It must be clear
that ArithmeticException is derived from RuntimeException. The program can be
written as follows:

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 127

public class Example 2.24
{
public static void main(String argv[])
 {
 int i=1, j=0, k;
 try
 {
 k=i/j;
 }

catch(RuntimeException re)
 {
 if(re instanceof ArithmeticException)
 {
 System.out.println(“Divison by zero is illegal”);
 }
}

System.out.ptintln(“Hello World”);
}

}

Output of the program:
Division by zero is illegal
Hello World

Handling Group of Related Exceptions

A group of exception objects, all derived from the same exception class, can be
caught and assigned to a single class which is the same as the parent class.

For example:
class Exception0 extends Exception

{
—————
—————
}

class Exception1 extends Exception0
{
—————
—————
}

class Exception2 extends Exception0
{
—————
—————
}

class Exception3 extends Exception0
{
—————
—————
}

—————
—————
int i=2;
try

{
if(i==1) throw new Exception1();

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
128 Material

if(i==2) throw new Exception2();
if(i==3) throw new Exception3();
}

catch(Exception0 e)
{
if(e instanceof Exception1)

{
—————
—————
}

if(e instanceof Exception2)
{
—————
—————
}

if(e instanceof Exception3)
{
—————
—————
}

}

Exception Propagation

An exception should be handled in the method in which it is thrown. In case it is
not handled in the method in which it was thrown, the method’s signature should
be modified so that the caller of this method is forewarned about the exception.
The signature of the method is modified as shown as follows:

public void method() throws ExceptionObject
{
————
————
}

In this case, the caller of the method should do the exception handling. It
propagates like this till the top most level. If it is not handled even at the top most
level, the program will abruptly end with an error message.

A Java program in which exception is not handled:
public class Example 2.25

{
public static void main(String argv[])

{
System.out.println(“Inside main().calling method1()”);
method1();
 System.out.println(“End of the program”);
}

public static void method1()
{
System.out.println(“Inside method1().calling

method2()”);
method2();
System.out.println(“Returning from method1()”);
}
public static void method2()
{

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 129

System.out.println(“Inside method2().calling
method3()”);

Method3();
System.out.println(“Returning from method2()”);
}

public static void method3()
{
System.out.println(“Inside method3().executing

method3()”);
int i=1,j=0,k;
k=i/j;
System.out.println(“Returning from method3()”)
}

}

Output of the program:
Inside main().calling method1()
Inside method1().calling method2()
Inside method2().calling method3()
Inside method3().executing method3()
java.lang.ArithmeticException: / by zero

The program does not run to completion. It comes to an abrupt halt with an
error message thrown.

The Java program listing in Example 2.25 shows how an exception is handled
in the method in which it occurred:

public class Example 2.26
{
public static void main(String argv[])

{
System.out.println(“Inside main().calling method1()”);
method1();
 System.out.println(“End of the program”);
}

public static void method1()
{
System.out.println(“Inside method1().calling

method2()”);
method2();
System.out.println(“Returning from method1()”);
}

public static void method2()
{
System.out.println(“Inside method2().calling

method3()”);
method3();
System.out.println(“Returning from method2()”);
}

public static void method3()
{
System.out.println(“Inside method3().executing

method3()”);
int i=1,j=0,k;
try
{
k=i/j;

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
130 Material

}
catch(ArithmeticException ae)
 {
 System.out.println(“Division by zero, illegal

operation”);
}
 System.out.println(“Returning from method3()”)
}

}

Output of the program:
Inside main().calling method1()
Inside method1().calling method2()
Inside method2().calling method3()
Inside method3().executing method3()
Division by zero, illegal operation
Returning form method3()
Returning form method2()
Returning form method1()
End of the program

The exception is handled in the method in which it was thrown. The program
runs into completion. Every part of the program is done. It does not come to an
abrupt halt. No error message is thrown out by the runtime system.

The Java program listing in which the exception is propagated one level up
is as follows:

public class Example2.27
{
public static void main(String argv[])

{
System.out.println(“Inside main().calling method1()”);
method1();
 System.out.println(“End of the program”);
}

public static void method1()
{
System.out.println(“Inside method1().calling

method2()”);
method2();
System.out.println(“Returning from method1()”);
}

public static void method2()
{
System.out.println(“Inside method2().calling

method3()”);
try
{
method3();
}
catch(ArithmeticException ae)
 {
 System.out.println(“Division by zero, illegal

operation”);
 }

System.out.println(“Returning from method2()”);
}

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 131

public static void method3() throws ArithmeticException
{
System.out.println(“Inside method3().executing

method3()”);
int i=1,j=0,k;
k=i/j;
System.out.println(“Returning from method3()”);
}

}

Output of the program:
Inside main().calling method1()
Inside method1().calling method2()
Inside method2().calling method3()
Inside method3().executing method3()
Division by zero, illegal operation
Returning from method2()
Returning from method1()
End of the program

In this program the exception is propagated one level up. The program runs
to completion. However, every part of the program is not executed as you can see
from the output. The output of this program is one line (‘Returning from
method3()’) less compared to the output of the program in Example 2.26.
The program does not come to an abrupt halt. No error message is thrown by the
runtime system.

The Java program listing in which the exception is propagated two levels up
is as follows:

public class Example2.28
{
public static void main(String argv[])

{
System.out.println(“Inside main().calling method1()”);
method1();
 System.out.println(“End of the program”);
}

public static void method1()
{
System.out.println(“Inside method1().calling

method2()”);
try
{
method2();
}
catch(ArithmeticException ae)
 {
 System.out.println(“Division by zero, illegal

operation”);
 }
System.out.println(“Returning from method1()”);
}

public static void method2() throws ArithmeticException
{
System.out.println(“Inside method2().calling

method3()”);

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
132 Material

method3();
System.out.println(“Returning from method2()”);

}
public static void method3() throws ArithmeticException

{
System.out.println(“Inside method3().executing

method3()”);
int i=1,j=0,k;
k=i/j;
System.out.println(“Returning from method3()”);
}

}

Output of the program:
Inside main().calling method1()
Inside method1().calling method2()
Inside method2().calling method3()
Inside method3().executing method3()
Division by zero, illegal operation
Returning from method1()
End of the program

In this program, the exception is propagated two levels up. The program
runs to completion in the sense that it does not come to an abrupt end with an
error message thrown. However, every part of the program is not executed. Two
lines

Returning from method3()
Returning from method2()

which were present in the output of the program listing in Example8 are
missing from the current output. This is the penalty you pay for pushing the
exception handling to higher levels instead of doing it in the method in which it has
occurred.

The exception is propagated to the top most level in the Java program
listing as follows:

public class Example2.29
{
public static void main(String argv[])

{
System.out.println(“Inside main().calling method1()”);

try
{
method1();
}
catch(ArithmeticException ae)
 {
 System.out.println(“Division by zero, illegal

operation”);
 }
 System.out.println(“End of the program”);
}

public static void method1() throws ArithmeticException
{
System.out.println(“Inside method1().calling

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 133

method2()”);
method2();
System.out.println(“Returning from method1()”);
}

public static void method2() throws ArithmeticException
{
System.out.println(“Inside method2().calling

method3()”);
method3();

System.out.println(“Returning from method2()”);
}

public static void method3() throws ArithmeticException
{
System.out.println(“Inside method3().executing

method3()”);
int i=1,j=0,k;
k=i/j;
System.out.println(“Returning from method3()”);
}

}

Output of the program:
Inside main().calling method1()
Inside method1().calling method2()
Inside method2().calling method3()
Inside method3().executing method3()
Division by zero, illegal operation
End of the program

In this program, the exception is propagated to the top most level. When
you compare this output with the output of the program listing Example 2.26, you
will find that this output is less by three lines.

Returning from method3()
Returning from method2()
Returning from method1()

This indicates that every part of the program is not executed.

Finally Clause

Suppose there is some action you absolutely must perform, no matter whatever
happens while executing a group of statements, the following Java language construct
will help you.

——————
——————
 try
 {
 ————————
 / / a group of statements
 ————————
 } finally
 {
 ————————
 / / absolutely must do it
 ————————-
 }

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
134 Material

The group of statements enclosed between try and finally clauses can create
exception. There can be a break statement, a continue statement or a
return statement. In any case, the group of statements in the finally clause will
be executed.

A Java program illustrating the use of the finally clause is as follows:
class UnnamedException extends Exception

{
}

public class Example12.30
{
public static void main(String argv[])

{
int x=1;
while(true)

{
System.out.print(“Who”);
try
 {
 System.out.println(“is”);
 if(x= =1) return;
 System.out.println(“that”);
 if(x= =2) break;
 System.out.println(“strange”);
 if(x= =3) continue;
 System.out.println(“but kindly”);
 if(x= =4) throw new UnnamedException();
 System.out.print(“not at all”);
 }

catch(UnnamedException ue)
{
}
finally
 {
 System.out.println(“amusing man”);
 }
System.out.println(“I would like to meet

the man”);
}

System.out.println(“Please tell me”);
}

}

Output of the program:
1. if(x= =1) Who is an amusing man
2. if(x= =2) Who is that amusing man

Please tell me
3. if(x= =3) Who is that strange amusing man

Who is that strange amusing man
————————————————————
————————————————————

4. if(x= =4) Who is that strange but kindly amusing man
I would like to meet him
Who is that strange but kindly amusing man
I would like to meet him
————————————————
————————————————

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 135

5. if(x= =5) Who is that strange but kindly not at all amusing
man

I would like to meet the man
Who is that strange but kindly not at all

amusing man
I would like to meet the man
——————————————————
——————————————————-

2.6.1 Types of Exception

Java provides several built-in classes which define all types of exceptions. These
exception classes are arranged in a hierarchy having Throwable class on the
top (Refer Figure 2.4). That is, the Throwable class is the superclass and all
the exception classes inherit methods defined by it. Two immediate subclasses of
the Throwable class are Exception class and Error class.

 Exception Class: It defines those exceptions which are thrown by
methods of standard Java class library or methods defined in user’s program
and can be trapped within the program. That is, the program can reasonably
recover from these types of exceptions. This class is also used (inherited)
when the users want to create their own exceptions in the application.

 Error Class: It defines those exceptions that do not occur frequently
and are difficult to be recovered from. For example, a class file is missing or
system runs out of memory.

Error

Throwable

Exception

Fig. 2.4 Java Exception Hierarchy

Some of the most commonly used exceptions that will be encountered are listed in
Table 2.4.

Table 2.4 Some Common Exceptions in Java

Exception Description
ArithmeticException Thrown when an arithmetic error

occurs in the program, such as
divide-by-zero.

NullPointerException

Thrown when the user tries to use
an object without initializing the
object or in other words when an
object that has not been allocated
memory is used.

IOException Thrown when an error occurs
during input/output of data.

ArrayIndexOutOfBoundsException Thrown when an attempt is made

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
136 Material

during input/output of data.
ArrayIndexOutOfBoundsException Thrown when an attempt is made

to access an array element with
invalid index value.

ArrayStoreException Thrown when an attempt is made
to store an incompatible data type
in an array.

IllegalAccessException Thrown when an illegal attempt is
made to access a class.

NumberFormatException Thrown when an invalid
conversion of a string to a numeric
format takes place.

StringIndexOutOfBoundsException Thrown when an attempt is made
to access a string element that is
beyond the index of the string.

IllegalArgumentException Thrown when an illegal argument
is used to invoke a method.

NegativeArraySizeException Thrown when an array of negative
size is created.

2.6.2 Try and Catch Keywords

The default exception handler provided by Java runtime system does not prevent
the abrupt termination of the program. To prevent this, Java provides us the facility
to construct our own exception handler. By constructing our own exception handler,
we can fix the errors ourselves. This can be achieved by enclosing the code that
may throw an exception within a try block. The try block is enclosed by curly
braces and preceded by the keyword try. Whenever an exception occurs within
the try block, it is thrown. This passes the control to the catch block associated
with the try block.

The syntax to define try-catch block is as follows:
try //try block begins
{

//code that may cause an exception

} //try block ends
catch(exception_type ex)
{

//code to handle the exception
}

If the first statement of the try block causes an exception, the remaining statements
are not executed and the control passes to the catch block. The catch
statement requires a single argument, which is of the same type as of exception
that needs to be handled. This exception type must be a subclass of Throwable
class. It is not necessary that every time the program is executed, an exception
occurs. If an exception is not thrown, the catch block is skipped and the control
passes to the statement immediately following the catch block.

The try and catch blocks form a logical unit. The scope of the catch
block is limited only to those statements which are enclosed within the immediately
preceding try block. Example 2.31 illustrates exception handling using try
and catch blocks.

Note: Compile-time error is generated if the try statement is not followed by any catch
statement.

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 137

Example 2.31: A program to illustrate handling of an exception using try and
catch blocks is as follows:

class TryCatchBlock

{

public static void main(String args[])

{

int a=15;

int b=3;

int c=0;

try

{

System.out.println(“try block begins”);

c=a/(a-(5*b)); //exception generated

System.out.println(“try block ends”);

}

catch(ArithmeticException ae)

{

System.out.println(“Arithmetic Exception is caught here”);

System.out.println(“The resultant value of c is: ” +c);

}

c=a/b;

System.out.println(“New value of c is: ” +c);

}

}

The output of the program is:
try block begins
Arithmetic Exception is caught here
The resultant value of c is: 0
New value of c is: 5

In Example 2.31, the exception generated within the try block is caught inside
the catch block; thus, preventing the abnormal termination of the program.

Multiple catch Blocks

It is not necessary that the code enclosed within the try block throws a single
exception. In case, multiple exceptions are thrown within a try block, Java allows
using multiple catch blocks for handling all these exceptions (Refer Example
2.32).

The syntax to define multiple catch blocks is as follows:

try //try block
{
//code that may cause exceptions
}
catch (exception_type e1) //catch block 1
{
.
.
}

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
138 Material

catch (exception_type e2) //catch block 2
{
.
.
}
.
.
.
catch(exception_type en) //catch block N
{
.
.
}

Note that there is only one try block from which the exception is thrown and
depending on the type of exception thrown, the corresponding catch block will
be executed. Whenever an exception is thrown, the catch blocks are searched
in sequential order for an appropriate match. The first catch block whose
parameter type matches with the type of exception, gets executed and other catch
blocks are ignored. Once the execution of the appropriate catch block gets
over, the control passes to the statement immediately following the last catch
block.

Example 2.32: A program to demonstrate the concept of multiple catch
statements is as follows:

class MultipleCatchExceptions
{

public static void main(String args[])
{

try
{

int a=0;
int b=7/a; //divide by zero exception
int c[]={1,2,3,4,5};
c[6]=15; //array out of bound exception

}
//this block handles array out of bounds exception
catch(ArrayIndexOutOfBoundsException aioe)
{

System.out.println(“Array out of bounds Exception”);
}
//this block handles arithmetic exception

catch(ArithmeticException ae)
{

System.out.println(“Division by zero error”);
}
catch(Exception e)
{

System.out.println(“Exception ” +e.getMessage());
}

}
}

The output of the program is:
Division by zero error

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 139

In the program illustrated in Example 2.32, the divide by zero error is caught by
the second catch block containing the instance of ArithmeticException
class. It should be noted that the exception superclasses must be placed after their
subclasses. This is because if we place catch block containing the superclass
before its subclasses then this superclass will handle all the exceptions of its type
as well as of its subclasses. As a result, subsequent catch blocks will never get
executed and compile-time error is generated. This problem is known as
unreachable code problem.

In Example 2.32, if we place Exception class before
ArithmeticException and ArrayIndexOutOfBounds
Exception classes, then compiling this program will display the following error
message:

M u l t i p l e C a t c h E x c e p t i o n s . j a v a : 1 7 : e x c e p t i o n
java.lang.ArrayIndexOutOfBoundsException has already been caught
 catch(ArrayIndexOutOfBoundsException aioe)
 ̂
M u l t i p l e C a t c h E x c e p t i o n s . j a v a : 2 2 : e x c e p t i o n
java.lang.ArithmeticException has already been caught
 catch(ArithmeticException ae) //this block handles arithmetic
exception
 ̂
2 errors

This is because ArrayIndexOutOfBoundsException class and
ArithmeticException class are the subclasses of Exception class.
Thus, Exception class catches all the thrown exceptions relative to these
classes and their corresponding catch blocks are never executed.

Nested try Blocks

The try blocks can be nested, that is, one try-catch block can be placed
inside another try-catch block. If an exception occurs within a particular
try block, then the catch blocks associated with this try block are searched
for an appropriate match. If no match is found then the control passes to the next
outer try-catch block. This process continues until an appropriate match is
found. If no match is found, the program terminates abnormally. This is illustrated
in Example 2.33.

The syntax of nested try block is as follows:
try //outer try block
{

try //inner try block
{
.
.
}
catch //inner catch block
{
.
.
}

}

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
140 Material

catch //outer catch block
{
.
.
}

Example 2.33: A program to demonstrate the concept of nested try blocks is
as follows:

class NestedTryBlock
{

public static void main(String args[])
{

//outer try-catch block
try

{
int a[]={0,1};
//inner try-catch block
try
{

int b[]={0,5};
int d=b[1]/b[0];//exception thrown

System.out.println(“Division of two numbers is :” +d);
}
catch(ArrayIndexOutOfBoundsException ai)
{

System.out.println(“Inside inner try-catch block”);
System.out.println(ai.getMessage());

}
}
catch(ArithmeticException a)
{

System.out.println(“Inside outer try-catch block”);//the thrown
exception is caught here

System.out.println(a);
}

}
}

The output of the program is:
Inside outer try-catch block
java.lang.ArithmeticException: Divided by zero

In the program illustrated in Example 2.33, the division by zero error is thrown by
the inner try block; however, it could not be handled by the inner catch block
as the type of exception defined by the inner catch does not match with the
exception thrown by the inner try. The matching catch block is then searched
in a sequential order for an appropriate match and the exception is caught inside
the outer catch block.

2.6.3 Finally Keyword

It has been observed that when an exception is thrown in the program, the remaining
statements in the try block are not executed and the control directly gets transferred
to the subsequent catch block. However, there are certain statements in the
program that need to be executed whether or not an exception is raised. For this,
Java provides finally keyword. The code within the finally block will

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 141

always be executed whether or not the exception is thrown. If an exception is
raised with a matching catch block, then the finally block gets executed
after the execution of that catch block. On the other hand, if no matching catch
block is found then also the finally block is executed after execution of the
try block. The finally block is optional; however, it is necessary to include
either catch or finally block with try block. Example 2.34 shows the
use of finally block.

The diagrammatic representation of working of try-catch-finally block
is shown in Figure 2.5.

Execute try block

Find catch block to execute

Execute catch block
for Exceptiontype2

Execute catch block
for Exceptiontypen

Execute catch block
for Exceptiontype1

…

…

Execute finally
block

[exception]

[no exception]

[exception1] [exception2] [exceptionn]

Fig. 2.5 try-catch-finally Block

Example 2.34: A program to illustrate the use of finally block is as follows:
class FinallyBlock
{

public static void main(String args[])
{

int a=67;
int b=0;
try
{

System.out.println(“The value of a: ” +a);
System.out.println(“The value of b: ” +b);
int c=(a/b); //exception thrown
System.out.println(“Result is: ” +c);

}
catch(Exception e)
{

System.out.println(e); //prints the corresponding exception
}
finally
{

System.out.println(“Denominator cannot be zero”);

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
142 Material

}
}

}

The output of the program is:
The value of a: 67
The value of b: 0
java.lang.ArithmeticException: / by zero
Denominator cannot be zero

Here, the thrown exception is caught in the catch block and an appropriate
error message is displayed. After that, the statement within the finally block
is executed.

2.6.4 Throw and Throws

The basic concept and the difference between throw and throws keywords
are discussed below:

Using throw Keyword

As stated earlier, Java runtime system automatically throws system-generated
exceptions. However, Java provides a mechanism to throw an exception explicitly
by using the throw keyword.

The syntax of throw statement is as follows:

throw ExceptionObject;

Where, ExceptionObject is an object of Throwable class or its
subclass.

When a throw statement is encountered in a program, the execution of the
subsequent statements in the try block stops and the corresponding catch block is
searched. The nearest try block is checked to determine if it contains a catch block
to match the exception of its type. If it is found, then that catch block is executed;
else, subsequent try blocks are inspected. In case, if no matching catch block is
found, then the default exception handler comes into action and stops the normal
execution of the program and displays the error message on the output screen.

It should be noted that instances of classes other than Throwable class or
its subclasses cannot be used as exception objects. The Throwable object can be
created using a new operator or using a parameter inside catch clause. Example
3.25 shows how to use a throw keyword.

Example 2.35: A program to demonstrate the use of throw keyword is as
follows:

class ThrowExampleDemo
{

public static void main(String args[])
{

try
{

ThrowExample(); //invoking ThrowExample() method
}
catch(ArithmeticException ae)

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 143

{
System.out.println(“The exception is recaught here: ”+ae);

}
}
static void ThrowExample()
{

int a=0;
int b=6;
try
{

int c=b/a; //system-generated exception
System.out.println(c);

}
catch(ArithmeticException aoe)
{

System.out.println(“The exception is caught inside the method
ThrowExample”);

throw aoe; //exception thrown explicitly
}

}
}

The output of the program is:
The exception is caught inside the method ThrowExample
The exception is recaught here :java.lang.ArithmeticException: /
by zero

In Example 2.35, the ArithmeticException occurs inside the
ThrowExample(). This exception is caught inside the catch block inside
the same method, which explicitly rethrows it using the throw keyword. This is
called rethrowing of the exception. Now, the control passes back to the catch
block of the main() method and the thrown exception is again caught here.

Using throws Keyword

Sometimes, a method may generate an exception, but cannot handle it. That is,
there may be a method in the program which is generating (throwing) an exception,
but it does not have the appropriate exception handling mechanism. The methods
which are calling such methods must be cautioned about this behavior so that
calling methods can take appropriate measures to safeguard themselves against
the exceptions. This is done by appending throws keyword after method name
in the method declaration statement. The throws clause includes all types of
exceptions excluding those belonging to Error or Runtime classes or their
subclasses. All other exceptions which a method may throw must be listed after
the throws keyword in the method declaration; otherwise compile-time error
is generated. Example 2.36 shows how to use throws clause.
The syntax of the throws clause is as follows:

return_type method_name() throws exception_list
{
//body of the method
}

Where, exception_list includes all the exceptions that the method might
throw.

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
144 Material

Example 2.36: A program to illustrate the use of throws clause is as follows:
class ThrowsExample

{

//ClassExample method throwing ClassNotFounfException

static void ClassExample() throws ClassNotFoundException

{

System.out.println(“Inside ClassExample”);

throw new ClassNotFoundException(“This is an example of Class not
found Exception”);

}

public static void main(String args[])

{

try

{

ClassExample();

}

catch(ClassNotFoundException c)

{

System.out.println(“Exception caught: ” +c);

}

}

}

The output of the program is as follows:
Inside ClassExample
Exception caught: java.lang.ClassNotFoundException: This is an
example of Class not found Exception

In the program illustrated in Example 2.36, we are explicitly throwing the
ClassNotFoundException in the method ClassExample. Since
we are not handling the thrown exception in the same method, therefore we use
the throws statement after the method name and catching the exception inside
the main() method.

2.6.5 Nested Try Statements

The try statements can be nested. That is, a try statement can be inside the block
of another try.
For example

class NestTry
{

public static void main(String args[])
{
int i = args.length;
int j = 42 / i;
System.out.println (“i =” + i);
try
{
if(i = = i / (i – i);
if(i = = 2)

 {

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 145

 int k [] = { 1 };
 k[42] = 99;

 }
}
 catch(ArrayIndexOutOfBoundsException e)

{
 System.out.println(“Array index out-of-bounds :” + e);
 }
}

 catch(ArithmeticException e)
{

 System.out.println (“ Divide by 0 :” + e);
 }
}

}

Output of the program:
i = 0
Divide by 0 : java.lang.ArithmeticException: Division by zero

i = 1
Divide by 0 : java.lang.ArithmeticException: Division by zero

i = 2
Array index out-of-bounds : java.lang.ArrayIndexOutOfBoundsException
: 42

2.6.6 Java Build-In Exceptions

Several exception classes are defined by Java. Exceptions are subclasses of the
standard type RuntimeException. The unchecked exceptions are defined in
java.lang.

RunTimeException Exceptions that inherit from this class include

i. bad cast

ii. out of bound array access

iii. null pointer access

These problems arise out of wrong programming
logic and must be corrected by the
programmer himself. Some of these
exceptions are:

 ArimeticException
 NullPointerException
 ClassCastException
 ArrayIndexOutOfBoundsException.

Creating Your Own Exception

Although most common errors are handled by Java’s built-in exceptions, you can
create your own exception types for handling situations particular to the applications.
Hence a subclass of Exception is defined.

Methods of the Throwable Class

 public Throwable () : This constructs a new
Throwable object

without any message.

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
146 Material

 public Throwable : This constructs a new Throwable
object

(String message) with the message given. It can be
used to provide information for
debugging. All derived exception
classes support both a default
constructor with a detailed message.

 public static : This method obtains the detailed
message

String getMessage () of the throwable object.

 public void : Prints this throwable and its back
trace printStackTrace() to the
standard error stream.

For example:
class MyException extends Exception

{
private int detail;

MyException (int p)
{

detail = p;
}
public String toString()
{

return “MyException[“ + detail + “]”;
}

}
class ExceptionDemo
{

static void compute (int p) throws MyException
{

 System.out.println(“ Called compute (“ + p +”)”);
 if(p > 10)

throw new MyException(p);
 System.out.println(“Normal exit”);
}

public static void main (String args[])
{

try
{

 compute(1);
 compute(20);

}
catch (Myexception e)
{
System.out.println(“ Caught” + e);
}
 }
}

Output of the program:
Called compute (1)
Normal exit
Called compute (20)
Caught MyExceptio0 [20]

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 147

2.6.7 User Defined Exceptions

As we come across built-in exception, you create own customized exception as
per requirements of the application. On each application there is a specific constraint.
For example in the case of a banking application, A customer whose age is less
than eighteen needs to open Joint account. Thus, error-handling become necessary
while developing a constraint application .The exception class and its subclass in
Java is not able to meet up the required constraint in application. Thus you create
user-defined exceptions to address these constraints and ensure the integrity in
the application. Creating these functions makes an application more easily
understood and user friendly. The keywords used in Java application are try,
catch and finally to handle user defined exceptions.

Program 2.24

import java.util.Scanner;

class ArmException extends Exception

{

public ArmException()

{

super();

}

public String toString()

{

return "Armstrong Exception";

}

}

public class Arm

{

public static void main(String args[])

{

int i,j,k,sum=0;

Scanner s1=new Scanner(System.in);

System.out.println("Enter a number");

i=s1.nextInt();

j=i;

while(i>0)

{

k=i%10;

sum=sum+(k*k*k);

i=i/10;

}

if(j==sum)

{

try{

throw new ArmException();

}

catch(ArmException ae)

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
148 Material

{

System.out.println(ae);

}

}else{

System.out.println("Not an Armstrong Number");

}

}

}

In the above program if we enter a Armstrong number then it generates
Armstrong Exception and this is the user defined exception.

Restriction

When a method is overridden, one can throw only the exceptions that have been
specified in the base class method. This is a very useful restriction since it
means that the code which works with the base class will automatically work with
any object derived from the base class, including the exceptions.

It is useful to realize that although exception specifications are enforced by
the compiler during inheritance, the exception specifications are not part of the
type of a method.

Check Your Progress

12. How does an interface differ from a class?

13. Give the definition of packages.

14. Write the definition of the term exception handling.

15. What is the significance of catch block?

16. How do you start a thread?

17. Why threads are called lightweight processes?

18. State about the nested try statement.

19. What are Java built-in exceptions?

20. Define the term restriction.

2.7 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. A class is a user-defined data type that can be used to create instances of
its type called objects. Like any other user-defined data type, it also needs
to be declared and defined in a program. A class definition specifies a new
data type that can be treated as a built in data type.

2. Two or more methods can be defined within the same class that shares the
same name, till the time their parameter declarations are different in Java.
Renaming the same method name with different arguments with the same or
different return type is known as overloading method.

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 149

3. The return data type is declared in the function declaration in the main ()
function or the calling function and the declarator is indicated in the first line
of the function definition.

4. Java supports recursion. Recursion is the process of defining a method that
calls itself.

5. The advantages of using inner class are as follows:
 Logical grouping of classes
 Increased encapsulation
 More readable, maintainable code

6. The String class is more commonly used to display messages and when
strings need to be compared, searched or individual characters in a string
have to be extracted as a substring.

7. One of the benefits of inheritance is code reusability because the derived
class (child class) copies the member of the super class (parent class).

8. In Java, the concept of inheritance is implemented through super class. The
super class is used to save the work of an existing class that can inherit the
property of general class. It introduces better data analysis, reduces
development time and gives fast performance. The Java super class is a
type of class that provides methods to Java subclass.

9. Inheritance is implemented while defining the subclass. The name of the
superclass is specified in the subclass definition. A subclass can be defined
by using extends keyword.

10. If a subclass method has the same name, same parameter list and same
return type as a superclass method, then we say that the method in the
subclass overrides the method in the superclass. When the overridden method
is called, the version of the method defined in the subclass will be invoked
instead of the method defined in the superclass. That is, the method in the
subclass will hide the method defined in the superclass.

11. When a class is declared as final then the class cannot be inherited. A
final class cannot be declared through the abstract keyword.

12. An interface differs from a class such that, unlike a class, an interface contains
only final variables and method declarations.

13. A software development, a task is divided into different modules and then
each module is developed by different programmers. After that, all the
modules are integrated together. If the software is developed in Java, then
each module is definitely a class or combination of classes. A collection of
such classes is called a package.

14. An exception signifies an illegal, invalid or unexpected issue during a
program. Since exceptions are almost always assumed to be anticipated,
you need to provide an appropriate exception handling. Exception handling
means diverting the processing to a part of the program when an exception
occurs.

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
150 Material

15. The catch block catches and handles the exception thrown by the statements
within the try block. The exceptions must belong to Exception or Error class.

16. We can start a thread by calling the start () method.

17. Threads are called lightweight processes because all the threads in a main
application program share the same address space in the memory.

18. The try statements can be nested. That is, a try statement can be inside the
block of another try.

19. Although most common errors are handled by Java’s built-in exceptions,
you can create your own exception types for handling situations particular
to the applications. Hence a subclass of Exception is defined.

20. When a method is overridden, one can throw only the exceptions that have
been specified in the base class method. This is a very useful restriction
since it means that the code which works with the base class will automatically

work with any object derived from the base class, including the exceptions.

2.8 SUMMARY

 A class is a user-defined data type that can be used to create instances of its
type called objects. Like any other user-defined data type, it also needs to
be declared and defined in a program. A class definition specifies a new
data type that can be treated as a built in data type.

 Objects are data and methods bundled together into one logical software
unit.

 Two or more methods can be defined within the same class that shares the
same name, till the time their parameter declarations are different in Java.
Renaming the same method name with different arguments with the same or
different return type is known as overloading method.

 The return data type is declared in the function declaration in the main()
function or the calling function and the declarator is indicated in the first line
of the function definition

 Java supports recursion. Recursion is the process of defining a method that
calls itself.

 A variable which has a constant value or a method that cannot be overridden
in a subclass or a child class is specified by a final keyword.

 A nested or inner class is the member of its enclosing class. Nested class
can be declared by using any access modifier. In Java, outer class or enclosing
class is declared by using a public or a no access modifier. Nested class is
able to access private, protected, no access or public member of enclosing
class.

 Class declared within another class without using static modifier is treated
as a non-static inner class. A non-static inner class is popularly known as an
inner class.

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 151

 One can also declare an inner class within the body of a method without
naming it. Such classes are known as anonymous inner classes.

 The String class is more commonly used to display messages and when
strings need to be compared, searched or individual characters in a string
have to be extracted as a substring.

 A command line argument is the information that directly follows the
program’s name on the command line when it is executed.

 Inheritance is an important concept in Java. It facilitates code reusability. It
is one of the corner-stones of object-oriented programming principles.

 One of the benefits of inheritance is code reusability because the derived
class (child class) copies the member of the super class (parent class).

 In Java, the concept of inheritance is implemented through super class. The
super class is used to save the work of an existing class that can inherit the
property of general class. It introduces better data analysis, reduces
development time and gives fast performance. The Java super class is a
type of class that provides methods to Java subclass.

 Inheritance is implemented while defining the subclass. The name of the
superclass is specified in the subclass definition. A subclass can be defined
by using extends keyword.

 If a subclass method has the same name, same parameter list and same
return type as a superclass method, then we say that the method in the
subclass overrides the method in the superclass.

 Final method cannot be overriden. When we define a final method we never
use abstract keyword.

 An interface differs from a class such that, unlike a class, an interface contains
only final variables and method declarations.

 A software development, a task is divided into different modules and then
each module is developed by different programmers. After that, all the
modules are integrated together. If the software is developed in Java, then
each module is definitely a class or combination of classes. A collection of
such classes is called a package.

 A number of members from a package can be imported by import keyword.
So, you can import the entire package if it is needed in the program.

 An exception signifies an illegal, invalid or unexpected issue during a program.
Since exceptions are almost always assumed to be anticipated, you need to
provide an appropriate exception handling. Exception handling means
diverting the processing to a part of the program when an exception occurs.

 The catch block catches and handles the exception thrown by the statements
within the try block. The exceptions must belong to Exception or Error
class.

 It has been observed that when an exception is thrown in the program, the
remaining statements in the try block are not executed and the control directly
gets transferred to the subsequent catch block.

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
152 Material

 Threads are called lightweight processes because all the threads in a main
application program share the same address space in the memory.

 The try statements can be nested. That is, a try statement can be inside the
block of another try.

 Although most common errors are handled by Java’s built-in exceptions,
you can create your own exception types for handling situations particular
to the applications. Hence a subclass of Exception is defined.

 When a method is overridden, one can throw only the exceptions that have
been specified in the base class method. This is a very useful restriction
since it means that the code which works with the base class will automatically
work with any object derived from the base class, including the exceptions.

2.9 KEY TERMS

 Class: A class is a user-defined data type that can be used to create
instances of its type called objects.

 Recursion: Java supports recursion. Recursion is the process of defining a
method that calls itself.

 Final keyword: A variable which has a constant value or a method that
cannot be overridden in a subclass or a child class is specified by a final
keyword.

 String class: The String class is more commonly used to display messages
and when strings need to be compared, searched or individual characters
in a string have to be extracted as a substring.

 Inheritance: Inheritance is an important concept in Java.

 Subclass: Inheritance is implemented while defining the subclass.

 Final method: Final method cannot be overriden. When we define a final
method we never use abstract keyword.

 Package: A collection of such classes is called a package.

 Exception handling: An exception signifies an illegal, invalid or unexpected
issue during a program.

 Try block: Contains a set of statements that needs to be monitored for
exceptions.

 Thread: A program which has a single flow of control and as a starting
point, an execution part and an end.

2.10 SELF ASSESSMENT QUESTIONS AND
EXERCISES

 Short-Answer Questions

1. What is a class and how is it related to objects?

2. Define the term objects parameters.

Class, Inheritance,
Interfaces, Packages and

Exception Handling

NOTES

Self - Learning
Material 153

3. Name the types of visibility controls.

4. Write the syntax for final keyword.

5. Differentiate between static and non-static inner classes.

6. Write the key points of local inner classes.

7. Define the term command line arguments.

8. What is inheritance?

9. Define the term member access.

10. What is a subclass?

11. State about the calling constructer.

12. Define the term abstract class method.

13. What is final variable?

14. State the difference between an interface and an abstract class.

15. What is simple package member?

16. Why is exception propagation used?

17. What is the importance of finally block?

18. What is the difference between throw and throws keywords?

19. Define the term nested try statements.

20. Write the methods of the Throwable class.

Long-Answer Questions

1. Explain in detail the significant characteristics of methods and classes in C
giving appropriate examples.

2. Discuss briefly method overloading ad constructor overloading with the
help of relevant example programs.

3. Explain in detail about the returning objects giving appropriate examples.

4. Briefly discuss the private, public and default visibility controls giving
syntax and examples.

5. Write a C program to demonstrate the use of private, public and default
visibility controls.

6. Briefly explain the significance of final and static keywords giving
appropriate examples.

7. Write a C program using the final and static keywords.

8. Describe the types of C inner classes with the help of examples.

9. Discuss briefly the C string classes with the help of C programs. Write
the output of the programs.

10. Briefly explain the inheritance and its types giving appropriate examples.

11. Differentiate between the super class and subclass with the help of
syntax, relevant examples and programs.

Class, Inheritance,
Interfaces, Packages and
Exception Handling

NOTES

Self - Learning
154 Material

12. How are the superclass constructors called? Explain with the help of C
programs.

13. Describe the multilevel hierarchy in C giving appropriate examples.

14. Briefly explain the final class used in inheritance giving relevant
examples.

15. ‘Java supports the concept of multiple inheritances through interfaces.’
Justify the statement giving appropriate examples.

16. In C programming how the packages are created? Explain with the help
of C program.

17. Briefly explain the concept of exception handling in C programming giving
relevant examples.

18. Write a C program using ‘Divide by Zero’ rule based on the concept of
exception handling.

19. Briefly explain the try-catch-finally block with the help of C
programs.

20. Explain the role of throw and throws keywords giving syntax and C
programs.

21. Discuss briefly user define exceptions with the help of C programs.

2.11 FURTHER READING

Balagurusamy, E. 2007. Programming with Java, 3rd Edition. New Delhi: Tata
McGraw-Hill.

Naughton, Patrick and Herbert Schidt. 1999. Java 2: The Complete Reference,
3rd Edition. New Delhi: Tata McGraw-Hill.

Das, Rashmi Kanta. 2013. Core Java for Beginners, 3rd Edition. New Delhi:
Vikas Publishing House Pvt. Ltd.

Schildt, Herbert. 2006. Java: The Complete Reference, 7th Edition. New Delhi:
Tata McGraw-Hill.

Hunter, Jason and William Crawford. 2001. Java Servlet Programming, 2nd
Edition. California: O’Reilly Media.

Arnold, Ken, James Gosling and David Holmes. 2005. The Java Programming

Language, 4th Edition. Boston: Addison-Wesley.

Wigglesworth, Joe and Paula Lumby. 1999. Java Programming Advanced
Topics, 2 Edition. Boston: Course Technology.

Deitel, Paul and Harvey Deitel. 2011. Java: How to Program, 9th Edition. New
Delhi: Prentice-Hall of India.

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 155

UNIT 3 MULTITHREADED
PROGRAMMING, APPLETS,
HANDLING STRING, java.
lang AND UTILITY CLASSES

Structure

3.0 Introduction
3.1 Objectives
3.2 Multithreaded Programming
3.3 Java Thread Model

3.3.1 Thread Priorities
3.3.2 Synchronization Messaging
3.3.3 Thread Class
3.3.4 Runnable Interface
3.3.5 Creating Multiple Threads
3.3.6 Suspending, Resuming and Stopping Threads

3.4 Basic Input/Output
3.4.1 Streams (Byte and Character)
3.4.2 Reading From and Writing To Console
3.4.3 Reading and Writing Files
3.4.4 PrintWriter Class

3.5 Fundamentals of Applets
3.5.1 Transient and Volatile Modifier
3.5.2 Modifier Strictfp
3.5.3 Native Interface

3.6 String Handling
3.6.1 Operations on String and Extract Character Methods
3.6.2 StringBuffer

3.7 Wrapper Classes
3.7.1 Memeory Management
3.7.2 java.lang Environment Properties
3.7.3 Security Manager and SecurityManager Class

3.8 Java Utility Class
3.9 Enumeration Interface

3.9.1 Using Store () and Load ()
3.10 Answers to ‘Check Your Progress’
3.11 Summary
3.12 Key Terms
3.13 Self Assessment Questions and Exercises
3.14 Further Reading

3.0 INTRODUCTION

The concept of threads and the idea of multithreading was introduced a decade
back, however, it has been accepted into the main stream programming only recently.
Threads are very valuable and useful. Programs that are written with threads are
good even to the not so regular users. A thread is just like a program which has a

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
156 Material

single flow of control. It also has a starting point, the execution part and an end.
The main programs in the preceding examples can be called single-threaded
programs. Java also allows us to use multiple flows of control in a program and
such a program is known as multithreaded program. In a multithreaded program,
each thread is a separate tiny module which runs in parallel with other threads.
Running in parallel does not mean that they are running at the same time. As most
of the times the threads run on the single processor, in reality, only one thread is
executed at a given time.

Console-based application programs are full-featured, stand-alone Java
programs, written, modified and run through Java Virtual Machine (JVM). Java
defines another category of application programs known as applets. Java streams
can be broadly categorized into two types, namely input stream and output stream.
The streams which help to read data from various sources, namely keyboard,
mouse, files, storage devices, etc., in order to supply it to the program are called
input streams. The streams which receive data from the program and directly
write it to the physical devices or other programs are called output streams.

The java.lang package is the primary and the most important package
available to the programmer by default. This package contains classes like: runtime
and process, which are used for system call, thread and runnable class, required
to design multithreaded applications, Cloneable interface, which is a marker
interface, required to create a copy of an object. The java.lang is the fundamental
package that is available to the programmer by default. He can use the classes,
interfaces and methods available in this package, without requiring to import these.
In fact, this is a package that is widely used by all Java programmers. The java.util
package provides many interfaces and utility classes for easy manipulation of data.
java.util package contains the collections framework, legacy collection classes,
event model, date and time facilities, and miscellaneous utility classes, such as a
string tokenizer, a random number generator, and a bit array.

In this unit, you will study about the multithreaded programming, Java thread
model, priorities, synchronization messaging, thread class and runnable interface,
creating multiple threads, suspending, resuming and stopping threads, basic input/
output, streams (byte and character), reading from and writing to console, readings
and writing files, printwriter class, fundamentals of applets, transient and
volatile modifier, modifier strictfp, native interface, handling string, string length,
operations on strings, extract character methods, string comparison method,
StringBuffer, wrapper classes, void, abstract process class, runtime class and
memory management, system class, environments properties, using Clone (), and
Clonable () interface, class loader, math class, thread, thread group and runnable
interface, throwable class, security manager, java.lang.ref and java.lang.reflect
packages, Java utility classes, enumeration interface, vector, stack, dictionary,
hashtable, properties, using Store () and Load (), string tokenizer, bitset class,
date and date comparison, time zones, random class, observe.

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 157

3.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the Java multithreaded programming

 Explain the Java thread model and priorities

 Anaylse the synchronization messaging

 Define the thread class and runnable interface

 Elaborate on multiple threads

 Discuss the suspending, resuming and stopping threads

 Describe the basic input / output

 Understand the streams (byte and character)

 Elaborate on the reading from and writing to console

 Define the reading and writing files

 Analyse the printwriter class and fundamentals of applets

 Explain the transient and volatile modifier, strictfp

 Describe the native interface

 Understand the handling strings and string length

 Explain the operations on strings and extract character methods

 Analyse the StringBuffer and wrapper classes

 Describe the void and abstract process class

 Understand the runtime class and memory management

 Discuss the system class

 Explain the environment properties using Clone () and Clonable
() interface

 Anaylse the class loader and math class

 Define the thread and thread group and runnable interface

 Describe the throwable class and security manager

 Understand the java.lang.ref and java.lang.reflect
packages

 Explain the Java utility classes and enumeration interface

 Elaborate on the vector, stack and dictionary

 Understand the hashtable properties using Store () and Load ()

 Define the string tokenizer and bitset class

 Explain the date and date comparison and time zone

 Discuss the random class and observe

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
158 Material

3.2 MULTITHREADED PROGRAMMING

The concept of threads and the idea of multithreading was introduced a decade
back, however, it has been accepted into the mainstream programming only
recently. Threads are very valuable and useful. Programs that are written with
threads are good even to the not so regular users.

A program starts executing when it runs its initialization code, calls methods
and procedures and continues to run until the program reaches an end. This is a
scenario familiar to you in single user systems and even in multi-user systems. The
program uses a single thread or a single locus of control. A thread is not restricted
to one function alone. Any thread in a multithreaded program can call any series of
statements and functions that would be called in a single threaded program.

Creating a Thread

There are two ways to create a thread in Java. One method is used exclusively in
Java applications. The other method can be used in applications as well as in
applets.

Creating Threads in Applications

There is a class called Thread in java.lang package and you can create a
thread of your own by deriving a class from java.lang.Thread class.
This is how it is done:

class ExampleThreadClass extends Thread
{
public void run()

{
—————
/ / do something useful
—————
}

}

You have created a new class called ExampleThreadClass which
does something useful when its run () method is called. To call the run ()
method, you have to create an instance of the class ExampleThread Classs
and invoke the start () method shown as follows:

ExampleThreadClass thread = new ExampleThread
Class();

Thread.start ();

This may look bit confusing since you have to start the method running by calling
a method start () which is not there in the class ExampleThreadClass.

You have created ExampleThreadClass by extending the Thread
class which looks something shown as follows:

class Thread
{
public void start()

{
—————
—————
}

—————————

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 159

—————————
}

Thread.start() (ExampleThreadClass.start())
is equivalent to calling Thread.start() which will cause Thread.run(
) running.

Declaring an object of class ExampleThreadClass creates a new thread
whose execution will start in the method run (). The run () method is the
place where you specify what a thread has to perform.

Creating Multiple Threads

Suppose you have a program in which there is a long computation in the beginning.
If you use single threaded program you have to wait for the completion of the
calculation before the rest of the program can continue running. In a multithreaded
program, you can put the computation in its own thread, enabling the rest of the
program to continue.

For example:
class Example1Thread1Class extends Thread

{
public void run()

{
for(int i = 0; i < 10; i++)
 {
 System.out.println(“Hello Thread1”);
 }
}

}
class Example1Thread2Class extends Thread

{
public void run ()

{
for(int i = 0; i < 10; i++)
 {
 System.out.println(“Hello Thread2”);
 }
}

}
public class Example1

{
public static void main(String argv[])

{
Example1Thread1Class thread1 = new Example1Thread1Class(

);
Example1Thread2Class thread2 = new Example1Thread2Class(

);
thread1.start();
thread2.start();

Output of the program:
Hello Thread1
Hello Thread2
Hello Thread2
Hello Thread2
Hello Thread2
Hello Thread1
Hello Thread1
Hello Thread1

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
160 Material

Hello Thread1
Hello Thread2
Hello Thread2
Hello Thread2
Hello Thread1
Hello Thread1
Hello Thread1
Hello Thread2
Hello Thread2
Hello Thread2
Hello Thread1
Hello Thread1

The output generated in a subsequent run may not be exactly identical.
However, the general pattern will be the same. The program will print the two
messages Hello Thread1 and Hello Thread2 in a shuffled fashion.

The Thread class has many methods:
Thread.start() - calls the run() method
Thread.stop() - stops the thread
Thread.suspend() - suspends a thread execution
Thread.resume() - resumes a suspended thread
Thread.sleep(100) - sleeps for 100 milli seconds
Thread.wait() - waits for something to happen
Thread.yield() - yields the thread control to another
thread
Thread.setPriority() - set thread priority of the current
thread
Thread.getPriority - gets thread priority of the current
thread
Thread.currentThread() - gets the thread in which the method
is running
Thread.getName() - gets the name of the thread in which
the method is Running

For example:
class simpleThread extends Thread

{
public SimpleThread(String str)

{
super(str);
}

public void run()
{
for(int i=0;i<10;i++)

{
System.out.println(getName());
}

}
}
public class Example2

{
public static void main(String argv[])

{
newSimpleThread(“Thread1”).start();
newSimpleThread(“Thread2”).start();
}

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 161

}

Output of the program:
Thread1
Thread1
Thread1
Thread1
Thread1
Thread1
Thread1
Thread2
Thread2
Thread2
Thread2
Thread2
Thread1
Thread1
Thread2
Thread2
Thread2
Thread2
Thread2
Thread1

In a subsequent run, the output need not be exactly the same. However, the
general pattern of the output will be the same.

In this example, you have only one run() method. Two threads are sharing
the same run method. The class method getName() is called to get the thread
name in which the run()method is currently running. The class SimpleThread
is a direct descendent of the class Thread and hence the method getName()
of Thread class could be called.

The Runnable Interface

The Runnable interface looks like this:
public interface Runnable

{
public abstract run();
}

The interface Runnable specifies only one method, the run()
method. In the implementation of this run() method, however, you cannot use
methods like stop(), sleep(), getName(),…… which are member
functions of the Thread class.

A class that implements Runnable interface works much in the
same way as a class that extends Thread class. You can create an instance of that
class and pass that instance to the constructor for making a new thread as follows:

1. A class is created implementing Runnable Interface.
public class ExampleThreadClass implements Runnable

{
public void run()

{
—————
—————
}

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
162 Material

}

2. Create an instance of that class
ExampleThreadClass aETC = new Example Thread
Class();

3. Pass that instance to the constructor making a new thread
Thread aThread = new Thread(aETC);

4. Then the statement
(a)Thread.start();

calls the run() method indirectly.
Listing below gives a Java program in which named threads are created
by implementing the Runnable interface.
Creating multiple threads by implementing Runnable interface is as
follows.
class ExampleThreadClass implements Runnable

{
public void run()

{
for(int i=0;i<10;i++)

{
}

}
}
public class Example

{
public static void main(String argv[])

{
ExampleThreadClass aETC= new ExampleThreadClass();
Thread thread1=new Thread(aETC, “My Thread”);
Thread thread2=new Thread(aETC, “Your Thread”);
thread1.start();
thread2.start();
}

}

Output of the program:
My Thread
Your Thread
Your Thread
Your Thread
Your Thread
My Thread
My Thread
My Thread
My Thread
Your Thread
Your Thread
Your Thread
Your Thread
My Thread
My Thread
My Thread
My Thread

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 163

My Thread
Your Thread
Your Thread

In a subsequent run, the output need not be exactly the same. However, the
general pattern of the output will be the same.

In this example, you have only one run() method. Two threads share the
same run() method. You cannot use getName() method here because the class
ExampleThreadClass is not derived from the class Thread. The static method
currentThread() of the Thread class is used to get the current thread in
which run() method is running.Thread.currentThread().
getName() will give the name for the thread in which the run() method is
currently running.

Thread Scheduling

Thread scheduling specifies exactly in what order, your thread will be run. There
are two strategies: non pre-emptive scheduling and pre-emptive time slicing. In
non pre-emptive scheduling scheme. It always asks for permission to schedule.
Most modern schedulers use pre-emptive time slicing. In pre-emptive time slicing,
each thread will run for a few milliseconds before it yields control to another thread.
To test whether your system uses non pre-emptive scheduling or pre-emptive time
slicing, try the program listing on your computer system.

A Java program to test the type of scheduler in your system is as follows.
class ExampleThreadClass implements Runnable

{
public void run()

{
while(true)
 {

 System.out.println(Thread.currentThread().getName());
 }
}

}
public class Example
 {
 public static void main (String argv[])

{
ExampleThreadClass aETC = new ExampleThreadClass();
Thread thread1=new Thread(aETC, “boys”);
Thread thread2=new Thread(aETC, “girls”);
thread1.start();
thread2.start();
}
}

For a non-premptive scheduler, the above program will print
boys
boys
boys
.
.
.

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
164 Material

.

forever until you interrupt the program (pressing Ctrl + C for example).

For a pre-emptive time slicing operating system, the above program will
print a different result. Our system prints the following in one run:

 .

 .

 .

 .

boys

boys

boys

girls

girls

girls

girls

girls

girls

boys

boys

boys

boys

boys

boys

boys

boys

 .

 .

 .

 .

forever until the program was interrupted by pressing Ctrl+C.

In this program, the main method can be written with fewer number of
statements shown as follows:

public static void main(String argv[])
{
ExampleThreadClass aETC = new ExampleThreadClass();
new Thread(aETC, “boys”).start();
new Thread(aETC, “girls”).start();
}

Since the programmer cannot assume that time slicing will take place, he
has to adopt methods to ensure portability by writing a threaded code. One method
is to call yield () method at regular intervals. yield () gives other threads
a chance to run. Another method is to change priorities. The program listing below
ensures that the two threads will take turns irrespective of the scheduling strategy.

A Java program which makes sure that both the threads will be irrespective
of the scheduling strategy, yield() method is used.

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 165

class ExampleThreadClass implements Runnable
{
public void run()

{
while(true)
 {

 System.out.println(Thread.currentThread().getName());
 Thread.yield();
 }
}

}
public class Example
 {
 public static void main (String argv[])

{
ExampleThreadClass aETC = new ExampleThreadClass();
new Thread(aETC, “boys”).start();
new Thread(aETC, “girls”).start();
}

}

Output of the program:

 .
 .
 .
 .
girls
girls
boys
boys
girls
boys
girls
boys
girls
boys
girls
 .
 .
 .

…..until the program was interrupted. The yield() method gives a chance
to other waiting threads to run. If there are no waiting threads, the thread that
made the yield will continue to run.

Yet another method to ensure alternate execution of two threads is to use
sleep() method. The sleep() method forces the current thread to yield and
then wait for at least the specified amount of time to elapse before allowing the
thread to run again. Another thread, however, might interrupt the sleeping thread.
In such a case, it throws an InterruptedException. The following program shows
how to use it.

A Java program ensures that both the threads are running alternatively,
irrespective of the scheduling strategy.sleep() method in use.

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
166 Material

class ExampleThreadClass implements Runnable
{
public void run()

{
while(true)
 {

 System.out.println(Thread.currentThread().getName());
 try
 {
 Thread.sleep(100);
 } catch(InterruptedException ie)

{
Return;

}
 }
}

}
public class Example
 {
 public static void main (String argv[])

{
ExampleThreadClass aETC = new ExampleThreadClass();
new Thread(aETC, “boys”).start();
new Thread(aETC, “girls”).start();
}

}

Output of the program:
 :
 :
boys
girls
boys
girls
boys
girls
boys
 :
 :

until the program was interrupted.

Thread priorities

Threads have priorities that can be set and changed. A higher priority thread
executes ahead of a low priority thread. Priorities run from 1 (lowest) to 10
(highest). Threads take off with the same priority.

The Java program shows the priorities:
class ExampleThreadClass implements Runnable

{
public void run()
{

while(true)
{

System.out,println(Thread.currentThread().getName(

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 167

));

}
}

}
public class Example
{

public static void main (String argv[])
{

ExampleThreadClass aETC = new ExampleThreadClass ();
Thread thread1 = new Thread(aETC, “boys”);
Thread thread2 = new Thread(aETC, “girls”);
thread2.setPriority (thread1.getPriority ()+2);
thread1.start();
thread2.start();
}

}

Output of the program:

 :
 :
girls
girls
girls
girls
 :
 :

until the program was interrupted by pressing Ctrl +C.

In the above program, change the statement
thread2.setPriority(thread1.getPriority()+2);
thread2.setPriority(thread1.getPriority()+1);
to
thread2.setPriority(thread1.getPriority()+3);
thread2.setPriority(thread1.getPriority()+4);

and observe the difference in the output generated in each case.

3.3 JAVA THREAD MODEL

A single sequential flow of control, that is, the program simply starts, performs a
series of operations and eventually ends. There is only one statement under
execution at any given point of time. A thread is just like a program which has a
single flow of control. It also has a starting point, the execution part and an end.
The main programs in the preceding examples can be called single-threaded
programs. Java also allows us to use multiple flows of control in a program and
such a program is known as multithreaded program. In a multithreaded program,
each thread is a separate tiny module which runs in parallel with other threads.
Running in parallel does not mean that they are running at the same time. As most
of the times the threads run on the single processor, in reality, only one thread is
executed at a given time. However, the switching from one thread to another

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
168 Material

thread occurs so fast that it gives an illusion to the user that all the threads are
being executed at the same time. Threads are called lightweight processes. This is
because all the threads in a main application program share the same address
space in the memory.

There are several advantages of using multithreaded programs over single-
threaded programs. In a traditional single-threaded environment, the CPU sits idle
most of the times, as the program has to wait for each of the task to complete
before proceeding to the next task. In multithreaded environment, since different
tasks can be assigned to different threads, the program makes maximum utilization
of the CPU, keeping the idle time of the CPU to minimum. For example, one
thread can read data, another thread can process it and a third thread can write it;
thus, improving the overall performance. Multithreading is best-suited for those
applications that require multiple tasks to be done simultaneously.

Main Thread

Java program always contains at least one thread, even if we do not create one.
This thread is called main thread and it is the one which immediately starts executing
when we start a program. The main thread can be used to create and start other
child threads and it must often be the last thread to finish execution because it
performs various other actions such as, shutdown action and releasing resources
which are used by the program. The main thread is created automatically, but it
can be controlled through a Thread object. For this, its reference is needed
which can be obtained by calling the method currentThread(), which is a
public static member of Thread class. This method returns a reference to the
thread on which it is called. We can control the main thread just like any other
thread, once we have a reference to it. This has been explained with the help of
Example 3.1.

Example 3.1: A program to control the main thread is as follows:
class MainThread
{
public static void main(String[] args)

{
Thread th=Thread.currentThread();

System.out.println(“The name of the current thread is: ”+th);

//changing the name of the thread
th.setName(“MyThread”);

System.out.println(“The name of the current thread after changing
the name is: “+th);

System.out.println(“Main Thread exiting”);
}

}

The output of the program is:
The name of the current thread is: Thread[main,5,main]
The name of the current thread after changing the name is:
Thread[MyThread,5,main]
Main Thread exiting

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 169

In the program illustrated in Example 3.1, the method currentThread() is
called to obtain a reference to the main thread and this reference is stored in the
variable th. Here, the name of the main thread is changed by calling the method
setName() and the new thread name is redisplayed.

Creating Threads

In Java, threads can be created in two ways, which are as follows:

(i) By defining a class that extends the Thread class

(ii) By implementing the Runnable interface

In both the approaches, threads are implemented in the form of objects which
contain a method called run(). It is the most important method in the Thread
class. It is the entry point of a new thread and it is the place where the task to be
performed by the thread is defined. The execution of a thread starts with the call to
run() method. The run() method is automatically invoked when we invoke
another method of Thread class called start().

Extending Threads

We can create a thread by creating a new class that extends the Thread class
defined in java.lang package and creating an instance of the class. The
extending class must override the run() method. Inside the run() method,
the code that needs to be executed by the thread will be defined.

The code segment to extend the Thread class and override the run() method
is as follows:

class ThreadName extends Thread
{
public void run()
{

: // code for the new thread
}
}

Now, the instance of the class ThreadName can be created and run using the
statements as follows:

ThreadName objectname=new ThreadName();
objectname.start();

The second statement invokes the start() method, after which the thread will
be ready to run. It will start running once the Java runtime invokes its run()
method. Example 3.2 illustrates how to create threads by extending the Thread
class.

Example 3.2: A program to demonstrate creating threads by extending the
Thread class is as follows:

class Thread1 extends Thread
{
public void run() //entry point of Thread1

{
int i=0;

while(i<5)
{

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
170 Material

System.out.println(“First Child Thread:”+i);
i=i+1;

}
System.out.println(“\t First child exited”);

}
}
class Thread2 extends Thread
{

public void run() //entry point of Thread2
{

int j=0;
while(j<5)
{

System.out.println(“Second Child Thread:”+j);
j=j+1;

}
System.out.println(“\t Second child exited”);

}
}

class ExtendingThread
{

public static void main(String[] args)
{

Thread1 firstthread=new Thread1();
firstthread.start(); // starts the first thread
Thread2 secondthread=new Thread2();
secondthread.start(); // starts the second thread

int k=0;
while(k<5)
{

System.out.println(“Main Thread:”+k);
k=k+1;

}
System.out.println(“\t Main thread exiting”);
 }
}

The output of the program is:
First Child Thread:0
Main Thread:0
Second Child Thread:0
First Child Thread:1
Main Thread:1
Second Child Thread:1
First Child Thread:2
Main Thread:2
Second Child Thread:2
First Child Thread:3
Main Thread:3
Second Child Thread:3
First Child Thread:4
Main Thread:4
Second Child Thread:4
First child exited
Main thread exiting
Second child exited

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 171

When we start the program in Example 3.2, the main thread immediately starts
running. The main thread then starts two child threads the Thread1 and
Thread2, both of which will perform different tasks. Once the main thread
reaches the end of the main() method, there will be altogether three threads
running concurrently on their own in the program, Thread1, Thread2 and
the main thread. These three threads will run independently whenever the CPU is
available to them. There is no specific order of their execution. Hence, the program
may generate different output every time we run it.

Implementing Runnable Interface

Another way of creating a thread is to create a class that implements the Runnable
interface (Refer Example 3.3). The Runnable interface consists of a single
method run() which is required for implementing a thread. We will create a
thread and pass the object of the class that implements the Runnable interface
as an argument of the Thread class’s constructor. The thread will now be
activated by calling the start() method. Implementing Runnable interface
is much more convenient than extending a Thread class when a program needs
to inherit from a class apart from the Thread class, since Java allows only a
single base class.

The code segment to implement Runnable interface is as follows:
class MyNewThread implements Runnable
{
public void run()
{

: // code for the new thread
}
}

Example 3.3: A program to demonstrate creating threads by implementing
Runnable interface is as follows:

class MyNewThread implements Runnable // implements Runnable
{

public void run() // implements run() method
{

int i=0;
while(i<=4)
{

System.out.println(“Child Thread: ”+i);
i++;

}
}

}
class RunnableInterface
{
public static void main(String[] args)

{
/*an object of class implementing Runnable interface*/

MyNewThread runnableobj=new MyNewThread();

/*an object of Thread class taking runnable object as argument*/
Thread threadobj=new Thread(runnableobj);

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
172 Material

threadobj.start();
int j=0;
while(j<=4)
{

System.out.println(“Main Thread: ”+j);
j++;

}
System.out.println(“Main Thread Exiting”);

}
}

The output of the program is:
Main Thread: 0
Child Thread: 0
Main Thread: 1
Child Thread: 1
Main Thread: 2
Child Thread: 2
Main Thread: 3
Child Thread: 3
Main Thread: 4
Child Thread: 4
Main Thread Exiting

In the program illustrated in Example 3.3, MyNewThread is a class which
implements the Runnable interface. Inside the main() method, an instance
runnableobj of MyNewThread is created which is passed as an argument
to the Thread class’s constructor. When the new thread starts, the run()
method of runnableobj is called.

3.3.1 Thread Priorities

The threads we have seen so far are of equal priority in which the Java scheduler
selects the thread for execution on the first-come, first-serve basis. However,
each thread can be assigned different priority which will decide the order in which
it is scheduled for running. Priorities are the integers which specify the relative
priority of one thread to another. When a thread is created, it inherits its priority
from the thread that created it. However, the priority of a thread can be changed
by using the setPriority() method of the Thread class.
The syntax to set the priority of a thread is as follows:

ThreadName.setPriority(n);

where, n is an integer value which ranges from MIN_PRIORITY (1) and
MAX_PRIORITY (10). The default priority is NORM_PRIORITY whose value
is 5. MIN_PRIORITY, MAX_PRIORITY and NORM_PRIORITY are the
constants defined in Thread class.

When there are multiple threads ready to execute, the highest priority thread is
chosen and executed. Only when the high priority thread stops, yields or enters
blocked state, the low priority thread starts running. However, if any higher priority
thread enters, it will preempt the currently running thread forcing it to move to the
runnable state. Example 3.4 illustrates how priority is assigned to a thread.

Example 3.4: A program to demonstrate the assigning of priority to a thread is as
follows:

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 173

class Thread1 extends Thread
{
public void run() //entry point of the Thread1

{
int i=0;

while(i<5)
{

System.out.println(“First Child Thread:”+i);
i=i+1;

}
System.out.println(“\t First child exited”);

}
}
class Thread2 extends Thread
{

public void run() //entry point of the Thread2
{

int j=0;
while(j<5)
{

System.out.println(“Second Child Thread:”+j);
j=j+1;

}
System.out.println(“\t Second child exited”);

}
}
class ThreadPriority
{
 public static void main(String[] args)

{
Thread1 firstthread=new Thread1();
Thread2 secondthread=new Thread2();

// Thread2 assigned highest priority
secondthread.setPriority(Thread.MAX_PRIORITY);

// Thread1 assigned lowest priority
firstthread.setPriority(Thread.MIN_PRIORITY);

firstthread.start();
secondthread.start();

 System.out.println(“\t Main Thread Exiting”);
}

}

The output of the program is:
Second Child Thread:0
Second Child Thread:1
Second Child Thread:2
Second Child Thread:3
Second Child Thread:4
 Second child exited
 Main Thread Exiting
First Child Thread:0
First Child Thread:1
First Child Thread:2

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
174 Material

First Child Thread:3
First Child Thread:4
 First child exited

In the program illustrated in Example 3.4, the first child thread, Thread1 has
been assigned the minimum priority and the second child thread, Thread2 has
been assigned the maximum priority. So despite Thread1 being the first on
which start() method is called, its output is printed in the last as it has been
preempted by the higher priority thread—Thread2.

Note: The amount of CPU time a thread gets depends not only on its priority but also on
other factors, such as how an operating system implements multithreading.

3.3.2 Synchronization Messaging

When multiple threads need access to a single resource, there must be a way to
ensure that only one thread will use the resource at any given point of time,
otherwise it may lead to a severe problem. For example, if one thread in a program
reads salary from a file and another thread tries to update it, then the program may
produce an undesirable output. The solution to this problem can be achieved by
using a technique known as synchronization. The objective of synchronization is
to control the access to shared resources.

Synchronization uses the concept of monitor. A monitor is an object which
is used as a mutually exclusive lock. That is, it can be owned by only one thread at
any given point of time. A thread is said to have entered the monitor when it
acquires a lock. Any other thread which attempts to acquire the lock has to wait
until the first thread comes out of the monitor. There are two ways to implement
synchronization, which are as follows:

(i) Synchronizing Methods

(ii) Synchronizing Statements

Synchronizing Methods

We can synchronize a subset (or all) of the methods of any class by using
synchronized keyword. When a method is declared synchronized, Java
creates a monitor. To enter the monitor, we need to call a synchronized method.
Only one of the synchronized methods in a class object can execute at any given
time. Java hands over the monitor to the thread that calls the method first. As long
as a thread is inside a synchronized method, other threads trying to call it (or any
other synchronized method) on the same instance have to wait. Only when the
currently executing thread finishes executing and exits the monitor another waiting
thread can enter the monitor.

The syntax to declare a method as synchronized is as follows:
synchronized data_type method_name()
{
// code for the method
}

To understand synchronization, let us consider the program given in Example 3.5,
which is not synchronized.

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 175

Example 3.5: A program to demonstrate the need of synchronization is as follows:
class A
{

void display(String msg)
{

System.out.print(“(” +msg);
try
{

Thread.sleep(1000);
}catch(InterruptedException e)
{

System.out.println(“Interrupted”);
}
System.out.println(“)”);

}
}
class MyThread extends Thread
{

String str;
A obj;
MyThread (A obj1,String s)
{
obj=obj1;

str=new String (s);
}
public void run()
{

 obj.display(str);
}

}

class UnsynchronizedMethod
{
 public static void main(String[] args)

{
A obj=new A();
MyThread th1=new MyThread(obj,“THIS”);
MyThread th2=new MyThread(obj,“IS”);

MyThread th3=new MyThread(obj,“SYNCHRONIZATION”);
th1.start();
th2.start();
th3.start();
}

}

The output of the program is:
(THIS(IS(SYNCHRONIZATION)
)
)

The class A has a method named display() which takes a parameter msg of
String type. This method will print the msg string enclosed in the first brackets.
Note that the sleep() method is invoked after the display() method
prints the opening bracket and the string msg which causes the current thread to
halt for one second. The constructor of class MyThread takes two arguments,

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
176 Material

a reference to an instance of class A and a string. When the first thread starts, the
object’s run() method is invoked. The run() method invokes the
display()method on the instance obj of A, and passes the string str. The
call to sleep() method allows execution to switch to another thread before
the first thread could complete the method. Thus, the output of the program is not
as expected and the strings are in mixed up form. This is because, the three threads
call the same method display() without anything to stop them from competing
each other to complete the method.

Now let us modify the program in Example 3.5 by preceding the definition of
display() method with synchronized keyword (Refer Example 3.6).
This will serialize access to display() method by restricting its access to
only one thread at a time, thus producing the correct output.
Example 3.6: A program to demonstrate synchronized method is as follows:

class A
{

synchronized void display(String msg)
{

System.out.print(“(” +msg);
try
{

Thread.sleep(1000);
}catch(InterruptedException e)
{

System.out.println(“Interrupted”);
}
System.out.println(“)”);

}
}
class MyThread extends Thread
{

String str;
A obj;
MyThread (A obj1,String s)
{
obj=obj1;

str=new String (s);
}
public void run()
{
obj.display(str);
}

}

class SynchronizedMethod
{
 public static void main(String[] args)

{
A obj=new A();
MyThread th1=new MyThread(obj,“THIS”);
MyThread th2=new MyThread(obj,“IS”);

MyThread th3=new MyThread(obj,“SYNCHRONIZATION”);
th1.start();
th2.start();
th3.start();

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 177

}
}

The output of the program is:
(THIS)
(IS)
(SYNCHRONIZATION)

Note: Once a thread is in synchronized method on an instance, no other thread can enter any
other synchronized method on the same instance. However, simultaneous execution of
synchronized methods is possible for two different instance, of the same class.

Synchronizing Statements

Another way of managing the execution of the thread is to synchronize a block of
code or statement. This is more powerful. Synchronizing a method does not work
in all cases. For example, the class we want to access is created by someone else,
which does not have synchronized methods and we do not have access rights to
modify it. In this case, the access to objects of this class can be synchronized by
placing the call to the methods defined by this class inside a synchronized block.
Two block of codes synchronized on the same instance cannot execute at the
same time. Example 3.7 illustrates synchronized statements.

The general form to synchronize a block of code is as follows:
synchronized(object)
{
//statements to be synchronized
}

where,

object is a reference to the object being synchronized.

Example 3.7: A program to demonstrate synchronized statement is as follows:
class A
{
void display(String msg)

{
System.out.print(“(” +msg);
try
{

Thread.sleep(1000);
}catch(InterruptedException e)
{

System.out.println(“Interrupted”);
}
System.out.println(“)”);

}
}
class MyThread extends Thread
{

String str;
A obj;
MyThread (A obj1,String s)
{
obj=obj1;

str=new String(s);
}

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
178 Material

public void run()
{

 synchronized(obj)
{

obj.display(str);
}

}
}
class SynchronizedStatement
{
public static void main(String[] args)

{
A obj=new A();

MyThread th1=new MyThread(obj,“THIS”);
MyThread th2=new MyThread(obj,“IS”);

MyThread th3=new MyThread(obj,“SYNCHRONIZATION”);
th1.start();
th2.start();
th3.start();

}
}

The output of the program is:

(THIS)

(IS)

(SYNCHRONIZATION)

By using the synchronized statement inside the run() method, access to the
object of the class A is restricted to only one thread at a time, thus producing the
same correct output.

Deadlock

Deadlock is a situation that occurs when two or more threads are in a simultaneous
wait state and each of them is waiting for the release of a resource held by one of
the other waiting thread. For example, consider the following code segments:

run()
{
synchronized(obj1)
{
 sleep(1000);
 obj2.method2();
}

}
run()
{
synchronized(obj2)
{
 sleep(1000);
 obj1.method1();
}

}
 Thread X: Thread Y:

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 179

First, Thread X starts and synchronizes on the object obj1, which prevents
other threads to call the methods of obj1. Thread X then goes to sleep by
calling sleep() method and allows Thread Y to start. Thread Y starts
and synchronizes on the object obj2. This prevents method of obj2 to be
called by any other thread. Thread Y goes to sleep on the invocation of
sleep() method allowing Thread X to wake up. Thread X continues
execution and tries to call method2() on obj2. However, it cannot call the
method on obj2 until the code in Thread Y that is synchronized on obj2
finishes execution. As Thread X cannot proceed, Thread Y gets the control
and tries to call method1() on obj1 which is not possible until the code in
Thread X that is synchronized on obj1 finishes its execution. Here, neither of
the threads can continue because they are deadlocked. Example 3.8 shows the
condition of deadlock.

Example 3.8: A program to demonstrate deadlock is as follows:
class A
{
void display1(A obj2)

{
System.out.println(“First thread waiting for second thread to release
the resource”);

synchronized(obj2)
{

System.out.println(“Deadlocked”);
}

}
 void display2(A obj1)
{

System.out.println(“Second thread waiting for first thread to release
the resource”);

synchronized(obj1)
{

System.out.println(“Deadlocked”);
}

}
}
class Thread1 extends Thread
{

A obj1,obj2;
Thread1(A i,A j)
{

obj1=i;
obj2=j;

}
public void run()
{

synchronized(obj1)
{

try
{

sleep(1000);
}
catch(Exception e)
{

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
180 Material

System.out.println(e);
}
obj2.display1(obj2);

}
}
}
class Thread2 extends Thread
{

A obj1,obj2;
Thread2(A p,A q)
{

obj1=p;
obj2=q;

}
public void run()
{

synchronized(obj2)
{

try
{

sleep(1000);
}
catch(Exception e)
{

System.out.println(e);
}
obj1.display2(obj1);

}
}

}
class Deadlock
{

public static void main(String args[])
{

A obj1=new A();
A obj2=new A();
Thread1 t1=new Thread1(obj1,obj2);
Thread2 t2=new Thread2(obj1,obj2);
t1.start();
t2.start();

}
}

The output of the program is:
Second thread waiting for first thread to release the resource
First thread waiting for second thread to release the resource

In the program illustrated in Example 3.8, the thread Thread1 owns the monitor
on obj1 and waits for the monitor on obj2. Similarly, the thread Thread2
owns the monitor on obj2 and waits for the monitor on obj1. Thread1 will
never release obj1 unless it gets hold of obj2 and Thread2 will never release
obj2 unless it gets obj1. The program will never complete as the two threads
are in the deadlock situation. We need to press CTRL+C to end the program.

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 181

3.3.3 Thread Class

A thread in Java shows the program’s path of execution. Logically, threading means
successfully execution of a program that shows the required output. Java
programming is known as multi-threaded because implementation of Java threading
and OS implementation are done accordingly with it. The Java version 1.1 supports
green thread that is implemented in Linux OS. Green threads are simulated threads
in Java virtual machine. Thread implementation differs as per operating systems.
Sometimes, it is believed that Java Threads are really based on Solaris Thread. In
essence, it is said that the size of thread local heap, thread stack, the garbage
collection in Java thread are important factors that decide the implementation of
Java. The thread of execution represents the class Thread. It is defined in
public class Thread, extended to Object and implemented to Runnable.
The thread class resides in the java.lang package. They create three integer
(int) constants that are used to specify the priority of a thread. These are
MAX_PRIORITY, MIN_PRIORITY and NORM_PRIORITY. The following
Table 3.1 shows the various methods of thread class and their functions:

Table 3.1 Methods used in Thread Class and Their Functions

Method Function

Thread currentThread() Returns a reference to the current thread.
Void sleep (long msec) throws
InterruptedException

Causes the current thread to wait for msec
milliseconds.

void sleep(long msec, int
nsec) throws
InterruptedException

Causes the current thread to wait for msec
milliseconds plus nsec nanoseconds.

void yield() Causes the current thread to yield control
of the processor to other threads.

The multiple threads run concurrently in Java application using Java Virtual Machine
(JVM).Threads follow priority. The higher priority threads are executed first than
the lower priority threads. The Thread keyword creates a new ‘Thread’ object
during run-time of Thread. JVM executes thread in the following conditions:

 The class Runtime contains the exit method and the exit method is
executed after getting permission from the security manager. Each thread
can be marked as daemon or without except daemon.

All threads except daemon threads are dead either by returning from run method
or by throwing an exception. A new thread can be executed if a declared class
belongs to subclass of Thread which overrides run method of Thread class.

Fig. 4.1 Hierarchy Set in Java Thread Class

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
182 Material

The following are the two ways of creating a new thread of execution.

Method I

Either class is to be declared as a subclass of thread. This subclass overrides the
run method of class Thread. The subclass’s instance is then started. The syntax
of the creating class Thread by Method I is as follows:

import java.lang.*;
public class counter_Thread extends Thread
 {
 public void run() {
 …
 }
}

The following small program of thread computes primes larger than a stated value:
class Prime_Thread extends Thread
{
 long val_Prime;
 Prime_Thread (long val_Prime)
 {
 this.Prime_Thread = Prime_Thread;
 }
public void run()
 {
 // Computes primes that are larger than minPrime
 …
 }
}

The following code creates pthread:
Prime_Thread pthread = new Prime_Thread(21);
Pthread();

Method II

A class Thread can also be created by declaring a class that implements the
Runnable interface. The syntax of the creating class Thread namely
counter_Thread by Method II is as follows:

import java.lang.*;
public class counter_Thread implements Runnable
{
 Thread tThread;
 public void run()
 {
 …
 }
}

The above code creates a new class as counter Thread that extends the class
Thread to override the Thread.run() method to its own implementation.
This class implements the run method. The following code is able to create class
by implements Runnable interface and run() method:

class Prime_Run implements Runnable
{
long val_Prime;

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 183

Prime_Run(long val_Prime)
{
 this.val_Prime = val_Prime;
}
public void run()
{
//Compute primes larger than val_Prime
…
}
}

The following code creates a thread to run the coding:
Prime_Run pRun = new Prime_Run(120);
new Thread (pRun).start();

Creating a Thread
The path of program execution represents a thread. It causes a problem if actions
or events occur simultaneously. For example, a program in Java does not draw
the pictures while reading the keystrokes. Therefore, a coding part is written for a
keyword that cannot handle more than one event at a certain time. The concurrent
execution of more than one program is known as implementing an interface and
extending a class. The Runnable interface forces to run the run method. The
class Thread is also used to check the target class that cannot be equal to
NULL. Then it is possible to target class to run its own method.

Public class Thread implements Runnable
{
…
 public void run(){
if (target!=NULL)
{
 target.run();
}}
…
}

Once a thread starts to invoke the run() method, the process automatically returns
from this method and thread dies. The following code namely ‘My_Thread’
results the subclass Thread that overrides run() and prints every 100 milliseconds
for two seconds by using loops:

public class My_Thread extends Thread
{
public void run()
{
 int count_val = 0;
while (true)
{
 System.out.println (“Thread one alive”);
 //Prints every 0.10 sec for two seconds
try
{
 Thread.sleep (100);
} catch (InterruptedException e)
 {}
 count_val++;
if (count_val >= 20) break;

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
184 Material

}
 System.out.println (“Thread Stopping);
}
} //Class My_Thread

In the above code, the sleep()method prints every 100 milliseconds of the
content involved in ‘for’ loop.

The following code namely My_Applet.java creates an instance of
my_Thread. The start() method of My_Applet.java program creates
an instance of My_Thread class to invoke the start method. The start method
opens the browser page that initiates a thread.

public class My_Applet extends java.applet.Applet //Threading with
a Thread subclass

public void start() //Start() method starts a thread.

{

MyThread m_thr = new MyThread(); //Creates an instance of

m_thr.start();

}

This coding creates a thread named as MyThread. The start() method
launches the thread process.

Figure 3.2 shows how the main and thread processes communicate with
each other and in result run in parallel.

Fig. 3.2 Main and Thread run in Parallel

Once MyThread object is declared, it runs in parallel with the MyApplet thread.
The run method executes the thread process till that method finishes and returns.

Fig. 3.3 Extending the java.lang.Thread Class

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 185

The following program shows a single thread creation that extends the ‘Thread’
class.

class ex_Thread extends Thread

//Extending the Thread class

{

 String str=null;

 //str variable is defined for String type

 ex_Thread(String str_str)

 //ex_Thread constructor is defined

{

str=str_str;

//Assigning the str value as equal to str_str variable

start();

//Start() method causes the thread to begin execution

}

public void run() //Run method started as data type void

{

 System.out.println(str);

 //Prints the ‘str’ value

}

}

public class str_run_Thread

{

 public static void main(String args[])

{

 ex_Thread x1 = new ex_Thread (“Thread is started……………”);

//Calling the function that prints the message ‘Thread is started…………’

}

}

Output of the program:

C:\javafolder\thread>javac
str_run_Thread.java

C:\javafolder\thread>java str_run_Thread
Thread is started……………

3.3.4 Runnable Interface

The thread that is ready to run, but waiting for the processor availability is called
the runnable thread and the state is known as Runnable state. All the threads in
runnable states wait for execution and they can be executed on the basis of various
scheduling techniques such as round robin or first-come first-serve, if all the threads
have the same priorities. The yield() method controls all the runnable threads
that have the same priorities. The following figure shows switching among various
threads using the yield() method.

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
186 Material

Fig. 3.4 Switching between Threads in Runnable State

Implementing a Runnable Interface

You need to create a class that implements the runnable interface for creating a
new thread. The runnable interface declares the run() method that is required
for implementing a thread in the program. The steps to create a thread using the
runnable interface are:

1. Create a class that implements a runnable interface. The syntax is:
class Class-Name implements Runnable

2. Implement the run() method. Define the code that constitutes the new thread
inside this method. The syntax is:

public void run()
{
// Thread body
}

3. Instantiate an object of the thread class within the class to create a new
thread. The syntax is:
Thread object = new Thread (Runnable thread-object, String thread-
name);

4. Call the start() method to run the thread. The syntax is:

The following program code creates a multithreaded Java program by
implementing the runnable interface:

Creating a Thread by implementing runnable Interface
class A implements Runnable

{

public void run()

{

for(int i=1;i<=5;i++)

{

System.out.println(“\tFrom Thread A : i = “ + i);

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 187

}

System.out.println(“Exit from A”);

}

}

class B implements Runnable

{

public void run()

{

for(int j=1;j<=5;j++)

{

System.out.println(“\tFrom Thread B : j = “ + j);

}

System.out.println(“Exit from B”);

}

}

class C implements Runnable

{

public void run()

{

for(int k=1;k<=5;k++)

{

System.out.println(“\tFrom Thread C : k = “ + k);

}

System.out.println(“Exit from C”);

}

}

class Thread_Creation

{

public static void main(String arg[])

{

A Thread_A = new A();

B Thread_B = new B();

C Thread_C = new C();

Thread threadA = new Thread(Thread_A);

Thread threadB = new Thread(Thread_B);

Thread threadC = new Thread(Thread_C);

threadA.start();

threadB.start();

threadC.start();

System.out.println(“Exit the main thread.”);

}

}

This code creates three new threads, A, B and C by implementing the
Runnable interface. The main() method consists of the instances of the A, B
and C classes. These instances are passed as the argument value to the thread
class for creating its objects such as ThreadA, ThreadB and ThreadC,
respectively. The three threads are started by the start() method.

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
188 Material

The following is the output.
C:\java\Chapter5>javac Thread_Creation.java
C:\java\Chapter5>java Thread_Creation
Exit the main thread.

From Thread A : i = 1
From Thread A : i = 2
From Thread A : i = 3
From Thread B : j = 1
From Thread C : k = 1
From Thread A : i = 4
From Thread B : j = 2
From Thread C : k = 2
From Thread A : i = 5
From Thread B : j = 3
From Thread C : k = 3

Exit from A
From Thread B : j = 4
From Thread C : k = 4
From Thread B : j = 5
From Thread C : k = 5

Exit from B
Exit from C

Extending the Thread Class

You can create a thread class by extending a thread superclass and this thread is
implemented by creating its instances. The thread class is the member of the
java.lang.Thread package of Java. The three steps to create a new thread
using the thread class are:

1. Declare the class that extends the properties and methods of the thread
superclass. The syntax to declare a thread class is:
class class-name extends Thread
{
// Class body
}

2. Override the run() method of the extending class. The run() method
is the entry point for the thread, because all the threads are started through
this run() method. The syntax is;
public void run()
{
// Thread body
}

3. Create an object of the thread class that extends the thread super class.
The thread object is created and it is called the newborn thread. The syntax
for creating a thread object is:
class-name object = new class-name();

4. Start the new thread by calling the start() method. The syntax is:
object.start();

The created thread is moved from the newborn state to the Runnable state
using the start() method.

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 189

The following program code creates threads by extending the thread class:

Creating Threads using the Thread Class
class A extends Thread
{
public void run()
{
for(int i=1;i<=5;i++)
{
System.out.println(“\tFrom Thread A : i = “ + i);
}
System.out.println(“Exit from A”);
}
}
class B extends Thread
{
public void run()
{
for(int j=1;j<=5;j++)
{
System.out.println(“\tFrom Thread B : j = “ + j);
}
System.out.println(“Exit from B”);
}
}
class C extends Thread
{
public void run()
{
for(int k=1;k<=5;k++)
{
System.out.println(“\tFrom Thread C : k = “ + k);
}
System.out.println(“Exit from C”);
}
}
class ThreadCreation
{
public static void main(String arg[])
{
new A().start();
new B().start();
new C().start();
}
}

This code creates three new threads such as A, B and C by extending the
Thread class. Each class overrides the run() method to define a thread. You
have to start these threads by using the start() method of the thread class
after creating the threads. The output of the above code changes on each run. All
the threads have the same priorities and they may start in any order.

The following is the output.
C:\java\Chapter5>javac ThreadCreation.java
C:\java\Chapter5>java ThreadCreation

From Thread A : i = 1
From Thread A : i = 2

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
190 Material

From Thread A : i = 3
From Thread A : i = 4
From Thread A : i = 5
From Thread B : j = 1

Exit from A
From Thread B : i = 2
From Thread C : k = 1
From Thread B : j = 3
From Thread C : k = 2
From Thread B : j = 4
From Thread C : k = 3
From Thread B : j = 5
From Thread C : k = 4

Exit from B
From Thread C : k = 5

Exit from C

3.3.5 Creating Multiple Threads

Thread methods are those methods that control the different types of behaviour,
such as running, sleeping or resuming of the various threads. Thread class is the
member of java.lang.thread package of Java. The thread class of Java provides
various types of thread methods:

 run() Method: Executes the code that is enclosed within the run()
method. The thread class overrides the run() method that extends the
thread class or implements the runnable interface. The syntax is:
public void run()
{
// Thread body
}

 start() Method: Initializes the thread and calls the run method. Starts
the execution of a newborn thread that is created by the run() method of
the thread class. The start() method allocates the system resources
that are required for the thread execution. The syntax is:
thread-object.start();

 yield() Method: Relinquishes between the threads that are in runnable
state and have the same priorities. The yield() method changes the
execution of the thread on the basis of round robin or first-come first-serve
scheduling techniques. The syntax is:
yield();

 stop() Method: Destroys a running or suspended thread. This method
is deprecated in Java 2. You need to use the exception handler with this
method or the interrupt() method instead of the stop() method.
The syntax is:
stop();

 sleep() Method: Suspends the currently running thread for a specified
amount of time. This method does not destroy the thread, rather it suspends
the thread for a specified time. This method throws InterruptedException,
as a result, you use the sleep() method in between the try-catch block.
sleep(t);

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 191

Here, t is the specified amount of time in millisecond.

 suspend() Method: Stops the running thread, until it is again resumed
by the resume() method of the thread class. The syntax is:
suspend();

// After certain time
resume();

 wait() Method: Stops the currently running thread, until some event
occurs using the notify() method of the thread class. The syntax is:
wait();
// After some time
notify(); // When any event is occurred.

The following program code shows the threads that use the various methods
of the thread class:

Using Thread Methods
class A extends Thread
{
public void run()
{
for(int i=1;i<=5;i++)
{
if(i == 1)
yield();
System.out.println(“\tFrom Thread A : i = “ + i);
}
System.out.println(“Exit from A”);
}
}
class B extends Thread
{
public void run()
{
for(int j=1;j<=5;j++)
{
System.out.println(“\tFrom Thread B : j = “ + j);
if(j == 3)
stop();
}
System.out.println(“Exit from B”);
}
}
class C extends Thread
{
public void run()
{
for(int k=1;k<=5;k++)
{
System.out.println(“\tFrom Thread C : k = “ + k);
if (k == 1)
try
{
sleep(1000);
} catch (Exception e){}
}

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
192 Material

System.out.println(“Exit from C”);
}
}
class ThreadMethods
{
public static void main(String arg[])
{
A thread_a = new A();
B thread_b = new B();
C thread_c = new C();
System.out.println(“Exit from A”);
thread_a.start();
System.out.println(“Exit from B”);
thread_b.start();
System.out.println(“Exit from C”);
thread_c.start();
System.out.println(“Exit the main thread.”);
}
}

This code shows a multithreaded Java program that uses the various thread
methods. In this code, the yield() method is invoked, when Thread A is at the
iteration i = 1. Thread A starts first, but it is relinquished and gives up its
control to Thread B. The iteration of Thread B reaches j = 3 and is destroyed by
the stop() method. The iteration of Thread C reaches k = 1, Thread C is
suspended for 1 second and after one second, it is automatically resumed.

The following is the output.
C:\java\Chapter5>java ThreadMethods
Exit from A
Exit from B
Exit from C
Exit the main thread

From Thread C : k = 1
From Thread B : j = 1
From Thread B : j = 2
From Thread B : j = 3
From Thread A : i = 1
From Thread A : i = 2
From Thread A : i = 3
From Thread A : i = 4
From Thread A : i = 5

Exit from A
From Thread C : k = 2
From Thread C : k = 3
From Thread C : k = 4
From Thread C : k = 5

Exit from C

3.3.6 Suspending, Resuming and Stopping Threads

As mentioned earlier, the predefined methods suspend(), resume() and
stop() have been deprecated in Java 2 though they are a convenient way for
managing the execution of threads. These methods were deprecated as they may
cause deadlocks and serious system failures in a multithreaded environment.

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 193

However, in the new version of Java, suspending, resuming and stopping a thread
can be performed using boolean type flags. The run() method of a thread
will work based on the current flag values that indicate the execution state of a
thread. For example, if the running flag is set to true, the run() method must
let the thread execute. For the run() method to suspend the execution of the
currently running thread, the suspend flag must be set to true. Likewise, the
thread will die once the stop flag is set to true (Refer Example 3.9).

Example 3.9: A program to demonstrate suspend, resume and stop operations is
as follows:

class ChildThread extends Thread
{

boolean suspend_flag,stop_flag;
String name;
ChildThread(String str)
{
name=str;

suspend_flag=false;
stop_flag=false;

}
public void run()
{

try
{

int i=5;
while(i>=1)
{

System.out.println(name+” “+i);
sleep(1000);
i—;
synchronized(this)
{

while(suspend_flag)
{

wait();
if(stop_flag)
{

break;
}

}
}

}
}catch(InterruptedException e)
{

System.out.println(“Thread interrupted”);
}

}
synchronized void my_suspend()
{

suspend_flag=true;
}
synchronized void my_resume()
{

suspend_flag=false;
notify();

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
194 Material

}
synchronized void my_stop()
{

suspend_flag=false;
stop_flag=true;
notify();

}
}
class SRS
{
public static void main(String[] args)
{

try
{

ChildThread obj=new ChildThread(“Thread”);
obj.start();
System.out.println(“Thread started”);
Thread.sleep(2000);
obj.my_suspend();
System.out.println(“Thread is suspended”);
Thread.sleep(2000);
obj.my_resume();
System.out.println(“Thread is resumed”);
Thread.sleep(2000);
obj.my_suspend();
System.out.println(“Thread is suspended”);
Thread.sleep(2000);
obj.my_resume();
System.out.println(“Thread is resumed”);
Thread.sleep(2000);
obj.my_stop();
System.out.println(“Thread stopped”);

}
catch(InterruptedException e)

{
System.out.println(“Thread interrupted”);

}

 }
}

The output of the program is:
Thread started
Thread 5
Thread 4
Thread 3
Thread is suspended
Thread is resumed
Thread 2
Thread 1
Thread is suspended
Thread is resumed
Thread stopped

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 195

Check Your Progress

1. How will you create thread in java?

2. Why threads are called lightweight processes?

3. What are the constants defined in thread class?

4. Write the default priority of a thread.

5. What are the two ways to implement synchronization?

6. Define the term runnable interface.

3.4 BASIC INPUT/OUTPUT

Java manages all input and output in the form of streams. A stream refers to a
channel through which data flows from the source to the destination. This data is in
the form of sequence of bytes or characters.

Java streams can be broadly categorized into two types, namely input stream
and output stream. The streams which help to read data from various sources,
namely keyboard, mouse, files, storage devices, etc., in order to supply it to the
program are called input streams. The streams which receive data from the program
and directly write it to the physical devices or other programs are called output
streams. For example, to bring the data from an input device into the program, the
program opens an input stream on the input device and reads the data in a serial
manner. Conversely, to write data from the program to an output device, the program
opens an output stream to the output device and writes data to it serially (Refer
Figure 3.5).

Program

Output Stream

Output Device

Input Device

Input Stream

Fig. 3.5 Java Streams

3.4.1 Streams (Byte and Character)

Java supports input/output streams through a hierarchy of classes defined in the
java.io package. On the basis of the type of data on which these classes
operate, they can be categorized into two groups: byte stream classes and character
stream classes (Refer Figure 3.6).

 Byte Stream Classes: These classes support input and output operations
on bytes (8-bit bytes). For example, while reading from or writing data to a
binary file, byte stream classes are used.

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
196 Material

 Character Stream Classes: These classes perform input and output
operations on characters (16-bit Unicode). For example, while reading from
or writing data to a text file, character stream classes are used.

Stream Classes

Byte Stream
Classes

Character Stream
Classes

Input Stream
Classes

Output Stream
Classes

Reader Classes Writer Classes

Fig. 3.6 Classification of Stream Classes

3.4.2 Reading From and Writing To Console

Java 1.0 supports console input using byte streams. Since the use of byte streams
for reading/writing console input requires using deprecated methods, this approach
is not recommended. The more desired approach used for reading input for Java
2 is to use character streams instead of byte streams. Java 1.1 and higher versions
of Java provide InputStreamReader to convert byte-oriented data into
character-oriented data. In order to read data from the console using character
stream, System.in is used. System.in refers to an object of type
InputStream, therefore, it can be used as a character-based input stream.

Example 3.10 illustrates the use of InputStreamReader class. The statement
to wrap InputStreamReader inside the BufferedReader and create
a character-based stream connected to the console through System.in is as
follows:

BufferedReader br = new BufferedReader (new InputStreamReader
(System.in));

Example 3.10: A program to demonstrate the use of InputStreamReader
class is as follows:

import java.io.*;
class InputStreamReaderExample
{

public static void main(String args[])
{

try
{

int j[]=new int[5];
double sum=0.0;

System.out.print(“Enter your name: “);
BufferedReader br=new BufferedReader (new InputStreamReader
(System.in));

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 197

//reading input from the keyboard
String name=br.readLine();

System.out.println(“Enter marks you scored in five subjects”);
for (int i=0; i<j.length; i++)
{

System.out.print((i+1)+“: ”);
String s=br.readLine();
j[i]=Integer.parseInt(s);
sum+=j[i];

}
System.out.println(name+” your percentage is: “ +sum/j.length+”%”);

}
catch(Exception e){}

}
}

The output of the program is:
Enter your name: Kevin
Enter marks you scored in five subjects
1: 89
2: 90
3: 65
4: 78
5: 60
Kevin your percentage is: 76.4%

3.4.3 Reading and Writing Files

FileReader and FileWriter Classes

The FileReader class is used to read characters from the file. The
FileReader class creates character stream between the file and the program
and reads characters from the file and sends it to the program. Similarly, to write
characters to a file, the FileWriter class is used. Example 3.11 illustrates the
use of FileReader and FileWriter class.

Example 3.11: A program to demonstrate the use of FileReader and
FileWriter class for reading from and writing characters to a file is as follows:

import java.io.*;
class ReadWriteFile
{

public static void main(String args[]) throws IOException
{

String w=”Hello\nHow\nare\nyou”;
FileWriter fw=new FileWriter(“data.txt”);
System.out.println(“Writing to the file data.txt...”);
fw.write(w);
System.out.println(“Writing complete”);
fw.close();

System.out.println();
FileReader fr=new FileReader(“data.txt”);
BufferedReader b=new BufferedReader(fr);

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
198 Material

System.out.println(“Reading the file data.txt...”);
while((w=b.readLine())!=null)
{

System.out.println(w);
}
fr.close();
System.out.println(“Reading ends”);

}
}

The output of the program is:
Writing to the file data.txt...
Writing complete
Reading the file data.txt...
Hello
How
are
you
Reading ends

In the program illustrated in Example 3.11, when the FileWriter class’ object
is created, a file with the name data.txt is automatically created by the operating
system and data is written to it. Moreover, the object of FileReader class is
used to read the contents of the same file.

File Class

The File class allows you to obtain and manipulate the information about a file
like permissions, size, time, etc. Unlike other classes of java.io package, this
class does not operate on the streams; it deals directly with the files and file system.
That is, it does not specify how the data is retrieved from or sent to the files. Using
this class, you can also make new directories, rename as well as delete the files.

A File object can be created using any one of the following constructors:
File(String path)
File(String path, String filename)
File(File dir, String filename)

where,

path is the path name of the file.

filename is the name of the file or subdirectory.

dir is a File object that specifies a directory.

The File class defines various methods. Some of them along with their description
are listed in Table 3.2. Also, Example 3.12 illustrates the use of some of the methods
of File class.

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 199

Table 3.2 Some File Class Methods

Method Description
boolean canExecute() It returns true if the file given by the abstract path name

can be executed.
boolean canRead() It returns true if the file given by the abstract path name

can be read.
boolean canWrite() It returns true if the file given by the abstract path name

can be written.
boolean createNewFile() It creates a new empty file.
boolean delete() It deletes the file or directory; directory can be deleted

only if it is empty.
boolean exists() It returns true if the file given by the abstract pathname

exists.
String getName() It returns the name of the file or directory.
String getParent() It returns the name of the parent directory.
String getPath() It returns the path of the file as a string.
boolean isAbsolute() It returns true if the abstract file path name is absolute.
boolean isFile() It returns true if invoked on a file and false if invoked

on a directory.
boolean isHidden() It returns true if the file is a hidden file.
long lastModified() It returns the time the file was last modified.
long length() It returns the size of the file.
boolean isDirectory() It returns true if the file given by the abstract path name

is directory.
boolean setReadOnly() It sets the file to read-only .
 Note: In Java, a directory is also treated as file. The only difference is that it contains a list of

file names which can be obtained using the list() method.

Example 3.12: A program to demonstrate the use of some of the methods of
File class is as follows:

import java.io.*;
public class FileClassExample
{
 public static void main(String args[])
 {

InputStreamReader cin = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(cin);
File fileobj = new File(“Java/Sample.txt”);

if(!fileobj.exists())
{

System.out.println(“File does not exist.”);
System.exit(0);

}
System.out.println(“File Name:” + fileobj.getName());
System.out.println(“Path: “ + fileobj.getPath());
System.out.println(“Absolute Path: “ +

fileobj.getAbsolutePath());
System.out.println(“Parent: “ + fileobj.getParent());

System.out.println(“File was last modified at: “ +
fileobj.lastModified());

System.out.println(“File size: “ + fileobj.length() + “
Bytes”);
 }
}

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
200 Material

The output of the program is:
File Name: Sample.txt
Path: Java\Sample.txt
Absolute Path: E:\JAVA_Book\ \Java\Sample.txt
Parent: Java
File was last modified at: 1264808454781
File size: 31 Bytes

3.4.4 PrintWriter Class

When a program is executed, the input is read from various sources and the output
is sent to different destinations. Generally, the keyboard and monitor are used as
standard input and output devices, respectively. The data fed by the user is supplied
to the program using input streams and the output of the program is supplied to the
output device using output streams. This output is displayed to the user using Java
PrintStream class. Therefore, the two methods, namely print() and
println()that are used for displaying the primitive data type, object, etc. on
an output device are defined by the PrintStream class. This is a byte stream
class which is derived from the OutputStream class. Unlike other output
streams, the PrintStream class does not throw an IOException even if
an exceptional event occurs.

PrintStream class can be connected to the underlying output streams, such
as FileOutputStream , ByteArrayOutputStream ,
BufferedOutput Stream, etc.

PrintStream class defines following type of constructor:

PrintStream(OutputStream os)

This constructor creates a PrintStream and connects it to the output stream
os.

In addition to print() and println() methods, the PrintStream
class defines some other methods which are listed in Table 3.3.

Table 3.3 PrintStream Class Methods

Method Description
PrintStream append(char c) Appends the character c to the output

stream.
PrintStream
append(CharSequence cs)

Appends the character sequence c to
the output stream.

boolean checkError() Checks the error state of the stream.
protected void setError() Sets the error state to True.

Program 3.1: A program to demonstrate the use of PrintStream class.

import java.io.*;
class PrintStreamExample
{

public static void main(String args[])
{

try
{

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 201

byte b[]=”Java PrintStream class is used to
display result to the user”.getBytes();

CharSequence c=”the end”;
FileOutputStream fos=new FileOutputStream
(“test.txt”); //creating file output stream
/*creating print stream that wraps file output
stream*/
PrintStream ps=new PrintStream(fos);
ps.write(b); //writing data to the stream
ps.append(c); /*appending data to the print

stream*/
if(ps.checkError()) //checking error state
{
System.out.println(“Error in appending

characters”);
}
else
{
System.out.println(“Data written to the
file”);

System.out.println(“Character appended
successfully”);

}
ps.close(); //closing the stream

}
catch(IOException e)
{

System.out.println(e.getMessage());
}

}
}

Output of the program:

Data written to the file
Character appended successfully

3.5 FUNDAMENTALS OF APPLETS

An applet is a small program typically embedded within the Web page which is
used to create a dynamic and interactive application. They provide interactive
features to a Web page which cannot be provided by HTML (HyperText Markup
Language). For example, applets enable capturing user inputs in the form of mouse
clicks, text entry, checkbox selection, etc. and generating response to the user’s
actions.

Each applet that is created must be a subclass of the Applet class,
contained within the java.applet package. This class contains methods which
govern the life and behavior of the applets. In addition, applets use various methods
of the Graphics class contained inside the java.awt package. The
Graphics class is responsible for all the operations related to display (output)
of an applet. The Java applets can be executed either through an appletviewer (a
tool of Java Development Kit) JDK or any Java-compatible Web browser.

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
202 Material

Life Cycle of an Applet

A Java applet enters into various states during its entire life cycle which include
born state, running state, idle state and dead state. These states occur when different
methods of the Applet class are invoked by the Java runtime system. The
invocation of these methods makes an applet undergo a series of state change
right from the time it is loaded till it is destroyed and frees all the resources held by
it. The life cycle of an applet can be depicted as shown in Figure 3.7.

Born

Running

Idle

Dead

paint()

start()

init()

stop()

destroy()

Applet Begins

Applet Ends

start()

Fig. 3.7 Applet Life Cycle

The order of method invocation when an applet is loaded is as follows:

 init(): The life cycle of an applet begins when it is first loaded and the
init() method is invoked. This method is invoked only once during the
entire lifetime of an applet. The body of the method includes statements
related to variable initialization, object creation, adding components like
buttons, textboxes, etc., setting colors of the applet, loading of images or
fonts, etc. After the invocation of the init() method, the applet enters
the born state.

 start(): This method is automatically invoked after the init()
method. Unlike init() method, start() method may be invoked
more than once. This method is called every time the Web page containing
the applet is executed and displayed on the screen. With the invocation of
this method, the applet enters the running state.

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 203

 paint(): This method is invoked to display the output on the screen in
the form of text, graphics, etc. Sometimes, it may happen that the window
in which applet is running is covered by another window, or is minimized or
resized. In all these cases, paint() method is re-invoked for the output
to be redrawn on the screen. As depicted in Figure 3.7 the applet remains
in the running state while paint() method is invoked.

The order of method invocation at the time of termination of an applet is as follows:

 stop(): This method is invoked automatically when the Web page
containing the running applet is closed or left temporarily and applet enters
the idle state. The user can also stop the running applet by invoking the
stop() method explicitly.

 destroy(): This method is invoked to remove the applet permanently
from the memory. It releases all the resources held by the applet. Like
init() method, this method is invoked only once during the entire life
cycle of an applet. The applet becomes dead when this method is invoked.

Note: The init() and destroy() methods are called only once whereas start(),
paint() and stop() methods can be called multiple times in an applet.

3.5.1 Transient and Volatile Modifier

The transient and volatile modifiers are two special modifiers provided by Java
which are used to handle some specialized situations.

transient

Object serialization is the process of reading and writing objects. By default, all
objects are serializable, i.e., they can be read from and written to the secondary
memory so that the value which they hold persists. To make an object non-
serializable, the transient modifier is used. If an instance variable is declared as
transient then the values of that variable will not persist while writing its object to
the secondary memory.

To understand the concept of transient keyword, consider the following
code segment:

class TransientExample
{

transient double first; // will not persist
double second; //will persist

}

Here, when the object of class TransientExample is written to the
secondary memory, the values of first will not be saved while the value of second
will be.

volatile

The volatile modifier is used to tell the compiler that the variable declared as
volatile can be changed at any time by the other parts of the program. This
modifier is mainly used in multithreading in which a program (process) is divided
into two or more subprograms (subprocesses), each of which runs by a separate

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
204 Material

thread and performs different tasks concurrently. In a multithreaded program,
various threads share the same instance variable and keep their own copy of the
variable in their local cache memory while the master copy remains in the main
memory. Whenever a thread changes the value of the variable, it updates the value
of the variable only in its local cache memory and not in the main memory. This
leads to inconsistency because the thread using the same variable does not know
about the change of the value by another thread. So to avoid this problem, the
volatile modifier is used. When a variable is declared as volatile, it is not
stored in the cache memory and its value is updated in the main memory so that
the other threads can easily access the updated value.

3.5.2 Modifier Strictfp

In the Java programming language, the strictfp is a modifier that restricts
floating point calculations to ensure portability. The strictfp command was
introduced into Java with the Java Virtual Machine (JVM) version 1.2 and is now
available for use on all currently updated Java VMs.

The IEEE (Institute of Electrical and Electronics Engineers) standard IEEE
754 specifies a standard method for both floating point calculations and storage of
floating point values in various formats, including single (32-bit, used in Java’s
float) or double (64-bit, used in Java’s double) precision.

When the overflow or underflow is lacking, then there is no difference in
results with or without strictfp. But when the repeatability is essential, then
the strictfp modifier is typically used to ensure that overflow and underflow
occurs in the same places on all the platforms. Without the strictfp modifier,
intermediate results may use a larger exponent range. The strictfp modifier
accomplishes this by representing all intermediate values as IEEE single precision
and double precision values, as occurred in earlier versions of the JVM.

Java programmers use the modifier strictfp to ensure that calculations
are performed as it was in the earlier versions, i.e., only with IEEE single and
double precision types used. Additionally, using strictfp guarantees that results
of floating point calculations are identical on all the platforms.

The modifier strictfp can be used on classes, interfaces and non-
abstract methods. When applied to a method, it causes all calculations inside the
method to use strict floating point mathematics. When applied to a class, all
calculations inside the class use strict floating point mathematics. Compile time
constant expressions must always use strict floating point behaviour.

Following is the syntax example of strictfp modifier:
public strictfp class MyFPclass {
 // ... contents of class here ...
}

Following are some examples of strictfp modifier.

Example 1: Keyword strictfp modifier usage with classes.
strictfp class Test {

 // All concrete methods here are implicitly strictfp.
}

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 205

Example 2: Keyword strictfp modifier usage with interfaces.
strictfp interface Test {

 // All methods here becomes implicitly
 // strictfp when used during inheritance.
}

class Car {

 // strictfp applied on a concrete method
 strictfp void calculateSpeed(){}
}

Example 3: Keyword strictfp modifier usage with variables.
strictfp interface Test {
 double sum();

 // Compile-time error here
 strictfp double mul();
}

From the above given example codes, we can define the following conclusions:

 When a class or an interface is declared with strictfp modifier,
then all methods declared in the class or interface, and all nested types
declared in the class, are implicitly strictfp.

 The strictfp cannot be used with abstract methods. Though, it
can be used with abstract classes or interfaces.

 Because the methods of an interface are implicitly abstract, therefore
strictfp cannot be used with any method inside an interface.

3.5.3 Native Interface

In Java, native is a modifier. The native modifier can only refer to methods.
Like the abstract keyword, native indicates that the body of a method is
to be found elsewhere. In the case of abstract methods, the body is in a sub-class,
but in the case of native methods, the body lies entirely in a library which is
outside the JVM. People who port Java to a new platform, implement extensive
native code to support GUI components, network communication and a broad
range of platform specific functionalities However, it is rare for applet and
application programmers to use the native codes. One of the vital features of
JNI (Java Native Interface) is that it never imposes any restriction on the JVM.
Therefore, JVM (Java Virtual Machine) vendors can add support for the JNI
without affecting other parts of the virtual machine. A Java programmer may need
the native method in the following situations:

 If the client requires platform-dependent features in Java, but the standard
Java class library supports platform-independent features. In this situation,
the programmer requires JNI for supporting platform-dependent features
in Java.

 JNI has to be used when the programmer has already developed the code
in C and C++ and wishes to make it accessible to Java code.

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
206 Material

 JNI must be used when the programmer wants to develop a small portion
of time-critical code by using a lower-level language, such as assembly.

By programming through JNI, the programmer uses native methods to:

 Create, inspect, and update Java objects.

 Call Java methods.

 Catch and throw Exception.

 Load classes and collect class information.

 Perform runtime type checking.

JNI can be used with Invocation API to embed any native application
in JVM.

Drawback of native code is that it violates the platform independent
features of Java and this procedure has less security as binary files are generated
during native implementation.

JNI allows Java byte codes to communicate with foreign methods like C/
C++. Advantage of such a technique is that byte codes are able to communicate
with executable files, which execute faster and hence increase the performance. In
Java, native code or native method accesses JVM features by calling
JNI functions. In Java, JNI functions are available by using an interface pointer.
An interface pointer is a pointer to a pointer to a structure. This structure pointer
points to a set of pointers to function which is inside the structure of JNI. The
following example clarifies this concept.

Program 3.2

//Java - C Communication

public class p

{

int i;

public static void main(String args[])

{

p x=new p();

x.i=10;

System.out.println(x.i);

x.fun();

//Native method calling.

System.out.println(x.i);

}

public native void fun();

//Native method declaration.

static{

System.loadLibrary(“p”);

}

}

Step 1. Compile it with javac p.java

 This will generate the class file as p.class

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 207

Step 2. Create the header file by the command javah p

 This will generate the header file p.h.

It the programmer wants to see the header file then the programmer must
write edit p.h at the Command prompt. The following header file will be
displayed.
 p.h

/* DO NOT EDIT THIS FILE - it is machine generated */

#include <jni.h>

/* Header for class p */

#ifndef _Included_p

#define _Included_p

#ifdef __cplusplus

extern “C” {

#endif

/*

 * Class: p

 * Method: fun

 * Signature: ()V

 */

JNIEXPORT void JNICALL Java_p_fun

 (JNIEnv *, jobject);

#ifdef __cplusplus

}

#endif

#endif

The above two steps are same for Windows and Linux.

Steps For Linux Platform

Step 3. Create the .c file p.c

Note : For Linux the C file name should be same as that of the java file name,
otherwise run time error will arise.
p.c

#include”p.h”

#include”jni.h”

#include”stdio.h”

JNIEXPORT void JNICALL Java_p_fun

(JNIEnv *env, jobject obj)

{

 jclass cls;

 jfieldID fid;

 jint i;

 printf(“Hello”);

 cls=(*env)->GetObjectClass(env,obj);

 fid=(*env)->GetFieldID(env,cls,”i”,”I”);

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
208 Material

 i=(*env)-> GetIntField(env,obj,fid);

 printf(“%d”,i);

}

Step 4. Create the object file by:
 gcc –O –fpic -c p.c

Note: In case one is using multithreading in the programs, then D_REENTRANT
attribute has to be used along with the command to create the object file.
 gcc -O -D_REENTRANT -fpic -c p.c

Step 5. Create the libp.so(shared library) file by:
 gcc -shared -o libp.so p.o

Step 6. Get the output by:
 java –Djava.library.path=. p

Steps for Windows Platform

Step 3. CL/LD p.c

To create dynamic linking library:
java p

To execute Java program:

The p.Java file is a usual Java file. Header file p.h is generated by
JVM, it contains the prototype declaration of the native method. native
methods are loaded when the programmer calls a static method of system
class.
public static void loadLibrary()

 JNIEXPORT void JNICALL Java_p_fun

 (JNIEnv *, jobject)

Signature: V() in the comment indicates that the return type of native
method is void. The signatures of other return types are listed below:

Table 3.4 Signature of Different Data Types

Type Signature Java Type

Z boolean

B byte

C char

S short

I int

J long

F float

D double

L fully-qualified-class ; fully-qualified-class

[type type[]

(arg-types) ret-type method type

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 209

Consider the p.c file. It takes the argument JNIEnv *env and jobject
obj.
typedef const struct JNINativeInterface *JNIEnv;

JNIEnv is a pointer to the structure JNINativeInterface which
contains function pointers. This concept can be understood through an example.
Consider the C program below:

Program 3.3

void fun()

{

printf(“Hello World”);

}

struct xxx

{

void(* p)();

} ;

typedef struct xxx *struct_ptr ;

int main()

{

struct_ptr *pointer ;

struct xxx a,*ptr1;

a.p=&fun;

ptr1=&a;

pointer=&ptr1;

(*pointer)->p();

}

The output will be Hello World.

It can be seen that JNIEnv *env is similar to that of struct_ptr
*pointer and struct xxx is similar to JNINativeInterface.

Now on considering the second argument, jobject obj. obj holds
the value of the pointer that points to the current object that is x here.
GetObjectClass(JNIEnv *,jobject); is a function pointer inside
the structure JNINativeInterface. While Java is communicating with C,
both jobject and jclass are the same. The jclass is typedef as
jobject(typedef jobject jclass). GetObjectClass returns
the reference of the current object which is stored in cls. GetFieldID
returns the reference held by cls to access the various class members present in
the class. Prototype of GetFieldID is:
jfieldID GetFieldID(JNIEnv *env, jclass clazz,

const char *name, const char *sig);

Here name parameter holds the name of the class element to be accessed by
the native method and sig parameter holds signature of the class element.
Both these parameters are pointers to character constant. In the program, name
holds the name of the class element that is i and sig holds I, which is the signature
of i to indicate that i is of integer type. GetIntField (env,obj,fid);

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
210 Material

returns the value of i. Similarly, if the class contains a float variable, then the
function will be GetIFloatField (env,obj,fid); to access that variable.
Consider the following example:

Program 3.4

//p1.java

//Get Your Native Interface Version.

class p1{

public native void fun();

public static void main(String args[])

 {

 new p1().fun();

 }

static{

 System.loadLibrary(“p1”);

}

}

p1.h

/* DO NOT EDIT THIS FILE - it is machine generated */

#include <jni.h>

/* Header for class p1 */

#ifndef _Included_p1

#define _Included_p1

#ifdef __cplusplus

extern “C” {

#endif

/*

 * Class: p1

 * Method: fun

 * Signature: ()V

 */

JNIEXPORT void JNICALL Java_p1_fun

 (JNIEnv *, jobject);

#ifdef __cplusplus

}

#endif

#endif

p1.c

#include”p1.h”

#include”stdio.h”

JNIEXPORT void JNICALL Java_p1_fun

 (JNIEnv *a, jobject b)

{

 jint i=(*a)->GetVersion(a);

 printf(“%x”,i);

}

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 211

Both these examples have data type of i as jint. In JNI int is typedef
as jint. Similarly, the typedef version of other Java data types is listed below:

Table 3.5 Java Dataypes and their Native Types with Description

Java Type Native Type Description

boolean jboolean unsigned 8 bits

byte jbyte signed 8 bits

char jchar unsigned 16 bits

short jshort signed 16 bits

int jint signed 32 bits

long jlong signed 64 bits

float jfloat 32 bits

double jdouble 64 bits

void void N/A

Program 3.5

//static native method

//p2.java

class p2{

public native static void fun();

static{

 System.loadLibrary(“p2”);

}

public static void main(String args[])

{

p2.fun();

}}

p2.h

/* DO NOT EDIT THIS FILE - it is machine generated */

#include <jni.h>

/* Header for class p2 */

#ifndef _Included_p2

#define _Included_p2

#ifdef __cplusplus

extern “C” {

#endif

/*

 * Class: p2

 * Method: fun

 * Signature: ()V

 */

JNIEXPORT void JNICALL Java_p2_fun

 (JNIEnv *, jclass);

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
212 Material

#ifdef __cplusplus

}

#endif

#endif

p2.c

#include”stdio.h”

#include”p2.h”

JNIEXPORT void JNICALL Java_p2_fun

 (JNIEnv * a, jclass b)

{

 printf(“Hello C, From JAVA”);

}

Since the native method is static, the second argument to the function
JNIEXPORT void JNICALL Java_p2_fun (JNIEnv * a, jclass
b) is of jclass type. It has already been stated that when Java communicates
with C, jclass and jobject are exactly the same therefore, jclass can
be replaced with jobject.

3.6 STRING HANDLING

A String is a sequence of characters. Java provides full complement features of
string handling by implementing strings as built-in objects.

String Constructors

The String class supports several constructors. To create an empty String,
call the default constructor.
For example:

Sting s = new String ();

It will create an instance of String with no characters in it.
class MakeString
{

public static void main(String args[])
{

char c[] = {‘H’, ‘E’, ‘L’, ‘L’, ‘O’}
String s1 = new String(c);
String s2 = new String(s1);

System.out.println(s1);
System.out.println(s2);

}
}

Output of the program:
HELLO
HELLO

String Length

The length of a string is the number of characters that it contains. The syntax is:
int length()

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 213

For example:
The following prints “5”, since it has five characters in the string s.
char chars[] = {‘H’, ‘E’, ‘L’, ‘L’, ‘O’}
String s = new String (chars);
System.out.println(s.length);

String Literals

You can use a string literal to initialize a String object.
The following code creates two equivalent strings;
char chars[] = {‘H’, ‘E’, ‘L’, ‘L’, ‘O’}
String s1 = new String (chars);
String s2 = “HELLO”; / / use string literal

String Concatenation

You can concatenate two strings using concat(), shown as follows:
String concat(String str)

This method creates a new object that contains the invoking string with the
contents shown as follows:

String s1 = “Hello”;
String s2 = s1.concat(“World”);
puts the string “HelloWorld” into s2.

String Compare

The String compare is used to compare the strings.
int compareTo(String str)

Here str is the String compared with the invoking String.

3.6.1 Operations on String and Extract Character Methods

Each quoted string is an object of the String class and thus, it is created
inside the heap. Therefore, in the following example, s1 which is a reference of
String class, must have a hash code value. It can be checked through the
given program:

Example 3.13
class Demo

{
public static void main(String args[])

{
String s1=”Java”;
System.out.println(s1.hashCode());
}

}

Output of the program:
71355168

Indeed, s1 is a reference of string class. However, it is interesting to
know how an object is created inside the heap without a new operator! When
JVM encounters a string s1=“Java”; such a statement implicitly invokes
a new operator to allocate memory from heap. Java has maintained most of the C/
C++ syntax and that is why Java provides this facility to declare a string.
String objects are created inside the heap in a string pool. In Java, a

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
214 Material

string class is immutable, i.e., strings in Java, once created and initialized,
cannot be changed on the same reference. If one changes the content of the original
string object, then an entirely new string object is created. A
Java.lang.String class is final. This implies that no class can extend it.

Most Frequently used Constructors of String Class

The most frequently used constructors are:

No Argument Constructor

String s=new String() this constructor is used to create an empty
string.

String(char chars[])

This constructor can be used to create a string from an array of characters.
Consider the following example:

Example 3.14
class Demo

{
public static void main(String args[])

{
char mak[]={‘a’,’b’,’c’};
String s1=new String(mak);
System.out.println(s1);
}

}

Output of the program:
abc
String(char[] c, int start, int length)

The start parameter specifies the index from which the characters are used to
create the string object and the length specifies the number of characters to be
used from the character indicated by start. The following example shows this:

Example 3.15
class Demo

{
public static void main(String args[])

{
char mak[]={‘a’,’b’,’c’,’d’,’e’,’f’,’g’};
String s1=new String(mak,3,3);
System.out.println(s1);
}

}

Output of the program:
def

Example 3.16
String(String stringObj);
class Demo

{
public static void main(String args[])

{
String s1=new String(“Hello,Java!”);
System.out.println(s1);

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 215

}
}

Output of the program:
Hello,Java!

Example 3.17
class Demo

{
public static void main(String args[])

{
String s2=”Hello World!”;
String s1=new String(s2);
System.out.println(s1);
}

}

Output of the program:
Hello World!

In Java, strings are set in a unicode character sequence. Unicode
characters take two bytes from memory. If the programmer is assured that the
user characters in a string are only from keyboard, i.e., only ASCII character
set, then it is advisable to use byte data type rather than char. The constructors
are:

 String(byte b[])
 String(byte b[],int start, int length)

The parameter b represents the array of bytes. Here also, the start parameter
specifies the index from which the characters are used to create the string
object and the length specifies the number of characters to be used from the
character indicated by start, i.e., the range. Consider the following example:

Example 3.18
class SubStringConstructiom

{
public static void main(String args[])

{
byte ascii[] = {65, 66, 67, 68, 69, 70 };
String s1 = new String(ascii);
System.out.println(s1);
String s2 = new String(ascii, 2, 3);
System.out.println(s2);
}

}

Output of the program:
ABCDEF
CDE

Extended versions of the byte-to-string constructors are also
defined. In these a programmer can specify the character encoding that determines
how bytes are converted to characters. However, most of the time, default encoding
is used.

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
216 Material

String Comparsion Method

Behaviour of == Operator in Case of String

The == operator is used to determine whether the content of two variables is
same or different. However, when == is used in the case of string references,
some abnormal behaviour is shown, as in the program as follows:

Example 3.19
class Demo

{
public static void main(String args[])

{
String s1=”Java”;
String s2=”Java”;
if(s1==s2)
System.out.println(“Surprised!!!”);
}

}

Output of the program:
Surprised!!!

s1 is a reference of string class. s1= “Java”; statement instructs
the JVM to call the constructor of a string class implicitly through a new
operator. s1 is created inside stack and memory is allocated to it from the heap.
Similarly, s2 is created inside the stack and JVM implicitly calls the constructor
to allocate memory to it from the heap. Since s1 and s2 are two different reference
variables, it is quite obvious that two separate chunks of memory are allocated
and their starting addresses have to be stored in s1 and s2 respectively.

Therefore, s1 cannot be equal to s2. This concept is absolutely correct.
However, in case of a string object, when the constructor is called implicitly,
JVM behaves in different way. Strings are immutable, i.e., the content of a
string object cannot be altered in a given reference. So when JVM implicitly
calls the string class constructor, first JVM searches the heap area to ascertain
whether any memory chunk of the string object that has the same character
set in the same sequence, is available or not. If such a memory chunk is available
then, instead of allocating a new memory chunk, it uses the existing one.

In the above program, s1 and s2 have the same character set in the same
sequence. JVM first allocates memory to s1 from heap, say 1000. When s2 is
encountered, JVM searches the heap to find whether the same character set in the
same sequence is present or not. If it is found, instead of allocating a new memory
chunk, JVM assigns to s2, the starting address of the memory chunk that has
been allocated to s1. So s2 also contains 1000. When a programmer explicitly
calls the constructor through new operator; a new separate memory chunk is
allocated. So s1 is now not equal to s2.

Example 3.20
class Demo

{
public static void main(String args[])

{
String s1=”Java”;

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 217

String s2=new String(“Java”);
if(s1==s2)
System.out.println(“hello”);
}

}

Output of the program:
no output

A Closer Look at equals() and hashCode() Method

In case of a string class, the equals() method and the hashCode()
has been overridden. The hashCode() method returns the same unique
integral value for any two objects that are compared as equal and a different
integral value for any two objects that are not compared as equal. Equality is
inspected by the equals() method. Except for a string class, the equal
method checks the content of reference variables in all cases. If the content is
same, then it returns as true.

Example 3.21
class X
{

int x;
}
class Demo
{
public static void main(String argts[])

{
X d1=new X();
d1.x=9;
X d2=new X();
d2.x=9;
if(d1.equals(d2))

System.out.println(“Hello! We are same.”);
else

System.out.println(“No, We are different.”);
if(d1==d2)

System.out.println(“Same same dear.”);
else

System.out.println(“Believe dear we are different.”);
}

}

Output of the program:
No, We are different.
Believe dear we are different.

In the (Refer Example 3.21) program, JVM has allocated two different
chunks of memory to d1 and d2. Since both d1 and d2 are reference variables,
they contain the starting address of the memory chunk allocated to them. Therefore,
the contents of d1 and d2 are entirely different. The == operator and equals
method checks the content of reference variables and since the content is
different, the output is quite obvious. However, the story is different in case of
string objects, as can be checked in the following program:

Example 3.22
class Demo

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
218 Material

{
public static void main(String argts[])

{
String d1=new String(“Java”);
String d2=new String(“Java”);
if(d1.equals(d2))

System.out.println(“Hello! We are same.”);
else

System.out.println(“No, We are different.”);
if(d1==d2)

System.out.println(“Same same dear.”);
else

System.out.println(“Believe dear we are different.”);
}

}

Output of the program:
Hello! We are same.
Believe dear we are different.

The different output is surprising. However, the program can be explained
from the very beginning. d1 and d2 are the reference variables of string
class. The constructor of string class has been explicitly invoked through a
new operator. JVM allocates memory from the heap to d1 and d2. Definitely,
d1 and d2 have different addresses. Therefore, d1 is not equal to d2. The ==
operator checks the contents of d1 and d2. Since these are different, the output
is as usual. However, in the case of equals method, as mentioned earlier,
these behave in a different way as compared to string class. The equals()
method checks whether the character sequence and character case (upper or
lower) is same or not, when invoked by string objects. If the character
sequence and character case are the same, then the equals method returns
boolean true, else it returns false. The hashCode() method returns the same
integral value if the equals() method returns boolean true value for two
objects. Consider the following example:

Example 3.23
class Demo

{
public static void main(String argts[])

{
String d1=new String(“Java”);
String d2=new String(“Java”);
if(d1.equals(d2))

System.out.println(“Hello! We are same.”);
else

System.out.println(“No, We are different.”);
if(d1==d2)

System.out.println(“Same same dear.”);
else

System.out.println(“Believe dear we are different.”);
System.out.println(d1.hashCode());
System.out.println(d2.hashCode());
}

}

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 219

Output of the program:
Hello! We are same.
Believe dear we are different.
2301506
2301506

Since the character set and character sequence are same in both the string
objects, equals() method returns the same boolean true value. Therefore,
hashCode() method returns the same value for two objects. This happens
only because of the fact that strings are immutable.

Some Important Methods of String Class

Some important methods of string class are:
public int length()

This method is used to determine the length of the string. This can be explained
by the following example:

Example 3.24
class Demo{

public static void main(String args[])
{

String s1=”Hello world”;
int i=s1.length();
System.out.println(i);

}}

Output of the program:
11

public char charAt(int index)

This method is used to extract a specified character from the string by the
particular index supplied by the programmer. The index supplied must be within
the length of the string. The given example clarifies this:

Example 3.25
class Demo{

public static void main(String args[])
{

String s1=”Hello world”;
char ch=s1.charAt(2);
System.out.println(ch);

}}

Output of the program:
l

Suppose, the programmer supplies the index which is greater than the length
of the string, then string out of bound exception will be generated.
This is shown in the following example:

Example 3.26
class Demo{

public static void main(String args[])
{

String s1=”Hello world”;

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
220 Material

char ch=s1.charAt(12);
System.out.println(ch);

}}

Upon execution, this program throws string out of bound index
exception.

Public Void GetChars(int Start,int end, char c[], int index_1)

This method is used to copy the set of unicode characters from the string
from the index supplied through the start variable up to the index represented by
the end variable into a character array c. The last variable index_1 represents
the index number of the array from which the characters, copied from the string,
have to be stored.

Example 3.27
class Demo{

public static void main(String args[])
{

String s1=”Hello world”;
char ch[]=new char[5];
s1.getChars(1,3,ch,2);
for(int i=0;i<5;i++)
System.out.println(ch[i]);

}}

Output of the program:
e
l
Public byte[] getBytes()

This method is used to convert a unicode string into an array of bytes. Consider
the following example:

Example 3.28
class Demo{

public static void main(String args[])
{

String s1=”Hello”;
int i=s1.length();
byte b[]=new byte[i];
b=s1.getBytes();
for(int j=0;j<i;j++)
System.out.println(b[j]);

}}

Output of the program:
72
101
108
108
111

Public boolean equalsIgnoreCase(Strings)

This method is used to compare two strings ignoring the upper or lower
case. This can be seen in the following example.

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 221

Example 3.29
class Demo{

public static void main(String args[])
{

String s1=”Hello world”;
String s2=”hello world”;
boolean b=s1.equalsIgnoreCase(s2);
System.out.println(b);

}}

Output of the program:
true
Public int compareTo(String sobj)

This method is used to compare two strings. This can be seen in the following
example.

Example 3.30
class Demo {

public static void main(String[]args)
{

String s1=”Java”;
String s2=”C++”;
int i=s2.compareTo(s1);
System.out.println(i);

}
}

Output of the program:
-7
On checking these two programs:
class Demo {

public static void main(String[]args)
{

String s1=”Java”;
String s2=”C++”;
int i=s2.compareTo(s2);
System.out.println(i);

}
}

Output of the program:
0
class Demo {

public static void main(String[]args)
{

String s1=”Java”;
String s2=”C++”;
int i=s1.compareTo(s2);
System.out.println(i);

}
}

Output of the program:
7

Therefore, the conclusion is:

i<0 means invoking string is less than the string taken as argument.

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
222 Material

i=0 both the string objects are the same.

i>0 means the string is greater than the string taken as argument.

It is interesting to see how this comparison is made. Is it made only through
the length? No, absolutely not. In fact it is done through a dictionary order and
upper case letter comes first, as can be seen from the following example.

Example 3.31
class Demo {

public static void main(String[]args)
{

String s1=”Java”;
String s2=”Java”;
int i=s1.compareTo(s2);
System.out.println(i);

}
}

Output of the program:
-32
Public Boolean startsWith(String prefixValue, int index)

It checks whether the string begins with the specified prefixValue from the
specified index.

Example 3.32
class Demo {

public static void main(String[]args)
{

String s1=”Java is cool”;
boolean i=s1.startsWith(“cool”,8);
System.out.println(i);

}
}

Output of the program:
true
Public Boolean startsWith(String prefixValue)

It checks if the string starts with the specified prefixValue. Therefore, a
programmer can feel that startsWith method of string class is overloaded. The
following example shows this:

Example 3.33
class Demo {

public static void main(String[]args)
{

String s1=”Java is cool”;
boolean i=s1.startsWith(“Java”);
System.out.println(i);

}
}

Output of the program:
true
Public boolean endsWith(String suffixValue)
It checks whether the string ends with the specified suffixValue or
not.

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 223

Public int indexOf(int ch)

This method is used to return the place value of the specified character in
the string.

Example 3.34
class Demo{

public static void main(String args[])
{

String s1=”Hello world”;
int b=s1.indexOf(‘w’);
System.out.println(b);

}}

Output of the program:
6
Public int indexOf(int ch,int fromIndex)

This method returns the place value of the specified character within the string.
If the string does not have the character within the string, then 1 is returned.
This checking is done with respect to the integer value from Index. This can be
seen in the following example.

Example 3.35
class Demo{

public static void main(String args[])
{

String s1=”Hello world”;
int b=s1.indexOf(‘l’,4);
System.out.println(b);

}}
Output 9
class Demo{

public static void main(String args[])
{

String s1=”Hello world”;
int b=s1.indexOf(‘l’,4);
System.out.println(b);

}}
Output:2
class Demo{

public static void main(String args[])
{

String s1=”Hello world”;
int b=s1.indexOf(‘H’,4);
System.out.println(b);

}}
Output:
-1
Public String concat(String str)

This adds the string sent in the argument at the end of the string through which it
is invoked. Consider the following example:

Example 3.36
class Demo{

public static void main(String args[])
{

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
224 Material

String s1=” Hello”;
String s2=s1.concat(“ World”);
System.out.println(s2);

}}

Output of the program:
Hello World
Public String toLowerCase()

This method is used to convert all the characters present in the string to lower
case and assigns it to a new string object.

Example 3.37
class Demo{

public static void main(String args[])
{

String s1=”Hello World”;
String s2=s1.toLowerCase();
System.out.println(s2);

}}

Output of the program:
Hello world
Public String toUpperCase()

This method is used to convert all the characters present in the string to upper
case and assigns it to a new string object.

Public String trim()

This method is used to eliminate the white space from the beginning of the string.

Example 3.38
class Demo{

public static void main(String args[])
{

String s1=” Hello World”;
String s2=s1.trim();
System.out.println(s1);
System.out.println(s2);

}}

Output of the program:
Hello World
Hello World
Public char[] toCharArray()

This method is used to convert a string to character array.

Example 3.39
class Demo{

public static void main(String args[])
{

String s1=” HELLO WORLD”;
int i=s1.length();
char ch[]=new char[i];
ch=s1.toCharArray();
for(int j=0;j<i;j++)
System.out.println(ch[j]);

}}

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 225

Output of the program:
H
E
L
L
O

W
O
R
L
D

3.6.2 StringBuffer

This involves the following:

StringBuffer()

This constructs an empty StringBuffer.

StringBuffer(int capacity)

This constructs an empty StringBuffer with the specified initial capacity.

StringBuffer(String s)

This constructs a StringBuffer that initially contains the special string.

Difference Between String and StringBuffer

1. In Java String is a class that represents an immutable string, which
represents a sequence of character that can never change. Any modification
to the String will have to create a new String object. But a
StringBuffer is a mutable String object that can be modified at
runtime.

2. The significant performance difference between these two classes is that
StringBuffer is faster than String when performing simple
concatenations.

3. When String object is constructed through new keyword, two objects
are constructed whereas when StringBuffer object is constructed
through new keyword one object is constructed.

4. String never auto-flush the memory whereas StringBuffer auto-
flush the memory.

Program 3.6

public class Buffer1

{

public static void main(String args[])

{

StringBuffer sb1=new StringBuffer("Java");

StringBuffer sb2=new StringBuffer("Java");

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
226 Material

if(sb1.equals(sb2))

{

System.out.println("Equals");

}else{

System.out.println("Not Equals");

}

}

}

Output of the program:

Not Equals

Here equals () is the method of base class or Object class.
StringBuffer class not overrides this method. So output of equals()
depends on the return type of hashCode() of Object class. As two objects
are constructed, hashCode() returns different hash value and equals()
returns false.

Program 3.7

public class Buffer1

{

public static void main(String args[])

{

StringBuffer sb1=new StringBuffer("Java");

StringBuffer sb2=new StringBuffer("Java");

if(sb1==sb2)

{

System.out.println("Equals");

}else{

System.out.println("Not Equals");

}

}

}

Output of the program:

Not Equals

Here equals operator checks the contents but sb1 and sb2 are two
reference of StringBuffer class. In Java reference never hold data but they
hold base address. As two objects are constructed both the reference hold different
address. So here equals operator returns false.

Methods of StringBuffer

The various methods of StringBuffer are:
public synchronized int length()

This method returns the length of the StringBuffer.
public synchronized int capacity()

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 227

This method returns the capacity of the StringBuffer. A StringBuffer
has a capacity, which is equal to its longest string. It can represent a string without
needing to allocate more memory.

public synchronized void setLength(int length)

This method is used to set the length of the StringBuffer.
public synchronized void ensureCapacity(int capacity)

This method is used to set the capacity of the StringBuffer.
public synchronized char charAt(int index)

This method returns a character from the StringBuffer.
public synchronized void getChars(int stat,int end,char c[],int

index)

This method extracts more than one character from the StringBuffer.
public synchronized void setCharAt(int index, char ch)

This method sets a character in the StringBuffer.
public synchronized StringBuffer append(Object o)

This method calls toString() on Object o and appends the result to the
current StringBuffer.

public synchronized StringBuffer append(String s)

This method appends a string in the StringBuffer.
public synchronized StringBuffer append(StringBuffer sb)

This method appends a StringBuffer object to the existing
StringBuffer.

public synchronized StringBuffer append(char c)

This method appends a character to the existing StringBuffer.
public synchronized StringBuffer delete(int index, intlength)

This method is used to delete more than one character from the StringBuffer.
public synchronized StringBuffer deleteCharAt(int index)

This method is used to delete a character from the StringBuffer.
public synchronized StringBuffer replace(int index, int length,

String s)

This method is used to replace a string in the StringBuffer.
public synchronized StringBuffer insert(int index, String s)

This method is used to insert a string in the StringBuffer.
public synchronized StringBuffer reverse()

This method is used to reverse the StringBuffer.
public String toString()

This method is used to convert a string to a StringBuffer.

Program 3.8

public class Text

{

public static void main(String args[])

{

StringBuffer sb1=new StringBuffer("I Java");

System.out.println(sb1.insert(2,"Like "));

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
228 Material

System.out.println(sb1);

String s1=sb1.toString();

System.out.println(s1);

System.out.println(sb1.deleteCharAt(0));

System.out.println(sb1.delete(0,6));

System.out.println(sb1.replace(2,4,"pan"));

System.out.println(sb1.length());

sb1.setLength(7);

System.out.println(sb1.reverse());

}

}

Output of the program:

I Like Java

I Like Java

I Like Java

Like Java

Java

Japan

5

napaJ

In StringBuffer class all the methods are non-static so they are called
through StringBuffer object.

Check Your Progress

7. What are the two categories of stream classes?

8. Differentiate between byte stream classes and character stream classes.

9. Which class is used to read input from the console input device?

10. State about the FileReader.

11. Define the term applet.

12. What are the various states of Java applet?

13. What do you understand by the term volatile modifier?

14. Write the use of modifier strictfp.

15. Write the one vital features of Java Native Interface (JNI).

16. Name the various string classes.

3.7 WRAPPER CLASSES

Each Java primitive data type has a corresponding wrapper class. When an
object of the wrapper class is created, it contains a field where primitive data
types are stored.

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 229

Significance of Wrapper Classes

The wrapper classes are required because of the following reasons:

 Vector , ArrayList , LinkedList , classes present in
java.util package cannot handle primitive data types like int, char,
float, etc. Hence primitive data types may be converted into object
types by using wrapper classes present in java.lang package.

 Wrapper classes convert primitive data types into objects.

Table 3.6 Primitive Data Types and Corresponding Wrapper Classes

Primitive data types Wrapper class
boolean Boolean
byte Byte
short Short
char Character

int Integer
Float Float
long Long

double Double

Character Class

Character class object is a wrap around a char.

The constructor is:
Character (char ch)

Methods

The various methods of the Character class are:
public static Character valueOf(char c)

This method converts a single character into a Character class object.
public char charValue()

This method is useful to convert a Character class object into a primitive
char value.

public int hashCode()

Returns the hash value of a Character class object.
public static String toString(char c)

This method converts char data types into String.

Boolean CLASS

Boolean is wrapper around a boolean value. The constructor of the
Boolean class is overloaded.

Boolean(boolean b)

Boolean(String s)

If s contains the String true (in uppercase and in lowercase), then
the Boolean class object holds true values. Otherwise, the Boolean object
will hold false values.

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
230 Material

To obtain a Boolean value contained by the Boolean object boolean
booleanValue() is used.

Methods

The various methods are as follows:
public static boolean parseBoolean(String s)

It converts a String to boolean.

public boolean booleanValue()

It extract a boolean value from a Boolean object.

public static String toString(boolean b)

This method converts boolean data types into String.

public int hashCode()

It returns the hash value of a Character class object.

public static Boolean valueOf(String s)

It converts a String that contains a boolean value, into a Boolean object.

public static Boolean valueOf(boolean b)

It converts a boolean value into Boolean object.

Number CLASS

Number is an abstract class whose sub-classes are Byte, Short, Integer,
Float, Long and Double.

The methods of the Number class are overridden in the child classes.
Methods of the Number class are:

 byte byteValue()

 short shortValue()

 int intValue()

 float floatValue()

 long longValue()

 double doubleValue()

Byte CLASS

This class wraps a value of the primitive type byte in an object. The Byte class
object contains a byte value.

Constructor

Constructor of a Byte class is overloaded, i.e.,

Byte(byte b)

Syntax

The following is the syntax of Byte class:

Byte b1=new Byte ((byte) 12);

Byte(String s)

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 231

Byte b2=new Byte (“45”);

Byte b3=new Byte(“Java”);//when we extract the value from
the b3 object, then the program is terminated at runtime by throwing an
Exception “NumberFormatException”.

Methods

The various methods are:
public static byte parseByte(String s)

It converts a String to byte data type.
public static Byte valueOf(String s)

It converts a String to Byte class object.
public static Byte valueOf(byte b)

It converts byte value to Byte class object.
public int hashCode():

It returns the hash value of Byte class object.
public static String toString(byte b)

It converts byte value to String.

Short CLASS

This class wraps a value of the primitive type short in an object. The Short
class object contains a short value.

Constructor

Constructor of Short class is overloaded, i.e.,

Short(short s)

Syntax

The following is the syntax of Short class:

Short s1=new Short ((short) 12);

Short(String s)

Short s2=new Short (“45”);

Short s3=new Short (“Java”);//when we extract the value
from the s3 object then the program is terminated at runtime by throwing an
exception, “NumberFormatException”.

Methods

The various methods are:
public static short parseShort(String s)

It converts a String to short data types.
public static String toString(short s)

It converts short data types to String.
public static Short valueOf(String s)

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
232 Material

It converts a String to a Short class object.
public static Short valueOf(short s)

It converts short data types to Short class object.
public int hashCode()

It returns the hash value of a Short class object.

Integer CLASS

This class wraps a value of the primitive type int in an object. The Integer
class object contains int value.

Constructor

The constructor of Integer class is overloaded, e.g.,

Integer(int b)

Syntax

The following is the syntax of Integer class:

Integer i1=new Integer(12);

Integer(String s)

Integer i2=new Integer (“45”);

Integer i3=new Integer (“Java”);//when the value from
the i3 object is extracted, the program is terminated at runtime by throwing an
Exception ‘NumberFormatException’.

Methods

The various methods are:
public static int parseInt(String s)

It converts a String to an int data type.
public static String toString(int s)

It converts an int data type into a String.
public static Integer valueOf(String s)

It converts a String class object into an Integer class object.
public static Integer valueOf(int s)

It converts an int data type into an Integer class object.
public int hashCode()

It returns the hash value of an Integer class object.

Long CLASS

This class wraps a value of the primitive type long in an object. The Long
class object contains long value.

Constructor

The constructor of Long class is overloaded, e.g.,

Long(long l)

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 233

Syntax

The following is the syntax of Long class:

Long l1=new Long (12);

Long(String s)

Long l2=new Long(“45”);

Long l3=new Long (“Java”);//When the value from the l3
object is extracted, then the program is terminated at runtime by throwing an
Exception, ‘NumberFormatException’.

Methods

The various methods are:
public static long parseLong(String s)

It converts a String class object into long data types.
public static String toString(long s)

It converts long data types into a String.
public static Long valueOf(String s)

It converts a String class object into a Long class object.
public static Long valueOf(Long 1)

It converts long data types into Long class objects.
public int hashCode()

It returns the hash value of a Long class object.

Float CLASS

It wraps a value of the primitive type float in an object. The Float class
object contains a float value.

Constructor

The constructor of Float class is overloaded, e.g.,

Float(float b)

Syntax

The following is the syntax of Float class:

Float f1=new Float ((float) 12.5);

Float(String s)

Float f2=new Float (“45”);

Float f3=new Float(“Java”);//when one extracts the value
from the f3 object, the program is terminated at runtime by throwing an
Exception ‘NumberFormatException’.

Methods

The various methods are:
public static float parseFloat(String s)

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
234 Material

It converts a String class object to float data type.
public static String toString(float s)

It converts float data types into String.
public static Float valueOf(String s)

It converts a String class object into a Float class object.
public static Float valueOf(float s)

It converts float data types into a Float class object.
public int hashCode()

It returns the hash value of a Float class object.

Double CLASS

This class wraps a value of the primitive type double in an object. The Double
class object contains a double value.

Constructor

The constructor of Double class is overloaded, e.g.,

Double(double b)

Syntax

The following is the syntax for Double class:

Double s1=new Double (23.09);

Double(String s)

Double d2=new Double (“5.9”);

Double d3=new Double (“Java”);//when a programmer
extracts the value from the d3 object, the program is terminated at runtime by
throwing an Exception ‘NumberFormatException’.

Methods

The various methods are:
public static double parseDouble(String s)

It converts a String class object to double data type.
public static String toString(double s)

It converts double data types into String.
public static Double valueOf(String s)

It converts a String class object into a Double class object.
public static Double valueOf(double s)

It converts double data types into Double class objects.
public int hashCode()

It returns the hash value of a Double class object.

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 235

Program 3.9

public class Wrap1

{

public static void main(String args[])

{

String s=”22";

int i=Integer.parseInt(s);

i++;

System.out.println(i);

double d=Double.parseDouble(s);

d+=5;

System.out.println(d);

short s1=Short.parseShort(s);

s1+=10;

System.out.println(s1);

s=Integer.toString(i);

s+=1;

System.out.println(s);

s=Double.toString(d);

s+=12;

System.out.println(s);

s=Short.toString(s1);

s+=2;

System.out.println(s);

}

}

Output of the program:

23

27.0

32

231

27.012

322

Autoboxing and Unboxing

J2SE 5 supports the autoboxing process by which a primitive type is automatically
encapsulated into its equivalent type wrapper class object. There is no need to
explicitly construct a wrapper class object. This technique is popularly known as
autoboxing in Java. Conversely, unboxing is required to convert a wrapper
class object into subsequent primitive data types. In general, autoboxing and
unboxing take place whenever a conversion into an object or from an object is
required.

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
236 Material

Program 3.1

public class Auto

{

Boolean b1=new Boolean(“yes”);

boolean b=b1;

void show()

{

if(b){

System.out.println(“You Need Money”);;

}else{

System.out.println(“You Need Knowledge”);

}

}

public static void main(String args[])

{

Auto a=new Auto();

a.show();

}

}

Output of the program:

You Need Knowledge

Programs of wrapper class

Program 3.11

public class Boxing

{

public static void main(String args[])

{

Boolean b1=new Boolean("java");

boolean b=true;

b1=b;//autoboxing

System.out.println(b1);

Byte bb1=new Byte((byte)10);

byte bb=100;

bb1=bb;//autoboxing

System.out.println(bb1);

}

}

Output of the program:

true

100

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 237

Program 3.12

public class Unbox

{

public static void main(String args[])

{

Boolean b1=new Boolean("java");

boolean b=b1;//unboxing

System.out.println(b);

Byte bb1=new Byte((byte)45);

byte bb=bb1;//unboxing

System.out.println(bb);

}

}

Output of the program:

false

45

3.7.1 Memeory Management

Does Java has a memory pointer? This is a very important question. It can be
said that Java has a memory pointer but it is not as prominent as in the case of C/
C++. Reference variables behave like pointers. In computer terminology, reference
variables mean variables which can hold the address.

 p.java

 class p

{

int x;

public static void main(String
args[])

{

p z=new p();

z.x=3;

System.out.println(z.x);

}

}

This is a simple Java program. Here p is a class having an instance variable
x. To create an object of class p one has to call the default constructor of class p
through a new operator. The job of a new operator is to dynamically allocate
memory during runtime. z is known as a reference variable of class p. As explained
before, reference variable holds the address of a memory location. In Java,
memory management is completely done by (Java Virtual Memory) JVM. Java
code p.class file is created after compiling the above. During the execution of
p.class file, first it is loaded in the memory by the boot strap class loader,

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
238 Material

which is a component of JVM. z is a reference variable which is created inside
the stack area. When the constructor of class p is called through a new operator,
a chunk of memory is allocated from the heap area and its starting address is
stored in z. Therefore, it can be said that the object of class p is created. However,
the amount of memory that is to be allocated depends upon the sum of the size of
instance variables belonging to that class. If the class contains a reference variable
as an instance variable, then 4 byte memory will be allocated for it. static
variables and methods are not the parts of an object, so they are stored in a
different part of the memory known as the method area. Throughout its life z will
hold the starting address of the memory chunk that has been allocated to it from
the heap area unless a new memory chunk is allocated to it by calling the constructor
through a new operator. When z dies, the memory chunk allocated to it would
be freed by garbage collector. This is shown in the following Figure:

Fig. 3.7 The Mapping of Memory between Stack and Heap in Java

The Swapping Problem

This problem is meant to test the depth of one’s understanding of the concept of
reference. The following examples clarify this:

Program 3.13

 p.java

class p

{

int x;

public static void main(String args[])

{

p a=new p();

a.x=1;

p b=new p();

 b.x=2;

 valueSwap(a,b);

 System.out.println(a.x);

 System.out.println(b.x);

}

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 239

static void valueSwap(p k,p l)

{

 int i=k.x;

 k.x=l.x;

 l.x=i;

 }

}

Output of the program:

 2

 1

Program 3.14

File Name: q.java

class q

{

int x;

public static void main(String args[])

{

 q a=new q();

 a.x=1;

 q b=new q();

 b.x=2;

 valueSwap(a,b);

 System.out.println(a.x);

 System.out.println(b.x);

}

static void valueSwap(q k,q l)

{

 q temp;

 temp=k;

 k=l;

 l=temp;

}

}

Output of the program:

 1

 2

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
240 Material

Difference in the Output of p.java and q.java

Consider p.java program. a and b are the reference variables created inside
the stack area. When we call the constructor through a new operator, memory is
allocated from the heap. Assume that 1000 is the starting address of the memory
chunk allocated to a and 5000 is starting address of the memory chunk allocated
to b as shown in the Figure.

Fig. 3.8 Representation of Two Different Objects in Memory

The valueSwap() method takes a and b as its argument. In the
valueSwap() method content of a is copied to k and content of b is copied
to l. Now k=1000 and l=5000. k and l are the local reference variables of
valueSwap() method created inside stack.

Inside the method valueSwap(), the code int i=k. x implies that
the value of i is 1. Code k.x=l.x means that the content of x present in the
memory chunk whose starting address is 1000 is changed to 2. Similarly, the
code l.x=i, which means that the content of x present in the memory chunk
whose starting address is 5000 is changed to 1. This feature is described below.

Fig. 3.9 Changing the Reference of Objects

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 241

When control goes out of the method valueSwap(), although the
reference variables k and l become dead but the changes that they have already
made in the heap area are permanent. When control goes back to the main()
method, the changes reflected there are shown in the following Figure.

Fig 3.10 Persistance of Heap Allocation

Considering the second program q.java up to the method call
valueSwap(), it is clear that everything is similar to that of p.java. Inside
the method valueSwap() of the program q.Java things are different. The
temp is a reference of class q. temp=k; means now temp=1000; k=l;
means k=5000 and l=temp; means l=1000. When control goes out of the
method, valueSwap(), k and l become dead because they are local reference
variables created inside stack. Hence, the changes are not reflected.

It is to be understood that local variables always die when control goes out
of a method. However, if the local variables are of reference type, then they make
permanent changes in the memory locations that they point towards.

Use of hashCode() Method

When an object is created through a new operator by calling the constructor of
the corresponding class, a unique identifier is assigned to the reference variable,
known as hashCode. hashCode is allotted by JVM. This can be seen in the
following example:

Program 3.15

class p

{

public static void main(String[]
args)

{

p x=new p();

System.out.println(x.hashCode());

}

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
242 Material

}

The method hashCode() returns the hashCode of the corresponding
reference when an object is created. Hash code is assigned to a reference
variable only when memory is allocated from the heap area.

The local variables of primitive data types are created inside the stack area
and the memory is also allocated from there. However, all the above complexities
are not involved here. The local variables of primitive data types do not have any
hash code because they do not acquire memory from the heap area. To get
a hash code, the variable must be of reference type. This is shown by the
following example:

Program 3.16

class p

{

public static void main(String[] args)

{

int mak=5;

System.out.println(mak.hashCode());

}

}

The above program will result in a compilation error because mak is not a
reference variable and memory is not allocated to it from heap. The error is ‘int
can not be dereferenced’. The next question that arises is whether it is possible to
allocate memory to variables of primitive data type from heap or not. The answer
to this is yes. This will be explained in the next chapter.

3.7.2 Java.lang Environment Properties

The java.lang package has the following classes:

Boolean, Byte, Character, Character.Subset, Character.UnicodeBlock,
Class, ClassLoader, Compiler, Double, Enum, Float,
InheritableThreadLocal, Integer, Long, Math, Number, Object, Package,
Process, ProcessBuilder, Runtime, RuntimePermission,
SecurityManager, Short, StackTraceElement, StrictMath, String,
StringBuffer, StringBuilder, System, Thread, ThreadGroup,
ThreadLocal, Throwable, Void.

The various interfaces present in java.lang package are:

Appendable, Comparable, Runnable, CharSequence, Iterable,

Cloneable, Readable.

Of these, some of the important and most frequently used classes and their
methods are explained below.

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 243

Boolean

This is a wrapper class. It is used to create the object of primitive data type
boolean.

Byte

This is another wrapper class. This class is used to create the object of primitive
data type byte.

Character

This is another wrapper class. This class is used to create the object of primitive
data type char.

Character.Subset

This class is static inner class. This class extends the Object class. This
class is enclosed by the wrapper class Character. The signature of this class
is, public static class Character.Subset extends Object.

Character.Unicode

This class is also a static inner class. Its outer class is Character. This
class cannot be extended since it is declared with keyword final. This class
extends the Character.Subset class.

Class

This class extends the Object class and implements Serializable interface.
This class is a final class, hence cannot be extended. It does not contain any
public constructor. In Java, all the arrays, including the arrays of primitive data
types, are created by invocation of the new operator, just like the creation of an
object. Java implements these arrays as the reflection of the object of class Class.
This class is instantiated only by Java Virtual Machine during the process of class
loading by invocation of the defineClass() method. This class is generic in
nature. One can create the object of this class by the invocation of getClass()
method which originally belongs to the Object class and is overridden in this
class, Class.

The getClass() and getName()

These two methods are invoked together to determine the class name of an
object. The following example clarifies this.

Program 3.17

class Demo

{

public static void main(String[]args)

{

Class cl=”Hello World”.getClass();

System.out.println(“The string is an object of
“+cl.getName());

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
244 Material

cl=System.out.getClass();

System.out.println(“out is an object of “+cl.getName());

}

}

Output of the program:

The string is an object of java.lang.String

out is an object of java.io.PrintStream

In the above program, cl is a reference of class Class. As said earlier,
the object of the class Class cannot be created directly.

The getClass() method returns the name of the class, whose object
has invoked it. First the getClass() method is invoked by the String
object. Hence cl holds the String class. Then the getName() method
simply shows the name of the class that is held by cl. There is another method
getSuperClass(), which is used to determine the current super class of
the class held by the reference variable of class Class.

Now the class name to which arrays of primitive data types in Java belongs
has to be found. This is shown by the following example.

Program 3.18

class Demo

{

public static void main(String[]args)

{

float mak[]=new float[8];

Class cl=mak.getClass();

System.out.println(cl.getName());

}

}

Output of the program:

[F

The output is indeed surprising. The [indicates that mak is an array. If
mak is a two-dimensional array, then its initial symbol would be [[. The next
symbol F indicates that mak is an array of float of single dimension. For other
primitive data types the symbols are:

boolean Z

byte B

char C

class or interface Lclassname

double D

float F

int I

long J

short S

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 245

Use of forName() Method and the newInstance() Method

These can be clarified with the following example:

Program 3.19

class X

{

int i=10;

}

class Demo

{

int i=10;

public static void main(String[]args) throws
InstantiationException, IllegalAccessException,

ClassNotFoundException

{

X b=new X();

Class cl=Class.forName(“demo.X”);

X a=(X)cl.newInstance();

System.out.println(a.i);

}

}

Output of the program:

10

The forName() method is a static method, therefore it has to be
invoked by its class name Class. Its signature is:

public static Class forName(String className)

 throws ClassNotFoundException

Hence, it has to be either invoked inside the try block or keyword throws
has to be used. This method returns the class object that holds the class supplied
as a String argument to this method. It is already known that to create an
object of a class, one needs to call the constructor of this class through a new
operator. However, the newInstance() method can be invoked to create
the object of the class that is held by cl. The signature of newInstance()
method is:

public Object newInstance()
 throws InstantiationException,
 IllegalAccessException

 Therefore, this method has to be invoked inside a try block, followed by
a catch block or by the use of keyword throws.

ClassLoader Class

It is an abstract class which extends the Object class. In Java, a class is loaded
in the memory either by a boot strap class loader or by user defined class loader.
Boot strap class loader is a component of Java Virtual Machine. When a class file

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
246 Material

is executed by javac command, the boot strap class loader is responsible for
loading the class in the memory. The class ClassLoader is used to create the
user defined class loader. Rarely, a Java programmer requires a user defined class
loader.

Compiler Class

When one compiles a Java source file, a class file is created. By using a Compiler
class, native executable files can be generated from Java source file. This
class cannot be extended. It extends the Object class. However, this class is
rarely used by a Java programmer.

Double Class

This is another wrapper class and is used to create the object of primitive data
type double. This class is explained in the Chapter 17 on Wrapper Class.

Enum Class

This class is used to create the Enum object. Enum members are simple constants.

Float Class

This is another wrapper class and is used to create the object of primitive data
type float.

Integer Class

This wrapper class is used to create the object of primitive data type int.

Long Class

This wrapper class is used to create the object of primitive data type long.

Process Class and Runtime Class

These two classes are closely entangled with each other. A Java programmer
frequently uses these two classes to develop system level applications.

Process is an abstract class. All the methods present in this class
are abstract. The signature of the Process class is: public abstract
class Process extends Object. Since it is an abstract class,
one cannot directly create the object of Process class. For this purpose, normally
the exec() method of Runtime is used. A Process object embeds a
process into it.

The object of a Runtime class contains the current system environment.
To instantiate a Runtime class, one has to invoke the getRuntime()
method. It is a static method and is invoked by the class name Runtime.

Program 3.20

class X

{

int i;

}

class Demo

{

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 247

public static void main(String[]args)

{

Runtime rt=Runtime.getRuntime();

long Initial,Final;

Initial=rt.freeMemory();

//This method returns the amount of free memory available.

System.out.println(“Available memory initially: “+Initial);

X mak[]=new X[10000];

Final=rt.freeMemory();

System.out.println(“Available memory after the creation of object:
“+Final);

long s=(Initial-Final)/10000;

System.out.println(“Available free memory: “+s);

rt.gc();

//gc () method is used to invoke the garbage collector.

System.out.println(“Available free memory:”+rt.freeMemory());

}

}

Output of the program:

Available memory initially: 1872280

Available memory after the creation of object: 1832264

Available free memory: 40016

Available free memory: 1875168

One question that may arise in a student’s mind is the need to create such a
large array. This is because by creation of a large array, an appreciable change in
the free memory is reflected.

A usual question that newcomers to Java ask is about measuring the size of
an object in Java. Having migrated from C/C++, the new students do miss having
the size of operator. Java does not provide the size of operator, but one can
determine the size of an object through various methods available in Runtime
class.

Determining the Size of Primitive Data Type char

This can be clarified with the following example:

Programe 3.21
class Demo

{

public static void main(String[]args)

{

Runtime rt=Runtime.getRuntime();

long Initial,Final;

Initial=rt.freeMemory();

char mak[]=new char[10000];

Final=rt.freeMemory();

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
248 Material

long s=(Initial-Final)/10000;

System.out.println(“Size of the object is “+s);

}

}

Output of the program:

Size of the object is 2

22.4 Determining the Size of int

This can be clarified with the following example:

Program 3.22

class Demo

{

public static void main(String[]args)

{

Runtime rt=Runtime.getRuntime();

long Initial,Final;

Initial=rt.freeMemory();

int mak[]=new int[10000];

Final=rt.freeMemory();

long s=(Initial-Final)/10000;

System.out.println(“Size of the object is “+s);

}

}

Output of the program:

Size of the object is 4

Determining the Size of double

This can be clarified with the following example:

Program 3.23
class Demo

{

public static void main(String[]args)

{

Runtime rt=Runtime.getRuntime();

long Initial,Final;

Initial=rt.freeMemory();

double mak[]=new double[10000];

Final=rt.freeMemory();

long s=(Initial-Final)/10000;

System.out.println(“Size of the object is “+s);

}

}

Output of the program:
Size of the object is 8

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 249

Use of exec() Method to Execute System Dependent
Application

In a Windows system the below codes will open MS Paint. This can be seen in the
following example:

Program 3.24
class Demo

{

public static void main(String[]args)throws Exception

{

Runtime rt=Runtime.getRuntime();

Process p=rt.exec(“mspaint”);

}

}

Output of the program:

First of all, one has to create an object of Runtime class. Runtime
class does not provide any constructor to create an object. Rather
getRuntime(), which is a static method, is invoked which returns the
object of Runtime. Then, exec() is called through rt which returns the
object of Process class. From the output, it is clear that when exec() is
successfully executed, MS Paint gets opened on the screen.

The System Class

This class contains a large number of static methods and variables. One can
neither create the object of a System class, nor a sub-class of this class.

The getProperty() Method

This method takes the various types of environment properties defined by the
java.lang package. This method is a static method and hence can only
be invoked through a class name.

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
250 Material

The way to determine the OS in which one is working can be seen in the following
example:

Program 3.25
class Demo

{

public static void main(String[]args)

{

String S=System.getProperty(“os.name”);

System.out.println(S);

}

}

Output of the program:

Windows XP

The getProperty() method takes the os.name as its argument.
This is a pre-defined field. When the getProperty() method takes this field
as its argument, upon execution it returns the name of the OS where the
corresponding class file is executed.

This particular method can be used to create a single class file which will
operate differently in different platforms.

Program 3.26
public class Os

{

public static void main(String args[])

{

String s=new String(System.getProperty(“os.name”));

Runtime r=Runtime.getRuntime();

Process p=null;

try

{

if(s.equals(“Linux”))

{

p=r.exec(“gedit”);

}

if(s.equals(“Windows XP”))

{

p=r.exec(“notepad”);

}

}

catch(Exception ie)

{

}

}

}

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 251

On running this program in Windows platform, it will open the Notepad and
on running it in Linux platform, it will open the gedit.

In the example, this program has been run in the Windows platform and the
output can be seen below:

Output of the program:

The arrayCopy() Method

Generally, an array is copied by a loop. This process can be completed by the use
of arrayCopy() method in a more efficient way.

Program 3.27
class Demo

{

public static void main(String args[])

{

char mak[]={‘r’,’o’,’o’,’t’,’ ‘,’l’,’e’,’s’,’s’,’ ‘,’a’,’g’,

’g’,’r’,’e’,’s’,’s’,’i’,’o’,’n’};

char arr[]=new char[mak.length];

System.arrayCopy(mak, 0,arr, 0, mak.length);

for(int i=0;i<arr.length;i++)

System.out.print(arr[i]);

}}

Output of the program:

root less aggression

This method takes the source array as its first argument. The next argument
is the position from which the source has to be copied, third is the name of the
destination array, fourth is the position of the destination array from which the

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
252 Material

copy process begins and the final is the length of the source array up to which the
data has to be copied.

The ThreadLocal Class

The ThreadLocal instances are typically declared as private and static.
Whenever a programmer feels that some data should be unique for the thread and
the data should not be shared, then the ThreadLocal variables are used.
Every individual thread has a separate copy of the variable. This means that any
change done to the ThreadLocal variable by a thread is totally private to it.
It is not going to reflect in any other thread.

Given below is the structure of ThreadLocal<T> class defined in
java.lang:

public class ThreadLocal<T>
{
protected T initialValue();
public T get();
public void set(T value);
public void remove();
}

protected T initialValue()

It returns the initial value for the ThreadLocal variable of the current thread.
Whenever the variable with the get() method is accessed for the first time, the
initialValue() method is called implicitly. If the set() method is invoked
prior to the get() method, then the initial value method will not be invoked.
public T get()

It returns the value of the copy of the ThreadLocal variable present in the
current thread and creates and initializes the copy in case it is called for the first
time by the thread. Then it creates and initializes the copy of the variable.
public void set(T value)

It sets the copy of the ThreadLocal variable of the current thread to the
specified value.
public void remove()

It removes the value of the ThreadLocal variable. After removing the value,
if one again invokes the get() method, then it will again call the
initialValue() method and will intialize the value of the ThreadLocal
variable.

Program 3.28
class ThreadLocalDemo1 extends Thread
{

private static int number = 0;
private static ThreadLocal threadnumber = new ThreadLocal()

{
protected synchronized Object initialValue() {

return number++;
}

};
public void run()
{

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 253

System.out.println(“Thread “ +
Thread.currentThread().getName() +

“has thread number “ + threadnumber.get());
number++;
System.out.println(“Thread “ +

Thread.currentThread().getName() +
“has thread number “ + threadnumber.get());
threadnumber.set(5);
System.out.println(“Thread “ +

Thread.currentThread().getName() +
“has thread number “ + threadnumber.get());
threadnumber.remove();
System.out.println(“Thread “ +

Thread.currentThread().getName() +
“has thread number “ + threadnumber.get());
threadnumber.remove();
System.out.println(“Thread “ +

Thread.currentThread().getName() +
“has thread number “ + threadnumber.get());
}
public static void main(String[] args) {
Thread t1 = new ThreadLocalDemo1();
Thread t2 = new ThreadLocalDemo1();
t1.start();
t2.start();

}
}

Output of the program:
Thread Thread-0 has thread number 0
Thread Thread-0 has thread number 0
Thread Thread-0 has thread number 5
Thread Thread-0 has thread number 2
Thread Thread-0 has thread number 3
Thread Thread-1 has thread number 4
Thread Thread-1 has thread number 4
Thread Thread-1 has thread number 5
Thread Thread-1 has thread number 6
Thread Thread-1 ha0s thread number 7

Cloneable Interface

The Cloneable interface, present inside the java.lang package, is used
to create the clone of an object. The signature of Cloneable interface is:

public interface Cloneable
{
}

The Cloneable interface does not contain any method of its own. To
clone an object, a class must implement the interface Cloneable and then
invoke the clone() method of Object class. The signature of the clone
() method is:

protected native Object clone() throws
CloneNotSupportedException

According to the specification, the clone () method returns the reference
of the Object class.

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
254 Material

Program 3.29
public class F implements Cloneable
{

int roll;
String name=new String();
F(int i, String c)
{

roll=i;
name=c;

}
public static void main(String args[]) throws

CloneNotSupportedException
{

F obj=new F(10,”pinku”);
F ob=(F)obj.clone();
System.out.println(ob.roll);
System.out.println(ob.name);

}
}

Output of the program:
10
pinku

The Cloneable interface is a marker interface. A marker interface
is an interface, which does not have its own method. However, for certain
operations, their implementation is a must. Actually, while implementing the marker
interface, a programmer implicitly lets the JVM to know that a specific operation
is going to be performed.

The marker interfaces present inside Java are:

 java.lang.Cloneable

 java.io.Serializable

 java.util.EventListener

To clone one object, the clone() method of the Object class is needed.
However, it is required to implement the Cloneable interface, i.e., a marker
interface to facilitate the class with the ability for cloning its objects.

Object Class

In Java, Object class is the super class of all the classes. Many of its methods
are overridden in different Java inbuilt classes according to their purpose.

Methods

The various methods are:
Object clone()

The method is used in creating a clone of an object and has been explained in
detail in the Chapter 15 on Strings. This belongs to an Object class.
boolean equals(Object eq)

This method compares a String to the specified Object.
void finalize()

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 255

This method is called before the garbage collector releases the memory occupied
by an object. This has been explained in detail in Chapter 6 on Class Fundamentals.
Class getClass()

This has already been explained earlier in this chapter.
int hashCode()

This has been explained in detail in object reference and Chapter 15 on Strings.

Math Class

This class contains the various methods that are useful in scientific and engineering
applications. It contains two double constants: E(the exponential c constant)
(~2.72) and PI (~3.14).

Methods

The various methods are:
public static double sin (double dbl)

This method is a static method; hence can be invoked by the class name. It
takes a double variable as its argument. This argument is the measurement of
an angle in radian. It returns the sine value of the supplied angle.
public static double cos (double dbl)

This method is a static method; hence can be invoked by the class name. It
takes a double variable as its argument. This argument is the measurement of
an angle in radian. It returns the cosine value of the supplied angle.
public static double tan (double dbl)

This method is a static method; hence can be invoked by the class name. It
takes a double variable as its argument. This argument is the measurement of
an angle in radian. It returns the tangent value of the supplied angle.

This can be seen from the example given below:

Program 3.30
public class Arithm1
{
 public static void main(String args[])

{
double dbl1= 30;
double dbl2 = Math.toRadians (dbl1);
System.out.println(“ The angle in radians is : “ + dbl1);
System.out.println(“ sine of “+dbl1+” is : “+ Math.

sin(dbl2));
System.out.println(“ cosine of “+dbl1+” is : “+ Math.

cos(dbl2));
System.out.println(“ tangent of “+dbl1+” is :”+

Math.tan(dbl2));
}

}

Output of the program:
The angle in radians is : 30.0
sine of “+dbl1+” is : 0.49999999999999994

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
256 Material

cosine of “+dbl1+” is : 0.8660254037844387
tangent of “+dbl1+” is :0.5773502691896257

public static double asin (double dbl)

This method is a static method; hence can be invoked by the class name. It
takes a double variable as its argument. This argument is the sine value of an

angle. It returns the angle in radian. Range is in between

 .

public static double acos (double dbl)

This method is a static method; hence can be invoked by the class name. It
takes a double variable as its argument. This argument is the cosine value of an
angle. It returns the angle in radian. Its range is in between 0 to .
public static double atan (double dbl)

This method is a static method; hence can be invoked by the class name. It
takes a double variable as its argument. This argument is the tangent value of
an angle. It returns the angle in radian. Its range is in between 0 to .

Program 3.31
public class Arithm2{
public static void main(String args[])
{

double dbl=0.5;
System.out.println(“Enter Value is :”+dbl);
System.out.println(“The angle for which the sine value is 0.5 is
:”+Math.asin(dbl));
System.out.println(“The angle for which the cosine value is : “ +
Math. acos(dbl));
System.out.println(“The angle for which the tangent value is : “
+ Math.atan(dbl));
}

}

Output of the program:
Enter Value is :0.5
The angle for which the sine value is 0.5 is: 0.5235987755982989
The angle for which the cosine value is: 1.0471975511965979
The angle for which the tangent value is: 0.4636476090008061

public static double toRadians (double dbl)

This method is a static method; hence can be invoked by the class name. It
takes a double variable as its argument. This argument is the measurement of
an angle in degree. It returns the equivalent angle in radian.
public static double toDegrees (double dbl)

This method is a static method; hence can be invoked by the class name. It
takes a double variable as its argument. This argument is the measurement of
an angle in degree. It returns the equivalent angle in degree.

Program 3.32
class Demo {

public static void main (String args[])
{

System.out.println(“The radian value is :”+Math.
toRadians(90.0));

System.out.println(“Degree value

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 257

is:”+Math.toDegrees(1.571)) ;
System.out.println(“Tangent value of two parameters is:

“+Math. atan2(30.00,30.00));
System.out.println(“ The log value is :”+Math. log(35.0));
System.out.println(“The exponent value is

:”+Math.exp(30.00));
}

}

Output of the program:
The radian value is :1.5707963267948966
Degree value is: 90.01166961505233
Tangent value of two parameters is: 0.7853981633974483
The log value is: 3.5553480614894135
The exponent value is: 1.0686474581524463E13

public static double exp(double dbl)

This method is a static method; hence can only be invoked by a class name.
It takes a double variable as its argument. This argument is the tangent value of
an angle. It returns the angle in radian. Range is in between 0 to .
public static double log (double dbl)

The log method has only one double value, i.e., dbl as the parameter. This
method returns the natural logarithm (base e) of a double value.
public static double sqrt (double dbl)

Here, the sqrt method has only one double value dbl as the parameter and
it returns the square root of the given value dbl. When the argument is NaN or
less than zero, the result is NaN.
public static double IEEEremainder (double dbl1, double dbl2)

This method is used to calculate the remainder operation on two arguments and
has two parameters, i.e., dbl1(the dividend) and dbl2(the divisor). Here, it
returns the remainder when dbl1 is divided by dbl2.
public static double ceil(double dbl)

This method has only one double value, i.e., dbl which is taken as parameter.
According to this method, the given double value returns the smallest double
value which is not less than the argument and is equal to a mathematical integer.
public static double floor(double dbl)

This floor method has only one double value dbl as the parameter and
returns the largest double value which is not greater than the argument and is
equal to a mathematical integer.
public static double rint(double dbl)

This rint method contains only one double value dbl as the parameter. It
returns the closest double value to that dbl and is equal to a mathematical
integer. If there are two double values that are equally close to the value of the
argument, it returns the integer value that is even.
public static double atan2 (double dbl1, double dbl2)

Here there are two double values dbl1 and dbl2. These are the parameters
for this method. The given rectangular coordinates dbl2 and dbl1 are converted
to polar (r, theta) by this method. It also computes the phase theta by computing
an arc tangent of dbl1/dbl2 in the range of – to .

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
258 Material

public static double pow(double dbl1,double dbl2)

Here, two double values dbl1 and dbl2 are taken as the parameters for
this method. This method returns the value of the first argument which is raised to
the power of the second argument. If dbl1==0.0, then dbl2 must be greater
than 0.0, otherwise it will throw an exception. An exception can also arise if
(dbl1<=0.0), dbl2 is not equal to a whole number.

Program 3.33
class Arithm4 {
public static void main (String args[]) {
System.out.println(“The square root value is :”+Math.sqrt(25));
System.out.println(“\ nThe remainder of 5 divided by 2
is:”+Math.IEEEremainder(5,2));
System.out.println(“\ n The ceil value is : “+Math. ceil(5.6));
System.out.println(“\ n The floor value is:”+Math. floor(5.6));
System.out.println(“\ n The power value is :”+Math. pow (5.0,2.0));
System.out.println(“\ n”+”The rint value is :”+Math.rint(30.6));
} }

Most of the methods of Math class are static in nature. Their names
clearly indicate their tasks. One can easily search them on Google.

Thus the java.lang package is the only package that is available to
the programmer by default. It provides a lot of utility tools to the programmer.
Recently added interfaces like instrumentation have increased the scope of this
package by adding new dimension for the development of user-defined class loader
through Java agents and premain method. This package is the premier package of
Java programming language forever.

3.7.3 Security Manager and SecurityManager Class

A security manager is referred as an object that specifically defines a security
policy for an application. This policy typically specifies those actions that are
unsafe or sensitive. Any of the action that is not allowed by the security policy
can cause a SecurityException to be thrown. An application can
also query its security manager to discover which actions are allowed.

Typically, in Java, a web applet runs with a security manager provided
by the browser or Java Web Start plugin. Other types of applications generally
run without a security manager, unless the application itself defines one. If no
security manager is present, the application has no security policy and acts
without restrictions.

Interacting with the Security Manager

The security manager is an object of type SecurityManager; to obtain
a reference to this object, invoke System.getSecurityManager.

SecurityManager appsm = System.getSecurityManager
();

If there is no security manager, this method returns null.

Once an application has a reference to the security manager object, it
can request permission to do specific things. Many classes in the standard

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 259

libraries do this. For example, System.exit, which terminates the Java
Virtual Machine (JVM) with an exit status, invokes
SecurityManager.checkExit to ensure that the current thread
has permission to shut down the application.

The SecurityManager class defines many other methods used to
verify other kinds of operations, for example,
SecurityManager.checkAccess verifies thread accesses, and
SecurityManager.checkPropertyAccess verifies access to the
specified property. Each operation or group of operations has its own
checkXXX() method.

Additionally, the set of checkXXX() methods represents the set of
operations that are already subject to the protection of the security manager.
Typically, an application does not have to directly invoke any checkXXX()
methods.

Recognizing a Security Violation

Many actions that are repetitive or routine without a security manager can
throw a SecurityException whenever run with a security manager.
This is true even when invoking a method that is not documented as throwing
SecurityException. For example, consider the following code used
to write to a file:

reader = new FileWriter(“vikas.txt”);

In the absence of a security manager, this statement executes without error,
provided vikas.txt exists and is writeable. But suppose this statement is
inserted in a ‘Web Applet’, which typically runs under a security manager that
does not allow file output. The following error messages might result:

appletviewer fileApplet.html
 Exception in thread “AWT-EventQueue-1”
java.security.AccessControlException: access denied
(java.io.FilePermission xanadu.txt write)
 at
java.security.AccessControlContext.checkPermission(AccessControlContext.java:323)
 at
java.security.AccessController.checkPermission(AccessController.java:546)
 at
java.lang.SecurityManager.checkPermission(SecurityManager.java:532)
 at
java.lang.SecurityManager.checkWrite(SecurityManager.java:962)
 at
java.io.FileOutputStream.<init>(FileOutputStream.java:169)
 at java.io.FileOutputStream.<init>(FileOutputStream.java:70)
 at java.io.FileWriter.<init>(FileWriter.java:46)
...

Remember that the specific exception java.security.AccessControl
Exception thrown in this case is a subclass of SecurityException.

Therefore, the security manager is a class that allows applications to implement
a security policy. It allows an application to determine, before performing a
possibly unsafe or sensitive operation, what the operation is and whether it is

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
260 Material

being attempted in a security context that allows the operation to be performed.
The application can allow or disallow the operation.

public class SecurityManager

extends Object

The SecurityManager class contains many methods with names that begin
with the word check. These methods are called by various different methods in
the Java libraries before those methods perform some certain hypothetically sensitive
operations. The invocation of such a check method typically looks as follows:

 SecurityManager security =
System.getSecurityManager();

 if (security != null) {

 security.checkXXX(argument, . . .);

 }

 The security manager is thus given an opportunity to check completion of
the operation by throwing an exception. A security manager routine simply returns
if the operation is permitted, but throws a SecurityException if the
operation is not permitted. The only exception to this convention
is checkTopLevelWindow, which returns a Boolean value.

The current security manager is set by the setSecurityManager
method in class System. The current security manager is obtained by the
getSecurityManager method.

The special method checkPermission(java.security.
Permission)determines whether an access request indicated by a specified
permission should be granted or denied. The default implementation calls

 AccessController.checkPermission(perm);

If a requested access is allowed, checkPermission returns. If denied,
a SecurityException is thrown.

3.8 JAVA UTILITY CLASS

 Java collections framework provides a well designed set of interfaces and
classes that support operations on a collection of objects.

 The Locale class is used to tailor program output to the conventions of
a particular geographic, political or cultural region.

 The GregorianCalendar provides support for traditional Western
calendars.

StringTokenizer CLASS

Parsing is a familiar term in compiler design. However, what exactly is meant by
parsing? When one writes a program in any high-level language, say Java, it is the
task of the compiler to convert the source to some intermediate language like byte
code or a machine readable language. During this process, the compiler first checks
the syntactical correctness of the program. This checking is done by dividing the
text entered by the programmer into a number of sub-strings, according to some

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 261

parsing protocol or rule and this process is called parsing. Java provides the
StringTokenizer class to divide the entered text into a number of sub-
strings or tokens. StringTokenizer implements the Enumeration
interface for which one can traverse through the various sub-strings present in the
entered text.

Program 3.34

import java.util.*;

class Demo {

static String str1=”Past, Present and future is nothing special,
they are just Clock Time!!”;

public static void main(String args[])

{

StringTokenizer sTokenizer=new StringTokenizer(str1,”,”);

while(sTokenizer.hasMoreTokens())

{

String keyused = sTokenizer.nextToken();

System.out.println(keyused);

}

}

}

Output of the program:

Past

Present and future is nothing special

they are just Clock Time!!

In the above example, sTokenizer is an object of the
StringTokenizer class. The constructor of the StringTokenizer
class takes two arguments. The first argument is the string, which is meant for
parsing. The second argument is the string (here it is the comma, “,”), according
to which the first argument has to be divided into a number of sub-strings.

Methods
The various methods are:

int countTokens()

This method determines the number of tokens left to be parsed and returns the
result.

boolean hasMoreElements()

This method returns true if one or more tokens remain in the string and returns
false if there is none.

boolean hasMoreTokens()

This method returns true if one or more tokens remain in the string and returns
false if there are none.

Object nextElement()

This method returns the next token as an object.
String nextToken (String delimiters)

This method returns the next token as a String and sets the delimiters
of the String.

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
262 Material

The StringTokenizer class provides another two constructors. These
are:

StringTokenizer (String string)
StringTokenizer (String string, String delimiters, boolean delim)

Another program is given below:

Program 3.35

import java.util.*;

class Demo {
static String str1=”Past, Present and future is nothing special,

they are just Clock Time!!”;
public static void main(String args[])
{
StringTokenizer sTokenizer=new StringTokenizer(str1);
String arr[]={“,”,”&”,”is”,”,”};
int i=0;
while(i<4)
{

String keyused = sTokenizer.nextToken(arr[i]);
System.out.println(keyused);
i++;

}
}
}

Output of the program:

Past

Present and future is nothing special

The output here is quite simple and straight forward.

BitSet Class

Java provides the BitSet class to store the bit values. The array created by the
BitSet class is dynamic in nature, i.e., it can grow and shrink according to the
given input. The constructors available in BitSet class are:

 BitSet()

 BitSet(int capacity) This constructor is used to initialize
the capacity of the BitSet class object.

The next example illustrate, the use of the BitSet class.

Program 3.36

import java.util.*;

class Demo {

static String str1=”Past, Present and future is nothing special,
they are just Clock Time!!”;

public static void main(String args[])

{

BitSet bSet1=new BitSet(32);

BitSet bSet2=new BitSet(32);

for(int i=1;i<=32;i++)

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 263

{

if(i%2==0)

bSet1.set(i);

if(i%3==0)

bSet2.set(i);

}

System.out.println(bSet1);

System.out.println(bSet2);

//Anding of Bits

bSet2.and(bSet1);

System.out.println(“After ANDING:”+bSet2);

// The OR operation

bSet1.or(bSet2);

System.out.println(“After OR:”+bSet1);

//XOR operation

bSet2.xor(bSet1);

System.out.println(“After XOR:”+bSet2);

}

}

Output of the program:

{2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32}

{3, 6, 9, 12, 15, 18, 21, 24, 27, 30}

After ANDING: {6, 12, 18, 24, 30}

After OR: {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32}

After XOR: {2, 4, 8, 10, 14, 16, 20, 22, 26, 28, 32}

The set() method sets the particular bit on for the BitSet object
through which it is invoked. For example, when this statement if (i % 2 = =
0) bSet1.set(i); is encountered, second bit, fourth bit, sixth bit, eighth
bit and so on of bSet1 is turned on. The and() method performs the and
operation and the result is stored in the invoking object bSet2.

Date
Java provides Date class to show the current date and time. By using this class
one can get system defined date and time. Date class also implements the
Comparable interface.
The constructors available in Date class are:

Date()

It initializes the object with the current date and time.

Date(long millisec)

It accepts one argument that equals the number of milliseconds.

Program 3.37

import java.util.Date;

public class date7

{

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
264 Material

public static void main(String args[])

{

Date date = new Date();

System.out.println("Date is : " + date);

System.out.println("Milliseconds since January 1, 1970,
00:00:00 GMT : " + date.getTime());

}

}

Output of the program:

Date is : Tue Jan 01 03:09:10 IST 2002

Milliseconds since January 1, 1970, 00:00:00 GMT :1009834750484.

Methods

The various methods are:
void setTime(long time)

It sets the time and date, which is specified by time.
long getTime()

It returns the number of milliseconds, that have elapsed since January 1970.
String toString()

It converts the invoking date object into a String.
boolean equals(Object date)

It returns true value, if invoking the Date object contains the same time and
date as one specified by date, otherwise it returns false.

Calendar class

It is an abstract class which is present in java.util package. There is
no constructor provided by Calendar class.

Methods

The various methods are:
static Calendar getInstance()

It returns the Calendar object for the default time zone.
To set month, year, date, hour, minute, second we have to call a method,

i.e., set() of Calendar class.
set() method having corresponding final variables like
final void set(int year,int month,int dayOfMonth)
final void set(int year,int month,int dayOfMonth,int
hours,int minutes,seconds)

To get month, year, date, hour, minute, second one has to call a method,
i.e., get() of Calendar class.

Inside this get() method called corresponding static variables like
Calendar.MONTH

Calendar.YEAR

Calendar.DATE

Calendar.HOUR
Calendar.MINUTE
Calendar.SECOND

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 265

Program 3.38

import java.util.Calendar;

public class DMY{

 public static void main(String[] args)

{

 Calendar calendar = Calendar.getInstance();

int year = 2009;

int month = Calendar.MARCH;

int date = 1;

calendar.set(year, month, date);

int days =
calendar.getActualMaximum(Calendar.DAY_OF_MONTH);

System.out.println("Number of Days: " + days);

year=calendar.get(Calendar.YEAR);

month=calendar.get(Calendar.MONTH);

System.out.println("Current month: "+month);

System.out.println("Current Year: "+year);

 }

}

Output of the program:

Number of Days-31

Current month-2

Current Year-2009

GregorianCalendar Class

It is a class present in java.util package and it is a child class of Calendar
class. All the methods of the Calendar class are also present in this class along
with some additional methods such as isLeapYear(). This method shows
whether the current year is leap year or not.

There are also several constructors for GregorianCalendar
objects.These are:

GregorianCalendar()

It initialize the object with the current date and time in the default locale and time
zone.

GregorianCalendar(int year, int month, int dayOfMonth)

It sets the day, month and year.
GregorianCalendar(int year, int month, int dayOfMonth, int
hours, int minutes)

It sets the day, month, year, hours and minutes.
GregorianCalendar(int year, int month, int dayOfMonth, int
hours, int minutes, int seconds)

It sets the day, month, year, hours, minutes and seconds.

All the above three constructors set the day, month, and year. Here, year
specifies the number of years that have elapsed since 1900. The month is specified
by month, with zero indicating January. The day of the month is specified by
dayOfMonth.

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
266 Material

Program 3.39

import java.util.*;

class Demo1 {

public static void main(String args[]){

String mth[]= {"Jan", "Feb", "Mar", "Apr", "May", "Jun",

"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};

int year=0;

GregorianCalendar cal = new GregorianCalendar();

System.out.print("Date is:" + cal.get(Calendar.DATE));

System.out.print(", "+mth[cal.get(Calendar.MONTH)]+ ",");

System.out.println(cal.get(Calendar.YEAR));

System.out.print("Time is:" +cal.get(Calendar.HOUR) + ":");

System.out.print(cal.get(Calendar.MINUTE) + ":");

System.out.println(cal.get(Calendar.SECOND));

cal.set(Calendar.HOUR, 12);

cal.set(Calendar.MINUTE, 25);

cal.set(Calendar.SECOND, 52);

System.out.print("Updated time is: ");

System.out.print(cal.get(Calendar.HOUR) + ":");

System.out.print(cal.get(Calendar.MINUTE) + ":");

System.out.println(cal.get(Calendar.SECOND));

if(cal.isLeapYear(year))

{

System.out.println("The current year is a leap year");

}

else {

System.out.println("The current year is not a leap year");

}

}

}

Output of the program:

Date is: 1, Jan, 2002

Time is:4:41:22

Updated time is:0:10:52

The current year is a leap year

Random Class

This class is present in java.util package. It is used for giving random numbers
like Random int, Random double, Random float, etc.

Random class provides the following constructors:
Random()

It creates a new random number generator seed.
Random(long l)

It creates a new random number generator using a single long seed.

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 267

Methods
boolean nextInt()

It returns the next integer random number.
boolean nextFloat()

It returns the next float random number.
boolean nextDouble()

It returns the next double random number.
boolean nextInt(int n)

It returns the next integer random number within the range, i.e., zero to n.

Program 3.40

import java.util.Random;

public final class ran1

 {

 public static final void main(String args[])

 {

 show("Generating 10 random integers in range 0 to 50.");

Random r = new Random();

 for(int i=1;i<=10;++i)

 {

int randomInt=r.nextInt(50);

show("Generated:"+ randomInt);

 }

 show("Done.");

 }

 private static void show(String str){

 System.out.println(str);

 }

}

Output of the program:

Generating 10 random integers in range 0 to 50.

Generated:4

Generated:2

Generated:3

Generated:33

Generated:12

Generated:28

Generated:43

Generated:43

Generated:20

Generated:33

Done.

Locale Class

This class is used to describe a geographical, political or cultural region. In this
class the date, time, numbers format is used to display it according to the customs
of the user's native country, region or culture.

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
268 Material

Constructors
Locale(String language)

It returns the specific language.
Locale(String language,String country)

It returns the specific language and country codes.
Locale(String language,String country,String data)

It returns the specific language, country codes and data according to
customer specified requirement.

Methods
final String getDisplayCountry()

It is used to display country name.
final String getDisplayLanguage()

It is used to display language name.
final String getDisplayName()

It is used to describe the Locale completely. Locale means some constants
that are defined by Locale class. These are:

CANADA, CHINA, CHINESE, ENGLISH, FRANCE, FRENCH, GERMAN, GERMANY,
ITALIAN, ITALY, JAPAN, JAPANESE, KOREA, KOREAN, PRC, TAIWAN, UK, US.

static void setDefault(Locale obj)

It sets the default Locale according to the given object of Locale class.
static Locale setDefault(Locale obj)

It gets the default Locale.

Program 3.41

import java.util.Locale;

public class loc {

 public static void main(String[] args) {

 System.out.println(Locale.getDefault());

Locale l = new Locale("de", "DE");

Locale l1 = new Locale("fr", "FR");

System.out.println("Default language name (default): " +

 l.getDisplayLanguage());

System.out.println("German language name (German): " +

 l.getDisplayLanguage(l));

System.out.println("German language name (French): " +

 l.getDisplayLanguage(l1));

 }

}

Output of the program:

en_US

Default language name (default): German

Default language name (German):Deutsch

Default language name (French):allemand

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 269

The Observable class and the Observer Interface

These two are closely entangled with each other. One will seldom find a programmer
using only one of the classes to develop an application in Java. Java provides a
unique tool through this class and interface to keep track of the changes in the
various objects during the course of execution of the program.

The class which keeps a track of the changes has to implement Observer
interface and the class which is under focus must extend the Observable
class. The following program makes it clear.

Program 3.42

import java.util.*;

class X implements Observer{

public void update(Observable obs,Object obj)

{

System.out.print(“Object of Y is changed:”);

}

}

class Y extends Observable {

int i;

void fun()

{

i++;

this.setChanged();

notifyObservers(this);

try{

Thread.sleep(100);

}catch(InterruptedException e){}

show();

}

void show()

{

System.out.println(i);

}

}

class Demo {

public static void main(String args[])

{

Y a=new Y();

X b=new X();

a.addObserver(b);

for(int i=0;i<10;i++)

{

a.fun();

}

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
270 Material

}

}

Output of the program:

Object of Y is changed:1

Object of Y is changed:2

Object of Y is changed:3

Object of Y is changed:4

Object of Y is changed:5

Object of Y is changed:6

Object of Y is changed:7

Object of Y is changed:8

Object of Y is changed:9

Object of Y is changed:10

Class X implements an Observer interface. This tells to JVM that the
object of X will behave as an Observer. Class Y extends the Observable
class; that means changes made to the object of Y are going to be monitored.
Class Y has an instance variable i. Inside the main method, the fun method is
invoked by the object of Y. The fun method manipulates the object a by performing
i++. The statement a.addObserver(b); registers the object b as an
observer to observe the changes made in object a. Now, inside the fun method,
the setChanged() method has been invoked. The setChanged() method
contains a flag bit which turns on when it is invoked. If one does not invoke this
method, the flag bit remains turned off. The setChanged() method has to
be invoked by the object which is to be observed. The
notifyObservers(this) method informs the Observer when the
object is manipulated by passing that object to the update method. This method
actually implicitly invokes the update() method if the flag bit is turned on
by the setChanged() method and sends the object a to update() method
implicitly. Once the control is transferred, the change is monitored and the message
inside the System.out.println() is displayed. This is shown below.

Program 3.43

import java.util.*;

class X implements Observer{

public void update(Observable obs,Object obj)

{

System.out.println(“Object of Y is changed:”+(Integer)obj);

}

}

class Y extends Observable {

Integer i ;

void fun()

{

i++;

this.setChanged();

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 271

notifyObservers(this.i);

try{

Thread.sleep(100);

}catch(InterruptedException e){}

}

}

class Demo {

public static void main(String args[])

{

Y a=new Y();

a.i=new Integer(“0”);

X b=new X();

a.addObserver(b);

for(int i=0;i<10;i++)

{

a.fun();

}

}

}

Output of the program:

Object of Y is changed:1

Object of Y is changed:2

Object of Y is changed:3

Object of Y is changed:4

Object of Y is changed:5

Object of Y is changed:6

Object of Y is changed:7

Object of Y is changed:8

Object of Y is changed:9

Object of Y is changed:10

The next example shows an object having multiple observers:

Program 3.44

import java.util.*;

class X implements Observer{

public void update(Observable obs,Object obj)

{

System.out.println(“Object of Y is changed:”+(Integer)obj);

}

}

class Y extends Observable {

Integer i ;

void fun()

{

i++;

this.setChanged();

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
272 Material

notifyObservers(this.i);

try{

Thread.sleep(100);

}catch(InterruptedException e){}

}

}

class Demo {

public static void main(String args[])

{

Y a=new Y();

a.i=new Integer(“0”);

Y c=new Y();

c.i=new Integer(“100”);

X b=new X();

a.addObserver(b);

c.addObserver(b);

for(int i=0;i<10;i++)

{

a.fun();

c.fun();

}

}

}

Output of the program:

Object of Y is changed:1

Object of Y is changed:101

Object of Y is changed:2

Object of Y is changed:102

Object of Y is changed:3

Object of Y is changed:103

Object of Y is changed:4

Object of Y is changed:104

Object of Y is changed:5

Object of Y is changed:105

Object of Y is changed:6

Object of Y is changed:106

Object of Y is changed:7

Object of Y is changed:107

Object of Y is changed:8

Object of Y is changed:108

Object of Y is changed:9

Object of Y is changed:109

Object of Y is changed:10

Object of Y is changed:110

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 273

The next example shows two objects monitored by two different observers:

Program 3.45

import java.util.*;

class X implements Observer{

public void update(Observable obs,Object obj)

{

System.out.println(“Object of Y is changed:”+(Integer)obj);

}

}

class Z implements Observer{

public void update(Observable obs,Object obj)

{

System.out.println(“Object of Y is changed:”+(Integer)obj);

}

}

class Y extends Observable {

Integer i ;

void fun()

{

i++;

this.setChanged();

notifyObservers(this.i);

try{

Thread.sleep(100);

}catch(InterruptedException e){}

}

}

class Demo {

public static void main(String args[])

{

Y a=new Y();

a.i=new Integer(“0”);

Y c=new Y();

c.i=new Integer(“100”);

X b=new X();

Z d=new Z();

a.addObserver(b);

c.addObserver(d);

for(int i=0;i<10;i++)

{

a.fun();

c.fun();

}

}

}

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
274 Material

Output of the program:

Object of Y is changed:1

Object of Y is changed:101

Object of Y is changed:2

Object of Y is changed:102

Object of Y is changed:3

Object of Y is changed:103

Object of Y is changed:4

Object of Y is changed:104

Object of Y is changed:5

Object of Y is changed:105

Object of Y is changed:6

Object of Y is changed:106

Object of Y is changed:7

Object of Y is changed:107

Object of Y is changed:8

Object of Y is changed:108

Object of Y is changed:9

Object of Y is changed:109

Object of Y is changed:10

Object of Y is changed:110

Task Scheduling

It is another excellent feature provided by this premier programming
language. A programmer can schedule his job at any future time and set
the time interval after which the task is required to be repeated. All these
things can be achieved by the Timer and TimerTask class. The
given example would make it clear.

Program 3.46

import java.util.*;

class X extends TimerTask{

public void run()

{

System.out.println(“Hello World!!!”);

}

}

class Demo {

public static void main(String args[])

{

X a=new X();

Timer tm=new Timer();

tm.scheduleAtFixedRate(a, 1000, 250);

try{

Thread.sleep(5000);

}catch(InterruptedException e){}

tm.cancel();

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 275

}

}

Output of the program:

Hello World!!!

Hello World!!!

Hello World!!!

Hello World!!!

Hello World!!!

Hello World!!!

Hello World!!!

Hello World!!!

Hello World!!!

Hello World!!!

Hello World!!!

Hello World!!!

Hello World!!!

Hello World!!!

Hello World!!!

Hello World!!!

Hello World!!!

Here, class X extends the TimerTask class. The TimerTask class
implements the Runnable interface due to which run() method is available
there. The code inside the run method is the task to be executed. Inside the
main method, the task object is created by the statement X a=new X();.
Now, one requires a Timer to set the time and the frequency of the task. A
Timer or scheduler is created by Timer tm=new Timer();. Next, the
scheduler invokes the scheduleAtFixedRate method. This method takes
the task object a, time at which the task would be started and the time interval
after which the task would be repeated. Task is executed as a separate thread.
So, context switch is required, to transfer the control, which is done by the
sleep() method. As long as the main thread is sleeping, the task is done at a
particular time interval. When the main thread resumes, tm.cancel() is
invoked to terminate the task.

Thus in conclusion it can be said that apart from the discussed classes and
interfaces, util package contains a huge collection of classes. Almost all of
them are simple and understandable easily by the students. Things like Date
class, Calendar class, TimeZone class are present to play with date, month
and year. The aim is to make students comfortable with the things like observer
and task scheduling. These classes, as already stated, are not part of the collection
framework.

3.9 ENUMERATION INTERFACE

This is an interface present in java.util package. Enumeration interface
is used to retrieve the elements one by one like Iterator but this interface

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
276 Material

never removes an element from the collection object. This interface has two
methods.

Methods

boolean hasMoreElements() Checks if the Enumeration has any more
elements or not

Object nextElement() Returns the next element that is available in
Enumeration.

Program 3.47

import java.util.*;

class X{

int i;

}

class Demo {

public static void main(String args[])

{

ArrayList<X> arrX=new ArrayList<X>();

for (int j=0;j<5;j++)

{

X a=new X();

a.i=j;

arrX.add(a);

}

System.out.println(“Forward traversing”);

ListIterator<X> LiteR=arrX.listIterator();

while(LiteR.hasNext()){

X a=LiteR.next();

System.out.println(a.i);

}

System.out.println(“Backward traversing”);

while(LiteR.hasPrevious()){

X a=LiteR.previous();

System.out.println(a.i);

}

}

}

Output of the program:

Forward traversing

0

1

2

3

4

Backward traversing

4

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 277

3

2

1

0

The hasPrevious() and the previous() method behave in the
opposite way to the hasNext() and the next() methods. ListIterator
can also be used in LinkedList, HashSet, TreeSet to perform a similar
task as that of an ArrayList.

Map Interface

Map interface is not inherited from the Collection interface. Instead, the
interface starts off its own interface hierarchy, for maintaining key-value associations.
Map interface helps to establish a mapping between the keys to the corresponding
element. A map cannot contain duplicate keys. In the process of mapping, each
key can map at most one value.

Map interface has three collection views, which allow a map's contents to
be viewed as a set of keys, collection of values, and set of key-value mappings.
The order of a map is defined as the order in which the iterators on the map's
collection view return their elements.

Methods

void clear() Removes all the mappings from the current
Map

boolean containsKey Returns true or false accordingly,
whether the

(Object key) current Map is mapping one or more keys
to the value or not

boolean containsValue Returns true when the current Map maps
one or

(Object v) more keys to the value v, otherwise it
returns false.

Set entrySet() Returns a Set interface reference which
specifies a view of the mappings
established in the current Map.

boolean equals(Object mp) Returns true when the object mp is equal
to the current Map, or else it returns
false.

Object get(Object mp) Returns value to which the current Map
maps the key.

int hashCode() Returns an int value representing the
hash-code value of the Map.

boolean isEmpty() Checks the current key value mappings.
If the Map does not contain any mappings,
then it returns true, or else false.

Set keyset() Returns the Set interface reference which
gives representation of keys in the Map.

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
278 Material

Object put(Object mapkey, Used to associate the mapvalue with
the mapkey

Object mapvalue) in the current Map.

Object remove(Object Removes the mapping which is present in
the Map

keyused) for the key keyused.

int size() Returns the total number of mappings
established inside the Map.

Collection values() Returns a collection reference which
represents the view of the values
contained in the Map.

SortedMap Interface

SortedMap is an interface which inherits from Map interface. This interface
maintains its entries in ascending order. The sorting may be done in two ways.
These are:

 According to the default ordering principle provided by Java.

 According to a user defined comparator explicitly provided by the
programmer.

Methods

Comparator comparator() Returns the Comparator associated
with the current SortedMap.

Object firstKey() Returns the currently lowest key in the
SortedMap.

SortedMap headMap Returns the reference of the current
SortedMap

(Object keyused) whose keys are less than keyused

Object lastKey() Returns the currently highest key in the
SortedMap

SortedMap subMap Returns a reference of the portion of the
SortedMap

(Object sm1,Object sm2) whose keys ranges from the key specified
by sm1 to the key specified by sm2

SortedMap tailMap(Object sm1) Returns the reference of the portion of
the
SortedMap whose keys are greater than
or equal to the key as specified by sm1.

HashMap Class

HashMap is a class that implements Map interface. It is a collection that stores
the elements in the form of key value pair. The HashMap class holds only
unique keys. This mean we cannot use duplicate data for keys in the HashMap.
This class allows both null values and null key. HashMap is not synchronized
and hence while using multiple threads on HashMap object, we get unreliable
results.

There are two factors that affect the instance of the HashMap. They are
the initial capacity and the load factor. The initial capacity determines the capacity

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 279

of the hashtable when it is created. The load factor determines how full the hashtable
can become before its capacity is automatically increased. HashMap does not
guarantee the order of its elements. This means the order in which the iterator
reads the HashMap is not a constant.

We can write HashMap class as:

Class HashMap<K, V>

Where K represents the type of the key element and V represents the type
of value element. For example, to store a String as key and Integer object
as its value, we can create HashMap as,

HashMap<String, Integer> hm=new HashMap<String, Integer>();

Constructor

The constructor of the HashMap class is overloaded.

 HashMap(): Constructs an empty map with default capacity and load
factor.

 HashMap(int cap):Constructs an empty map with the capacity
specified by cap and default load factor.

 HashMap(int cap, float load):Constructs an empty map with
capacity specified by cap, and load factor specified by load.

 HashMap(Map m): Constructs a map with the mappings specified Map.

Methods

void clear() Removes all the key value pairs from the
Map.

value get(Object key) Returns the corresponding value when
the key is given. If the key does not have
a value associated with it, then it returns
null.

value put(key, value) Stores key-value pair into the
HashMap.

Set<k> keySet() Converts HashMap into a Set where only
keys will be stored.

Collection<v> values() Returns all the values of the HashMap
into a Collection object.

value remove(Object key) Removes the key and corresponding
value from the HashMap.

boolean isEmpty() Returns true if there are no key-value
pairs in the HashMap.

int size() Returns number of key-value pairs in the
HashMap.

Program 3.48

import java.util.*;

class K {

int key;

}

class V{

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
280 Material

int data;

}

class Demo {

public static void main(String args[])

{

HashMap<K,V>hashM=new HashMap<K,V>();

K keyArr[]=new K[5];

for(int i=0;i<5;i++)

{

K key1=new K();

key1.key=i;

keyArr[i]=key1;

V val=new V();

val.data=i+5;

hashM.put(key1,val);

}

for(int i=0;i<5;i++){

V a=hashM.get(keyArr[i]);

System.out.println(a.data);

}

}

}

Output of the program:

5

6

7

8

9

Data is stored in the HashMap along with the key value. If one looks at
the put method, it keeps inserting data in the HashMap with the key value.
Key is required to extract data from the HashMap. Therefore, an array is declared
to store the key value. Then, each key value stored in the array is used to extract
data from the HashMap. The get() method only requires the key to extract
the data.

Hashtable Class

Hashtable is a predefined class present in java.util package. This class
implements Hashtable datastructure to store element within the Hashtable
object. We must specify the key and the value to be mapped to that key. The key
is hashed and the hashcode is used as the index of the position in which the value
is stored. Hashtable is same as HashMap but Hashtable is synchronized
assuring proper results even if multiple threads act on it simultaneously.

We can write Hashtable class as:

class Hashtable<K,V>

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 281

Where K represents the type of key element and V represents the type of
value element. For example, to store a String as key and Integer object
as its value, we can create the Hashtable as:

Hashtable<String, Integer> hm=new
Hashtable<String, Integer>();

Constructor

The constructor of the HashTable class is overloaded.

 Hashtable(): Constructs an empty hash table with default capacity
and load factor.

 Hashtable(int cap):Constructs an empty hash table with the
capacity specified by cap and default load factor.

 Hashtable(int cap, float load):Constructs an empty hash
table with capacity specified by cap, and load factor specified by load.

 Hashtable(Map m): Constructs a hash table with the mappings
specified by Map.

Methods

void clear() Removes all the key value pairs from the
Hashtable.

value get(Object key) Returns the corresponding value when the
key is given. If the key does not have a
value associated with it, then it returns null.

value put(key,value) Stores key-value pair into the
Hashtable.

Set<k> keySet() Converts Hashtable into a Set where
only keys will be stored.

Collection<v> values() Returns all the values of the Hashtable
into a Collection object.

value remove(Object key) Removes the key and corresponding value
from the Hashtable.

boolean isEmpty() Returns true if there are no key-value
pairs in the Hashtable.

int size() Returns number of key-value pairs in
the Hashtable.

Program 3.49

import java.util.*;
class K {

int key;
}

class V{
int data;

}
class Demo {

public static void main(String args[])
{

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
282 Material

HashMap<K,V>hashM=new HashMap<K,V>();
for(int i=0;i<5;i++)

{
K key1=new K();
key1.key=i;
V val=new V();
val.data=i+5;
hashM.put(key1,val);

}
Set<Map.Entry<K, V>> s=hashM.entrySet();
for(Map.Entry<K, V> x:s)
{

K z=x.getKey();
System.out.print(“For key: “+z.key+” Value:”);
V c=x.getValue();
System.out.println(c.data);

}
}

}

Output of the program:

For key: 2 Value:7

For key: 4 Value:9

For key: 3 Value:8

For key: 1 Value:6

For key: 0 Value:5

Here the object of Set s is going to hold the entries of HashMap in set
format by the invocation of entrySet() method through HashM, the object
of HashMap. The entrySet() method return the object of Set containing
all the stored mapping elements in HashMap. It must be remembered that each
element present in s is a reference of Map.Entry.

Entry is an inner class of Map. That is why, it is a reference of a
Map.Entry. The getKey() method returns the reference of class K and
the getValue() method returns the reference of class V. Now the output is
straightforward.

Difference between HashMap and Hashtable

HashMap Hashtable

 HashMap is not Synchronized Hashtable is synchronized.
in nature. In case of single thread In case of multiple threads Hashtable
HashMap is faster than HashTable. is better than HashMap.

 HashMap allows to store null Hashtable does not permit null values
and keys. values and keys.

 Iterator in the HashMap is fail safe. Enumeration for the Hashtable is not
fail safe.

 It means Iterator will produce an Enumeration never produces an exception
exception if concurrent modification to concurrent modification to Hashtable.
is made to the HashMap.

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 283

Vector Class

This is a predefined class present in java.util package. This class implements
the ArrayList. Unlike ArrayList class, Vector class also supports
dynamic array but it is synchronized. It means even if several threads act on
Vector object simultaneously, the results will be reliable. Each Vector maintains
a capacity
and capacity increment. The capacity is always greater than or equal to the vector
size.

Constructor

The constructor of the Vector class is overloaded.

 Vector(): Constructs an empty vector. Its size is 10 and capacity
increment is 0.

 Vector(Collection c): Constructs a vector containing the elements
of the Collection c. The elements are accessed in the order returned by
the Collection's iterator.

 Vector(int cap): Constructs an empty vector with the capacity
specified by cap.

 Vector(int cap, int inc): Constructs an empty vector with
the capacity specified by cap, capacity increment specified by inc.

Method

Same methods of ArrayList class.

Difference between ArrayList and Vector

ArrayList class Vector class

 ArrayList is not synchronized Vector is synchronized by default.
by default. In case of single thread In case of multiple threads Vector
ArrayList is faster than Vector. is better than ArrayList.

 ArrayList increases its size by A Vector increases its array size by
50 percent. doubling the size.

 ArrayList has no default size. Vector has a default size of 10.

 ArrayList does not require any But Vector requires an Iterator to
Iterator to display its contents. display its contents.

Stack Class

Stack class inherits from Vector class. A Stack represents a group of
elements stored in LIFO(Last In First Out). It means that the element which is
stored as a last element into the stack will be the first element to be removed from
the stack. Inserting the elements (objects) into the stack is called 'Push Operation'
and removing the elements from the stack is called 'Pop Operation'. Insertion and
deletion of elements take place only from one side of the stack, called 'top' of the
stack, as shown in the following figure.

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
284 Material

Fig. 3.11 Stack with Some Elements

Methods

boolean empty() Checks whether the stack is empty or not. if
the stack is empty then it returns true,
otherwise returns false

element peek() Returns the top most object from the stack
without removing it.

element pop() Pops the top most element from the stack and
returns it.

element push(element obj) Pushes an element obj onto the top of the
stack and returns the element.

int search(Object ob) Returns the position of the element ob from
the top of the stack, if the element is not found
in the stack then it returns -1.

Program 3.50

import java.util.*;

class X {

int i;

}

class userComp implements Comparator<demo.X>

{

public int compare(X a, X b){

return a.i-b.i;

}

}

class Demo {

public static void main(String args[])

{

TreeSet<X> treeS=new TreeSet<X>(new userComp());

for(int i=0;i<5;i++)

{

X a=new X();

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 285

a.i=i;

treeS.add(a);

}

for(X a:treeS)

{

System.out.println(a.i);

}

}

}

Output of the program:

0

1

2

3

4

TreeSet<X> treeS=new TreeSet<X>(new userComp());
This statement tells the compiler to use the user-defined comparator rather than
the default Comparator. Java implicitly invokes the compare() method of
userComp class. The object for which the compare() method returns a
positive value is stored next to the previously stored object. How to reverse this
user-defined comparator? This can be shown by the following example:

Program 3.51

import java.util.*;

class X {

int i;

}

class userComp implements Comparator<demo.X>

{

public int compare(X a, X b){

return -a.i+b.i;

}

}

class Demo {

public static void main(String args[])

{

TreeSet<X> treeS=new TreeSet<X>(new userComp());

for(int i=0;i<5;i++)

{

X a=new X();

a.i=i;

treeS.add(a);

}

for(X a:treeS)

{

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
286 Material

System.out.println(a.i);

}

}

}

Output of the program:

4

3

2

1

0

Program 3.52

import java.util.*;

class Demo {

public static void main(String args[])

{

LinkedList<Integer>linkedL=new LinkedList<Integer>();

linkedL.add(-100);

linkedL.add(99);

linkedL.add(-99);

linkedL.add(100);

Comparator<Integer>revC=Collections.reverseOrder();

// creation of a reverse comparator

Collections.sort(linkedL,revC);

// sorting the list according to reverse comparator

System.out.println(“Descending order:”);

for(Integer i:linkedL)

System.out.println(i);

Collections.shuffle(linkedL);

// shuffling the elements present in the list

System.out.println(“After shuffling”);

for(Integer i:linkedL)

System.out.println(i);

S y s t e m . o u t . p r i n t l n (“ M a x i m u m
element:”+Collections.max(linkedL));

S y s t e m . o u t . p r i n t l n (“ M i n i m u m
element:”+Collections.min(linkedL));

}

}

Output of the program:

Descending order:

100

99

-99

-100

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 287

After shuffling

99

100

-100

-99

Maximum element: 100

Minimum element:-100

The output is straightforward and simple. All the method names used in this
program define their task.

Program 3.53

import java.util.*;

class X{

int i;

}

class Demo {

public static void main(String args[])

{

Vector<X> vect=new Vector<X>();

for(int i=0;i<5;i++)

{

X a=new X();

a.i=i;

vect.add(a);

}

X a=new X();

a.i=100;

vect.addElement(a);

for(X x:vect)

System.out.println(x.i);

}

}

Output of the program:

0

1

2

3

4

100

The addElement() method behaves similar to the add() method. It
can be seen that a Vector is much similar to an ArrayList. Here, one can
use Iterator to traverse the various elements present in a Vector object.

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
288 Material

Program 3.54

import java.util.*;

class X{

int i;

}

class Demo {

public static void main(String args[])

{

Vector<X> vect=new ArrayList<X>();

for (int j=0;j<5;j++)

{

X a=new X();

a.i=j;

vect.add(a);

}

Iterator<X> iteR=vect.iterator();

while(iteR.hasNext()){

X a=iteR.next();

System.out.println(a.i);

}

}

Output of the program:

0

1

2

3

4

Program 3.55

import java.util.*;

class X{

int i;

}

class Demo {

public static void main(String args[])

{

Vector<X> vect=new Vector<X>();

for(int i=0;i<5;i++)

{

X a=new X();

a.i=i;

vect.add(a);

}

Enumeration en=vect.elements();

while(en.hasMoreElements()){

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 289

X a=(X)en. nextElement();

System.out.println(a.i);

}

}

}

Output of the program:

0

1

2

3

4

Program 3.56

import java.util.*;

class Demo {

public static void main(String args[])

{

Stack<Byte> s=new Stack<Byte>();

System.out.println(“Initially the Stack:”+s);

for(int i=0;i<10;i++){

byte b=(byte)i;

s.push(b);

System.out.println(“Initially the Stack:”+s);

}

while(!s.empty()){

System.out.println(“pooped:”+s.pop());

System.out.println(s);

}

}

}

Output of the program:

Initially the Stack:[]

Initially the Stack:[0]

Initially the Stack:[0, 1]

Initially the Stack:[0, 1, 2]

Initially the Stack:[0, 1, 2, 3]

Initially the Stack:[0, 1, 2, 3, 4]

Initially the Stack:[0, 1, 2, 3, 4, 5]

Initially the Stack:[0, 1, 2, 3, 4, 5, 6]

Initially the Stack:[0, 1, 2, 3, 4, 5, 6, 7]

Initially the Stack:[0, 1, 2, 3, 4, 5, 6, 7, 8]

Initially the Stack:[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

pooped: 9

[0, 1, 2, 3, 4, 5, 6, 7, 8]

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
290 Material

pooped: 8

[0, 1, 2, 3, 4, 5, 6, 7]

pooped: 7

[0, 1, 2, 3, 4, 5, 6]

pooped: 6

[0, 1, 2, 3, 4, 5]

pooped: 5

[0, 1, 2, 3, 4]

pooped: 4

[0, 1, 2, 3]

pooped: 3

[0, 1, 2]

pooped: 2

[0, 1]

pooped: 1

[0]

pooped: 0

[]

Program 3.57

import java.util.*;

class K {

int key;

}

class V{

int data;

}

class Demo {

public static void main(String args[])

{

Hashtable<K,V>hashT=new Hashtable<K,V>();

K keyArr[]=new K[5];

for(int i=0;i<5;i++)

{

K key1=new K();

key1.key=i;

keyArr[i]=key1;

V val=new V();

val.data=i+5;

hashT.put(key1,val);

}

for(int i=0;i<5;i++){

V a=hashT.get(keyArr[i]);

System.out.println(a.data);

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 291

}

}

}

Output of the program:

5

6

7

8

9

3.9.1 Using Store () and Load ()

The Properties class of Java is used to maintain one or more properties that
can be easily streamed into Text or Binary. The application properties contained
in the Properties class instance can be persisted to a text file.

One of the most useful aspects of Java properties is that the information
contained in a Properties object can be easily stored to or loaded from disk
with the store() and load() methods. At any time, the user can write a
Properties object to a stream or read it back. This makes property lists
especially convenient for implementing simple databases.

The store() method of the Properties class is used to save the
application properties to a text file. This method takes an OutputStream or
Writer object to store the information. Since it accepts OutputStream as
well as Writer, in place of a text file, one can write the properties in a binary file as
well. The most preferred way is writing it to a text file and preferred extension for
the property file is ‘.properties’.

The java.util.Properties.store(OutputStream
out,String comments) method writes this property list (key and element
pairs) in this Properties table to the output stream in a format suitable for
loading into a Properties table using the load(InputStream) method.

Declaration

Following is the declaration for java.util.Properties.store()
method:

public void store(OutputStream out,String comments)

Parameters

Following are the parameters defined in the above declaration.

 out – An Output Stream.

 comments – A Description of the Property List.

Return Value

This method returns the previous value of the specified key in this property list, or
null if it did not have one.

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
292 Material

Exception

 IOException – If writing this property list to the specified output stream
throws an IOException.

 ClassCastException – If this Properties object contains any
keys or values that are not Strings.

 NullPointerException – If out is null.

Check Your Progress

17. Why the wrapper classes are required?

18. What is autoboxing in java?

19. How the memory management is done?

20. Define the term class loader.

21. State about the Locale class.

22. What is the use of enumeration interface?

23. Write the definition of term stack.

3.10 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. There are two ways to create a thread in Java. One method is used
exclusively in Java applications. The other method can be used in applications
as well as in applets.

2. Threads are called lightweight processes because all the threads in a main
application program share the same address space in the memory.

3. MIN_PRIORITY, MAX_PRIORITY and NORM_PRIORITY are the
constants defined in Thread class.

4. The default priority of a thread is 5.

5. There are two ways to implement synchronization, which are as follows:
i. Synchronizing Methods
ii. Synchronizing Statements

6. The thread that is ready to run, but waiting for the processor availability is
called runnable thread and the state is known as Runnable State.

7. Stream classes can be categorized into byte stream classes and character
stream classes.

8. Byte stream classes support input and output operations on bytes (8-bit
bytes). Whereas, character stream classes perform input and output
operations on characters (16-bit Unicode).

9. InputStreamReader class is used to read input from the console
input device.

10. FileReader class creates character stream between the file and the
program and reads characters from the file and sends it to the program.

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 293

11. An applet is a small program typically embedded within the Web page
which is used to create a dynamic and interactive application. They provide
interactive features to a Web page which cannot be provided by HTML.

12. A Java applet enters into various states during its entire life cycle which
include born state, running state, idle state and dead state.

13. The volatile modifier is used to tell the compiler that the variable
declared as volatile can be changed at any time by the other parts of
the program. This modifier is mainly used in multithreading in which a program
(process) is divided into two or more subprograms (subprocesses), each
of which runs by a separate thread and performs different tasks concurrently.

14. The modifier strictfp can be used on classes, interfaces and non-
abstract methods. When applied to a method, it causes all calculations inside
the method to use strict floating point mathematics. When applied to a class,
all calculations inside the class use strict floating point mathematics. Compile
time constant expressions must always use strict floating point behaviour.

15. One of the vital features of JNI (Java Native Interface) is that it never
imposes any restriction on the JVM. Therefore, JVM vendors can add
support for the JNI without affecting other parts of the virtual machine.

16. The string class supports several constructors. The various string classes
are:

 String Constructors

 String Length

 String Literals

 String Concatenation

 String Compare

17. The wrapper classes are required because of the following reasons:

 Vector, ArrayList, LinkedList, classes present in
java.util package cannot handle primitive data types like int,
char, float, etc. Hence primitive data types may be converted
into object types by using wrapper classes present in java.lang
package.

 Wrapper classes convert primitive data types into objects.

18. J2SE 5 supports the autoboxing process by which a primitive type is
automatically encapsulated into its equivalent type wrapper class object.
There is no need to explicitly construct a wrapper class object. This technique
is popularly known as autoboxing in Java.

19. Memory management is completely done by JVM. Java code p.class
file is created after compiling the above. During the execution of p.class
file, first it is loaded in the memory by the boot strap class loader, which is
a component of (Java Virtual Memory) JVM. Z is a reference variable
which is created inside the stack area. When the constructor of class p is
called through a new operator, a chunk of memory is allocated from the

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
294 Material

heap area and its starting address is stored in z. Therefore, it can be said
that the object of class p is created.

20. Class loader is an abstract class which extends the Object class. In Java, a
class is loaded in the memory either by a boot strap class loader or by user
defined class loader. Boot strap class loader is a component of Java Virtual
Machine. When a class file is executed by javac command, the boot strap
class loader is responsible for loading the class in the memory.

21. Local class is used to describe a geographical, political or cultural region.
In this class the date, time, numbers format is used to display it according to
the customs of the user’s native country, region or culture.

22. Enumeration interface is used to retrieve the elements one by one Iterator
but this interface never removes an elements from the collection object.

23. A Stack represents a group of elements stored in LIFO (Last In First Out).
It means that the element which is stored as a last element into the stack will
be the first element to be removed from the stack. Inserting the elements
(objects) into the stack is called ‘Push Operation’ and removing the elements
from the stack is called ‘Pop Operation’. Insertion and deletion of elements
take place only from one side of the stack, called ‘Top’ of the stack.

3.11 SUMMARY

 The concept of threads and the idea of multithreading was introduced a
decade back, however, it has been accepted into the mainstream
programming only recently.

 The concept of threads and the idea of multithreading was introduced a
decade back, however, it has been accepted into the mainstream
programming only recently.

 Thread scheduling specifies exactly in what order, your thread will be run.
There are two strategies: non pre-emptive scheduling and pre-emptive time
slicing.

 A thread is just like a program which has a single flow of control. It also has
a starting point, the execution part and an end. The main programs in the
preceding examples can be called single-threaded programs. Java also allows
us to use multiple flows of control in a program and such a program is
known as multithreaded program.

 Threads are called lightweight processes because all the threads in a main
application program share the same address space in the memory.

 Java program always contains at least one thread, even if we do not create
one. This thread is called main thread and it is the one which immediately
starts executing when we start a program.

 MIN_PRIORITY, MAX_PRIORITY and NORM_PRIORITY are the
constants defined in Thread class.

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 295

 When multiple threads need access to a single resource, there must be a
way to ensure that only one thread will use the resource at any given point
of time, otherwise it may lead to a severe problem.

 The objective of synchronization is to control the access to shared resources.

 Synchronization uses the concept of monitor. A monitor is an object which
is used as a mutually exclusive lock. That is, it can be owned by only one
thread at any given point of time.

 A thread in Java shows the program’s path of execution. Logically, threading
means successfully execution of a program that shows the required output.
Java programming is known as multi-threaded because implementation of
Java threading and OS implementation are done accordingly with it.

 The thread that is ready to run, but waiting for the processor availability is
called runnable thread and the state is known as Runnable State.

 The predefined methods suspend (), resume () and stop ()
have been deprecated in Java 2 though they are a convenient way for
managing the execution of threads.

 Java manages all input and output in the form of streams. A stream refers to
a channel through which data flows from the source to the destination. This
data is in the form of sequence of bytes or characters.

 Stream classes can be categorized into byte stream classes and character
stream classes.

 Byte stream classes support input and output operations on bytes (8-bit
bytes). Whereas, character stream classes perform input and output
operations on characters (16-bit Unicode).

 InputStreamReader class is used to read input from the console
input device.

 FileReader class creates character stream between the file and the
program and reads characters from the file and sends it to the program.

 An applet is a small program typically embedded within the Web page
which is used to create a dynamic and interactive application. They provide
interactive features to a Web page which cannot be provided by HTML.

 A Java applet enters into various states during its entire life cycle which
include born state, running state, idle state and dead state.

 Object serialization is the process of reading and writing objects. By default,
all objects are serializable, i.e., they can be read from and written to the
secondary memory so that the value which they hold persists. To make an
object non-serializable, the transient modifier is used.

 The volatile modifier is used to tell the compiler that the variable
declared as volatile can be changed at any time by the other parts of
the program. This modifier is mainly used in multithreading in which a program
(process) is divided into two or more subprograms (subprocesses), each
of which runs by a separate thread and performs different tasks concurrently.

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
296 Material

 The modifier strictfp can be used on classes, interfaces and non-
abstract methods. When applied to a method, it causes all calculations inside
the method to use strict floating point mathematics. When applied to a class,
all calculations inside the class use strict floating point mathematics. Compile
time constant expressions must always use strict floating point behaviour.

 One of the vital features of JNI (Java Native Interface) is that it never
imposes any restriction on the JVM. Therefore, JVM vendors can add
support for the JNI without affecting other parts of the virtual machine.

 A String is a sequence of characters. Java provides full complement features
of string handling by implementing strings as built-in objects.

 In Java String is a class that represents an immutable string, which
represents a sequence of character that can never change. Any modification
to the String will have to create a new String object. But a
StringBuffer is a mutable String object that can be modified at
runtime.

 J2SE 5 supports the autoboxing process by which a primitive type is
automatically encapsulated into its equivalent type wrapper class object.
There is no need to explicitly construct a wrapper class object. This technique
is popularly known as autoboxing in Java.

 Memory management is completely done by JVM. Java code p.class
file is created after compiling the above. During the execution of p.class
file, first it is loaded in the memory by the boot strap class loader, which is
a component of (Java Virtual Memory) JVM. Z is a reference variable
which is created inside the stack area. When the constructor of class p is
called through a new operator, a chunk of memory is allocated from the
heap area and its starting address is stored in z. Therefore, it can be said
that the object of class p is created.

 Class loader is an abstract class which extends the Object class. In Java, a
class is loaded in the memory either by a boot strap class loader or by user
defined class loader. Boot strap class loader is a component of Java Virtual
Machine. When a class file is executed by javas command, the boot strap
class loader is responsible for loading the class in the memory.

 A security manager is referred as an object that specifically defines a security
policy for an application. This policy typically specifies those actions that
are unsafe or sensitive.

 Local class is used to describe a geographical, political or cultural region.
In this class the date, time, numbers format is used to display it according to
the customs of the user’s native country, region or culture.

 Enumeration interface is used to retrieve the elements one by one Iterator
but this interface never removes an elements from the collection object.

 A Stack represents a group of elements stored in LIFO (Last In First Out).
It means that the element which is stored as a last element into the stack will
be the first element to be removed from the stack. Inserting the elements
(objects) into the stack is called ‘Push Operation’ and removing the elements

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 297

from the stack is called ‘Pop Operation’. Insertion and deletion of elements
take place only from one side of the stack, called ’Top’ of the stack.

 The Properties class of Java is used to maintain one or more properties
that can be easily streamed into Text or Binary. The application properties
contained in the Properties class instance can be persisted to a text

file.

3.12 KEY TERMS

 Multithread programs: Programs that use multiple flows of control in a
program in Java.

 Priority: Integers which specify the relative priority of one thread over
another.

 Synchronization: A technique to ensure that only one thread will use the
resource at any given point of time, when multiple threads try to access a
single resource.

 Runnable state: The thread that is ready to run, but waiting for the
processor availability is called runnable thread and the state is known as
Runnable State.

 Stream: Refers to a channel through which data in the form of sequence of
bytes or characters flows from source to destination.

 FileReader class: Creates character stream between the file and the
program and reads characters from the file and sends it to the program.

 FileWriter class: Used to write characters from the.

 Applet: A small program typically embedded within the Web page which is
used to create a dynamic and interactive application.

 Exception handling: Diverting the processing to a part of the program
when an exception occurs.

 Memory management: Memory management is completely done by (Java

Virtual Machine) JVM.

3.13 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Define the term thread scheduling.

2. What is the use of runnable interface?

3. How do you set priorities for threads?

4. Which keyword is used to synchronize a method or a block of statement?

5. How do you implement a runnable interface?

Multithreaded
Programming, Applets,
Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
298 Material

6. How will you define the term suspend (), resume () and stop
().?

7. What are stream classes?

8. Differentiate between FileReader and FileWriter.

9. Define the term printWriter.

10. What is the order of method invocation when an applet is loaded?

11. Differentiate between the transient and the volatile modifier.

12. Define the term Native method.

13. Write the some important methods of String class.

14. Differentiate between String and StringBuffer.

15. Write the difference between autoboxing and unboxing.

16. Give difference between output of p.java and q.java.

17. Write the process class and runtime class.

18. How the interacting with security manager is done?

19. Differentiate between observable class and observer interface.

20. State about the math class.

21. Define the term map interface.

22. what do you understand by the term Store () and Load () in Java.

Long-Answer Questions

1. Briefly explain the multithreaded programming giving appropriate examples.

2. Discuss briefly java thread model with the help of example.

3. Analyse the thread priorities with the help of example.

4. What is synchronization? When do we use it? Explain by giving examples
of different ways to implement synchronization.

5. Describe the thread class and runnable interface giving appropriate
example programs.

6. Briefly explain the multiple threads and its types with the help of examples.

7. Write a program to demonstrate suspend, resume () and stop ()
operations.

8. Discuss briefly streams (byte and character) with the help of relevant
examples.

9. Java supports reading input provided by the user with the help of a console
input device, such as keyboard. Explain with the help of example prgrams.

10. Analyse the FileReader and FileWriter class by giving
appropriate example programs.

11. Describe the foundamentals of an applet with the help of diagram relevant
examples.

12. Discuss about the transient and volatile modifier.

Multithreaded
Programming, Applets,

Handling String, java.
lang and Utility Classes

NOTES

Self - Learning
Material 299

13. Discuss about the modifier strictfp with the help of example programs.

14. Briefly explain the native method and its problem with the help of example
programs.

15. Discuss about the String handling with the help of example programs.

16. Describe the operation and String and String comparison method.

17. Analyse the methods of StringBuffer giving appropriate examples.

18. Briefly explain the significance of wrapper classes.

19. Describe the memory management in Java with the help of relevant examples.

20. Anaylse the system class giving appropriate examples.

21. Discuss about the ThreadLocal class with the help of example programs.

22. Describe security manager and securitymanager class with the help of
example programs.

23. Explain the StringTokenizer class with the help of example.

24. Briefly explain the hash table class and vector class giving appropriate

example programs.

3.14 FURTHER READING

Balagurusamy, E. 2007. Programming with Java, 3rd Edition. New Delhi: Tata
McGraw-Hill.

Naughton, Patrick and Herbert Schidt. 1999. Java 2: The Complete Reference,
3rd Edition. New Delhi: Tata McGraw-Hill.

Das, Rashmi Kanta. 2013. Core Java for Beginners, 3rd Edition. New Delhi:
Vikas Publishing House Pvt. Ltd.

Schildt, Herbert. 2006. Java: The Complete Reference, 7th Edition. New Delhi:
Tata McGraw-Hill.

Hunter, Jason and William Crawford. 2001. Java Servlet Programming, 2nd
Edition. California: O’Reilly Media.

Arnold, Ken, James Gosling and David Holmes. 2005. The Java Programming

Language, 4th Edition. Boston: Addison-Wesley.

Wigglesworth, Joe and Paula Lumby. 1999. Java Programming Advanced
Topics, 2 Edition. Boston: Course Technology.

Deitel, Paul and Harvey Deitel. 2011. Java: How to Program, 9th Edition. New
Delhi: Prentice-Hall of India.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 301

UNIT 4 INPUT/OUTPUT CLASSES,
NETWORKING, AWT
GRAPHICS AND TEXT,
CONTROLS, LAYOUTS AND
MENUS

Structure

4.0 Introduction
4.1 Objectives
4.2 File and File Name in Java

4.2.1 Directory and Creating Directory
4.3 Stream Classes
4.4 Basic of Networking

4.4.1 Proxy Server
4.4.2 Domain Naming Services
4.4.3 Networking Classes and Interfaces
4.4.4 InetAddress Class
4.4.5 Datagram Packet Network

4.5 Applet Basic
4.5.1 Applet Life Cycle
4.5.2 Simple Banner Applet
4.5.3 Handling Events
4.5.4 AudioClip

4.6 AWT Classes
4.6.1 Window Fundamentals
4.6.2 Working With Frame Windows
4.6.3 Frame Window and Event Handling in a Frame Window
4.6.4 Display Information While Working with Graphics and Color
4.6.5 Working with Fonts

4.7 AWT Controls and Layout Managers
4.7.1 AWT Menus
4.7.2 Dialog Class

4.8 Answers to ‘Check Your Progress’
4.9 Summary

4.10 Key Terms
4.11 Self Assessment Questions and Exercises
4.12 Further Reading

4.0 INTRODUCTION

File handling is one of the basic operations provided by different programming
languages. Java treats all the standard input devices and output devices as files. It
supports file handling through streams and objects of File class. Files and streams
are required to perform I/O operation. A file is a container which contains data or
information. Files are located in the secondary storage of the system. When a file
is opened for any purpose, first it is loaded into the primary memory, then the

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
302 Material

operation is performed. After any write operation, changes are reflected according
to the implementation of either write through or write back protocol. Files are
normally of two types; binary files and text files. Java provides two ways to handle
files. One is through the various streams provided in java.io package and other is
through File class which does not require streams to operate.

Network programming and AWT (Abstract Window Toolkit) in Java. At
the core of the network programming is the concept of a socket. Basically, a
socket is referred as a single endpoint for a two way communication connection
between the two different programs operating/running on the network. Java
supports creation of sockets and exchange information using different protocols
through the classes defined in java.net package. Java applets are used to create
graphical and user interactive applications. The applets designed earlier, were
graphical in nature. However, they did very little when it came to demonstrating
their user interactive capability. User interaction means a specific action is generated
and an appropriate result is displayed to the user when he interacts with an application
by clicking the mouse or entering a character using the keyboard. In Java, all the
activities that occur between the user and the application are termed as events.
Events play a significant role in applet programming as they facilitate the inclusion
of user interactivity in applets.

An applet is a Java program that is compiled on one computer and can be
run on other computers through Java-enabled web browsers or Java tools, such
as applet viewer. It uses the platform-independent features of the Java programming
language. Applets bring live content, such as news, animation or scorecard to the
static web pages that can be loaded from the Internet or from the local disk.

AWT, an abbreviation for Abstract Window Toolkit, provides several
graphics, windowing and user interface tools which are used to develop GUI of
applets as well as stand-alone applications running in GUI environment.

In this unit, you will study about the file and file name filter interface, directory,
creating directory, stream classes, input stream and output stream, file input stream
and file output stream, byte array input stream and byte array output stream,
filtered byte stream and buffered Bytestream, print stream, access file stream,
stream tokenizer and benefits, basic of networking, proxy server, domain naming
services, networking classes and interface, InetAddress class and TCP/IP sockets,
datagram packet, applet, applet life cycle, simple banner applet, handling events,
getDocumentBase (), getCodeBase (), showDocumentBase (), AWT classes,
window fundamentals, working with frame windows, frame window in an applet,
event handling in a frame window, window program, displaying information while
working with graphics and color, working with fonts and managing text output,
exploring text and graphics, control fundamentals and layouts, menus, dialog class.

4.1 OBJECTIVES

After going through this unit, you will be able to:

 Discuss the file and file name filter interface

 Analyse the directory and creating directory

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 303

 Understand the stream classes

 Describe the input stream and output stream

 Explain the file input stream and file output stream

 Analyse the byte array input stream and byte array output stream

 Understand the filtered byte stream and buffered byte stream

 Elaborate on the print stream and access file stream

 Describe the stream tokenizer and benefits

 Explain the basic of networking

 Define the proxy server and domain naming services

 Understand the networking classes and interface

 Discuss the InetAddress class and TCP/IP sockets

 Describe the datagram packet

 Define applet and applet life cycle

 Explain the simple banner applet and handling events

 Analyse the getDocumentBase (), getCodeBase (), showDocumentBase ()

 Understand the AWT classes and window fundamentals

 Explain the working with frame windows and frame window in an applet

 Define the event handling in a frame window and window program

 Elaborate one the displaying information while working with graphics and
color

 Understand the working with fonts and managing text output

 Analyse the exploring text and graphics

 Explain the control fundamentals and layouts

 Define the menus and dialog class

4.2 FILE AND FILE NAME IN JAVA

By the use of File class, one can directly deal with the files, directories and file
system of the platform. Actually, Java does not provide a crystal clear view of
how things are done in the background when the programmer uses the File
class. A programmer has to create the File object through the constructors
provided by the File class. Then, using those objects, he/she can perform
manipulation with the files and directories.

File class constructors are used for the creation of the object of the
File class. These constructors are overloaded. The various forms of these
constructors are given below:

File f1 = new File (“c: / Minerva / ravenX”);

Here it has been shown how to open the existing file in a window platform.
File f2 = new File (“c: / Minerva “, “rian”);

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
304 Material

Here, the first parameter is the absolute path and the second parameter is the file
that has to be opened.

File f3 = new File (“Java”, “temp”);

Here, the first parameter is a directory name in which the existing file temp has
to be opened.

A novice programmer may ask, why are files required? The answer is,
files are required to have a persistent storing of data. Sometimes, one needs to
read the data from files rather than a standard input device like a keyboard. It
may also be stated that in Java, directories are also treated as files. If one is
dealing with a directory, then one has to use the list () method provided by
Java to list out all the files residing in the directory.

Java is quite smart when it comes to deal with a path separator. In Windows,
one can use both /. As in Microsoft, if one wants to use \ , then the escape sequence
\\ has to be used. However, in UNIX and Linux, one can use /.

Methods

By the help of the predefined methods of a File class, a programmer can retrieve
the properties of a file.

String getName()

This method returns the name of the file through which this method is invoked
String getPath() and String getAbsolutePath ()

These two methods are used to get the absolute path of the file through which it is
invoked.

String getParent()

This method returns the name of the parent directory of the file through which it is
invoked.

boolean exists()

This method checks whether the file through which it is invoked, exists or not.
boolean isFile() and boolean isDirectory()

These two methods are used to determine whether the File object through
which it is invoked, is a directory or a file.

import java.io.File;

One needs to import this package to have various methods to deal with a File
object.

Program 4.1

class Demo

{

public static void main(String args[])

{

File myfile=new File(“/dir1/pex”);

System.out.println(“Name: “+myfile.getName());

System.out.println(“Path: “+myfile.getPath());

System.out.println(“My absolute path:
“+myfile.getAbsolutePath());

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 305

System.out.println(“My parent : “+myfile.getParent());

System.out.println(“Name: “+myfile.getName());

if(myfile.exists())

System.out.println(“file does exist!!!”);

else

System.out.println(“file does not exist”);

if(myfile.canRead())

System.out.println(“file is readable “);

else

System.out.println(“file is not readable”);

if(myfile.canWrite())

System.out.println(“file is writeable “);

else

System.out.println(“file is not writeable”);

if(myfile.isFile())

System.out.println(“It is a normal file”);

else

System.out.println(“It is not a normal file might be system
file like device driver.”);

System.out.println(“file was last
modified”+myfile.lastModified());

System.out.println(“size of the file is in
bytes”+myfile.length());

}

}

boolean canRead() and boolean canWrite ()

These methods are used to check if one can read from the specified file or write
into the specified file respectively. These methods return a boolean value,
depending on readability/write ability of the file.

long lastModified()

This method returns the last modification time of the file.

Use of lastModified(), canWrite() and canRead() Methods

This can be clarified with the following examples:

Program 4.2

import java.io.*;

public class File2

{

public static void main(String args[])

{

File f1 = new File (“c:/Java”,”abc.txt”);

if(f1.canRead())

System.out.println (“we can read from this file”);

else

System.out.println (“we cannot read from this file”) ;

if(f1.canWrite())

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
306 Material

System.out.println(“we can write to this file”);

else

System.out.println(“we cannot write to this file”);

System.out.println(“The file was last modified
at”+f1.lastModified()+”seconds after January 1 1980");

}

}

Output of the program:

C:\java>java File2

we can read from this file

we can write to this file

The file was last modified at 1230222210000 seconds after January1 1980

The file used in the above example has both read and write option. Therefore,
that is the output. However, the output of lastModified() method is
interesting. It shows the time period in millisecond after which the file is modified
with respect to 1st January, 1980.

How to rename a file?

The renameTo() method is used to rename an existing file.

Program 4.3

import java.io.*;

class Demo

{

public static void main(String[] args)

{

File myFile=new File (“/dir1/pex”);

boolean b1=myFile.renameTo(“Minarva”);

if(b1)

System.out.println(“Rename operation is successful”);

else

System.out.println(“File cannot be renamed”);

}

}

The renameTo() method returns boolean true value if rename is done
successfully, otherwise false is returned.

Deleting an existing file

The deletion of a file can be performed with the help of delete() method.
On successful deletion of a file, the method returns a boolean true, otherwise
it returns a boolean false.

Program 4.4

import java.io.*;

class Demo

{

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 307

public static void main(String[] args)

{

File myFile=new File(“/dir1/pex”);

boolean b1=myFile.delete();

if(b1)

System.out.println(“file is deleted”);

else

System.out.println(“File cannot be deleted “);

}

}

Here, delete() method returns true to the boolean variable b1
if the file is deleted successfully, else b1 will get a false value. The output will
be printed accordingly.

There is another method deleteOnExit(), which deletes the file
when one completes the operation exit from the execution phase of the program.

File class also provides some other useful methods as discussed below.

Use of length() Method

This method is used to know the file size in bytes. Another example is given
below:

Program 4.5
import java.io.*;

public class File3

{

public static void main(String args[])

{

File f=null;

for(int i=0;i<args.length;i++)

{

f=new File(“c:/Java”,args[i]);

}

File f1=new File(“c:/Java/renfile”);

if(f.exists())

{

System.out.println(f+” exists”);

System.out.println(“its size is “+f.length()+” bytes”);

f.renameTo(f1);

System.out.println(“Renamed file name :”+f1);

System.out.println(“deleting the file “+f);

System.out.println (“= = = = = = = = = =”);

f.delete();

}else{

System.out.println(f+” does not exist”);

}

}

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
308 Material

}

In this program, the name of the file is passed through a command line
argument which has to be renamed. This file is held by f. Then another File
object f1 is created whose name is renfile. Then the rename() method
is invoked through f and this method takes the File object as argument which
holds the new name. Upon the successful execution of this method, the desired
file is renamed.

To check the Space Available in a Specified File

J2SE 6 provides three methods to get the various attributes associated with a
particular partition where the file resides. The given example shows this

Program 4.6

import java.io.*;

class Demo

{

public static void main(String[] args)

{

File myFile=new File(“/dir1/pex”);

if(myFile.exists()==false)

{

System.out.println(“The specified file does not
exist”);

return ;

}

long x=myFile.getFreeSpace();

x=x/1000;

System.out.println(“Amount of space available in MB: “+x);

x=myFile.getTotalSpace();

x=x/1000;

System.out.println(“total space in MB: “+x);

}

}

One can easily guess the output. Methods like getFreeSpace() and
getTotalSpace(), when invoked on the specific file, check the free space
available and the total space available respectively in terms of bytes. The returned
value of these two methods has been divided by 1000 to get the values in MBs.

How to Make a File Read Only?

This can be shown by the following example:

Program 4.7

import java.io.*;

class Demo

{

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 309

public static void main(String[]args)

{

File myFile=new File(“/dir1/pex”);

if(myFile.exists()==false)

{

System.out.println(“file does not exist”);

return;

}

boolean b1=myFile.setReadOnly();

if(b1)

System.out.println(“Operation is successful”);

else

System.out.println(“Operation failed”);

}

}

The setReadOnly() method is used to make a read only file.

4.2.1 Directory and Creating Directory

A directory is a collection of files and directories. In Java, directories are also
treated as files. If one wishes to deal with the directories, then the list()
method can be used. When the list() method is invoked by the directory
object (created through File class constructor), then the list of other files and
directories are extracted from it. This method is overloaded. One of them is
String [] list(). The program given below clarifies this.

Program 4.8
import java.io.File;

class DirectoryList

{

public static void main(String args[])

{

String directory_name = “/Minerva”;

File myFile = new File(directory_name);

if (myFile.isDirectory()==true)

{

System.out.println (“Directory of” + directory_name);

String s1[] = myFile.list ();

for (int i=0; i < s1.length; i++)

{

File f1 = new File(directory_name + “/” + s1[i]);

if (f1.isDirectory())

{

System.out.println(s1[i] + “ is a directory”);

}

else

{

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
310 Material

System.out.println(s1[i] + “ is simply a file!!”);

}

}

}

else

{

System.out.println(directory_name + “ is not a directory”);

}

}

}

Output is straightforward. Method names clearly indicate what their tasks are.

Use of mkdir() Method

This method is used to create a directory and it returns a boolean true/
false indicating the success/failure of the creation. The following example denotes
the usage of this method.

Program 4.9
import java.io.*;

public class File5

{

public static void main(String args[]) throws IOException

{

File myFile=new File(“c:/Alice/wonderLand”);

if(myFile.mkdir()==true)

System.out.println(“created a directory”);

else

System.out.println (“Unable to create a directory”);

}

}

Run the program by C:\java>java File5

Output of the program:

created a directory

If the mkdir() method is successfully executed the boolean true
value is returned, else the method is going to return false.

Use of Overloaded Form of list() Method

In this form of list() method, it is used to filter out the required files from a
directory. Often one feels that a particular set of files has to be opened or listed
out, instead of all the files present in the directory.

Program 4.10
import java.io.*;

public class File4 implements FilenameFilter

{

String w;

public File4(String w)

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 311

{

this.w=”.”+w;

}

public boolean accept(File dir,String name)

{

return name.endsWith(w);

}

public static void main(String args[])throws IOException

{

for (int p=0;p<args.length;p++)

{

File f1 = new File(“e:/cobra/applet”);

FilenameFilter only=new File4(args[p]);

String s[]=f1.list(only) ;

System.out.println (“printing files with
“+args[p]+”extension in the “+f1.getPath()+”
directory”) ;

for(int i=0;i<s.length;i++)

System.out.println(s[i]);

}

}

}

Run the program by C:\java>java File4 java

Output of the program:

printing files with java extension in the C:\java directory

File1.java

File2.java

File3.java

File4.java

In this program, the overloaded list() method has been invoked. This
also implicitly invokes the accept() method. Inside the accept() method,
the endsWith() method is invoked. The entire operation performs only one
thing, i.e., it filters out the required files.

4.3 STREAM CLASSES

In Java I/O (Input/Output) streams are flow of data you can either read from, or
write to. Streams are typically linked to a data source, or data destination, like a
file, network connection, etc.

A stream has no concept of an index of the read or written data, as an array
does. Nor can you typically move forth and back in a stream, unlike you do in an
array, or in a file using RandomAccessFile. A stream is just a continuous
flow of data.

A stream means a channel or a pipe. Like flow of water in a pipe, data
flows from the source to the destination through the channels in Java.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
312 Material

Fig. 4.1 Data flow

These channels are the objects of various Stream classes provided by
Java. Java provides two types of streams: input streams and output streams.
By the use of input streams, one receives the data from the source and by the use
of output streams one writes the data at the desired destination. Java provides
two ways to perform read and write operations. Reader class objects read and
Writer class objects write the data in the form of characters. Stream class
objects read and write in the form of bytes. Classes that end with the term
Reader, deal with char datatype and the classes that end with the term Stream
deal with bytes. A hierarchy structure of a Stream class is given below:

Fig. 4.2 Hierarchy of Stream Class

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 313

With the help of the following table, one can see the various retain input
Stream classes and their functions.

With by the help of these retain input Stream classes, the system directly
reads the data from file and buffer in byte format.

Table 4.1 Class, Function and Supported Methods

With the help of the next table, one can see various Output Stream classes
and their methods through which data is written in targeted output sources like file
and buffer in byte format.

Table 4.2 Class, Function and Supported Methods

Low-Level Stream

Low-Level Input Streams have methods that read input and return the input as
bytes. On the other hand, Low-level output streams have methods that are
supplied with bytes and they write the bytes as output.

FileInputStream

It is a class that helps to read the data from a file. When the programmer wants to
read the data from the file by using a FileInputStream and if that file is
not present, then program is terminated at the runtime by throwing
FileNotFoundException . The read() method of a
FileInputStream returns an int which contains the byte value of the
byte read. If the read() method returns -1, there is no more data to read in
the stream, and it can be closed. That is, -1 as int value, not -1 as byte value.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
314 Material

There is a difference here. There are two types of constructors available with this
class. The first constructer takes the name of the file as a String argument

FileInputStream f = new FileInputStream(“c:/Java/
temp.exe”);

The second constructor takes the File class object as an argument
File f = new File (“c:/Java/temp.exe”);
FileInputStream f1=new FileInputStream(f);

FileOutputStream

This class helps to create a new file and write the data into byte format. Two
types of constructors are applicable to this class. The write() method of a
FileOutputStream takes an int which contains the byte value of the
byte to write.The first constructer takes the filename as a string argument

FileOutputStream f=new FileOutputStream(“c:/Java/
temp.exe”);

The second constructor takes the File class object as an argument
File f = new File(“c:/Java/temp.exe”);
FileOutputStream f1=new FileOutputStream(f);

In the case of FileOutputStream, if the programmer writes the data into a
read-only file, then the program generates IOException.

Program 4.11

import java.io.*;

public class ReadWriteFile

{

public static byte get()[] throws Exception

{

byte in[]=new byte[50];

System.out.println(“enter the text.”);

System.out.println(“only 50 bytes of data is stored in the

array “);

System.out.println (“press enter after each line to get

input into the program”);

for (int i=0;i<50;i++)

{

in[i]=(byte)System.in.read();

}

return in;

}

public static void main(String args[])throws Exception

{

byte input []=get() ;

FileOutputStream f=new FileOutputStream(“c:/Java/
write.txt”);

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 315

for (int i=0;i<50;i++)

{

f.write(input[i]);

}

f.close ();

int size;

FileInputStream fl=new FileInputStream(“c:/Java/
write.txt”);

size=fl.available () ;

System.out.println(“reading contents of file write.
Text”);

for(int i=0;i<size;i++)

{

System.out.print((char)fl.read ()) ;

}

f.close() ;

}

}

Run the program by C:\>java ReadwriteFile

Output of the program:

Enter the text.

Only 50 bytes of data is stored in the array

Press enter after each line to get input into the program

Z c x c zx z xv zx vvz v vcz v v cc

Xcxxzvzx v zvv vcv c vv vzvvvvz

Reading contents of write.Text

Z c x c zx z xv zx vvz v vcz v v cc

Xcxxzvzx v

The execution begins from the main() method. Here input is an array of
bytes. The get() method is static in nature, hence it can be invoked from
the main() method directly. The get() method returns a reference to an
array of bytes. Inside the get() method body, an array of bytes of length 50 is
declared. The statement System.in.read() is invoked to take the input
from keyboard and the input is stored in the array of bytes. Finally, the reference
to array of bytes, i.e., in is returned from the get() method and held by input.
Next the FileOutputStream object f is connected to the file
“write.txt”. When the write() method is invoked through f inside
for loop, the data present in the byte array is written to “write.txt”. The
write() method takes the reference to array of bytes, i.e., input as its argument.
After the writing is complete, f closes the ‘wrte.txt’ file by calling the
close() method.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
316 Material

ByteArrayInputStream

This class is a subclass of InputStream in which input data comes from a
specified array of byte values. This is useful for reading data in memory as if it
were coming from a file, pipe, or socket. Note that the specified array of bytes is
not copied when a ByteArrayInputStream is created.

ByteArrayInputStream b = new ByteArrayInputStream
byte buf[])

This constructor takes a byte array as its parameter. Through this constructor,
a programmer takes the input from the specified array of bytes.

ByteArrayInputStream b=new ByteArrayInputStream
(byte buf [], int off, int len)

In this constructor, off is the offset of the first byte to be read and len is the
number of bytes to be read into the array.

ByteArrayOutputStream

This class implements a buffer, which can be used as an OutputStream.
The size of the buffer increases as data is written into the Stream. The data is
retrieved, using the methods toByteArray() and toString(). It has
two types of constructors.

ByteArrayOutputStream o = new ByteArrayOutput
Stream()

This creates a buffer of 32 bytes to stroke the data.
ByteArrayOutputStream o=new ByteArrayOutputStream

(int size)

The above constructor creates a buffer of size int. The methods of this class
return void and throw an IOException or error conditions.

Program 4.12
import java.io.*;

public class ByteArray

{

public static void main(String args[])throws Exception

{

ByteArrayOutputStream f=new ByteArrayOutputStream(12);

System.out.println(“enter 10 characters and press the enter
key”);

System.out.println(“These will be converted to uppercase and

displayed”);

while(f.size()!=10)

{

f.write(System.in.read());

}

System.out.println(“Accepted characters in the array”);

byte b[]=f.toByteArray();

System.out.println(“displaying characters in the array”);

for(int i=0; i<b.length;i++)

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 317

{

System.out.println((char)b[i]);

}

ByteArrayInputStream inp=new ByteArrayInputStream (b);

int c;

System.out.println(“Converted to upper case characters”);

for (int i=0;i<1;i++)

{

while ((c =inp.read()) != -1)

{

System.out.print(Character.toUpperCase ((char)c));

}

System.out.println();

inp.reset();

}

}

}

Run the program by C:\java ByteArray

Output of the program:

Enter 10 characters and press the enter key

These will be converted to uppercase and displayed

Learn java From Book

Accepted characters in the array

Displaying characters in the array

L

e

a

r

n

j

a

v

a

Converted to upper case characters

LEARN JAVA

Program execution begins from main(). f is an object of ByteArray
OutputStream.

The constructor of ByteArrayOutputStream takes integer value
as its argument. The argument defines the size of the byte array or buffer that is
attached to f.

f.write(System.in.read());

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
318 Material

The statement which appeared in the above program, is a bit complex in nature.
Here the write() method is invoked through f. Inside the write method,
the read() method is invoked through System.in. The statement
System.in.read() reads the character entered from the keyboard and
returns it. Then that returned character is written into the buffer held by f. Each
time when the statement is executed, one character is read from the keyboard and
written into the buffer. This process continues until the loop expires.

byte b[]=f.toByteArray();

The toByteArray() method is invoked through f which converts the
buffer into an array of bytes and b holds that array. By this technique, one can
fetch the data from the array of bytes through the index.

ByteArrayInputStream inp=new ByteArrayInputStream
(b);

The inp is an object of ByteArrayInputStream. The constructor takes
b as its argument. The inp holds the buffer according to the size of b. The
read() method is invoked through inp and the process continues until the
loop expires.

SequenceInputStream

This is the child class of InputStream class. In this class two or more other
inputstreams are combined into one. Firstly, all bytes from the first input stream is
iterated and returned, then the bytes from the second input stream. This class
reads the data sequentially from two or more input sources.

Constructor

SequenceInputStream (InputStream is1, InputStream
is2);

Program 4.13
import java.io.*;

public class Sequence

{

public static void main(String args[])

{

try{

FileInputStream fis1=new FileInputStream(“c:/a.txt”);

FileInputStream fis2=new FileInputStream(“c:/b.txt”);

SequenceInputStream s =new SequenceInputStream(fis1,fis2);

int ch;

while((ch=s.read())!=-1)

{

System.out.print((char)ch);

}

fis1.close();

fis2.close();

s.close();

}catch(FileNotFoundException fe)

{

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 319

fe.printStackTrace();

}

catch(IOException ie)

{

ie.printStackTrace();

}

}

}

Run the program by C:\>java Sequence

Output of the program:

Java Is A Robust Language

Java Is Leader Of Internet

fis1 holds the file a.txt. fis2 holds the file b.txt. Here, the s
is an object of SequenceInputStream class. This particular class is used
when one needs to take the input from different sources sequentially. Through s,
different streams merge together to take the input. Given below is the constructor
of SequenceInputStream.

SequenceInputStream s =new SequenceInputStream
(fis1,fis2);

It takes two files as its argument. The process of extraction of data continues
until the end of file of fis2 is reached. The read() method is invoked through
the object s to read the data from the files.

FilterInputStream class has the child classes named
BufferedInputStream, DataInputStream, PushbackInput
Stream.

FilterOutputStream class has the child classes named
BufferedOutputStream, DataOutputStream, PrintStream.

Table 4.3 Class, Function and Supported Methods

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
320 Material

High-Level Stream

High-Level Input Streams take their input from other input streams, whereas
high-level output streams direct their output to other output streams. High-
level input streams are: BufferedInputStream,
DataInputStream and ObjectInputStream, etc. High-level output
streams are: BufferedOutputStream, DataOutputStream,
ObjectOutputStream, PrintStream, etc.

BufferedInputStream

This class accepts the input by using a buffered array of bytes that act as cache
and it utilizes the mark () and reset () method. Chunks of bytes from the
buffered array can be chosen and read. The BufferedInputStream class
maintains an internal array of characters in which it buffers the data that it reads
from its source. The default size of the buffer is 2048 bytes. A
BufferedInputStream, is beneficial in certain situations where reading
a large number of consecutive bytes from a data source is not significantly more
costly than reading a single byte. This class constructor is overloaded.

BufferedInputStream bis = new BufferedInputStream
(InputStream is);

It creates a buffered input stream with a 2048 byte buffer.
BufferedInputStream bis=new BufferedInputStream

(InputStream
is,int bufsize);

It creates a buffered input stream with an internal buffer of bufsize bytes. If
the bufsize is less than 0, then it throws IllegalArgumentException.

BufferedOutputStream

The output is stored in a buffered array of bytes, which acts as a cache for writing.
Data written in the BufferedOutputStream will continue until and unless
the buffer is full. This class constructor is overloaded.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 321

BufferedOutputStream b= new BufferedOutputStream
(OutputStream os);

It creates a BufferedOutputStream with a default 512 byte buffer.

BufferedOutputStream b=new BufferedOutputStream
(OutputStream

os, int bufsize);

It creates a BufferedOutputStream with a buffer of bufsize bytes.
If the bufsize is less than 0 then the program is terminated by throwing
IllegalArgumentException.

DataInputStream

This class reads bytes from another stream and translates them into Java primitives,
char array and String by the help of some pre-defined methods. These
methods are:

 byte readByte()throws IOException

 boolean readBoolean()throws IOException

 short readShort()throws IOException

 char readChar()throws IOException

 int readInt () throws IOException

 float readFloat()throws IOException

 long readLong()throws IOException

 double readDouble()throws IOException

 String readLine () throws IOException

The constructor is:
DataInputStream dis=new DataInputStream(InputStream

is);

DataOutputStream

This class supports the writing of primitive data types of Java to output sources. A
set of methods exists in this class to write the data to the output source in any
primitive data types format. These methods are:

 void writeByte(byte b)throws IOException

 void writeBoolean(boolean b)throws IOException

 void writeShort(short s)throws IOException

 void writeChar(char c)throws IOException

 void writeInt (int i) throws IOException

 void writeFloat(float f)throws IOException

 void writeLong(long l)throws IOException

 void writeDouble(double d)throws IOException

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
322 Material

The constructor is:
DataOutputStream dos=new DataOutputStream

(OutputStream os);

In order to create a simple text file, one can use a FileOutputStream.
An example is given below:

Program 4.14

import java.io.*;

class Demo{

public static void main(String[]args)throws IOException

{

DataInputStream din=new DataInputStream (System.in);

FileOutputStream fout=new FileOutputStream(“myFile.txt”);

System.out.println(“Press # to save & quit the file”);

char ch;

while((ch=(char)din.read())!=’#’)

fout.write(ch);

fout.close();

}

}

System.in represents the standard input device, i.e., keyboard. din
is an object of DataInputStream class. This is what one calls a channel or
stream. Now din is connected to the keyboard. Next fout is an object of
FileOutputStream class. It also behaves like a channel. It is connected to
the output file myFile.txt. Inside, while loop read() method is invoked
through the object din, read() method reads the data from the keyboard
through the channel named din and the returned character value is saved in the
character variable ch. Next, the write() method is invoked and the stored
value in ch is moved to myfile.txt through the output channel object fout.
All this operation continues till # is pressed by the user. Then, finally, close()
method is invoked to close the operation and to save the file.

How to append a file?

If the user has to use the file myFile.txt again to write something more at
the end, then the previous data will be lost. So, some changes are required to be
made in the above program to append a file.

Program 4.15
import java.io.*;

class Demo

{

public static void main(String[]args)throws IOException

{

DataInputStream dIn=new DataInputStream(System.in);

FileOutputStream fout=new FileOutputStream
(“myFile.txt”,true);

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 323

System.out println(“Press # to save & quit the file”);

char ch;

while((ch=(char)din.read())!=#)

fout.write(ch);

fout.close();

}

}

The extra parameter passed in the constructor of FileOutputStream
may be seen. This boolean true value opens the file in the append mode.

Use of BufferedOutputStream

In order to improve the performance, one has to use the
BufferedOutputStream. How is the performance improved? In the
previous program, each time a character is read from the keyboard, the same is
written to the file and each time, in the background an appropriate system call is
made to do the operation. This involves a lot of overhead. What else can one do?
A buffer, i.e., a temporary storage area, can be created and the data stored there,
till the input operation is completed. Then the entire content of the buffer can be
written into the file at once. An example is given below:

Program 4.16

import java.io.*;

class Demo

{

public static void main(String[]args)throws IOException

{

DataInputStream dIn=new DataInputStream(System.in);

FileOutputStream fout=new FileOutputStream(“myFile.txt”);

BufferedOutputStream br= new BufferedOutputStream(fout);

System.out println(“Press # to save & quit the file”);

char ch;

while((ch=(char)din.read())!=#)

br.write(ch);

br.close();

}

}

br is an object of BufferedOutputStream. It is a buffer or a
chunk of memory attached with fout. Now, the read method is invoked through
din. When the write() method is invoked through br, the characters entered
from keyboard are stored in the temporary buffer br until the buffer is filled or #
is pressed. If the buffer is full and the user is still entering the data, then
IOException will be generated. If the programmer does not mention the size
of the buffer explicitly, then the default size is 512 bytes.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
324 Material

Steps to be Remembered

The various steps are:

 Create an input stream object and connect it to keyboard by
DataInputStream dIn=new
DataInputStream(System.in);

 Create an output stream object and connect it to the file where one will write
something by FileOutputStream fout=new
FileOutputStream(“myFile.txt”);

 Create a buffer and attach it to an output stream object by:

BufferedOutputStream br= new
BufferedOutputStream(fout)

 Read from the keyboard by the din.read() method retain;

 Write to the file by bout.write() method.

Reading a File

Data stored in a file can be read by the use of FileInputStream object.

Program 4.17
import java.io.*;

class Demo

{

public static void main(String[]args)throws IOException

{

FileInputStream fin=new FileInputStream(“myFile.txt”);

int ch;

while((ch=(char)fin.read())!=-1)

System.out.print((char)ch);

fin.close();

}

}

Java detects the end of file when it encounters –1. To indicate the end of
file, OS stores -1. At the end of every file, fin is an object of
FileInputStream . It is simply an input channel connected to
myFile.txt. When read method() is invoked by fin, data is read from
the file through the channel fin, stored in ch and then displayed on the monitor.
This process continues till –1 is encountered.

Copying the Content of One File to Another

This can be clarified with the following example:

Program 4.18
import java.io.*;

class Demo

{

public static void main(String[]args)throws IOException

{

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 325

FileInputStream fin=new FileInputStream(“myFile1.txt”);

FileOutputStream fout=new FileOutputStream(“myFile2.txt”);

int ch;

while((ch=fin.read())!=-1)

fout.write((char)ch);

fout.close();

}

}

fin is a FileInputStream object which is connected to
myFile1.txt. The object fin is used to extract the data from the source
that is connected to it. fout is an object of FileOutputStream class
which is connected to myFile2.txt. This stream is used to write the data in
the destination. Inside, loop fin reads the character from myFile1.txt
through read() method and stores it in the character ch. Next, this character
ch is written in the file myFile2.txt through fout by the invocation of
write() method.

Use of BufferedReader to Improve Performance

This can be clarified with the following example:

Program 4.19
import java.io.*;

class Demo

{

public static void main(String[]args)throws IOException

{

try

{

FileInputStream fin=new FileInputStream(“myFile.txt”);

}

catch(FileNotFoundException e)

{

System.out.println(“file does not exists.”)

return;

}

BufferedReader br=new BufferedReader(fin);

int ch;

while((ch=br.read())!=-1)

System.out.print((char)ch);

fin.close ();

}

}

In this program, BufferedReader has been used to improve the
performance. The BufferedReader object br is connected to fin, the object
of InputStreamReader. Here, the read() method is invoked through
br to read the data from myfile.txt.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
326 Material

Use of DataOutputStream

This can be clarified with the following example:

Program 4.20
import java.io.*;

public class DataStream

{

public static void main(String args[])throws IOException

{

BufferedReader d=new BufferedReader(new
InputStreamReader(new F i l e I n p u t S t r e a m (“ c : /
temp.txt”)));

DataOutputStream o=new DataOutputStream (new
FileOutputStream(“C:/temp1.txt”));

String line;

while ((line = d.readLine())!=null)

{

String a =(line.toUpperCase ());

System.out.println(a);

o.writeBytes(a+”\r\n”);

}

d.close();

o.close();

}

}

Suppose the temp.txt file contains the line ‘Learn Java as it
is an object oriented language’ as its content. The output appears
as shown below:
Run the program by C:\java DataStream

Output of the program:

LEARN JAVA AS IT IS AN OBJECT ORIENTED LANGUAGE

PushbackInputStream

This class is used to read a character from the InputStream and return the
same. This is done without disturbing the InputStream. This class allows the
most recently read byte to be put back into the stream, as if it had not yet been
read.

Constructor

The various constructors are:
PushbackInputStream(InputStream is)
PushbackInputStream(InputStream is,int size)

PrintStream

This class is used to write the text or primitive data types. Primitives are converted
to character representation. The methods of this class are widely used in Java

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 327

applications. The two methods that are very familiar. These are: System.out.
println() and System.out.print ().

Constructor

The various constructors are:
PrintStream(String s)
PrintStream(OutputStream os)
PrintStream(OutputStream os,boolean b)

Serialization

It is the process of writing the state of an object to a byte stream. It is a technique
that is required when the programmer wants to save the state of the object in a
persistent storage area. Later on, the programmer restores the objects by using
the process Deserialization. In other words, serialization is a technique of storing
object contents into a file. Serializable interface is an empty or marker
interface without any members in it. Marking interface is useful to mark the object
of a class for special purposes. Static and transient variables are not serialized.
Deserialization is the process of reading back the object from the file. A
programmer reads the object from a stream by the help of the
ObjectInputStream.

Constructor

The constructor is,
ObjectInputStream (InputStream in) throws

IOException.

The serialized objects should be read through the object in.

Table 4.4 Methods and their description

Methods Description

int available() Returns the number of bytes that are available
in the input sources.

void close() Closes the invoking String

int read() Returns the integer representation of the next
available byte of input

Object readObject() Returns the Object from the invoking Stream

long skip(long n) Skips n number of bytes from the input
sources

ObjectOutputStream class is used to write the objects to a stream.

Constructor

ObjectOutputStream(OutputStream out)throws
IOException

Through the outputstream object, the serializable objects
are written in the output sources.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
328 Material

Table 4.5: Methods and their Description

Methods Description

void close() Closes the invoking stream

void flush() Finalizes the output sources

void write(byte b[]) Writes an array of bytes to the invoking
stream

void writeObject(Object obj) Writes Object obj to the invoking stream

Program 4.21
import java.io.*;

class Ex1 implements Serializable

{

int i,j;

transient int k;

void show(int i,int j,int k)

{

this.i=i;

this.j=j;

this.k=k;

}

}

public class Serial

{

public static void main(String args[])

{

try{

Ex1 e1=new Ex1();

e1.show(20,30,40);

FileOutputStream fos=

new FileOutputStream(“c:/s1.txt”);

ObjectOutputStream oos=

new ObjectOutputStream(fos);

oos.writeObject(e1);

FileInputStream fis=new FileInputStream(“c:/s1.txt”);

ObjectInputStream ois=new ObjectInputStream(fis) ;

Ex1 e2=(Ex1)ois.readObject();

System.out.println(“Data Is “+e2.i+”\t”+e2.j+”\t”+e2.k);

}catch(Exception e)

{

e.printStackTrace();

}

}

}

Run the program by C:\>java Serial

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 329

Output of the program:

Data Is 20 30 0

Externalizable Interface
public interface Externalizable extends Serializable

The identity of the class of an Externalizable instance is mentioned in the
serialization stream and the responsibility of the saving and restoring the contents
of its instance lies with that class. The writeExternal() and
readExternal() methods of the Externalizable interface are
implemented by a class thus giving it complete control over the format and contents
of the stream for an object and its supertypes. These methods must explicitly
coordinate with the supertype to maintain its state. These methods surpass
customized implementations of writeObject and readObject methods.

Object Serialization uses the Serializable and
Externalizable interfaces. Object persistence mechanisms can use them
as well. Each object to be stored is tested for the Externalizable interface.
If the object supports Externalizable, the writeExternal() method
is called. If the object does not support Externalizable but implements
Serializable, the object is saved using ObjectOutputStream.

Reconstruction of Externalizable object creates an instance by
using the public no-arg constructor, then the readExternal() method
is called. Serializable objects are restored by reading them from an
ObjectInputStream.

An Externalizable instance can designate a substitution object via
the writeReplace() and readResolve() methods documented in
the Serializable interface.

Methods

public void writeExternal(ObjectOutput out)throws
IOException

The object implements the writeExternal method to save its contents. It is
done by either calling the methods of DataOutput for its primitive values or
calling the writeObject method of ObjectOutput for objects, strings,
and arrays.

public void readExternal(ObjectInput in)throws
IOException

The object implements the readExternal method to restore its contents by
calling the methods of DataInput for primitive types and readObject for
objects, strings and arrays.

StreamTokenizer

Java provides in-built method for pattern matching from data extracted from the
input stream. The pattern matching is done by breaking the InputStream into
tokens which are later delimited by a set of characters.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
330 Material

Program 4.22

import java.io.*;

public class wordcounter

{

public static void main(String args []) throws IOException

{

FileReader fr=new FileReader(“c:/temp.txt”);

StreamTokenizer input=new StreamTokenizer(fr);

int tok;

int count=0;

while((tok=input.nextToken())!=input.TT_EOF)

{

if(tok==input.TT_WORD)

System.out.println(“word found :” +input.sval);

count++;

}

System.out.println (“found “+count + “ words in temp.txt”);

}

}

Run the program by C:\>java wordcounter

Output of the program:

word found : Learn

word found : java

word found : as

word found : it

word found : is

word found : an

word found : object

word found : oriented

word found : language

found 9 words in temp.txt

StreamTokenizer defines four integer fields named TT_EOF, TT_EOL,
TT_NUMBER and TT_WORD. There exists another variable ttype, the token
recognizing variable. ttype is equal to TT_WORD, if nextToken() method
recognizes the element as word. If the element is a number, then ttype is equal
to TT_NUMBER. If the token is a simple character, then ttype contains the
value of that character. If the element is end of line, then ttype is equal to
TT_EOL. Similarly, when end of file is reached, ttype is equal to TT_EOF.

Reader and Writer Classes

The difference between readers and input stream is that while the readers are able
to read characters, the input streams read bytes. This increases the power of
the Java classes by being able to read any character and thus enabling internalization.
To say it in simple terms, it is possible to write Java programs in languages like
German, French, Japanese, etc.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 331

The functionality of the writers is similar to the output streams and it is
possible to write one block of bytes or characters.

The following section deals with a few sub-classes of Reader and Writer
classes.

Reader Class

Some of the sub-classes of the Reader class are:

Fig. 4.3: Sub-Classes of Reader Class

FileReader

The FileReader class enables reading character files. It uses default character
encoding. Its usage is similar to FileInputStream class and its constructors
are identical to those of FileInputStream class. The constructor is given
below:

public FileReader(File f)

This constructor can throw a FileNotFoundException.
CharArrayReader

The CharArrayReader allows the usage of a character array as an
InputStream. The usage of CharArrayReader class is similar to
ByteArrayInputStream. The constructors are given below:

 CharArrayReader(char c[])

 CharArrayReader(char c[], int start, int num)
InputStreamReader

This class reads bytes from an input stream and converts them to characters
according to a mapping algorithm. The default mapping identifies bytes as common
ASCII characters and converts them to unicode characters of Java. The
constructor is given below:

public InputStreamReader (InputStream istream)
FilterReader

This class allows the reading of filtered character streams. There is one instance
variable in which is a protected reference to the Reader that is being filtered.

Protected FilterReader (Reader in)
BufferedReader

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
332 Material

This class accepts a Reader object as its parameter and adds a buffer of
characters to it. This class is mainly useful because of its readLine () method.

public BufferedReader(Reader r)

Writer Class

A few of the sub-classes of the Writer class are:

Fig. 4.4: Sub-Classes of Writer Class

Reader works exclusively with 16-bit chars, designed for Unicode.
FileWriter

The FileWriter allows writing character files. It uses the default character
encoding and buffer size. The usage of FileWriter class is similar to that of
FileOutputStream class.

The constructor is given below and it can throw an IOExeception.

public FileWriter (File f)

Program 4.23

import java.io.*;

public class FileRead

{

public static void main(String args[])

{

try

{

BufferedReader br=new BufferedReader(

new InputStreamReader(System.in));

System.out.println(“Enter The Text”);

String s=br.readLine();

char c[]=s.toCharArray();

FileWriter fw=new FileWriter(“File1.txt”);

fw.write(c);

fw.close();

System.out.println(“Read The Data From The File”);

FileReader fr=new FileReader(“File1.txt”);

int ch;

while((ch=fr.read())!=-1)

{

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 333

System.out.print((char)ch);

}

fr.close();

}

catch(Exception e)

{

e.printStackTrace();

}

}

}

Run the program by F:\rashmi\io>java FileRead

Output of the program:

Enter The Text

Learn Java

Read The Data From The File

Learn Java

CharArrayWriter

This class uses character array as the OutputSource. The constructor of the
class is overloaded.

CharArrayWriter()
CharArrayWriter(int num)
PrintWriter

This class contains methods that make the generation of formatted output simple.
It can be used instead of PrintStream. The constructor is:

public PrintWriter (OutputStream ostream)

The stream is not flushed each time the println() method is called.
FilterWriter

This class is used to write filtered character streams. It has one instance variable
out, which is a protected reference to the Writer that is being filtered.

protected FilterWriter(Writer out)
BufferedWriter

This class buffers data to the character output stream. Functionality of this class is
the same as that of BufferedOutputStream class. The constructor is:

public BufferedWriter (Writer w)

Program 4.24
import java.io.*;

public class ReadWrite

{

public static void main (String args [])

{

try

{

BufferedReader in=new BufferedReader(new
FileReader(args[0]));

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
334 Material

String s1=””;

String s2=”Learn Java”;

while((s1=in.readLine())!=null)

System.out.println(s1);

StringReader in2=new StringReader(s2);

int c;

System.out.println(“Printing individual characters of the
File”+args[0]);

while((c=in2.read())!=-1)

System.out.print((char)c);

BufferedReader ind=new BufferedReader(new
StringReader(s2));

PrintWriter p=new PrintWriter(new BufferedWriter(new
FileWriter(“demo.txt”)));

while((s1=ind.readLine())!=null)

p.println(“output “+s1);

in.close();

in2.close();

ind.close();

p.close();

}

catch(Exception e)

{

e.printStackTrace();

}

}

}

Run the program by C:\>java ReadWrite a.txt

Output of the program:

Java Is A Robust Language

Printing individual characters of the File a.txt

L

e

a

r

n

J

a

v

a

21.19.3 Use of FileReader and FileWriter Classes

FileReader and FileWriter classes perform the read and write
operation by characters.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 335

A program to write something into a file is given below:

Program 4.25
import java.io.*;

class Demo

{

public static void main(String[]args)throws IOException

{

String data=”On this planet\n Life is like ships in the

harbour!!! “;

FileWriter fw1=new FileWriter(“myFile.txt”);

for(int i=0;i<data.length();i++)

fw1.write(data.charAt(i));

fw1.close();

}

}

Here the output is not visible to the user because, we are not printing anything on
the console. Here fw1 is an object of FileWriter class which points to
myFile.txt. data is an object of string, which is to be written into the file
myfile.txt. data.length() is used to calculate the length of string.
The write() method is invoked through fw1 to write the data in
myFile.txt.

Reading from a File by FileReader

This can be clarified with the following example:

Program 4.26
import java.io.*;

class Demo

{

public static void main(String[]args)throws IOException

{

try

{

FileReader fr1=new Filereader(“myFile.txt”);

}

catch(FileNotFoundException e)

{

System.out.println(“file does not exist”);

return;

}

int ch;

while((ch=fr1.read())!=-1)

System.out.println((char)ch);

fr1.close();

}

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
336 Material

}

Here fr1 is an object of FileReader class which points to
myFile.txt. The read() method is invoked through fr1 to read the
data from myFile.txt.

File Encryption

The following program shows how to encrypt a file.

Program 4.27

import java.io.*;

public class Encrypt

{

public static void main(String args[])

{

try{

FileInputStream fis=new FileInputStream("dd.txt");

int i=fis.available();

int mak[]=new int[i];

int k=0,ch;

while((ch=fis.read())!=-1)

{

mak[k]=ch;

mak[k]=mak[k]+2;

k++;

}

char c[]=new char[i];

for(int j=0;j<c.length;j++)

{

c[j]=(char)mak[j];

}

String s1=new String(c);

FileOutputStream fos=new FileOutputStream("rr.txt");

byte bb[]=s1.getBytes();

fos.write(bb);

fos.close();

}catch(FileNotFoundException fe)

{

fe.printStackTrace();

}

catch(IOException ie)

{

}

}

}

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 337

In the above program we pass the file name in the FileInputStream
constructor which needs to be encrypted. The available() method of
FileInputStream class returns the number of bytes that can be read from
the FileInputStream and store it in the int variable because the available
method return type is int type. Then we store it in an array of int type. We
write while((ch=fis.read())!=-1) that means the read() method
reads the data from the file till the end and store it in an int variable ch. And
then we store the ch in an array of int type. After that we write
mak[k]=mak[k]+2; that means we increase their ascii value. In this line we
encrypt the data. After that we store it in an array of character by typecasting.
Then we store the array of character in the String constructor. The encrypted
data should be written in a file by the FileOutputStream class. So we
pass the file name in the FileOutputStream constructor. Through the
getByte() method we convert it into the byte and through write method
we write it on the file. Because FileOutputStream writes in byte format.

4.4 BASIC OF NETWORKING

The network systems comprises a server, client and communication media
(Refer Figure 4.5). A machine running a process that sends request for the services
is known as client. On the other hand, a machine running a process that responds
to the client’s request by offering requested services is known as server. A server
can handle many clients at the same time. To make the clients and the server
communicate, a connecting medium is required. The communication medium may
be wired or wireless network.

Network

Client Machine Server Machine

Request

Response

Fig. 4.5 Client-Server Communication

A network can be small (having two computers) or as vast as the Internet.
Communication over network requires some reliable delivery services that can
carry information between two machines. The delivery services must work
regardless of the hardware and software used on the network. The Internet provides
delivery services using a suite of protocols known as TCP/IP named after its two
primary protocols, namely, Transport Control Protocol and Internet Protocol.
The TCP/IP consists of four layers, namely Application, Transport, Network and
Link layer. All the layers along with their corresponding protocols are shown in
Figure 4.2.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
338 Material

 (, …)HTTP, TELNET, FTP

(IP, …)

(Device Driver, …)

 (TCP, UDP, …)

Application Layer

Transport Layer

Network Layer

Link Layer

Fig. 4.6 TCP/IP Model

TCP/IP Protocols

The three most commonly used protocols within the TCP/IP suite are IP, TCP and
UDP. To develop network application, one must have a clear understanding of
these protocols.

TCP (Transmission Control Protocol)

TCP is a trustworthy and connection oriented protocol that permits the data that
originates from source machine to be delivered without error to the destination.
TCP sets up a connection between the source machine and the destination machine
by transmitting control information before initiating the communication. This
mechanism is known as handshake. Once the connection is established, data
transfer between the two machines begins. TCP fragments the data into discrete
messages (known as TCP segments) and passes them to the Internet layer. At the
destination, the receiving TCP sends an acknowledgement that guarantees that
the data has been received. It then reassembles the segments to form the original
message. In case the segments are lost or corrupted, TCP is responsible for
retransmitting the necessary segments. When all the data has been exchanged
between these machines, it closes the connection.

IP (Internet Protocol)

IP (Internet Protocol) is an unreliable and connectionless protocol that manages
the address part of each packet (the basic unit of IP transmissions) so that the
packet reaches the right destination. Being a connectionless protocol, IP does not
transmit control information before initiating communication between the source
and the destination. It sends data from the source to the destination expecting that
the data will be delivered at the receiving end properly. It is unreliable as it does
not retransmit lost or corrupted packets, that is, it does not guarantee the safe
delivery of packets.

UDP (User Datagram Protocol)

Unlike TCP based applications, some network applications do not require a host-
to-host and reliable channel of communication. Instead they require a mode of
communication which transmits independent, self contained messages whose time
of arrival, order of arrival, content, etc. are not guaranteed. This mode of network
communication is governed by the UDP. The UDP (User Datagram Protocol) is
considered as an untrustworthy and connectionless protocol which enables
application to send independent, self contained messages known as datagrams

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 339

over the network. It has no mechanism for detecting errors or retransmitting lost
or corrupted information. It is used in the applications that require prompt delivery
instead of accurate delivery, such as weather forecasting, clock server, video,
games and audio.

IP Address

Every machine on the Internet is identified by a numerical address known as IP
address. An IP address is made up of a 32-bit number, organized as four 8-bit
values. It is represented in a format known as dotted decimal notation. In this
representation, each group of bit is represented by its decimal equivalent which is
between 0 and 255. For example, 1.160.10.240 is an IP address. This address
type was specified by IPv4 (Internet Protocol, version 4).

Since this representation is not user friendly, IP address is mapped to domain
name like www.google.com which is easier to remember. Special servers on the
Internet perform this mapping called domain name servers. It allows users to work
with domain names; however, the Internet operates on the IP addresses.

Note: New addressing scheme (known as IPv6) uses 128-bit value to represent an address.

URLs

Each Webpage has a typical and unique address termed as a URL or Uniform
Resource Locator which is used to identify its location on the Internet. The URL
consists of four parts: protocol, name of the Web server, the directory on that
server and the file within that directory.

The syntax of URL is as follows:
protocol://domain name: port number/<directory path>/<object
name>#spot

For example, http://www.yahoo.com/education/FIIT/
home.htm#top is a URL.

The various parts of a URL are described in Table 4.6.

Table 4.6 Parts of a URL

Part Example Description

Protocol http:// It represents the name of the
protocol like ftp, http, etc.

Domain Name www.yahoo.com It represents the name of the Web
server where the desired Web page
or other resource resides.

Directory
Path

/education/FIIT It represents the location of the
Web page in the Web server’s file
system.

Object Name /home.htm It specifies the name of the file for
the desired Web page or the name
of the other resource that is
required.

#Spot #top It specifies the particular location
of the text or the graphic on the
Web page.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
340 Material

Types of URL

There are two types of URL, namely absolute URL and relative URL.

(i) Absolute URL: An absolute URL defines the exact location of the Web
page or any other resource on the Internet. For example, http://
www.yahoo.com/education/FIIT/home.htm. Here, the Web page
home.htm is stored under the folders /education/FIIT on the Web server
www.yahoo.com.

(ii) Relative URL: In a relative URL, each part of a URL does not need to be
specified. You can abbreviate a URL by making it ‘relative’ to the current
location. For example, suppose there exists a file mypicture.gif residing in
the image folder under the FIIT folder. The relative URL for the file will be
/images/mypicture.gif.

Ports and Port Numbers

A machine provides a variety of services including e-mail, Telnet, FTP, etc. Using
IP address, a client can connect to the machine but cannot connect to the desired
service. To resolve this, with each service, a port number is associated. A port is
a logical number assigned to a particular service through which the service is
requested.

Clearly, to avail the a service of a server, a client machine does not just
connect to the server, it connects to a port on that server. Each packet that is sent
over a network contains the IP address of the host machine and the port number
to identify the particular application running on that host machine. An IP address
can be considered as the house address where a letter is sent via post and port
number is the name of the person to whom letter is to be delivered.

Note: The port numbers below 1024 are known as well known ports and are reserved for
standard services. For example, the port number used for Telnet is 23.

Sockets

The grouping of IP address and port number is acknowledged as socket. A socket
identifies an endpoint of a two way communication link between two programs
running on the network. When a client requests for a connection on a particular
port, the server identifies and keeps track of the socket that it will use to
communicate with that client. A server can communicate on the same port with
many clients using sockets to determine the destination and source of the
communication.

Socket Based Communication

In socket based communication, the server (program) running on a computer binds
a socket to a specific port. The server listens to this socket for any client’s connection
request as shown in Figure 4.7(a). When a request is made, the server accepts the
request. Once the request is accepted, the server binds a new socket to a different
port (see Figure 4.7(b)). The new socket is required so that the server can continue
to listen to the original socket for new connection request and at the same time
keep serving the connected clients.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 341

2003 listen for

connections

Server

2003

Client

connection request

(a) Client Requests for a Connection with Server

2003

new local port

Server

2003

Client

Tells client to use
new local port

1099

(b) Server Obtains a New Local Port

Fig. 4.7 Establishment of Path for Two-Way Communication

4.4.1 Proxy Server

This is the first layer of the RMI architecture and acts as an interface between the
application layer and other RMI layers. The method calls initiated at the client end
to process the service are intercepted by the proxy layer. The proxy layer performs
the mapping of interface variables initialised by the client application program with
the variables at the reference layer.

Remote Reference Layer

This layer acts as an interface between the proxy layer and the transport layer. The
proxy layer receives request for service from the client proxy layer and manages
the semantics of the call to be send to the server using the transport layer. The
proxy layer manages the semantics of the request based on remote reference
protocols. Similarly, the proxy layer manages the semantics of the service processed
by the server, prior to a delivery of the response to the client side.

4.4.2 Domain Naming Services

It is very difficult to remember the IP address to connect to the Internet.
The Domain Name System (DNS) is used to overcome this problem.
DNS maps one particular IP address to a string of characters, which is
popularly known as domain name. For example, www.yahoo.com implies
com is the domain name reserved for US commercial sites, yahoo is the
name of the company and www specifies that the site is available in the
World Wide Web. This name is visible to the user. However, in the
background, the name maps to a particular IP address.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
342 Material

4.4.3 Networking Classes and Interfaces

Java facilitates creation of network applications through the classes and interfaces
defined in the java.net package. Some of the classes defined in this package
are listed in Table 47.

Table 4.7 Some of the Classes of the java.net Package

Class Description
Authenticator It represents an object that obtains authentication for a network

connection.
ContentHandler It is an abstract class—superclass of all the classes that contains

methods to read an object from a URLConnection.
DatagramPacket It contains methods to implement a connectionless packet delivery

service.
DatagramSocket It represents a socket for sending and receiving datagram packets.
DatagramSocketImpl It is an abstract datagram and multicast socket implementation

superclass.
HttpURLConnection It represents a URLConnection having support for HTTP-specific

features.
InetAddress It represents an IP address.
ServerSocket It implements server sockets.
Socket It implements client sockets.
SocketImpl It is an abstract class—superclass of all classes that implements

sockets.
URL It represents a Uniform Resource Locator, a pointer to a resource on

the WWW.
URLConnection It is an abstract class—superclass of all classes that represent a

communication link between the application and a URL.
URLStreamHandler It is an abstract class—superclass of all stream protocol handlers.
 Some of the interfaces defined in java.net package are listed in Table 4.8.

Table 4.8 Interfaces of java.net Package

Interface Description
ContentHandlerFactory It defines factory for content handlers.
CookiePolicy It provides a mechanism to decide which cookie

should be accepted and which should be rejected.
CookieStore It represents a storage for cookie.
DatagramSocketImplFactory It defines factory for the implementation of datagram

socket.
FileNameMap It provides a mechanism to map between a file name

and a MIME type string.
SocketImplFactory It defines factory for the implementation of socket.
SocketOptions It defines methods to get or set socket options.
URLStreamHandlerFactory It defines factory for URL stream protocol handlers.

 Note: Factory methods are simply a convention by which the static methods in a class return
an instance of that class.

4.4.4 InetAddress Class

As stated earlier, users use the domain names, whereas the Internet operates on
IP addresses. In Java, the domain names can be resolved to their IP addresses
and vice versa by using the InetAddress class.

An InetAddress object can be created using one of the available factory
methods. Commonly used factory methods of InetAddress class are listed
in Table 4.8.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 343

Table 4.9 Methods of the InetAddress Class

 Method Description
static InetAddress
getLocalHost()

It returns the InetAddress object that
represents the local host.

static InetAddress
getByName(String hostname)

It returns an InetAddress for a host name
passed to it,

static InetAddress[]
getAllByName(String hostname)

It returns an array of InetAddress that
represents all of the addresses resolved for a
host name passed to it; used in case a single
name represents several machines.

 All these methods throw an UnknownHostException. The methods
getLocalHost()and getByName(String hostname)throw this
exception if they are unable to resolve the host name. The method
getAllByName() throws this exception if it is unable to resolve the name to
even a single address.

4.4.5 Datagram Packet Network

Java supports UDP by providing two classes, namely DatagramPacket and
DatagramSocket.

DatagramSocket

The DatagramSocket class is used to send or receive the datagram packets.
It defines four constructors that are listed in Table 4.10.

Table 4.10 Constructors Defined in DatagramSocket Class

Constructor Description
DatagramSocket()

It creates a datagram socket.

DatagramSocket(int
portnumber)

It creates a datagram socket and binds it to the port
number specified by portnumber.

DatagramSocket(int
portnumber, InetAddress
ipAddress)

It creates a datagram socket and binds it to the port
and the InetAddress specified by portnumber
and the ipAddress respectively.

DatagramSocket(SocketAddress
address)

It creates a datagram socket and binds it to the
SocketAddress specified by the address.

Note: While creating the datagram socket, if any error occurs, all these constructors throw a
SocketException.

The class DatagramSocket defines many methods. Two important methods
are listed in Table 4.11.

Table 4.11 Methods of the DatagramSocket Class

Method Description
void send(DatagramPacket
packet)

It sends packet to the port.

void receive(DatagramPacket
packet)

It receives packet specified by packet from the
port.

Note: Both the methods send() and receive() throw a IOException when an error
occurs.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
344 Material

DatagramPacket

The DatagramPacket class is used to contain the data. It defines many
constructors; some of them are listed in Table 4.12.

Table 4.12 Constructors Defined in DatagramPacket Class

Constructor Description
DatagramPacket(byte data[], int
length)

It creates a DatagramPacket for receiving the
packets of length length in the buffer.

DatagramPacket(byte data[],int
offset, int length)

It creates a DatagramPacket for receiving the
packets of length length, specifying an offset
into the buffer.

DatagramPacket(byte data[],
int offset, int length ,
InetAddress ipAddress, int
portnumber)

It creates a DatagramPacket for sending
packets of length length to the specified port
number on the specified host.

Table 4.13 Methods of the DatagramPacket Class

Method Description
InetAddress getAddress() It returns the address of the machine to which the

datagram is sent or from which the datagram is
received.

byte[] getData() It returns the data contained in the datagram.

int getLength() It returns the length of the valid data contained in the
byte array that is returned from the getData()
method.

int getPort() It returns the port number on the remote host.
void setAddress(InetAddress
ipAddress)

It sets the address specified by ipAddress to which
a packet is to be sent.

void setData(byte[] data) It sets the data to data.
void setLength(int length) It sets the size of the packet to length.
void setPort(int portnumber) It sets the port number specified by portnumber on

the remote host.

Example 4.1: A program to demonstrate a UDP server program is as follows:
import java.net.*;
import java.io.*;
import java.util.*;
class UDPServerExample
{

public static void main(String args[]) throws Exception
{
int serverportno = 1139;

int clientportno = 1140;
try

{
//creates a socket and binds to port no 1139
DatagramSocket ds = new
DatagramSocket(serverportno);
//obtains the IP address for the localhost

InetAddress ipadd=InetAddress.getLocalHost();
String pstr = “Hello this is your message”;
byte buf[]=pstr.getBytes();

// creates a DatagramPacket for sending the packets
DatagramPacket send_packet = new
DatagramPacket(buf,buf.length,ipadd,clientportno);

ds.send(send_packet); //sends packets

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 345

ds.close();
}
catch(Exception e)
{

System.out.println(e.getMessage());
}

}
}

Example 4.2: A program to demonstrate a UDP client program is as follows:
import java.net.*;
import java.io.*;
class UDPClientExample
{

public static void main(String args[]) throws Exception
{
int serverportno = 1139;

int clientportno = 1140;
try

{
//creates a socket and binds to port no 1140
DatagramSocket ds = new DatagramSocket(clientportno);

byte b[]=new byte[1024];
//creates a DatagramPacket for receiving the packets

DatagramPacket dp = new DatagramPacket(b,b.length);
ds.receive(dp); //receives packets
System.out.println(new String(dp.getData()));
}
catch(Exception e)
{

System.out.println(e.getMessage());
}

}
}

Note that both the server and the client programs are running between two ports on
the local machine. The server and the client are running on port numbers, 1139 and
1140 respectively. So, run these programs on different command prompt windows.

Check Your Progress

1. Write the use of file class.

2. Define the term directory.

3. What do you mean by stream?

4. Write the types of streams.

5. Which suit of protocols does the Internet provide for delivery services?

6. What is the combination of IP address and port number known as?

7. Define the term domain name system.

8. For what purpose is the InetAddress class used?

9. If an error occurs while creating the datagram socket, which type of
exception is thrown?

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
346 Material

4.5 APPLET BASIC

Applets are executed in the web browser and have made Java a web-enabled
language. Applet codes also embed the HTML tags together. This is the package
that has made Java a language for distributed application.

Generally, Java programs can be classified into two groups, namely
applications and applets. Unlike applets, Java applications do not require a browser
to run. They can be created like any normal programming language program. An
applet is executed in the browser. An applet is a class file that displays graphics
application in the web browser and one can embed applet codes in the web pages
by HTML tags. Briefly, it can be said that an applet is a Java byte code embedded
in an HTML page. The program structure of applets differs from the other Java
applications.

Definition

An applet is a dynamic and interactive program that can run inside a web page
displayed by a Java-capable browser, such as a HotJava Browser or an Internet
Explorer browser, which are world wide web browsers used to view web pages.
An applet is a class present in a java.applet package.

A special HTML tag is embedded in an applet to make it run on the web
browser. The appletviewer application, present in the jdk, is used to run and
check the applets. An applet has added advantages, such as frame, event-handing
facility, graphics context and surrounding user interfaces.

Java applets have some restrictions to ensure full security and to make them
virus free. Some of these are as follows:

(a) Applets have no permission to read or write the file system.
(b) Applets can communicate with the server in which they were stored

originally, but not with the others.
(c) Applets cannot execute any programs on the system.

4.5.1 Applet Life Cycle

Each applet class inherits the properties and methods of the class, Applet. An
applet is loaded on the web browser or the appletviewer tool of Java. An Applet
may change its current state when a specific method is called by AWT. Java provides
four methods to change the state of an applet. These methods are as follows:

 init()

 start()

 stop()

 destroy()

The init() method is called when an applet loads the initialization
process. The initialization process creates the objects that an applet needs for
loading images, fonts and colours or for setting up the initial parameters such as
variables and constants. This method is called only once when an applet is loaded
the first time. The syntax to initialize the applet is:

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 347

public void init()
{
// init() method definition.
}

The start() method is called when an applet is initialized and starts the
execution of the applet. The syntax to start the applet is:

public void start()
{
// start() method definition.
}

The paint() method is called when you want to display an applet. The
syntax to display the applet is:

public void paint(Graphics g)
{

g.drawString(str, 10, 10);
}

The stop() method is called when either the end user stops an applet or
an applet loses the focus. The syntax to stop the applet is:

public void stop()
{
// stop() method definition.
}

The destroy() method is called when an applet is destroyed. When
you want to exit from the web browser or appletviewer tool of Java, an applet
calls this method to free the resources. This method also occurs only once in the
life cycle of an applet. The syntax to destroy the applet is:

public void destroy()
{

// destroy() method definition.
}

Here, only the paint() method is a member of the graphics class, while
the other methods are members of the applet class. Figure 4.8 shows the life cycle
of an applet.

Fig. 4.8 Life Cycle of an Applet

There are four states in the life cycle of an applet: new born, running, idle and
dead. The newborn state consists of a newly loaded applet that is initializing its

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
348 Material

resources. In the running state, an applet is executed and it displays the text or image
that the applet contains. An applet that is initialized but is not currently in the running
state is said to be in the idle state. When the destroy() method is invoked, the
applet acquires a dead state and releases all the resources. The following code
creates an applet that shows the various states of an applet life cycle:

Creating an Applet showing the various States of an Applet Life cycle
import java.applet.Applet;
import java.awt.Graphics;
public class AppletLifeCycle extends Applet
{

String str = “Hello! “;
public void init()
{

str = str + “ <init()> “;
}
public void start()
{

str = str + “ <start()> “;
}
public void stop()
{

str = str + “ <stop()> “;
}
public void destroy()
{

str = str + “ <destroy()> “;
}
public void paint(Graphics g)
{

str = str + “ <paint()> “;
g.drawString(str, 30, 50);

}
/*
<APPLET CODE=”AppletLifeCycle” HEIGHT = 80 WIDTH = 410>
</APPLET>
*/
}

The above code shows the various states of the applet life cycle using applet
methods. The init() method initiates all the variables that are used in the
applet program. The paint() method displays text on the applet.

The following screenshot shows the output.

You can stop the execution of the applet by calling the stop() method.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 349

The following screenshot shows the suspended applet.

AWT calls the start()and paint() methods when you re-start the
applet.

The following screenshot shows re-starting the applet that was suspended
by the stop() method.

There is one additional method, paint, that is not a part of the applet life
cycle but is used for displaying the contents of the applets on the appletviewer or
web browser. The paint() method is called to display text or graphics on an
applet. This method takes an argument, which is the instance of the Graphics
class. The syntax to display the text on an applet is:

public void paint(Graphics g)
{

// paint() method definitions.
}

The above syntax shows the paint() method of the graphics class of
Java.

4.5.2 Simple Banner Applet

The body section of the HTML file contains a pair of <APPLET…> and </
APPLET> tags, which allows one to provide the name of the applet and helps the
browser recognize the space required for the applet. The following code shows
the minimum code required to place the FirstApplet applet on the web page:

<APPLET
CODE = FirstApplet.class
WIDTH = 300
HEIGHT = 150 >

</APPLET>

The above written HTML code helps a web browser load the compiled
Java applet FirstApplet.class, which is present in the same directory as the HTML
file. The <APPLET> tag discussed above includes the following:

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
350 Material

 Name of the Applet

 Width of the Applet (in pixels)

 Height of the Applet (in pixels)

The Applet Class

The applet class is a member of the Java Application Programming Interface (API)
package, java.applet. The applet class is used for creating a Java program that
displays an applet.

Figure 4.9 shows the hierarchical representation of the Java classes.

Fig. 4.9 Java Class Hierarchies

The applet class is extended from the class, Panel, which is further extended from
the classes, Container, Component and Object. The object class is a member of
the java.lang package and is called in the program automatically. The classes,
Component, Container and Panel are members of the java.awt package and
provide the visual components such as label, button or text fields. The applet is the
only member of the java.applet package.

The applet class has several methods that are used to display the text and
the image, play the audio file and respond when you interact with the applet. Table
5.1 lists the various methods of an applet class.

Table 4.14 Applet Class Methods

Methods Description

void destroy() Terminates an applet when the web
browser or Java tool calls this
method.

getAccessibleContext() Returns the accessibility context of
an object. Accessibility context
represents the information about
the accessible objects.

getAppletContext() Returns the context that is
associated with the applet.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 351

GetAppletInfo() Returns a string type that
describes the information about
the applet.

GetAudioClip(URL url, String clip-name) Returns an object of the audio clip
that encapsulates the location and
name of the audio clip.

getCodeBase() Returns the URL that is associated
with the invoking applet.

getDocumentBase() Returns the URL of the HTML
document that is invoking the
applet.

getImage(URL url, String image-name) Returns the image object that
encapsulates the location and
name of the image.

getLocale() Returns the locale object that
contains a set of end user
preferences such as language,
country, region or time.

getParameter(String param-name) Returns a string that contains the
parameter associated with the
paramname.

getParameterInfo() Returns a table that describes the
information about the parameters
that are recognized by the applet.

void init() Begins the execution of the applet
when it is called by the web browser
or Java tool.

IsActive() Returns the Boolean type true if the
applet is started, otherwise returns
false.

void play(URL url, String clip-name) Plays the audio clip if it is found at
the specified URL.

void resize(int width, int height) Changes the size of an applet
according to the specified height
and width.

void setStub(AppletStub stub-object) Returns the stub object of an
applet. A stub is a piece of program
that provides the linkage between
the applet and the web browser.

ShowStatus(String str) Displays a string in the status
window of the appletviewer or web
browser.

void start() Starts the execution of the applet
when it is called by the web browser
or Java tool.

void stop() Suspends the execution of the
applet when it is called by the web
browser or Java tool. This
suspended stage is resumed by the
start() method.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
352 Material

Applets are programs based on the Internet that can be used to display
text, image or animation. For example, an applet can be created that will display a
text. To display text on the applet, the following four steps are to be followed:

1. Create a Java program for an applet

2. Compile the Java program

3. Create a web page that contains an applet

4. Run the applet

Adding an Applet to an HTML File

To run the applet, the HTML file that embeds an applet on the web page has to be
created using the <APPLET> tag. This file has to be saved as FirstApplet.html.
The following program code creates an HTML web page that embeds an applet:

<HTML>
<HEAD>

<TITLE>First Applet Program</TITLE>
</HEAD>
<BODY>

<APPLET CODE = “FirstApplet.class” HEIGHT = 150 WIDTH = 300>
</APPLET>

</BODY>
</HTML>

The above code creates an HTML file in which the <APPLET> tag is used
to embed the applet. The attribute of the <APPLET> tag, HEIGHT and WIDTH,
sets the dimension of the applet window.

Note: You may specify the <APPLET> tag as a comment inside the Java
applet source file. The code, which is specified inside the Java applet source file,
is:

/*
<APPLET CODE = “FirstApplet” HEIGHT = 150 WIDTH = 300>
</APPLET>
*/

Running the Applet

You can run the applet either on the web browser or the appletviewer of Java.
When you run the applet on a web browser, you invoke the HTML file from the
web browser.

The following screenshot displays the applet in Internet Explorer.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 353

You can display the applet in appletviewer either by running the Java file,
which consists of the <APPLET> tag as comment or by running the separate
HTML file. The code to display the applet in the appletviewer of Java is:

C:\ >java>Unit 07>appletviewer FirstApplet.html
Or
C:\ >java>Unit 07>appletviewer FirstApplet.java

The above code shows an applet in the appletviewer of Java.

The following screenshot shows the output.

More about the Applet Tag

The <APPLET> tag is used to display an applet in the web browser or appletviewer
tool of Java. You can also use the <OBJECT> tag of HTML to display the applet.
The appletviewer executes the <APPLET> tag and displays an applet in an applet
window. A web browser, such as Internet Explorer or Netscape Navigator, displays
the applet on a web page interpreting the <APPLET> tag. The <APPLET> tag
has various attributes that enable you to integrate your applet into the web page.
The syntax of <APPLET> with all its attributes is:

<APPLET [CODEBASE] [CODE] [ALT] [NAME] [WIDTH] [HEIGHT] [ALIGN] [VSPACE]
[HSPACE]>
</APPLET>

The above syntax shows the <APPLET> tag and its attributes. The
<APPLET> tag provides nine attributes, which are as follows:

 CODEBASE: Specifies the base URL of the applet class file. The base
URL is the complete path of the applet where it is stored. This is an
optional attribute that searches the executable file of an applet, class file,
from the specified URL.

 CODE: Specifies the name of the file that contains a class file. This is a
compulsory attribute of the <APPLET> tag that is relative to the URL
of the HTML file.

 ALT: Specifies the tool tip text of an applet. This is also an optional
attribute that is displayed to provide information about the applet whether
the applet is running or not on the web browser.

 NAME: Specifies the name of an applet. This is an optional attribute of
the <APPLET> tag. The name of an applet is obtained by the getApplet()
method.

 WIDTH: Specifies the width of the applet display area in pixels.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
354 Material

 HEIGHT: Specifies the height of the applet display area in pixels.

 ALIGN: Specifies the alignment of the applet. The values of the ALIGN
attribute are LEFT, RIGHT, TOP, BOTTOM, MIDDLE, BASELINE,
TEXTTOP, ABSMIDDLE and ABSBOTTOM.

 VSPACE: Sets the vertical space of the applet, in pixels, on each side
of the applet.

 HSPACE: Sets the horizontal space of the applet, in pixels, on each
side of the applet.

Passing Parameters to Applets

The <APPLET> tag enables you to pass the applet parameter in the applet using
the <PARAM> tag. The <PARAM> tag has two attributes, NAME and VALUE,
which are used to set the name and values of the parameter. The syntax of the
<PARAM> tag that is enclosed within the <APPLET> tag is:

<APPLET>
<PARAM [NAME] [VALUE]>
</APPLET>

The above syntax shows the <APPLET> tag with parameter values. The
NAME represents the name of the parameter and VALUE sets a value for that
parameter. The <PARAM> tag is an empty tag. You can put several <PARAM>
tags inside a single <APPLET> tag. You can retrieve the value of a parameter
using the getParameter() method that returns the specified parameter as a String
object. The following program code shows an applet displaying the information of
an end user that is passed as the parameter of the <PARAM> tag:

Displaying User Information by passing Parameters
import java.awt.*;
import java.applet.Applet;
public class AppletHTML extends Applet
{

String firstName, lastName, sex, add, city, phone, email;
Font font1, font2;
public void init()
{

font1 = new Font(“Arial”, Font.PLAIN, 16);
font2 = new Font(“Arial”, Font.BOLD, 20);

}
public void start()
{

//String param;
firstName = getParameter(“firstName”);
if(firstName == null)
firstName = “Not Found”;
lastName = getParameter(“lastName”);
if(lastName == null)
lastName = “Not Found”;
sex = getParameter(“sex”);
if(sex == null)
sex = “Not Found”;
add = getParameter(“add”);
if(add == null)
add = “Not Found”;

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 355

city = getParameter(“city”);
if(city == null)
city = “Not Found”;
phone = getParameter(“phone”);
if(phone == null)
phone = “Not Found”;
email = getParameter(“email”);
if(email == null)
email = “Not Found”;

}
public void paint(Graphics g)
{

g.setFont(font2);
g.drawString(“-: User Information :- “ , 75,

0);
g.setFont(font1);
g.drawString(“First Name : “ + firstName, 5,

0);
g.drawString(“Last Name : “ + lastName, 5, 80);
g.drawString(“Sex : “ + sex, 5, 100);
g.drawString(“Address : “ + add, 5, 120);
g.drawString(“City : “ + city, 5, 140);
g.drawString(“Phone No : “ + phone, 5, 160);
g.drawString(“Email : “ + email, 5, 180);

}
/*
<APPLET CODE=”AppletHTML” WIDTH=375 HEIGHT=200>
<PARAM NAME=firstName VALUE=”Vishal”>
<PARAM NAME=lastName VALUE=”Jayaswal”>
<PARAM NAME=sex VALUE=”Male”>
<PARAM NAME=add VALUE=”779-A,Civil-Lines”>
<PARAM NAME=city VALUE=”Jhansi”>
<PARAM NAME=phone VALUE=”9891066098">
<PARAM NAME=email VALUE=”vishal1431@rediffmail.com”>
</APPLET>
*/
}

The above code shows the user information that is passed as a parameter
of the <PARAM> tag. The getParameter() method retrieves the value of
each parameter and displays this value on the applet.

The following screenshot shows the output of the user information.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
356 Material

You can create an interactive or dynamic applet by passing the values of the
parameter that are specified within the <PARAM> tag of the <HTML> document.
When you are working with the <PARAM> tag, you can change the contents that
are displayed on the applet by changing the parameter values in the HTML file.

Different Methods used to Set the Graphical Environment

An applet uses the classes and methods of AWT to perform its input and output
operations. To display the output in the applet, one uses the drawstring() method
present in the graphics class. Its general form is:

void drawString(String msg, int x_co, int y_co)

Here, msg holds the string to be written on the applet screen starting from
the coordinates specified by int x_co, int y_co. In a Java window, the upper-left
corner is location 0,0.

The setBackground() method is used to set the background color
of the applet.

The setForeground() method is used to set the foreground color of
the applet, i.e., the colour of the text to be written.

The above methods are defined in component class, and their general forms
are:

(a) void setBackground(Color Color)
(b) void setForeground(Color Color)

Color specifies the new colour. The color class defines the following
constants that can be used to specify colours:

Color.black Color.magenta
Color.blue Color.orange
Color.cyan Color.pink
Color.darkGray Color.red
Color.gray Color.white
Color.green Color.yellow
Color.lightGray

The following example sets the background color to pink and the text color
to magenta.

Example 4.3
setBackground(Color.pink);
setForeground(Color.magenta);

An example for the creation of an applet is given below:

Example 4.4
import java.awt.*;
import java.applet.*;
/*
<applet code=”SimpleBanner” width=750 height=500>
</applet>
*/
public class abc extends Applet {
String mesg = “WELCOME TO APPLET”;
public void init() {
setBackground(Color.cyan);

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 357

setForeground(Color.red);
}
public void start() {
mesg = mesg+” MISS SAMITA”;
}
public void stop() {
}
public void paint(Graphics g1) {
g1.drawString(mesg, 50, 30);
}
}

Output of the program:

From the above example, you can be seen that the steps to create an applet are:

First, one has to import both the packages, java.applet and java.awt.
After that, the HTML tag has to be defined, which is required to make the applet
run in the web browser. Then the init() method has to be defined. Then the
start() method and the paint method have to be defined. Here, the stop()
or destroy() methods are not required and therefore have not been defined.

Now from the above example, it can be seen that first the init() method is
called and the background color and foreground color are set using the
setBackground(Color.cyan) and setForeground
(Color.red) methods. After that, the start method is called, in which the
mesg variables content is modified. Then the paint method is called, in which the
code g.drawString(msg,50,30) has been written to print the output
on the applet.

Another example would make the concept clearer and help in understanding
the usage of passing parameters to the applet:

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
358 Material

Example 4.5
import java.applet.Applet;
import java .awt .*;
public class Second extends Applet

{
Font f = new Font (“TimesRoman”, Font.BOLD, 40);
String name;
public void init()

{
name = getParameter (“name”);
if (name == null)

{
name = “Java”;
name = “Have a nice day “ + name;
}

}
public void paint(Graphics g1)

{
g1.setFont (f);
g1.setColor (Color.blue);
g1.drawString (name, 50, 50);
}

}
/*<applet code=”Second.class” width=200 height=200 align=TOP>
<param name=”name” value=”Sai”>
</applet>*/

An instance of the font class f is declared. This object has been initialized
to contain TimesRoman as font name, font size as 40 and font style as BOLD. The
init() method, declared in line 7, contains the getParameter () method,
which accepts the name (a string) as its parameter. The paint () method of
the component class is overridden to execute the paint () method in the class. This
method contains the drawString() method, apart from the two methods,
namely, setFont() and
setColor(). These two methods are used to set the desired font and colour
respectively.

Passing Parameters to Applets

A programmer can set the parameter, as already explained. To retrieve the value,
the getParameter() method has to be used, which takes the name of the
parameter and returns the value stored in the parameter.

Example 4.6
import java.awt.*;
import java.applet.*;
/*
<applet code=”SimpleBanner” width=750 height=500>
<param name=”param1" value =”SAI”>
</applet>
*/
public class abc extends Applet {
String mesg ;
public void init() {
setBackground(Color.white);
setForeground(Color.red);

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 359

}
public void start() {
mesg = getParameter(“param1”);
}
public void paint(Graphics g1) {
g1.drawString(mesg, 50, 30);
}
}

Output of the program:

Playing an Audio Clip

Consider the following example.

Example 4.7
import java.applet.*;
import java.awt.*;
public class player extends Applet {

AudioClip a1;
public void init()
{

a1=getAudioClip(getCodeBase(),”sai.au”);
}

public void start()
{
a1.play();
}
public void paint(Graphics g1)
{
g1.drawString(“playing music”,50,30);
}
}
/*<applet code=”Play” width=200 height=200>
</applet>*/

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
360 Material

Output of the program:

This program will open the applet and the music file named sai.au will be
played.

The getAudioclip() method returns the URL of the music file specified
as its parameter value. Then the play method is called to play the music file.

One can only play the *.au format music files and the music file should
reside in the same directory in which the Java file is present.

The following is a designer applet to play and stop music files:

Example 4.8
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
public class Play extends applet implements ActionListener

{
AudioClip a1;
Button b1,b2;

public void init()
{

b1=new Button(“Start”);
b2=new Button(“Stop”);

a1=getAudioClip(getCodeBase(),”sai.au”);
b1.addActionListener(this);

b2.addActionListener(this);
add(b1);
add(b2);

}
public void actionPerformed(ActionEvent ae)

{
if(ae.getSource()==b1)

{
a1.play();
}else{
a1.stop();
}

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 361

}
public void paint(Graphics g1)

{
g1.setColor(Color.red);
g1.setFont(new Font(“Arial”,Font.BOLD,40));
g1.drawString(“This Is Music World”,50,70);
}

}
/*<applet code=”Play” width=200 height=200>
</applet>*/

AppletContext

It is an interface that is implemented by an object that represents the environment
of the applet. To use it, one has to first create an object of AppletContext, using
the getAppletContext() method. This is shown below:

Example 4.9
AppletContext context= getAppletContext();

In AppletContext, some interesting methods are defined such as the
getApplet()method. It returns the name of the applet and the
getApplets() method, which returns all the applets in the document base.

 getApplet()
 getApplets()

In AppletContext, another method, showDocument() is also
defined, which either takes a URL or a URL and the file name in the form of a
string. It creates an HTML page in the web browser, which shows the applet. It is
useful with HTML frames where the applet should reside in a frame and the new
HTML pages should be shown in another frame.

The showStatus() method shows the string passed to it as a parameter
on the status bar at the bottom of the web browser. The following example shows
the use of the showDocument() and showStatus() methods.

Example 4.10
AppletContext Code Sample
import java.applet.*;
import java.awt.*;
import java.net.*;

// <applet code=”applet1.class” width=400 height=100></applet>
public class applet1 extends Applet{
public void init(){
try{

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
362 Material

URL url1=new URL(“http://wallpaper.net/pkomisar/
Flowere.html”);

getAppletContext().showDocument(url1);
}catch(MalformedURLException me){}
}
public void paint(Graphics g1){
g1.setFont(new Font(“Monospaced”, Font.BOLD, 22));
g1.drawString(“Hello World”, 55, 65);
getAppletContext().showStatus(“Puts the message in status bar”);
}
}

Now, in the above program, the user gets the current appletcontext using
the getAppletContext() method. Then, using the showDocument()
method, the user just transfers the control to another HTML file, which is passed
to it as a parameter. The showStatus() method displays the string passed to
it as a parameter at the bottom of the applet window.

Note: One can use console output in an applet such as
System.out.println(). The string passed to it will not get displayed on
the screen; rather it will get displayed in the console. It is generally used for the
purpose of debugging; otherwise, the use of these methods is discouraged.

Advantages of a Java Applet

A Java applet has the following advantages:

(a) The applet can work properly on all versions of installed Java, excluding
the latest plug-in version.

(b) Almost all web browsers support the applet.

(c) A user can permit it to have full access to the machine on which it is running.

(d) It can improve with use, which means that after a first applet is run, the
JVM is already running and starts quickly, benefitting the regular Java users.
However, the JVM will need to restart each time the browser starts a fresh.

(e) In terms of its speed of execution, it is slower than C++ codes, but faster
than JavaScript.

Disadvantages of a Java Applet

A Java applet has the following disadvantages:

(a) Sometimes, the Java plug-in is required, but it is not available on every web
browser by default.

(b) The process of loading an applet is very slow.

It can now be concluded that without an applet, Java cannot get the honour
of a web-enabled language. The AWT package present in Java is an important
package. It is needed to develop a sophisticated applet.

4.5.3 Handling Events

Java provides various classes and interfaces to handle the events generated. Some
of these have been discussed ahead.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 363

Event Classes

Java 1.1 event classes encapsulate all types of events occurring in the system. A
successful handling of the events requires in-depth understanding of these classes.
All these classes have been arranged in a hierarchy having EventObject class
as their root element. This class acts as the superclass of all the event classes.
EventObject class belongs to java.util package. Some of the event
classes are discussed here.

1. The ActionEvent Class

The ActionEvent class represents the event that is generated when a user
selects a menu item, presses a button or double-clicks a list item.

The ActionEvent class defines the following constructors:

ActionEvent(Object source, int event_type, String command_name)
ActionEvent(Object source, int event_type, String command_name, int
modifier_key)
ActionEvent(Object source, int event_type, String command_name, long
event_time, int modifier_key)

where,

(i) source is a reference to the object that originated the event. The reference
to the object can be obtained by using the getSource()method.

(ii) event_type specifies the type of the event. The getId()method
returns the type of the event.

(iii) command_name is the name of the command which invoked the
ActionEvent object which can be obtained by invoking the
getActionCommand() method.

(iv) event_time represents the system time at which the event has occurred.
The getWhen() method returns the time of occurrence of the event.

(v) modifier_key is the value of the modifier key(ALT, CTRL, META,
SHIFT)which was pressed when the event was generated. The
getModifiers() method returns the value of the modifier key.

2. The ComponentEvent Class

The ComponentEvent class represents the event that is generated when the
position, size or visibility of a component alters.

The ComponentEvent class defines the following constructor:

Component(Component source, int event_type)

where,

(i) source is a reference to the component that originated the event. The
reference to the component can be obtained by using
get Component()method.

(ii) event_type specifies the type of the event. The different types of
component events are represented by integer constants—
COMPONENT_MOVED,COMPONENT_RESIZED,COMPONENT_HIDDEN,
COMPONENT_SHOWN.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
364 Material

3. The ContainerEvent Class

The ContainerEvent class inherits ComponentEvent class. The
container event is generated when a component is added to or removed from a
container.

The ContainerEvent class defines the following constructor:

ContainerEvent(Component source, int type, Component component)

where,

(i) source is a reference to the component that originated the event. The
reference to the component can be obtained by using
getContainer()method.

(ii) event_type specifies the type of the event. The different types of events
are represented by integer constants—COMPONENT_ADDED,
COMPONENT_REMOVED.

(iii) component represents the component that has been added to or removed
from the container and can be obtained by using the getChild() method

4. The FocusEvent Class

The FocusEvent class represents the event that is generated when a component
gains or loses the focus of the input. The FocusEvent class is a subclass of the
ComponentEvent class.

The FocusEvent class defines the following constructors:

FocusEvent(Component source, int event_type)
FocusEvent(Component source, int event_type, Boolean tempflag)
FocusEvent(Component source, int event_type, Boolean tempflag,
Component opp_component)

where,

(i) source is a reference to the component that originated the event.

(ii) event_type specifies the type of the event. The different types of events
are represented by integer constants—FOCUS_GAINED,
FOCUS_LOST.

(iii) tempflag specifies whether the focus event is temporary. To determine
if the focus event is temporary, the isTemporaray() method is used.

(iv) opp_component represents the another component that takes part in
the focus change. It means if the FOCUS_GAINED event takes place
then the opp_component is that component which lost focus. On the
other hand, if FOCUS_LOST event occurs then the opp_component
is that component which gains focus.

5. The ItemEvent Class

The ItemEvent class represents the event which is generated when a menu
item is selected or deselected, checkbox item is clicked or a list item is selected.

The ItemEvent class defines the following constructor:

ItemEvent(ItemSelectable source, int event_type, Object item, int
item_state)

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 365

where,

(i) source is a reference to the component that originated the event. The
getItemSelectable() method returns the reference to the
component that originated this event.

(ii) event_type specifies the type of the event. The different types of events
are represented by integer constants—ITEM_SELECTED,
ITEM_DESELECTED.

(iii) item is a reference to the item that originated the event. It can be obtained
by using the getItem() method.

(iv) item_state returns the current state of the item(selected or deselected)
which generated the item event. The getStateChange() method
returns the current state of the item.

6. The KeyEvent Class

The KeyEvent class represents the event that is generated when the user interacts
with the application through keys. Java supports key events through the
KeyEvent class.

The KeyEvent class defines the following constructor:

KeyEvent(Component source, int event_type, long event_time, int
modifier_key, int code, char character)

where,

(i) source is a reference to the component that originated the event.

(ii) event_type specifies the type of the event. The different types of events
are represented by integer constants—KEY_PRESSED,
KEY_RELEASED, KEY_TYPED.

(iii) event_time represents the system time at which the event has occurred.

(iv) modifier_key is the value of the modifier key(ALT, CTRL, META,
SHIFT)which was pressed when the event was generated.

(v) code returns the value of virtual key codes—VK_0 to VK_9, VK_A
to VK_Z, VK_UP, VK_DOWN, VK_LEFT, VK_RIGHT etc.
The getKeyCode()method returns the value of the virtual key.

(vi) character specifies the character that has been entered and can be
obtained by using getKeyChar() method.

7. The MouseEvent Class

The MouseEvent class represents the event that is generated when the user
interacts with the application through the mouse. The MouseEvent class
encapsulates the mouse events.

The MouseEvent class defines the following constructor:

MouseEvent(Component source, int item_type, long event_time, int
modifier_key, int a, int b, int clicks_count, boolean popuptriggers)

where,

(i) source is a reference to the component that originated the event.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
366 Material

(ii) event_type specifies the type of the event. The different types of events
are represented by integer constants—MOUSE_CLICKED,
MOUSE_EXITED, MOUSE_ENTERED, MOUSE_PRESSED,
MOUSE_RELEASED,MOUSE_DRAGGED, MOUSE_MOVED,
MOUSE_WHEEL.

(iii) event_time represents the system time at which the event occurred.

(iv) modifier_key is the value of the modifier key (ALT, CTRL, META,
SHIFT) which was pressed when the event was generated.

(v) int a, int b represents the X, Y coordinates of the position of the
mouse within the component, respectively. The getX()and getY()
methods return the X,Y coordinates respectively. Alternatively, the
getPoint()method can be used to obtain both the coordinates.

(vi) clicks_count represents the total number of mouse clicks took place
for this event. The getClickCount()method returns the total number
of mouse clicks.

(vii) popuptriggers specifies whether the pop-up window will appear.
To determine if the pop-up window appears isPopupTrigger()
method is used.

8. The TextEvent Class

The TextEvent class represents the event that is generated when the user
enters or changes text in text fields or text areas. The TextEvent encapsulates
text events.

The TextEvent class defines the following constructor:

TextEvent(Object source, int event_type)

where,

(i) source represents the object that originated the event.

(ii) event_type specifies the type of the event. The event is represented
by integer constant—TEXT_VALUE_CHANGED.

9. The WindowEvent Class

The WindowEvent class represents the event that is generated when the state
of the window changes. The WindowEvent class is a subclass of
ComponentEvent class.

The WindowEvent class defines the following constructors:
(i) WindowEvent(Window Source, int event_type)

(ii) WindowEvent(Window Source, int event_type, Window
opposite)

(iii) WindowEvent(Window Source, int event_type, int
from_State, int to_State)

(iv) WindowEvent(Window Source, int event_type, Window
another, int from_State, int to_State)

where,

source is a reference to the component that originated the event. The reference
to the component is obtained by using getWindow() method.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 367

event_type specifies the type of the event. The event is represented by integer
constant—WINDOW_ACTIVATED,WINDOW_DEACTIVATED,
WINDOW_GAINED_FOCUS, WINDOW_LOST_FOCUS,
WINDOW_OPENED,WINDOW_CLOSED,WINDOW_CLOSING,
W I N D O W _ I C O N I F I E D , W I N D O W _ D E I C O N I F I E D ,
WINDOW_STATE_CHANGED.

opposite represents the another window when the window focus or window
activation events took place and can be obtained by using
getOppositeWindow() method.

from_State specifies the old state of the window, that is, the state before the
state of the window changed. The getOldState() method returns the old
state of the window.

to_State specifies the new state of the window, that is, the state after the
state of the window changed. The getNewState() method returns the new
state of the window.

Event Sources

As stated earlier, event sources are the objects which generate events. Some of
the examples of event sources are listed in the Table 4.15.

Table 4.15 Some of the Event Sources

Event Source Description
Button Generates action events when the button is pressed
Choice Generates item events when choice changes
Window Generates window events when the state of the

window changes
Text components Generates text events when a text is entered in text

field or text area
Menu item Generates action events when a menu item is

selected, generates item events when a checkable
menu is selected or deselected

Check box Generates item events when a checkbox is selected
or deselected

List Generates action events when an item is double-
clicked, generate action events when an item is
selected or deselected

Scrollbar Generates events when the scroll bar is
manipulated

Event Listener Interfaces

Events generated by the event source are sent to event listeners which handle
them in an appropriate manner. Event listeners implement various interfaces. Some
of the interfaces are discussed in this section.

1. The ActionListener Interface

When an action event occurs, the actionPerformed() method defined
by the ActionListener interface is invoked.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
368 Material

The general form of the actionPerformed()method is

void actionPerformed(ActionEvent e)

where,

e is the reference to an object of ActionEvent class

2. The ComponentListener Interface

The methods provided by the ComponentListener interface are invoked
when the state of the component changes, that is, the component is resized, moved,
shown or hidden.

The general form of the methods defined in ComponentListener interface
are

 void componentShown(ComponentEvent com)
 void componentHidden(ComponentEvent com)
 void componentMoved(ComponentEvent com)
 void componentResized(ComponentEvent com)

where,

com is the reference to an object of the ComponentEvent class

3. The ContainerListener Interface

The methods defined by the ContainerListener interface are invoked
when the component is added to or removed from a container. The object of
ContainerEvent class is passed as method parameter.

The general form of the methods defined in ContainerListener interface
are

void componentAdded(ContainerEvent con)
void componentRemoved(ContainerEvent con)

4. The FocusListener Interface

The methods defined by the FocusListener interface are invoked when the
focus of the keyboard is either lost or gained by the component. The object of the
FocusEvent class is passed as a method parameter.

The general form of the methods defined in FocusListener interface are

 void focusGained(FocusEvent foc)
 void focusLost(FocusEvent foc)

5. The ItemListener Interface

The method itemStateChanged() defined by the ItemListener
interface is invoked when the state of an item is changed. The object of the
ItemEvent class is passed as a method parameter.

The general form of the method defined in ItemListener interface is

void itemStateChanged(ItemEvent item)

6. The KeyListener Interface

The methods defined by the KeyListener interface are invoked when any
key is pressed, released or a character is entered. The object of KeyEvent
class is passed as a method parameter.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 369

The general form of the methods defined in KeyListener interface are

 void keyPressed(KeyEvent key)
 void keyReleased(KeyEvent key)
 void keyTyped(KeyEvent key)

If a key B is pressed and released, then three events—key pressed, key typed
and key released are generated.

7. The MouseListener Interface and MouseMotionListener
Interface

The methods defined by the MouseListener interface are invoked when the
mouse is clicked, pressed, released, when the mouse enters or exits the component.
Similarly, the methods defined by the MouseMotionListener interface
are invoked when the mouse is dragged or moved from one position to another.
The object of MouseEvent class is passed as a method parameter.

The general form of the methods defined in MouseListener interface are

 void mousePressed(MouseEvent me)
 void mouseReleased(MouseEvent me)
 void mouseClicked(MouseEvent me)
 void mouseEntered(MouseEvent me)
 void mouseExited(MouseEvent me)

The general form of the methods defined in MouseMotionListener interface
are

 void mouseMoved(MouseEvent me)
 void mouseDragged(MouseEvent me)

8. The TextListener Interface

The method textChanged()defined by the TextListener interface is
invoked when the text inside the text area or text field alters. The object of
TextEvent class is passed as method parameter.

The general form of the method defined in TextListener interface is

void textChanged(TextEvent te)

9. The WindowListener Interface

The methods defined by the WindowListener interface are invoked when
the state of the window changes. The object of WindowEvent class is passed
as a method parameter.

The general form of the methods defined in WindowListener interface are

 void windowOpened(WindowEvent we)
 void windowClosed(WindowEvent we)
 void windowClosing(WindowEvent we)
 void windowActivated(WindowEvent we)
 void windowDeactivated(WindowEvent we)
 void windowIconified(WindowEvent we)
 void windowDeiconified(WindowEvent we)

To understand the concept of event handling, consider the following example. It
demonstrates the generation of key events when the user presses or releases any
keyboard key. The methods of the KeyListener interface are invoked when

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
370 Material

the key is pressed or released and the output is displayed to the user in the status
bar of the applet window.

4.5.4 AudioClip

AudioClip is an interface present in java.applet package.This interface
is used to play an audio clip in the background of an applet. This interface supports
only .au extension file.

How to Create an Object of AudioClip Interface?

As it is a interface, it cannot be instantiated. Through the getAudioClip
method of Applet class programmer instatntiate getAudioClip
interface.This method is overriden.

public AudioClip getAudioClip(String name)
public AudioClip getaudioClip(URL u,String name)

Methods

public abstract void play()

This method is used to play an audio file in the background of the applet.
public abstract void loop()

This method is used to repeatedly play an audio file in the background of an
applet.

public abstract void stop()

This method is used to close an audio file.

How to Play an AudioClip?

An example may be seen below for understanding the concept before a detailed
explanation is given.

AudioClip is an interface present in java.applet package. This
interface is used to play an audio file in the background of applet. As AudioClip
is an interface it cannot be instantiated. Through the getAudioClip() method
of Applet class programmer instantiated AudioClip interface. This interface
supports only .au extension file.

Program 4.28

import java.applet.*;

import java.awt.*;

public class player extends Applet {

AudioClip a1;

public void init()

{

a1=getAudioClip(getCodeBase(),”sai.au”);

}

public void start()

{

a1.play();

}

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 371

public void paint(Graphics g1)

{

g1.drawString(“playing music”,50,30);

}

}

/*<applet code=”Player” width=200 height=200>

</applet>*/

Output of the program:

This program will open the applet and the music file named sai.au will
be played.

The getAudioclip() method returns the URL of the music file specified
as its parameter value. Then play method is called to play the music file.

One can only play the *.au format music files and the music file should
reside in the same directory in which the Java file is present.

Given below is a designed applet to play and stop the music files:

Program 4.29

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

public class Play extends Applet implements ActionListener

{

AudioClip a1;

Button b1,b2;

public void init()

{

b1=new Button(“Start”);

b2=new Button(“Stop”);

a1=getAudioClip(getCodeBase(),”sai.au”);

b1.addActionListener(this);

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
372 Material

b2.addActionListener(this);

add(b1);

add(b2);

}

public void actionPerformed(ActionEvent ae)

{

if(ae.getSource()==b1)

{

a1.play();

}else{

a1.stop();

}

}

public void paint(Graphics g1)

{

g1.setColor(Color.red);

g1.setFont(new Font(“Arial”,Font.BOLD,40));

g1.drawString(“This Is Music World”,50,70);

}

}

/*<applet code=”Play” width=200 height=200>

</applet>*/

Output of the program:

4.6 AWT CLASSES

Abstract Window Toolkit (AWT) provides several graphics, windowing and user
interface tools which are used to develop GUI of applets as well as stand-alone
applications running in GUI environment. In order to use the classes and interfaces
defined in AWT, java.awt.* package needs to be imported.

AWT Classes
The AWT classes can be categorized into many groups which are discussed as
follows:

GUI Components

GUI components include visual elements that facilitate user’s interaction. The
Component class and MenuComponent class are the superclasses which

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 373

represent GUI components. The Component class is an abstract class, therefore
its subclasses are used to create components. In AWT terminology, the user interface
elements, such as button, text field and checkbox are termed as components.

Table 4.16 Subclasses of Component Class

Class Description
Button It creates a push button control.
Checkbox It creates a checkbox control.
Choice It creates a dropdown list of textual entries.
Label It creates a label control to display a string.
List It creates a scrollable list of textual entries.
ScrollBar It creates a scrollbar control for items.
TextComponent It is a superclass of TextField and TextArea classes used to

create single-line or multi-line textfields respectively.

The Container class is a subclass of Component class. It is used to contain
various Component objects as well as other Container objects within it.
The Container class’ object groups, manages, and positions components
and treats them as a unit. Two immediate subclasses of Container class are
as follows:

 Panel: It is used for grouping components. An Applet is a subclass of
Panel.

 Window: It is used for creating and handling windows. Two subclasses of
Window are Dialog and Frame.

The MenuComponent class is an abstract class. Its immediate subclasses are
MenuBar and MenuItem which are used to create menu bars and menu
items, respectively.

Layouts

Different layout classes are used for arranging, positioning, and determining the
shape and size of the various components held by the container. All these classes
implement LayoutManager interface of AWT package. Some of the commonly
used classes are listed in Table 4.17.

Table 4.17 Layout Classes

Class Description
BorderLayout It positions the components into five regions: east, west, north,

south and center.
CardLayout It arranges the components as a deck of cards such that only one

component is visible at a time.
FlowLayout It arranges the components horizontally.
GridLayout It arranges the components into grid.

Graphics Tools

The Graphics class encapsulates various methods for drawing various shapes
and displaying output on the screen. Image loading and adding is supported by
Image class. The classes, such as Color and Font are used to set display of
graphical components. Point, Polygon, Rectangle contains methods
to draw points, polygons and rectangles, respectively.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
374 Material

Event Handlers

The Event class plays a significant role in handling GUI events. The AWTEvent
class encapsulates various AWT events.

4.6.1 Window Fundamentals

The AWT defines various classes and methods that enable you to create and
manage windows. The two important windows are those derived from class Panel
and class Frame. The window derived from class Panel is used by applets
and the class Frame creates a standard window. In this section, we will discuss
the class hierarchy related to these two classes.

 Component

Container

Applet

Window Panel

Frame

Fig. 4.10 Class Hierarchy for Panel and Frame

Component

The Component class is at the top of the AWT hierarchy. It is the abstract
class; its subclasses are used to create the visual components such as button, text
field, checkbox, etc. that facilitate user’s interaction. It defines the various methods
to manage events like mouse and keyboard input, resize and move the window,
etc.

Container

The Container class is a subclass of Component class. It is used to contain
various Component objects as well as other Container objects within it.
The Container class’ object groups, manages, and positions components
and treats them as a unit.

Panel

The Panel class is a subclass of Container; it simply implements the
Container class and does not add any new methods. It is the superclass of
Applet. The output that is directed to the applet is actually displayed on the
Panel object. A panel can be thought of as a window which does not contain
any title bar, menu bar, or border. That is why, when we run an applet inside a
browser, these items cannot be seen.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 375

A panel only serves to organize the components contained in it. The
components can be added directly into an applet or frame, but additional levels of
grouping can be provided by adding components to panels and adding panels to a
top-level applet or frame.

Window

The Window class is also a subclass of Container. A top-level window can
be created using the Window class. The top-level window is placed directly on
the desktop and is not contained within any other object. Generally, the objects of
the Window class are not directly created, rather, the Frame class, a subclass
of Window, is used.

Frame

Frame is a subclass of Window. It enables us to create an independent window
for our application. Unlike panel, a Frame window has its own title bar, menu
bar and resizing corners. It may also have pull down menu. We can think of a
Frame window as a fully functioning window.

Canvas

The Canvas class is not a part of the hierarchy for applet or frame windows.
The canvas component is specially built to support graphics operation. It provides
a blank window upon which you can draw.

4.6.2 Working With Frame Windows

The java.awt class provides a class named Frame, which extends to the
Window class and therefore, acts as a container itself.

The signature of this class is:
public class java.awt.Frame extends java.awt.Window
implements java.awt.MenuContainer

Frame is considered as a heavy weight container and is therefore, visible to the
user. Frame cannot be executed on the browser. It is only meant for a stand-
alone application. So, it cannot support the Web-enabled applications.

Constructors

The constructors are:
Frame()

It is used to generate a frame without any title.
Frame(java.lang.String)

This constructor is used to generate a frame, having a title as specified by the
String type parameter.

To properly execute the Frame application, it is mandatory for the
programmer to use two methods of the Component class. These two methods
are:

 public void setSize(int, int)

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
376 Material

This method is used for the purpose of setting the size of the frame with the specifieds
coordinates.

 public void setVisible(boolean)

This method is used for setting the visibilty of the frame. It takes a boolean
value as its argument. If one passes true, then the frame is visible to the user.
However, if false value is passed, then a user cannot see the frame on the
screen.

Program 4.30

import java.awt.*;

public class Frame1 extends Frame

{

Button b1;

Choice c1;

List l1;

ScrollPane sp1;

public Frame1()

{

Frame f1=new Frame(“Frame Demo”);

b1=new Button(“Interface”);

b1.setFont(new Font(“Arial”,Font.BOLD,20));

c1=new Choice();

c1.addItem(“Male”);

c1.addItem(“Female”);

l1=new List(3,true);

l1.add(“C”);

l1.add(“C++”);

l1.add(“Java”);

l1.add(“.Net”);

sp1=new ScrollPane();

Button b2=new Button(“Java Is A Language”);

b2.setFont(new Font(“Arial”,Font.BOLD,140));

sp1.add(b2);

f1.setLayout(new FlowLayout());

f1.add(sp1);

f1.add(c1);

f1.add(l1) ;

f1.add(b1);

f1.setSize(300,280);

f1.setVisible(true);

}

public static void main(String args[])

{

new Frame1();

}

}

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 377

Output of the program:

This example is a demonstration of the use of Frame class and how the
container frame contains different components on it.

Here the user-defined class Frame1 extends the Frame class to get the
status of a frame. In the body of the class, four components, i.e. one Button,
one Choice, one List and one ScrollPane are declared. Inside the
constructor, the frame is instantiated and all the declared components are
instantiated. Frame supports the BorderLayout by default. So, here, the
layout is explicitly changed/set to FlowLayout. Then the components are
attached to the frame by the invocation of the add method of the Frame class
and passing the intended objects in its parameter. Then the size and the visibility of
the frame are set by the invocation of pre-defined methods setSize() and
setVisible().

The frame then gets life by the instantiation of the user-defined frame class,
i.e., Frame1, inside the main() method.

4.6.3 Frame Window and Event Handling in a Frame
Window

The delegation model explains how event handling takes place in Java. You can
map the event delegation model to the actual Java statements that are used for
handling events. For example, when an end user clicks an AWT button, a message
is displayed in the text field. The source in this case is the AWT button that the end
user interacts with. The event listener that receives and processes the button click
event in the example is the ActionListener interface. The class you will
create to handle this event should implement the ActionListener interface.
The ActionListener interface defines a single method,
actionPerformed() that you will need to define within the class. The syntax
of the user-defined class to handle event is:

public class EventExample extends Applet implements
ActionListener
{
public void init()
{

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
378 Material

}
public void actionPerformed(ActionEvent ae)
{
}
}

The above syntax shows a class that implements the ActionListener
interface and defines the actionPerformed() method.

You will need to register the ActionListener interface to the button
after creating the AWT button. The addActionListener(reference)
method is used for registering the ActionListener interface. The syntax of
the user-defined class to register event is:

public class EventExample extends Applet implements
ActionListener
{
Button b1;
public void init()
{
b1=new Button(“Message”);
b1.addActionListener(this);
}
public void actionPerformed(ActionEvent ae)
{
}
}

The above syntax shows how to use the addActionListener()
method to register the AWT button, which is the source to the
ActionListener interface, which is the event listener.

The following program code shows the complete program to display a
message in the text field when a button is clicked:

Using Event Handling
import java.awt.*;
import java.applet.*;
import java.awt.event.*;
/*<applet code=”EventExamp” width=200 height=200>
</applet>*/
public class EventExamp extends Applet implements ActionListener
{
TextField t1;
Button b1;
public void init()
{
t1=new TextField(20);
b1=new Button(“Message”);
b1.addActionListener(this);
add(t1);
add(b1);
}
public void actionPerformed(ActionEvent ae)
{
if(ae.getSource()==b1)
{
t1.setText(“Event Handling in Java”);

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 379

}
}
}

The above code shows a process defined in the actionPerformed()
method that displays a message in the Text Field. The object, ae, is the object of
the ActionEvent class that is received by the actionPerformed()
method when the button click event occurs.

Figure 4.11 shows the output.

Fig. 4.11 Displaying Message in Textbox

ActionListener

The ActionListener interface declares a method that is called when an
action event is generated. The method defined in ActionListener interface
is a single method, void actionPerformed(ActionEvent ae). You
use the ActionListener interface when you handle events, such as clicking
AWT buttons. The addActionListener() method enables tracing a button
object for the occurrence of an action event. The following program code shows
how to implement the ActionListener interface:

Implementing ActionListener Interface
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*<applet code=actlistn height=300 width=300>
</applet>*/
public class actlistn extends Applet implements ActionListener
{
Button b1,b2,b3,b4;
public void init()
{
b1=new Button(“RED”);
b1.setBackground(Color.red);
b2=new Button(“BLUE”);
b2.setBackground(Color.blue);
b3=new Button(“GREEN”);
b3.setBackground(Color.green);

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
380 Material

b4=new Button(“YELLOW”);
b4.setBackground(Color.yellow);
setLayout(new BorderLayout());
add(b1,”North”);
add(b2,”South”);
add(b3,”East”);
add(b4,”West”);
b1.addActionListener(this);
b2.addActionListener(this);
b3.addActionListener(this);
b4.addActionListener(this);
}
public void actionPerformed(ActionEvent ae)
{
Object ob=ae.getSource();
if(ob==b1)
setBackground(Color.red);
if(ob==b2)
setBackground(Color.blue);
if(ob==b3)
setBackground(Color.green);
if(ob==b4)
setBackground(Color.yellow);
}
}

The above program code shows implementing the ActionListener
with the instances of AWT Button class. Border layout is set to the applet window
and four button objects, RED, BLUE, GREEN and YELLOW are created. When
you click a button the color of background of the window changes to the color of
the button label. Figure 4.12 shows the output of the above program code.

Fig. 4.12 Using ActionListener Interface

AdjustmentListener

Adjustmentlistener is responsible for handling all the events that are
generated when an end user moves the scrollbar. The various integer constants

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 381

used by the adjustment listener method are:

 BLOCK_DECREMENT

 BLOCK_INCREMENT

 TRACK

 UNIT_DECREMENT

 UNIT_INCREMENT

 ADJUSTMENT_VALUE_CHANGED

MouseListener

The MouseListener interface defines five methods for handling different
operations that are associated with a mouse. These methods are:

 void mouseClicked(MouseEvent me): Is invoked when you
click a mouse button.

 void mouseEntered(MouseEvent me): Is invoked when the
mouse enters an AWT object to which the mouse event is associated.

 void mouseExited(MouseEvent me): Is invoked when the
mouse leaves an AWT object to which the mouse event is associated.

 void mousePressed(MouseEvent me): Is invoked when the
mouse key is pressed.

 void mouseReleased(MouseEvent me): Is invoked when the
mouse key is released.

The addMouseListener() method is used for monitoring an AWT
object for the occurrence of a mouse event. The following program code shows
how to implement the MouseListener interface:

Implementing the MouseListener Interface
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*<applet code = mouslstn width = 400 height = 300></applet>*/
public class mouslstn extends Applet implements MouseListener
{
String msg=””;
int mx = 0, my = 0;
public void init()
{
addMouseListener(this);
}

public void mouseClicked(MouseEvent me)
{
mx = me.getX();
my = me.getY();
msg = “Mouse Clicked at Position “+mx+”:”+my;
repaint();
}
public void mouseEntered(MouseEvent me)
{
mx=10;

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
382 Material

my=10;
msg=”Mouse Entered”;
repaint();
}
public void mouseExited(MouseEvent me)
{
mx=10;
my=10;
msg=”Mouse Left”;
repaint();
}
public void mousePressed(MouseEvent me)
{ }
public void mouseReleased(MouseEvent me)
{ }
public void paint(Graphics g)
{
g.drawString(msg,mx,my);
}
}

The above code shows how to implement MouseListener with the
Applet window object. The mouseClicked() method displays the position
where the mouse is clicked in the Applet window. The me.getX() method
retrieves the position of the X coordinate where the mouse is clicked. The
me.getY() method retrieves the position of the Y coordinate where the mouse
is clicked. The mouseEntered() method displays a message, Mouse
Entered, when the mouse enters the applet window. The mouseExited()
method displays a message, Mouse Exited, when the mouse enters the applet
window.

Figure 4.13 shows the output.

Fig. 4.13 Using the MouseListener Interface

Note: You need to give empty implementation of the methods that you do not create in
a program.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 383

MouseMotionListener

MouseMotionListener is another built-in interface for handling mouse
events. This interface handles events that are associated with the movement of the
mouse. MouseMotionListener defines two methods that are associated
with the movement of a mouse. These methods are:

 void mouseMoved(MouseEvent me): Is invoked when you move
a mouse on an AWT object that is being traced for mouse movement events.

 void mouseDragged(MouseEvent me): Is invoked when a
mouse button is pressed and the mouse is moved on an AWT object that is
being traced for mouse movement events.

The addMouseMotionListener() method is used for tracing an
AWT object for the occurrence of a mouse movement event. The following program
code shows how to implement the MouseMotionListener interface:

Implementing MouseMotionListener
import java.applet.*;
import java.awt.*;
import java.awt.event.*;
/*<applet code=freedraw height=300 width=300>
</applet>*/
public class freedraw extends Applet implements
MouseMotionListener
{
int x,y;

public void init()
{
setLayout(new GridLayout(5,2));
x=0;
y=0;
addMouseMotionListener(this);
}

public void mouseDragged(MouseEvent me)
{
x=me.getX();
y=me.getY();
repaint();
}
public void mouseMoved(MouseEvent me)
{}

public void update(Graphics g)
{
paint(g);
}

public void paint(Graphics g)
{
g.fillOval(x,y,5,5);
}
}

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
384 Material

The above code shows how to implement the
MouseMotionListener interface with the applet window. A freehand
drawing mechanism is created where dragging the cursor plots pixels at those
positions creating an image. The mouseDragged() method is used for
retrieving and plotting the pixel positions.

Figure 4.14 shows the output.

Fig. 4.14 Freehand Drawing Using MouseMotionListener

WindowListener

The WindowListener interface defines seven methods for handling window
events. An application of the WindowListener interface is to close a
Frame window. The seven methods of the WindowListener interface are:

 void windowActivated(WindowEvent we): Is invoked when
a window is activated.

 void windowDeactivated(WindowEvent we): Is invoked
when a window is deactivated.

 void windowOpened(WindowEvent we): Is invoked when a
window is opened.

 void windowClosed(WindowEvent we): Is invoked when a
window is closed.

 void windowClosing(WindowEvent we): Is invoked when
an end user clicks the close button in a window.

 void windowIconified(WindowEvent we): Is invoked when
a window is minimized.

 void windowDeiconified(WindowEvent we): Is invoked
when a window is restored.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 385

The addWindowListener() method enables monitoring a window
for the occurrence of a window event. The following program code shows how to
implement the WindowListener interface:

Implementing the WindowListener Interface
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
public class windowlistn extends Frame implements WindowListener
{
Label l1,l2;
TextField t1,t2;
Button b1;
public windowlistn()
{
super(“Implementing Window Listener”);
setLayout(new GridLayout(4,2));
l1=new Label(“Name”);
l2=new Label(“Password”);
t1=new TextField(10);
t2=new TextField(10);
t3.setEchoChar(‘*’);
b1=new Button(“Send”);
add(l1);
add(t1);
add(l2);
add(t2);
add(b1);
addWindowListener(this);
}
public static void main(String ar[])
{
windowlistn d=new windowlistn();
d.setSize(400,400);
d.setVisible(true);
}
public void windowClosing(WindowEvent we)
{
this.setVisible(false);
System.exit(0);
}
public void windowActivated(WindowEvent we)
{}
public void windowDeactivated(WindowEvent we)
{}
public void windowOpened(WindowEvent we)
{}
public void windowClosed(WindowEvent we)
{}
public void windowIconified(WindowEvent we)
{}
public void windowDeiconified(WindowEvent we)
{}
}

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
386 Material

The above code shows closing a Frame window using the
WindowListener interface. The windowClosing() method uses the
setVisible method to close the frame window. The System.exit(0)
method stops the program from running.

Figure 4.15 shows the output.

Fig. 4.15 Closing the Frame Window

KeyListener

The KeyListener interface declares methods that handle input from the
keyboard. The methods defined in the KeyListener interface are:

 void keyPressed(KeyEvent ke): Is called when an end user
presses a key on the keyboard.

 void keyReleased(KeyEvent ke): Is called when an end user
releases a key on the keyboard.

 void keyTyped(KeyEvent ke): Is called when an end user types
a key on the keyboard, which is the operation of pressing and releasing the
key in one fast action.

The requestFocus() method of the Component class has to be
included in your program for receiving keyboard events. The
addKeylistener() method is used for monitoring keyboard events on
objects. The following program code shows how to use the KeyListener
interface for handling events:

Implementing the KeyListener Interface
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*<applet code=”test” width=”300" height=”200">
</applet>*/

public class test extends Applet implements KeyListener
{
String msg[]={“”,””,””,””,””,””,””,””,””,””};
int x=15;

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 387

int c=x;
int y=15;
int i=0;
public void init()
{
addKeyListener(this);
requestFocus();
}
public void keyPressed(KeyEvent ke)
{
System.out.println(msg);
if(c<200)
{
c=c+5;
msg[i]+=ke.getKeyChar();
System.out.println(msg);
}
else
{
x=15;
y=y+20;
c=x;
i=i+1;
msg[i]+=ke.getKeyChar();
}
if(i>9)
{
for(int k=0;k<10;k++)
{
msg[0]=””;
}
x=15;
y=15;
c=x;
i=0;
}
repaint();
}
public void keyReleased(KeyEvent ke)
{}
public void keyTyped(KeyEvent ke)
{
}
public void paint(Graphics g)
{
g.drawString(msg[i],x,y);
System.out.println(msg);
}
public void update(Graphics g)
{
paint(g);
}
}

The above code shows implementing the KeyListener Interface for
accepting input from the keyboard to the applet window. The getKeyChar()

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
388 Material

method enables taking input from the keyboard and displaying the information in
the applet window. The keyPressed method is used for defining the statements
that are run when an end user enters input from the keyboard.

Figure 4.16 shows the output.

Fig. 4.16 Using KeyListener

4.6.4 Display Information While Working with Graphics
and Color

The Graphics class provides different methods to draw and fill various shapes.

Drawing Lines

A line can be drawn using the drawLine() method of the Graphics class.
This method takes four parameters, which represent the coordinates of the end
points of the line.

The general form of the drawLine() method is

void drawLine(int a1, int b1, int a2, int b2)

where,

a1, b1 is the coordinate of the starting points of the line.

a2, b2 is the coordinate of the starting points of the line.

For example, the statement gra.drawLine(20,100,90,100) will draw
a straight line from the coordinate point (20,100) to (90,100) as shown in
Figure 4.17.

(20, 100) (90, 100)

Fig. 4.17 A Straight Line Having Coordinates (20,100) and (90,100)

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 389

Drawing and Filling Rectangles

A rectangle can be drawn by using the drawRect() method and it also takes
the four parameters.

The general form of the drawRect() method is

void drawLine(int a1, int b1, int w, int h)

where,

a1, b1 is the coordinate of the top left corner of the rectangle.

w is the width of the rectangle.

h is the height of the rectangle.

For example, the statement gra.drawRect(20,20,50,30) will draw a
rectangle starting at (20,20) with width of 50 pixels and height of 30 pixels
as shown in Figure 4.18.

30 (height)

50 (width)

(20, 20)

Fig. 4.18 A Rectangle with Width 50 pixels and Height 30 pixels

Note that the drawRect() method draws only the boundary of the rectangle.
To draw a solid (filled) rectangle, fillRect() method is used. This method
also takes four parameters similar to the drawRect() method.

To draw a solid rectangle having aforementioned parameters, we use the statement
gra.fillRect(20,20,50,30), which draws the rectangle as shown
in Figure 4.19.

(20, 20)

30 (height)

50 (width)

Fig.4.19 A Filled Rectangle Having Width 50 pixels and Height 30 pixels

A rounded outlined rectangle can be drawn by using the drawRoundRect()
method. This method takes the six parameters (Refer Figure 4.20).

The general form of the drawRoundRect() method is

void drawRoundRect(int a1, int b1, int w, int h, int xdia, int ydia)

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
390 Material

w (width)

h (height)

xdia, ydia (arc)

(a1, b1)

Fig. 4.20 A Rounded Rectangle

where,

xdia is the diameter of the rounding arc (along X-axis).

ydia is the diameter of the rounding arc (along Y-axis).

Similarly, a rounded filled rectangle can be drawn using
drawfillRoundRect() method. This method also takes six parameters
similar to the drawRoundRect() method.

Note: All the shapes are drawn relative to the Java’s coordinate system. The
origin (0, 0) of the coordinate system is located at its upper-left corner such that
the positive x values are to its right and the positive y values are to its bottom.

Drawing and Filling Ellipses and Circles

An ellipse can be drawn using the drawOval() method. The ellipse is drawn
within an imaginary bounding rectangle. This method takes four arguments in which
the first two represent the top left corner of the bounding rectangle and the next
two represent the width and height of the oval or the bounding rectangle
(Refer Figure 4.21).

The general form of the drawOval() method is

void drawOval(int a1, int b1, int w, int h)

where,

a1, b1 is the coordinate of the top left corner of the bounding rectangle.

w is the width of the bounding rectangle.

h is the height of the bounding rectangle.

height

width

Fig. 4.21 An Ellipse

Similarly, a circle can be drawn using this method but the dimension of width and
height should be same. That is, the bounding rectangle must be a square.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 391

Similar to the rectangle methods, the drawOval() method draws the
boundary of an oval and the fillOval() method draws a solid oval.

Drawing Arcs

An arc can be drawn using the drawArc() method. This method takes six
arguments in which the first four are same as the arguments of the drawoval()
method and the next two represents the starting angle of the arc and the sweep
angle around the arc, respectively.

The general form of the drawArc() method is

void drawArc(int a1, int b1, int w, int h, int strt_angle, int sweep_angle)

where,

a1,b1 is the coordinate of the top left corner of the bounding rectangle.

w is the width of the bounding rectangle.

h is the height of the bounding rectangle.

strt_angle is the starting angle of the arc (in degrees).

sweep_angle is the number of degrees (angular distance) around the arc (in
degrees).

The arc shown in Figure 4.22 has the starting angle as 00 degrees and sweep angle
as 1350.

0o

90o

180o

270o

135o

Arc

Fig. 4.22 An Arc of 1350 Sweep Angle

You can also draw filled arcs using the fillArc() method.

Drawing Polygons

A polygon is a closed geometrical figure, which can have any number of sides. A
polygon can be drawn by using the drawPolygon() method. This method
takes the three parameters (Refer Figure 4.23).

The general form of the drawPolygon() method is

void drawPolygon(int a[], int b[], int n)

where,

a[] is the array of integers having x-coordinates.

b[] is the array of integers having y-coordinates.

n is the total number of coordinate points required to draw a polygon.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
392 Material

(a1, b1) (a2, b2)

(a3, b3)

(a4, b4) (a5, b5)

(a6, b6)

Fig. 4.23 A Polygon having Six Sides

Example 4.11: An applet code to demonstrate the use of various methods of
Graphics class

import java.awt.*;
import java.applet.*;
public class GraphicsExample extends Applet
{
public void paint(Graphics gra)

{
gra.drawRect(10,40,80,40);
gra.fillRect(130,40,80,40);
gra.drawRoundRect(250,40,80,40,8,8);
gra.fillRoundRect(370,40,80,40,8,8);

gra.drawOval(0,125,80,40);
gra.fillOval(120,125,80,40);

gra.drawArc(240,125,80,40,0,180);
gra.fillArc(370,125,80,40,0,180);

int x[]={100,150,200,170,130,100};
int y[]={250,200,250,300,300,250};
int n=x.length;
gra.drawPolygon(x,y,n);

gra.drawOval(270,200,80,80);
gra.fillOval(380,200,80,80);

gra.drawLine(480,50,480,350);
}

}

The HTML code for GraphicsExample is
<HTML>

<HEAD>
</HEAD>
<BODY>

<CENTER>
<APPLET

CODE=”GraphicsExample.class”
WIDTH =”600"
HEIGHT=”350>

</APPLET>

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 393

</CENTER>
</BODY>

</HTML>

The output of the HTML code is:

Using Color Class

The Color class provides various methods to use any color you want in the
display. It defines the various color constants which can be directly used only by
specifying the color of your choice. In addition, the Color class allows creation
of millions of colors. The Color class contains three primitive colors namely,
red, blue and green and all other colors are a combination of these three colors.

One of the constructors that is used to create color of your choice is

Color(int red, int green, int blue)

where,

red, green, blue can take any value between 0 and 255.

Setting Background and Foreground Color

To set the color of the background of an applet window, setBackground()
method is used.

The general form of the setBackground() method is

void setBackground(mycolor)

Similarly, to set the foreground color to a specific color, that is, the color of text,
setForeground() method is used.

The general form of the setForeground() method is

void setForeground(mycolor)

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
394 Material

where,

mycolor is one of the color constants or the new color created by the user.

The list of color constants is as follows:

 Color.red
 Color.orange
 Color.gray
 Color.darkGray
 Color.lightGray
 Color.cyan
 Color.pink
 Color.white
 Color.blue
 Color.green
 Color.black
 Color.yellow

Example 4.12: An applet code to demonstrate the use of Color class

import java.applet.*;
import java.awt.*;
public class ColorExample extends Applet
{

Color c1,c2;
public void init()
{

//creating new colors
Color c1=new Color(0,0,255);
Color c2=new Color(100,220, 190);

}
public void paint(Graphics gra)
{

setBackground(Color.white);//setting background
color

//drawing a line of color c1
gra.setColor(c1);
gra.drawLine(10,20,150,60);

//drawing a solid oval of color c2
gra.setColor(c2);
gra.fillOval(10,50,100,200);

//drawing a rectangle of red color
gra.setColor(Color.red);
gra.drawRect(150,120,60,120);

}
}

The HTML code for ColorExample is

<HTML>
<HEAD>
</HEAD>
<BODY>

<CENTER>
<APPLET

CODE=”ColorExample.class”

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 395

WIDTH =”600"
HEIGHT=”250">

</APPLET>
</CENTER>

</BODY>
</HTML>

The output of the HTML code is:

Line

Rectangle

Red-colour oval

4.6.5 Working with Fonts

The Font class is used to apply different font styles to the text. To select or apply
a new font, a font object should to be constructed.

The syntax of the constructor of Font class is as follows:
Font(String font_name, int font_style, int font_size)

where,

font_name is the name of the font.

font_style is font style.

font_size is the size of the font in points.

Some other methods of Font class are listed in Table 4.6. Also, refer Example
4.13 to understand the use of Font class.

Table 4.18 Methods of Font Class

Method Description
static Font getFont() It returns the currently selected font.
int getSize() It returns the size of the font.
String getName() It returns the name of the font.
int getStyle() It returns the style of the font.
String getFamily() It returns the name of the family of the font.

Example 4.13: A program to demonstrate the use of Font class is as follows:
import javax.swing.*;
import java.awt.*;
public class FontExample extends JPanel
{
public void paintComponent(Graphics gra)

{

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
396 Material

super.paintComponent(gra);
Graphics2D gra2D=(Graphics2D)gra;
Font MyFont=new Font(“Courier New”, Font.BOLD,16);
gra2D.setFont(MyFont);
gra2D.drawString(“Hello Java”,20,40);
Font f=gra2D.getFont();
String fontName=f.getName();
gra2D.drawString(“Font name is :”+fontName,20,80);
String fontFamily=f.getFamily();
gra2D.drawString(“Font family is :”

+fontFamily,20,120);
int fontSize=f.getSize();
gra2D.drawString(“Font size is :”+fontSize,20,160);
int fontStyle=f.getStyle();
gra2D.drawString(“Font style is :”+fontStyle,20,200);

}
public static void main(String[] args)
{

FontExample fe = new FontExample();
JFrame fr = new JFrame(“Graphics”);
fr.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
fr.add(fe);
fr.setSize(400,300);
fr.setLocationRelativeTo(null);
fr.setVisible(true);

}
}

Check Your Progress

10. Define the term Applet.

11. What does the ComponentEvent class represent?

12. Define the term AudioClip.

13. What is window class?

14. Define ActionListener interface.

15. What is the use of addMouseListener () method?

4.7 AWT CONTROLS AND LAYOUT
MANAGERS

The components that allow a user to interact with a GUI-based application are
called controls. The various controls supported by AWT are labels, push buttons,
checkboxes, choice list, list, scrollbars, text area, text field, menu bar, etc. The
controls can be added to or removed from a window using the methods defined in
the Container class.

The syntax to add a control is as follows:
Component add(Component obj)

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 397

The syntax to remove a control is as follows:
void remove(Component obj)

where,

obj is an instance of the control that is to be added or removed.

To remove all the controls from a window, removeAll() method can be
used.

Some of the commonly used controls are discussed as follows:

Label

A label is a simple control which is used to display text (non-editable) on the
window. Since it does not possess any user interactive feature, it is considered as
a passive control.

The Label class defines the following constructors:
Label() //first
Label(String str1) //second
Label(String str1, int str1_align) //third

The first constructor creates a blank label. The second constructor creates a label
containing the string specified by str1. The third constructor creates a label
containing the string str1 and str1_align determines the alignment of the
text contained in the label. It can be one of these: Label.LEFT ,
Label.RIGHT or Label.CENTER. The default alignment of text is LEFT.

Push Button or Button

A push button is an active control that has a 3-dimensional appearance. It displays
the text and triggers an event when it is clicked or activated.

The Button class defines the following constructors:
Button() //first
Button(String str1) //second

The first constructor creates a button with blank label. The second constructor
creates a button having str1 as label.

Checkbox

A checkbox is a control that consists of a combination of a small box and a label.
The label provides the description of the box with which it is associated. It is a
two-state control having states true (checked) and false (unchecked). The
state of a checkbox can be changed by clicking on it. Checkbox is an object of
Checkbox class.

The Checkbox class defines the following constructors:
Checkbox() / /
first
Checkbox(String str1) //second
Checkbox(String str1, boolean state) //third
Checkbox(String str1, boolean state, CheckboxGroup group)

//fourth

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
398 Material

The first constructor creates a checkbox with an empty label. The second
constructor creates a checkbox having str1 as label. The third constructor creates
a checkbox having str1 as label and state is used to set the initial state of the
checkbox. If it is true, the checkbox is checked, else it is unchecked. The
default state of the checkbox is false. In the fourth constructors the group
represents the name of the group to which the checkbox belongs.

The checkbox group can be divided into two categories: non-mutually
exclusive group, in which more than one item of the group can be checked and
mutually exclusive group, in which only one item of the group can be selected.

Choice

A choice control creates a drop-down list of textual entries. When the user clicks
on it a list of choices appears. The user can select only one of the items contained
in the list and only the selected item is displayed. Choice is an object of Choice
class.

The Choice class defines only the default constructor, that is, Choice()which
creates an empty choice list.

In order to add items to the list, add() method is used which takes the name of
the item to be added as an argument.

List

List, like Choice, displays a list of items. However, list allows the user to make
multiple selections from the given list of items. Using list any number of items can
be displayed and multiple selections can be made. List is an object of List
class.

The List class defines the following constructors:
List()
//first
List(int Rows) / /
second
List(int Rows, boolean multi_select) //third

The first constructor creates an empty list which allows only single selection of
items. The second constructor creates a list where Rows specifies the number of
visible entries in the list. In the third constructor the multi_select represents
the allowable selections in the list. If it is true, then multiple selections are allowed
at a time otherwise only one item can be selected at a time

To add items to the list, add() method is used.

Text Field and Text Area

Text field and text area controls create a single-line and multi-line text area,
respectively. These controls are provided by two classes which inherit
TextComponent class.

The text field allows the user to enter and edit the text in the text field using cut,
copy and paste keys, arrow keys and mouse selections. It is an object of
TextField class.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 399

The TextField class defines the following constructors:
TextField() / /
first
TextField(int cols) //second
TextField(String str1) //third
TextField(String str1, int cols) //fourth

The first constructor creates an empty text field. The second constructor creates a
text field in which cols represents the width of the text field. That is, the maximum
number of characters the text field can contain. The third constructor creates a
text field where str1 specifies the string contained in the text field. The fourth
constructor creates a text field containing string str1 and having its width
represented by cols.

The text area creates a multi-line text area. It is an object of TextArea class.

The TextArea class defines the following constructors:
TextArea() //first
TextArea(String str1) //second
TextArea (int rows, int cols) //third
TextArea (String str1, int rows, int cols) //fourth
TextArea (String str1, int rows, int cols, int scroll) //fifth

The first constructor creates an empty text area. The second constructor creates a
text area containing a string specified by str1. The third constructor creates a
text area such that rows represents the height of the text area. That is, the maximum
number of lines the text area can contain and cols represents the width of the
text area. That is, the maximum number of characters each line of the text area can
contain. The fourth constructor creates a text area having string str1, height
equals to rows and width equal to cols. The fifth constructor creates a text
area similar to the one created using fourth constructor except for scroll which
specifies the scrollbars the text area will have. It can take one of these values––
SCROLLBARS_NONE , SCROLLBARS_BOTH , SCROLLBARS_
HORIZONTAL_ONLY and SCROLLBARS_VERTICAL_ONLY.

Scrollbar

Scrollbars are horizontally or vertically oriented bars which allow the user to select
items between a specified minimum and maximum values. Each end of the scrollbar
has an arrow which can be clicked to change the current value of the scrollbar.
The slider box indicates the current value of the scrollbar which can be dragged
by the user to a new position. Scrollbar is an object of Scrollbar class.

The Scrollbar class defines the following constructors:
Scrollbar() //first
Scrollbar(int orientation) //second
Scrollbar(int orientation, int initial_value, int visible_units,
int min,int max) //third

The first constructor creates a vertical scrollbar. The second constructor creates a
scrollbar in which orientation specifies the orientation of the scrollbar which
can take one of the following values Scrollbar.HORIZONTAL or
Scrollbar.VERTICAL. The third constructor creates a scrollbar in which
orientation specifies the orientation of the scrollbar, initial_value

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
400 Material

represents the initial value of the scrollbar, visible_units represents the
number of visible items of a scrollbar at a time and min and max represents the
minimum and maximum values for the scrollbar.

AWT Layout Managers

As already discussed, AWT container is an instance of Container class which
holds various components and other containers. Components are first created,
and then added to a container. Each container object in Java has a default layout
manager which determines the dimension and exact positioning of these components
within a container. For example, window is a container that may contain components,
such as buttons, labels and text fields. When the components are added to the
window, the layout manager in effect will determine the size and placement of
these components inside the window. The java.awt package provides various
predefined layout managers each of which implements LayoutManager
interface. These layout managers differ in the manner they arrange various
components within a component.
The general form to set a specific type of layout manager is as follows:

void setLayout(LayoutManager lm)

where,

lm is a reference to the desired layout manager.

If setLayout() method is not invoked, then the default layout manager is
invoked automatically.

Java AWT provides different layout managers, each of which implements its own
layout policy. Some of the commonly used layout managers are discussed here.

FlowLayout

FlowLayout is the simplest of all the layout managers. It positions the
components in the order they are added to the container. It places the components
from left to right, that is, in horizontal rows. Once a row gets completely filled with
components then the remaining components are placed in the next row. It is the
default layout manager for Applet and Panel. Each component is evenly
separated from its neighbor components by leaving a small space not only from
above and below it, but also from left and right.

The FlowLayout class defines the following constructors:
FlowLayout()

//first
FlowLayout(int alignment) / /
second
FlowLayout(int alignment, int hor, int ver) //third

The first constructor creates a default layout. It positions the components in the
center and leaves a space of five pixels between each component. The second
constructor creates a flow layout in which alignment specifies the alignment
of laid out components. It can take one of these constants––
FlowLayout.LEFT, FlowLayout.RIGHT and FlowLayout.
CENTER. The third constructor creates a flow layout in which hor and ver
specify the horizontal and vertical space left between each component, respectively

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 401

and alignment specifies the alignment of components. Example 4.2
demonstrates the use of FlowLayout class.

Example 4.14: An applet program to demonstrate the use of FlowLayout
class is as follows:

import java.applet.*;
import java.awt.*;
import java.awt.event.*;
public class FlowLayoutExample extends Applet
{

Button b1,b2,b3;
Label l1,l2,l3;
public void init()
{

setLayout(new FlowLayout(FlowLayout.LEFT,100,50));
b1 = new Button(“Button1”);
b2 = new Button(“Button2”);
b3 = new Button(“Button3”);
l1 = new Label(“Label1”);
l2 = new Label(“Label2”);
l3 = new Label(“Label3”);
add(b1);
add(l1);
add(b2);
add(l2);
add(b3);
add(l3);

}
}

The HTML code for FlowLayoutExample is as follows:
<HTML>

<HEAD>
</HEAD>
<BODY>

<CENTER>
<APPLET CODE=”FlowLayoutExample.class”
WIDTH=600
HEIGHT=250>

</APPLET>
</CENTER>

</BODY>
</HTML>

The output of the HTML code is:

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
402 Material

BorderLayout

BorderLayout is the default layout manager for Window, Dialog and
Frame classes. It positions the components into five regions––east, west, north,
south and center. Each region can contain a single component. When a component
is added to a particular region, it is extended to fit that region. That is, only one
component can be placed within a region at a time. An attempt to add more than
one component to a region hides the previously added component by the recently
added component.

The BorderLayout class defines the following constructors:
BorderLayout() //first
BorderLayout(int hor, int ver) //second

The first constructor creates a default border layout. In the second constructor
hor and ver specify the horizontal and the vertical space left between each
component, respectively.

To add a component to a specific region, add() method is used.

The general form of add() method is as follows:
void add(Component obj, Object region)

where,

obj is the component to be added.

region represents the name of region where the component is added. It can take
one of these constants, BorderLayout.NORTH, BorderLayout.SOUTH,
BorderLayout.CENTER , BorderLayout.EAST and
BorderLayout.WEST

Example 4.15 demonstrates the use of BorderLayout class.

Example 4.15: An applet to demonstrate the use of BorderLayout class is
as follows:

import java.applet.*;
import java.awt.*;
public class BorderLayoutExample extends Applet
{

Button b1,b2,b3,b4,b5;
Label l1;

public void init()
{

//set layout for the applet to be BorderLayout
setLayout(new BorderLayout());

//creating components
b1=new Button(“Left”);
b2=new Button(“Right”);
b3=new Button(“Top”);
b4=new Button(“Button”);
b5=new Button(“Middle”);
l1=new Label(“Center”);

//adding components
add(b1,BorderLayout.WEST);
add(b2,BorderLayout.EAST);

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 403

add(b3,BorderLayout.NORTH);
add(b4,BorderLayout.SOUTH);
add(b5,BorderLayout.CENTER);

add(l1,BorderLayout.CENTER); /*label hides the button*/
}

}

The HTML code for BorderLayoutExample is as follows:
<HTML>

<HEAD>
</HEAD>
<BODY>

<CENTER>
<APPLET CODE=”BorderLayoutExample.class”
WIDTH=600
HEIGHT=250>

</APPLET>
</CENTER>

</BODY>
</HTML>

The output of the HTML code is:

GridLayout

The GridLayout manager subdivides the specified region into a grid/matrix
of rows and columns. The overall available region is divided equally between
rows and columns, such that each row and each column in the layout is of the
same size. The component added to the cell gets expanded to the size of that cell.
Example 4.16 illustrates the use of GridLayout class.

The GridLayout class defines the following constructors:
GridLayout() //first
GridLayout(int rows, int cols) //second
GridLayout(int rows, int cols, int hor, int ver)

//third

The first constructor creates a single-column layout. The second constructor creates
a grid layout in which rows represents the number of rows and cols represents
the number of columns in the grid layout. The third constructor allows to specify

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
404 Material

the horizontal and vertical space left between each component using hor and
ver respectively.

Example 4.16: An applet to demonstrate the use of GridLayout class is as
follows:

import java.applet.*;
import java.awt.*;
public class GridLayoutExample extends Applet
{

Button b1,b2;
Checkbox c1;
Scrollbar s1;
Label l1;
TextField t1;
TextArea ta1;
Choice choicelist;
List list;
String Year[]={“January”,”February”,”March”,”April”,

 “May”,”June”,”July”,”August”,”September”,”October”,
“November”,”December”};
String Week[]={“Monday”, “Tuesday”, “Wednesday”,

“Thursday”, “Friday”, “Saturday”, “Sunday”};
public void init()
{

/*creates a gridlayout having 3 rows and 3 columns and
12 pixel horizontal and vertical spacing between
components*/

setLayout(new GridLayout(3,3,12,12));

//creating various components
b1 = new Button(“Button1”);
c1 = new Checkbox (“Checkbox”, true);
s1 = new Scrollbar();
b2 = new Button(“Button2”);
l1= new Label(“Label Component”);
t1 = new TextField(“TextField Component”);
ta1 = new TextArea (5, 20);
choicelist = new Choice ();

list = new List(7,true);

//adding components to the applet window
add(b1);
add(c1);
add(s1);
add(b2);
add(l1);
add(t1);
add (ta1);
for (int i = 0; i < Year.length; ++i)
{

choicelist.add(Year[i]);
}
add (choicelist);
ta1.setText (“TextArea Component”);
for (int i = 0; i < Week.length; ++i)
{

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 405

list.add(Week[i]);
}
add (list);

}
}

The HTML code for GridLayoutExample is as follows:
<HTML>

<HEAD>
</HEAD>
<BODY>

<CENTER>
<APPLET CODE=”GridLayoutExample.class”
WIDTH=600
HEIGHT=250>

</APPLET>
</CENTER>

</BODY>
</HTML>

The output of the HTML code is:

CardLayout

CardLayout is used to manage a large number of components. It organizes
the components in layers. The components are arranged like a deck of cards such
that only one of them is visible at a time. In order to use card layout, it is required
to create an object of type Panel that will hold the cards. All these cards form
must also be the objects of type Panel. The layout manager of the panel must
be set to CardLayout.

The CardLayout class defines the following constructors:
CardLayout() //first
Cardlayout(int hor, int ver) //second

The first constructor creates a default card layout. The second constructor creates
a card layout in which hor and ver specify the horizontal and vertical space left
between each component respectively. Example 4.17 illustrates the use of
CardLayout class.

Example 4.17: An applet to demonstrate the use of CardLayout class is as
follows:

import java.awt.*;
import java.applet.Applet;
import java.awt.event.*;

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
406 Material

public class CardLayoutExample extends Applet implements ActionListener
{
Panel mainPanel; // this container will hold the cards
Panel p1, p2; //these panels will represent the cards
Panel b; // this panel will hold buttons
Button button1, button2; //buttons
CardLayout cl; //cardlayout object
public void init()
{

mainPanel = new Panel();
cl = new CardLayout();
mainPanel.setLayout (cl);
//set main Panel’s layout
//to be Card Layout
//creating two panels (card panels) to show
p1 = new Panel();
p1.add(new Label(“First Card”));
p1.setBackground(Color.pink);
p2 = new Panel();
p2.add(new Label(“Second Card”));
p2.setBackground(Color.yellow);
//creating two buttons and add ActionListener
button1 = new Button(“First”);
button1.addActionListener(this);

button2 = new Button(“Second”);
button2.addActionListener(this);
//creating Panel for adding buttons to it

b = new Panel();
b.add(button1);

b.add(button2);
//setting layout for the applet to be BorderLayout
this.setLayout(new BorderLayout());
this.add(b, BorderLayout.SOUTH);
this.add(mainPanel, BorderLayout.CENTER);
//adding two card panels to the main panel container
mainPanel.add(p1, “First”);
mainPanel.add(p2, “Second”);
}
//Button clicks will respond by showing the so named Panel
public void actionPerformed(ActionEvent e)
{
if (e.getSource() == button1)
cl.show(mainPanel, “First”);
if (e.getSource() == button2)
cl.show(mainPanel, “Second”);
}
}

The HTML code for CardLayoutExample is as follows:
<HTML>

<HEAD>
</HEAD>
<BODY>

<CENTER>
<APPLET CODE=”CardLayoutExample.class”
WIDTH=600
HEIGHT=250>

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 407

</APPLET>
</CENTER>

</BODY>
</HTML>

The output of the HTML code is:

4.7.1 AWT Menus

A MenuBar represents a list of menus which can be added to the top of a top
level window. Each menu is associated with a drop-down list of menu items. The
concept of MenuBar can be implemented by using three Java classes, namely
MenuBar, Menu and MenuItem.

A MenuBar is represented by the object of class MenuBar in which
only the default constructor is defined. A MenuBar may consist of one or more
menus represented by the objects of the class Menu. A menu includes a list of
menu items represented by the objects of the class MenuItem.

The Menu class defines the following constructors:
Menu() //first
Menu(String optionName) //second
Menu(String optionName, boolean removable) // third

The first constructor creates an empty Menu. The second constructor creates a
Menu with the name of the Menu specified by optionName. In the third
constructor, removable may have one of the two values: True or False.
If it is True, then the Menu can float freely in the application window; otherwise,
it remains attached to the MenuBar.

The MenuItem class defines the following constructors:
MenuItem() //first
MenuItem(String itemName) //second
MenuItem(String itemName, MenuShortcut shortcut) //third

The first constructor creates a MenuItem with no name and no menu shortcut. In
the second constructor, itemName specifies the name of the MenuItem. In the
third constructor, shortcut specifies the menu shortcut associated with the
MenuItem.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
408 Material

A checkable MenuItem can also be created by using
CheckboxMenuItem, which is a subclass of MenuItem.

The CheckboxMenuItem defines the following constructors:
CheckboxMenuItem()
CheckboxMenuItem(String itemName)
CheckboxMenuItem(String itemName, boolean checkable)

The first constructor creates an unchecked MenuItem with no name. The second
constructor creates an unchecked MenuItem with the name of the MenuItem
specified by the itemName. In the third constructor, checkable can either
be True or False. If it is True, then the MenuItem is initially checked,
otherwise, it is unchecked.

There are two types of menus which are given as follows:

 Regular Menus: They are placed at the top of the application window
within a MenuBar.

 Pop-Up Menus: They appear in the window when the user clicks. For
example, a pop-up menu appears on the right-click of the mouse.

Program 4.30: An applet to demonstrate the use of Menubar class, Menu
class and MenuItem class

import java.awt.*;
import java.applet.*;
import java.awt.event.*;
class Mframe extends Frame
{

String message = “”;
Mframe(String title)
{

super(title);
MenuBar mb = new MenuBar();
setMenuBar(mb);
Menu m1 = new Menu(“File”);
MenuItem New = new MenuItem(“New”);
MenuItem open = new MenuItem(“Open”);
MenuItem close = new MenuItem(“Close”);
MenuItem save = new MenuItem(“Save”);
MenuItem exit = new MenuItem(“Exit”);
m1.add(New);
m1.add(open);
m1.add(close);
m1.add(save);
m1.addSeparator();//creates a horizontal line for

//partitioning
m1.add(exit);
mb.add(m1);
Menu m2 = new Menu(“Edit”);
MenuItem cut = new MenuItem(“Cut”);
MenuItem copy = new MenuItem(“Copy”);
MenuItem paste = new MenuItem(“Paste”);
m1.addSeparator();//creates a horizontal line for

//partitioning
Menu search = new Menu(“Search”);
MenuItem find = new MenuItem(“Find”);

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 409

MenuItem replace = new MenuItem(“Replace”);
search.add(find);
search.add(replace);
m2.add(cut);
m2.add(copy);
m2.add(paste);
m2.add(search);
mb.add(m2);
Handler handler = new Handler(this);
New.addActionListener(handler);
open.addActionListener(handler);
close.addActionListener(handler);
save.addActionListener(handler);
exit.addActionListener(handler);
cut.addActionListener(handler);
copy.addActionListener(handler);
paste.addActionListener(handler);
search.addActionListener(handler);
find.addActionListener(handler);
replace.addActionListener(handler);

}
public void paint(Graphics g)
{

g.drawString(message, 10, 200);
}

}
class Handler implements ActionListener
{

Mframe mf;
public Handler(Mframe mf)
{

this.mf = mf;
}
public void actionPerformed(ActionEvent ae)
{

String message = “You clicked: “;
String str = (String)ae.getActionCommand();
if(str.equals(“New”))

message = message + “New”;
if(str.equals(“Open”))

message = message + “Open”;
if(str.equals(“Close”))

message = message + “Close”;
if(str.equals(“Save”))

message = message + “Save”;
if(str.equals(“Exit”))

message = message + “Exit”;
if(str.equals(“Cut”))

message = message + “Cut”;
if(str.equals(“Copy”))

message = message + “Copy”;
if(str.equals(“Paste”))

message = message + “Paste”;
if(str.equals(“Search”))

message = message + “Search”;

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
410 Material

if(str.equals(“Find”))
message = message + “Find”;

if(str.equals(“Replace”))
message = message + “Replace”;

mf.message = message;
mf.repaint();

}
}
public class MenuBarDemo extends Applet
{

Frame f;
public void init()
{

f=new Mframe(“Demo of menu”);
f.setSize(250, 250);
f.setVisible(true);

}

}

The HTML code for MenuBarDemo is
<HTML>

<HEAD>
</HEAD>
<BODY>

<CENTER>
<APPLET
CODE=“MenuBarDemo.class”
WIDTH=600
HEIGHT=250>
</APPLET>

</CENTER>
</BODY>

</HTML>

Output of the Program:

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 411

4.7.2 Dialog Class

The java.awt package provides a class known as FileDialog. It is a
child class of Dialog class. The signature of this class is:

 public class java.awt.FileDialog extends
java.awt.Dialog

This class displays a dialog box on the screen, so that the user can choose
a file from it. Until the dialog window is closed; rest of the application goes to a
blocked state. The FileDialog is known as a modal dialog.

A FileDialog has two modes:

LOAD mode

SAVE mode

Constructors

The various constructors are:
FileDialog(Frame)

For the purpose of loading a file, a FileDialog is constructed by this constructor.
FileDialog(Frame, String)

This constructor also does the same action as of the above. However, here the
dialog window gets a label on it.

FileDialog(Frame, String, int)

With addition to the above action, here the mode for the file is specified, i.e., either
FileDialog.LOAD or FileDialog.SAVE.

Methods

The commonly used methods of the FileDialog class are:
public java.lang.String getFile()

This method is used to retrieve the file from the corresponding file dialog.
getFileNameFilter()

It is used to get the filtered file name from the file dialog.
public int getMode()

This method is used to get the mode of the concerned file dialog, which is either
LOAD or SAVE.

getDirectory()

It is used to get the directory name of the concerned file dialog.
setDirectory(java.lang.String)

The directory name of the concerned file dialog can be set by this method with the
specified name.

public void setFile(java.lang.String)

One can set the specified file for the concerned file dialog by this method.
public void setMode(int)

One can set the specified mode for the concerned file dialog by this method.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
412 Material

Check Your Progress

16. Explain the term drawing lines.

17. Define the term color class.

18. What is meant by AWT controls?

19. Elaborate the term layout manager.

20. What does a MenuBar represent?

4.8 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. By the use of File class, one can directly deal with the files, directories and
file system of the platform. Actually, Java does not provide a crystal clear
view of how things are done in the background when the programmer uses
the File class. A programmer has to create the File object through the
constructors provided by the File class.

2. A directory is a collection of files and directories. In Java, directories are
also treated as files. If one wishes to deal with the directories, then the list ()
method can be used. When the list () method is invoked by the directory
object (created through File class constructor), then the list of other files
and directories are extracted from it. This method is overloaded. One of
them is String [] list ().

3. A stream means a channel or a pipe. Like flow of water in a pipe, data
flows from the source to the destination through the channels in Java.

4. There are two types of streams: input streams and output streams.

5. The Internet provides TCP/IP protocols for delivery services.

6. The combination of IP address and port number is known as socket.

7. Domain name is very difficult to remember the IP address to connect to the
Internet. The Domain Name System (DNS) is used to overcome this
problem. DNS maps one particular IP address to a string of characters,
which is popularly known as domain name.

8. The InetAddress class is used to resolve the domain names to their IP
addresses and vice versa.

9. If any error occurs while creating the datagram socket,
SocketException is thrown.

10. An applet is a dynamic and interactive program that can run inside a web
page displayed by a Java-capable browser, such as a HotJava Browser or
an Internet Explorer browser, which are World Wide Web (WWW)
browsers used to view web pages. An applet is a class present in a java.applet
package. A special HTML tag is embedded in an applet to make it run on
the web browser. The appletviewer application, present in the jdk, is used
to run and check the applets. An applet has added advantages, such as

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 413

frame, event-handing facility, graphics context and surrounding user
interfaces.

11. The ComponentEvent class represents the event that is generated
when the position, size or visibility of a component alters.

12. AudioClip is an interface present in java.applet package. This interface is
used to play an AudioClip in the background of an applet. This interface
supports only .au extension file.

13. The Window class is also a subclass of Container. A top-level window can
be created using the Window class. The top-level window is placed directly
on the desktop and is not contained within any other object. Generally, the
objects of the Window class are not directly created, rather, the Frame
class, a subclass of Window, is used.

14. The ActionListener interface declares a method that is called when
an action event is generated. The method defined in ActionListener
interface is a single method, void actionPerformed,
ActionEvent.

15. The addMouseListener () method is used for monitoring an AWT
object for the occurrence of a mouse event.

16. A line can be drawn using the dwawLine () method of the Graphics
class.

17. The Color class provides various methods to use any color you want in the
display. It defines the various color constants which can be directly used
only by specifying the color of your choice. In addition, the Color class
allows creation of millions of colors. The Color class contains three primitive
colors namely, red, blue and green and all other colors are a combination of
these three colors.

18. AWT controls are components which allow a user to interact with the
application. Some of the AWT controls are labels, buttons, checkbox,
choice, list, text field, text area, scroll bar, etc.

19. A layout manager determines the dimension and exact positioning of
components within a container. For example, window is a container that
may contain components, such as buttons, labels and text fields.

20. A MenuBar represents a list of menus which can be added to the top of
a top level window.

4.9 SUMMARY

 By the use of File class, one can directly deal with the files, directories and
file system of the platform. Actually, Java does not provide a crystal clear
view of how things are done in the background when the programmer uses
the File class. A programmer has to create the File object through the
constructors provided by the File class.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
414 Material

 File class constructors are used for the creation of the object of the File
class.

 A directory is a collection of files and directories. In Java, directories are
also treated as files. If one wishes to deal with the directories, then the list ()
method can be used. When the list () method is invoked by the directory
object (created through File class constructor), then the list of other files
and directories are extracted from it. This method is overloaded. One of
them is String [] list ().

 A stream means a channel or a pipe. Like flow of water in a pipe, data
flows from the source to the destination through the channels in Java.

 Java provides two types of streams: input streams and output streams.

 High-level input streams take their input from other input streams, whereas
high level output streams direct their output to other output streams.

 High-level input streams are: BufferedInputStream ,
DataInputStream and ObjectInputStream, etc. High-level
output streams are: BufferedOutputStream,
DataOutputStream, ObjectOutputStream,
PrintStream, etc.

 The network systems comprises a server, client and communication media.

 A machine running a process that sends request for the services is known
as client. On the other hand, a machine running a process that responds to
the client’s request by offering requested services is known as server.

 The three most commonly used protocols within the TCP/IP suite are IP,
TCP and UDP.

 TCP is a trustworthy and connection oriented protocol that permits the
data that originates from source machine to be delivered without error to
the destination. TCP sets up a connection between the source machine and
the destination machine by transmitting control information before initiating
the communication. This mechanism is known as handshake.

 The UDP (User Datagram Protocol) is considered as an untrustworthy and
connectionless protocol which enables application to send independent,
self-contained messages known as datagrams over the network.

 Every machine on the Internet is identified by a numerical address known
as IP address.

 The grouping of IP address and port number is acknowledged as socket. A
socket identifies an endpoint of a two way communication link between
two programs running on the network.

 Domain name is very difficult to remember the IP address to connect to the
Internet. The Domain Name System (DNS) is used to overcome this
problem. DNS maps one particular IP address to a string of characters,
which is popularly known as domain name.

 The InetAddress class is used to resolve the domain names to their
IP addresses and vice versa.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 415

 If any error occurs while creating the datagram socket,
SocketException is thrown.

 An applet is a dynamic and interactive program that can run inside a web
page displayed by a Java-capable browser, such as a HotJava Browser or
an Internet Explorer browser, which are World Wide Web (WWW)
browsers used to view web pages. An applet is a class present in a
java.applet package.

 A special HTML tag is embedded in an applet to make it run on the web
browser. The applet viewer application, present in the jdk, is used to run
and check the applets. An applet has added advantages, such as frame,
event-handing facility, graphics context and surrounding user interfaces.

 The applet class is a member of the Java Application Programming Interface
(API) package, Java.applet. The applet class is used for creating a Java
program that displays an applet.

 Java 1.1 event classes encapsulate all types of events occurring in the system.
A successful handling of the events requires in-depth understanding of these
classes.

 AudioClip is an interface present in java.applet package. This interface is
used to play an AudioClip in the background of an applet. This interface
supports only .au extension file.

 The Window class is also a subclass of Container. A top-level window can
be created using the Window class. The top-level window is placed directly
on the desktop and is not contained within any other object. Generally, the
objects of the Window class are not directly created, rather, the Frame
class, a subclass of Window is used.

 The ActionListener interface declares a method that is called when
an action event is generated. The method defined in ActionListener
interface is a single method, void actionPerformed ActionEvent
ae).

 The addMouseListener () method is used for monitoring an AWT
object for the occurrence of a mouse event.

 A line can be drawn using the dwawLine () method of the Graphics
class.

 The Color class provides various methods to use any color you want in the
display. It defines the various color constants which can be directly used
only by specifying the color of your choice. In addition, the Color class
allows creation of millions of colors. The Color class contains three primitive
colors namely, red, blue and green and all other colors are a combination of
these three colors.

 The Font class is used to apply different font styles to the text. To select
or apply a new font, a font object should to be constructed.

 AWT controls are components which allow a user to interact with the
application. Some of the AWT controls are labels, buttons, checkbox, choice,
list, text field, text area, scroll bar, etc.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
416 Material

 Scrollbars are horizontally or vertically oriented bars which allow the user
to select items between a specified minimum and maximum values.

 A layout manager determines the dimension and exact positioning of
components within a container. For example, window is a container that
may contain components, such as buttons, labels and text fields.

 A MenuBar represents a list of menus which can be added to the top of
a top level window.

 A MenuBar is represented by the object of class MenuBar in which
only the default constructor is defined. A MenuBar may consist of one or
more menus represented by the objects of the class Menu. A menu includes
a list of menu items represented by the objects of the class MenuItem.

4.10 KEY TERMS

 File class: A programmer has to create the File object through the
constructors provided by the File class.

 Directory: A directory is a collection of files and directories.

 Stream: In Java I/O (Input/Output) streams are flow of data you can either
read from, or write to. Streams are typically linked to a data source, or data
destination, like a file, network connection, etc.

 TCP/IP: It is a reliable and connection oriented protocol that allows the
data that originates from a source machine to be delivered without error to
the destination.

 IP Address: A numerical address by which every machine on the Internet
is identified.

 InetAddress Class: A class used in Java to resolve domain names to
their IP addresses and vice versa.

 Applet: A Java program that is compiled on one computer and can be run
on other computers through Java-enabled web browsers or Java tools,
such as applet viewer.

 Event source: It is an object that produces a certain type of event and
provides methods to either add or remove listeners from the registered list
of listeners.

 AWT: Refers to Abstract Window Toolkit and is responsible for
communicating actions between the program and the user.

 Action listener: It is an interface that is used to declare a method that is
called when an action event is generated.

 Font class: The Font class is used to apply different font styles to the
text. To select or apply a new font, a font object should to be constructed.

 Layout classes: Classes used for arranging, positioning and determining
the shape and size of the various components held by the container.

 CardLayout: Used to manage a large number of components and
organizes the components in layers.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts

and Menus

NOTES

Self - Learning
Material 417

4.11 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. How will you rename a file?

2. Explain the term dataflow in stream.

3. Define the term SequenceInputStream.

4. How a file is append?

5. Differentiate between DataInputStream and
DataOutputStream.

6. What do you understand by the term PrintStream and
StreamTokenizer.

7. What is network?

8. Why do you need sockets in networking?

9. State about the InetAddress Class.

10. How is an applet added to an HTML file?

11. Write the advantage and disadvantage of Java Applet.

12. What is the difference between an event source and an event listener?

13. How will you play an AudioClip?

14. Define the term AWT Class.

15. Write the definition of the term frame window.

16. What do you understand by the term drawing arcs?

17. What is the difference between Choice and List?

18. What is dialog class.

Long-Answer Questions

1. Briefly explain the file and file name method giving appropriate example
programs.

2. How will you create directory? Explain with the help of example program.

3. Discuss about the stream and hierarchy of stream class with the help of
relevant examples.

4. Describe the FileInputStream and FileOutputStream with
the help of example programs.

5. Explain the ByteArrayInputStream and
ByteArrayOutputStream giving appropriate examples.

6. Differentiate between BufferedInputStream and
BufferedOutputStream.

7. Explain the difference between TCP (Transmission Control Protocol) and
UDP (User Datagram Protocol) protocols.

Input/Output Classes,
Networking, AWT Graphics
and Text, Controls, Layouts
and Menus

NOTES

Self - Learning
418 Material

8. Write the steps involved in creating TCP Server/Client programs by using
socket.

9. Discuss briefly the networking classes and interfaces.

10. Describe the datagram packet network giving appropriate example
programs.

11. Analyse the Applet life cycle and its method with the help of diagram.

12. Briefly explain the simple banner Applet with the help of example program.

13. List and describe the classes and interfaces which support event handling
in Java.

14. Discuss about the window fundamentals and working with frame window
with the help of diagram.

15. Analyse the event handing in frame window giving appropriate example
program.

16. Write a program an applet code to demonstrate the use of various methods
of graphics class.

17. Briefly explain the working of color and fonts with the help of example
program.

18. What do you mean by control? Explain the different controls provided by
AWT.

19. Describe the AWT layout managers with the help of example program.

20. Briefly explain the menus and dialog class giving appropriate example
program.

4.12 FURTHER READING

Balagurusamy, E. 2007. Programming with Java, 3rd Edition. New Delhi: Tata
McGraw-Hill.

Naughton, Patrick and Herbert Schidt. 1999. Java 2: The Complete Reference,
3rd Edition. New Delhi: Tata McGraw-Hill.

Das, Rashmi Kanta. 2013. Core Java for Beginners, 3rd Edition. New Delhi:
Vikas Publishing House Pvt. Ltd.

Schildt, Herbert. 2006. Java: The Complete Reference, 7th Edition. New Delhi:
Tata McGraw-Hill.

Hunter, Jason and William Crawford. 2001. Java Servlet Programming, 2nd
Edition. California: O’Reilly Media.

Arnold, Ken, James Gosling and David Holmes. 2005. The Java Programming

Language, 4th Edition. Boston: Addison-Wesley.

Wigglesworth, Joe and Paula Lumby. 1999. Java Programming Advanced
Topics, 2 Edition. Boston: Course Technology.

Deitel, Paul and Harvey Deitel. 2011. Java: How to Program, 9th Edition. New
Delhi: Prentice-Hall of India.

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 419

UNIT 5 IMAGES, JDBC, JAVA
BEANS, SERVLET API AND
CORBA CONNECTIVITY

Structure

5.0 Introduction
5.1 Objectives
5.2 Images in Java

5.2.1 File Formats
5.2.2 Image Fundamentals
5.2.3 ImageObserver and MediaTracker

5.3 JDBC: An Introduction
5.4 Swings

5.4.1 Components of Swing
5.5 Java Beans

5.5.1 What is Java Beans?
5.5.2 JAR Files and Introspection

5.6 Basic Servlet API
5.6.1 MIME Content Types

5.7 CORBA Connectivity in Java
5.7.1 Working CORBA System
5.7.2 Simple CORBA Service

5.8 Answers to ‘Check Your Progress’
5.9 Summary

5.10 Key Terms
5.11 Self Assessment Questions and Exercises
5.12 Further Reading

5.0 INTRODUCTION

The Image class is used to load and display images. To load an image the
getImage () method of the Image class is used and to display the image the
drawImage () method of the Graphics class is used. JDBC (Java DataBase
Connectivity) defines an API (Application Programming Interface) designed to
support basic SQL (Structured Query Language) functionality independent of any
specific SQL implementation. This means the focus is on executing SQL statements
and retrieving their results. JDBC is an international standard for programming
access to SQL databases. It was developed by JavaSoft, a subsidiary of Sun
Microsystems. Relational Database Management System supports SQL. As we
know that Java is platform independent, so JDBC makes it possible to write a
single database application that can run on different platforms and interact with
different Database Management Systems.

A Java Bean is a specially constructed java class written in the Java and
coded according to the JavaBeans API specifications. A bean encapsulates many
objects into one object, so we can access this object from multiple places.
Moreover, it provides the easy maintenance. JavaBeans can also be referred to as

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
420 Material

Java classes which adhere to an extremely simple coding convention. The Java
Servlet API is not included in the core Java framework and is Standard Java
Extension API. It comprises two packages javax.servlet and

javax.servlet.http, which contain classes and interfaces that
are used to create servlets. Servlets are platform independent and can work with
almost all the Web servers. They can be executed on any Web server that supports
the servlet API. The Common Object Request Broker Architecture (CORBA) is
a specification that helps to integrate heterogeneous systems that have different
hardware, operating systems, networks and different programming languages.

In this unit, you will study about the image in Java, file formats, image
fundamentals, image observer and mediatraker, JDBC an introduction, register
drive, establish a session, ResultSet, closing the session, swings, JAPPLET, Java
beans, application builder tools, Bean Development Kit (BDK), JAR files and
introspection, bean info interface, constrained properties, persistence and
customisers, basic servlet API, Get and Post method, MIME context types, and
CORBA connectivity in Java, working CORBA system, CORBA servers, CORBA
clients, simple CORBA service, application and CORBA.

5.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the image in Java

 Explain the file formats

 Analyse the image fundamentals

 Elaborate on the image observer and mediatracker

 Discuss the basic concept of JDBC and register drive

 Establish a session and ResultSet

 Describe the closing of the session

 Understand the swings and JAPPLET

 Define the Java beans and application builder tools

 Analyse the Bean Development Kit (BDK)

 Explain the JAR files and introspection

 Describe the bean info interface and constrained properties

 Discuss the persistence and customisers

 Understand the basic servlet API and Get and Post method

 Define the MIME context types

 Analyse the CORBA connectivity in Java

 Explain the working of CORBA system and CORBA servers

 Define the CORBA clients and simple CORBA service

 Describe the application of CORBA

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 421

5.2 IMAGES IN JAVA

The java.awt package contains an abstract class, Image. This class provides the
mechanism to handle operations that are related to an image. The signature for the
Image class is: public abstract class java.awt.Image extends java.lang.Object

The Image class cannot be instantiated. Generally, the Image class is used
to draw an image on the applet. Image class supports only two types of image
files:

 JPEG Format (Joint Photographic Expert Group Format)

 GIF (Graphic Interchange Format)

The Image class also provides some constants which are used to set the
scale for the image. These are:

 public static final int SCALE_DEFAULT

 public static final int SCALE_FAST

 public static final int SCALE_SMOOTH

 public static final int SCALE_REPLICATE

 public static final int SCALE_AREA_AVERAGING

One can create an empty image by the help of a predefined method of
Component class. The method is:

public Image createImage(int imgwidth, int imgheight)

Example: Image img1=createImage (200,200);

One can draw an image on the screen, by the help of one predefined
method of Graphics class. The method is:

public void drawImage(Image img, int i, int j, ImageObserver imob)

One can retrieve the image from a desired location by the help of methods,
which are present in both the Applet and Toolkit class. The methods are:

 public Image getImage(URL url)

 public Image getImage(URL url, String imgpath)

How to Draw Image in Frame?

Program 5.1
import java.awt.*;
public class ImageDemo extends Canvas
{

public ImageDemo()
{

setSize(300,300);
setBackground(Color.cyan);

}
public static void main(String args[])
{

ImageDemo id=new ImageDemo();
Frame f=new Frame("ImageDemo");
f.setSize(300,300);

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
422 Material

f.add(id);
f.setVisible(true);

}
public void paint(Graphics g)
{

Image im=Toolkit.getDefaultToolkit().getImage("Water
lilies.jpg");

g.drawImage(im,30,40,this);
}

}

This example illustrates the use of Image class by using getImage()
method of Toolkit class. Toolkit is a predefined class present in java.awt package.
This is an abstract class so it can't be instantiated. If the programmer wants to
instantiate the Toolkit class then the programmer has to call a static method of
Toolkit class:

public static Toolkit getDefaultToolkit()

In the above example we create the object of image class by this method.
After that the programmer extracts the image by the getImage() method of
Toolkit class. The programmer draws the image in the frame by drawImage()
method of Graphics class. Finally, the drawing is reflected on the frame by the
help of paint() method. Hence the output is as shown.

Output of the program:

Program 5.2
import java.awt.*;
import java.applet.*;
public class Image123 extends Applet

{
Image img;
public void init()

{
img=getImage(getDocumentBase(),”CAKE.jpg”);
}
public void paint(Graphics gph)

{
gph.drawImage(img,30,50,this);
}

}

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 423

/*<applet code=”Image123" width=300 height=300>
</applet>*/

Output of the program:

This example is also an illustration of the use of Image class. But, here the object
of the image class is not got by the help of the createImage() method of
Component class. Rather, the abstract Image class object is created by invoking
the getImage() method of the Applet class, which takes the path and name
of an existing image as parameter. The object created by this method refers to the
specified image. The image is reflected on the applet screen by the help of the
paint() method.

5.2.1 File Formats

There are two approaches to organize records in a file. In the first approach, all
the records of a file are of a fixed-length. However, in the second approach, the
records of a file vary in size. A file of a fixed-length records is simple to implement
as all the records are of fixed length. However, deletion of record results in
fragmented memory. On the other hand, in case of files of variable-length records,
the memory space is efficiently utilised. However, locating the start and end of
record is not simple.

Fixed-Length Records

All the records in a file of fixed-length records are of the same length. In a file of
fixed-length records, every record consists of the same number of fields and the
size of each field is fixed for every record. It ensures an easy location of field
values, as their positions are predetermined. Since each record occupies equal
memory, as shown in Figure 5.1, identifying the start and the end of the record is
relatively simple.

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
424 Material

Fig. 5.1 Location of Fixed-Length Records

A major drawback of fixed-length records is that a lot of memory space is
wasted. Since a record may contain some optional fields and space is reserved
for optional fields as well—it stores null value if no value is supplied by the user for
that field. Thus, if certain records do not have values for all the fields, the memory
space is wasted. In addition, it is difficult to delete a record as deletion of a record
leaves blank spaces in between the two records. To fill up that blank space, all the
records following the deleted record need to be shifted.

It is undesirable to shift a large number of records to fill up the space freed
by a deleted record, since it requires additional disk access. Alternatively, the
space can be reused by placing a new record at the time of insertion of new
records, since insertions tend to be more frequent. However, there must be some
way to mark the deleted records so that they can be ignored during the file scan.
In addition to a simple marker on the deleted record, some additional structure is
needed to keep track of the free space created by the deleted or marked records.
Thus, certain number of bytes is reserved in the beginning of the file for a file
header. The file header stores the address of the first marked record, which
further points to the second marked record and so on. As a result, a linked list of
marked slots is formed, which is commonly termed as a free list. Figure 5.2 shows
the record of a file with the file header pointing to the first marked record and so
on. A new record is placed at the address pointed by the file header and the
header pointer is changed to point towards the next available marked record. In
case no marked record is available, the new record is appended at the end of the
file.

Fig. 5.2 Fixed-Length Records with Free List of Marked Records

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 425

Variable-Length Records

Variable-length records may be used to utilise the memory more efficiently. In this
approach, the exact length of the field is not fixed in advance. Thus, to determine
the start and end of each field within the record, special separator characters,
which do not appear anywhere within the field value, are required
(Refer Figure 5.1). Locating any field within the record requires a scan of record
until the field is found.

Field1 % Field2 % Field3 % Field4 % Field5 % Field6

Fig. 5.3 Organization of Variable-Length Records with ‘%’ Delimiter

Alternatively, an array of integer offsets could be used to indicate the starting
address of fields within a record. The ith element of this array is the starting address
of the ith field value relative to the start of the record. An offset to the end of the
record is also stored in this array, which is used to recognise the end of the last
field. The organization is shown in Figure 5.4. For null value, the pointer to starting
and end of the field is set same. That is, no space is used to represent a null value.
This technique is a more efficient way to organize the variable-length records.
Handling such an offset array is an extra overhead; however, it facilitates direct
access to any field of the records.

Fig. 5.4 Variable-Length Record Organization Using an Array of Field Offsets

Sometimes there may be a possibility that the values for a large number of
fields are not available or are null. In that case, we can store the sequence of
pair <field name, field value> instead of just field values in each record. In
Figure 5.5, three separator characters are used—one for separating two fields,
second one for separating field value from field name, and third one for separating
two records.

Field1 = Value1 Field2 = Value2 Field = Value3

Field = Separator Record Terminator = Separator for field and its value

Fig. 9.5 Organization for Variable-Length Record

It is clear from the discussion that the memory is utilised efficiently but
processing the variable-length records require a complicated program. Moreover,
modifying the value of any field might require shifting of all the following fields,
since the new value may occupy more or less space than the space occupied by
the existing value.

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
426 Material

5.2.2 Image Fundamentals

The Image class is used to load and display images. To load an image the
getImage() method of the Image class is used and to display the image the
drawImage() method of the Graphics class is used. Example 5.1 illustrates
loading and viewing of image.

The general form of the drawImage() method is as follows:
boolean drawImage(Image image, int startx, int starty, int width, int
height, ImageObserver img_obj)

where,

image is the image to be loaded in the applet.

startx is the pixels space from the left corner of the screen.

starty is the pixels space from the upper corner of the screen.

width is the width of the image.

height is the height of the image.

img_obj is the object of the class that implements ImageObserver interface.

Example 5.1: A program to demonstrate loading and viewing of image is as
follows:

import java.awt.*;
import javax.swing.*;
public class ImageExample extends JPanel
{

public void paintComponent(Graphics gra)
{

super.paintComponent(gra);
Graphics2D gra2D=(Graphics2D)gra;
Image pic=new ImageIcon(“java.gif”).getImage();
gra2D.drawImage(pic,0,0,200,200,null);

}
public static void main(String[] args)

{
ImageExample ge = new ImageExample();
JFrame fr = new JFrame(“Graphics”);
fr.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
fr.add(ge);
fr.setSize(250,250);
fr.setLocationRelativeTo(null);
fr.setVisible(true);

}
}

The output of the programs is: illustrated in the following screenshot:

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 427

5.2.3 ImageObserver and MediaTracker

Since Java programming has its roots in the Internet applications, such as web
browsers, therefore its image handling APIs (Application Programming Interface)
were typically designed because the images may take time to load over a slow
network, providing for detailed information about image-loading progress. In Java,
the Swing toolkit adds its specific layer of image handling, such as ImageIcon,
which encapsulates an image source for the user.

The Image class and the java.awt.image package provide support
for imaging, i.e., the display and manipulation of graphical images. An image is
simply a graphical object and also the key component of web design. Java allows
images to be managed under Java program control and hence Java provides
extensive support for imaging.

Images are objects of the Image class, which is part of the java.awt
package. Images are manipulated using the classes predefined in the
java.awt.image package.

Principally, Java uses the following interfaces:
ImageConsumer
ImageObserver
ImageProducer

The MediaTracker class is also part of java.awt.

Here we will discuss about the ImageObserver interface and
MediaTracker class.

1. ImageObserver

All operations on image data, such as loading, drawing, scaling, etc., allow the
user to specify an ‘Image Observer’ object as a member. An image observer
implements the ImageObserver interface, which allows it to obtain notification
by means of information about the image that is available. Principally, the image
observer is referred as a callback which is notified progressively as and when
the image is loaded. For a static image, such as a GIF (Graphics Interchange
Format) or JPEG (Joint Photographic Experts Group) data file, the user is notified
as chunks of image data arrive and also when the entire image is complete. In
addition, for a video source or animation (e.g., GIF89), the image observer is
notified at the end of each frame as the continuous stream of pixel data is generated.

The image observer can do required modifications and necessary changes
using this information. To use an image observer, implement the imageUpdate()
method, which is defined by the java.awt.image.ImageObserver
interface. Following is the syntax for imageUpdate() method:

public boolean imageUpdate(Image image, int flags, int x, int
y,int width, int height)

When required the imageUpdate() is called by the graphics system
for passing the user information regarding the structure and construction of the
images. The image parameter holds a reference to the Image object. The

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
428 Material

flags is referred as an integer whose bits specify what information regarding
the image is currently available. The flag values are defined as static variables
in the ImageObserver interface. The following example illustrates this concept:

Program 5.3
 //file: ObserveImageLoad.java
 import java.awt.*;
 import java.awt.image.*;

 public class ObserveImageLoad {

 public static void main(String [] args)
 {
 ImageObserver myObserver = new ImageObserver() {
 public boolean imageUpdate(
 Image image, int flags, int x, int y, int width, int
height)
 {
 if ((flags & HEIGHT) !=0)
 System.out.println(“Image height = “ + height);
 if ((flags & WIDTH) !=0)
 System.out.println(“Image width = “ + width);
 if ((flags & FRAMEBITS) != 0)
 System.out.println(“Another frame finished.”);
 if ((flags & SOMEBITS) != 0)
 System.out.println(“Image section :”
 + new Rectangle(x, y, width, height));
 if ((flags & ALLBITS) != 0)
 System.out.println(“Image finished!”);
 if ((flags & ABORT) != 0)
 System.out.println(“Image load aborted...”);
 return true;
 }
 };

 Toolkit toolkit = Toolkit.getDefaultToolkit();
 Image img = toolkit.getImage(args[0]);
 toolkit.prepareImage(img, -1, -1, myObserver);
 }
 }

When you run the example to provide an image file as the command line
argument then you will find numerous incremental messages by the Java compiler
regarding loading the image.

The flags integer determines which of the other parameters, the x, y,
width, and height hold valid data and what that data means. To test whether
a particular flag in the flags integer is set, we use the & (AND) operator. The
width and height parameters have a dual role. If SOMEBITS is set, then
they represent the size of the chunk of the image that has just been provided. The
HEIGHT or WIDTH is set because they represent the overall image dimensions.
Finally, imageUpdate() returns a Boolean value indicating whether or
not it is required for the future updates.

In the above given Java example, once the Image object is defined with
getImage() , the loading process starts with the Toolkit’s

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 429

prepareImage() method, which considers the image observer as an argument.
Using an Image API method, such as drawImage(), scaleImage(), or
requesting for image dimensions with getWidth() or getHeight() will
be sufficient to start the operation.

Remember that even though the getImage() method can create the
image object, but it does not load the required data until one of the image operations
needs it.

The above Java example demonstrates the lowest-level general mechanism
to start and monitor the process of loading image data.

2. MediaTracker

The java.awt.MediaTracker class is a general utility that tracks the
loading of a number of images or other media types for the users.

Basically, the java.awt.MediaTracker is a utility class that simplifies
the problems when the user have to wait for one or more images to be loaded
completely before they are actually displayed. A MediaTracker monitors the
loading of an image or a group of images and helps the user to check those either
periodically or to wait until the loading is completed. MediaTracker implements
the ImageObserver interface which allows it to receive image updates.

The following example code illustrates how the MediaTracker is used
while an image is being prepared.

Program 5.4
//file: StatusImage.java
 import java.awt.*;
 import javax.swing.*;

 public class StatusImage extends JComponent
 {
 boolean loaded = false;
 String message = “Loading...”;
 Image image;

 public StatusImage(Image image) { this.image = image; }
 public void paint(Graphics g) {
 if (loaded)
 g.drawImage(image, 0, 0, this);
 else {
 g.drawRect(0, 0, getSize().width - 1, getSize().height -
1);
 g.drawString(message, 20, 20);
 }
 }
 public void loaded() {
 loaded = true;
 repaint();
 }
 public void setMessage(String msg) {
 message = msg;
 repaint();

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
430 Material

 }

 public static void main(String [] args) {
 JFrame frame = new JFrame(“TrackImage”);
 Image image = Toolkit.getDefaultToolkit().getImage(args[0]
);
 StatusImage statusImage = new StatusImage(image);
 frame.add(statusImage);
 frame.setSize(300,300);
 frame.setVisible(true);

 MediaTracker tracker = new MediaTracker(statusImage);
 int MAIN_IMAGE = 0;
 tracker.addImage(image, MAIN_IMAGE);
 try {
 tracker.waitForID(MAIN_IMAGE); }
 catch (InterruptedException e) {}
 if (tracker.isErrorID(MAIN_IMAGE))
 statusImage.setMessage(“Error”);
 else
 statusImage.loaded();
 }
 }

In the above example, a trivial component called StatusImage is created
that accepts an image and draws a text status message until it is told that the image
is loaded. It then displays the image. Remember that a MediaTracker is used
to load the image data.

The user first creates a MediaTracker to manage the image. The
MediaTracker constructor takes a Component as an argument which is
the component onto which the image is drawn. When the user do not have the
component reference accessible, then the user can simply substitute a generic
component reference as shown below:

 Component comp = new Component();

After creating the MediaTracker, the user assigns it images to manage.
Each image is associated with an integer that identifier the user can use later for
checking on its status or to wait for its completion. Multiple images can be associated
with the same identifier, letting the user manage those as a group. The value of the
identifier is also meant to prioritize loading when waiting on multiple sets of images;
lower IDs have higher priority. To manage only a single image, one identifier is
created which is called MAIN_IMAGE and passed it as the ID for our image in
the call to addImage().

Then the MediaTracker waitforID() routine is called, which
blocks on the image, waiting for it to finish loading.
Another MediaTracker method is waitForAll(), which waits for all
images to be completed, not just a single ID. It is possible that the loading can be
interrupted by an InterruptedException. The user should test for errors
during image preparation with isErrorID().

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 431

The MediaTracker checkID() and checkAll() methods may
be used to check periodically the status of images loading,
returning true or false to indicate whether loading is finished.
The checkAll() method does this for the union of all images being loaded.
Additionally, the statusID() and statusAll() methods return a constant
indicating the status or final condition of an image loading. The value is one of the
MediaTracker constant values: LOADING , ABORTED , ERROR ,
or COMPLETE. For statusAll(), the value is the bitwise OR value of all of
the various statuses.

5.3 JDBC: AN INTRODUCTION

JDBC (Java DataBase Connectivity) defines an API (Applecation Program
Interface) designed to support basic SQL (Structured Query Language) functionality
independent of any specific SQL implementation. This means the focus is on
executing SQL statements and retrieving their results.

JDBC is an international standard for programming access to SQL databases.
It was developed by JavaSoft, a subsidiary of Sun Microsystems.

Relational Database Management System (RDBMs) supports SQL. As
we know that Java is platform independent, so JDBC makes it possible to write a
single database application that can run on different platforms and interact with
different Database Management Systems.

Java Database Connectivity is similar to Open DataBase Connectivity
(ODBC) which is used for accessing and managing database, but the difference is
that JDBC is designed specifically for Java programs, whereas ODBC is not
depended upon any language.

In short JDBC helps the programmers to write Java applications that manage
these three programming activities:

• Establishing a connection with a database or other tabular data source.

• Sending SQL commands to the database.

• Processing the results.

What is API?

API is the abbreviation of Application Program Interface, a set of routines,
protocols, and tools for building software applications. A good API makes it easier
to develop a program by providing all the building blocks. A programmer then
puts the blocks together. Simply, it provides a set of rules for performing a particular
task but in case of JDBC API the task is connect to the database. They are
completely invisible to users and Web surfers. Their primary role is to provide a
channel for applications to work with each other.

Components of JDBC

The following are the components of JDBC:

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
432 Material

JDBC API

The JDBC application programming interface provides the facility for accessing
the relational database from the Java programming language. The API technology
provides the industrial standard for independently connecting Java programming
language and a wide range of databases. The user not only execute the SQL
statements but can also access it anywhere within a network because of it’s “Write
Once, Run Anywhere” (WORA) capabilities. Due to JDBC API technology, user
can also access other tabular data sources like spreadsheets or flat files even in
the heterogeneous environment.

The application programming interface is divided into two packages:

 java.sql

 javax.sql

Driver Manager

The JDBC Driver Manager is a very important class that defines objects which
connect Java applications to a JDBC driver. Usually Driver Manager is the
backbone of the JDBC architecture. It’s very simple and small that is used to
provide a means of managing the different types of JDBC database driver running
on an application. The main responsibility of JDBC database driver is to load all
the drivers found in the system properly as well as to select the most appropriate
driver from opening a connection to a database. The Driver Manager also helps
to select the most appropriate driver from the previously loaded drivers when a
new open database is connected.

JDBC Test Suite

The function of JDBC driver test suite is ensure whether the JDBC drivers will run
user’s program or not . The test suite of JDBC application program interface is
very useful for testing a driver based on JDBC technology during testing period.

Types of Driver

A driver acts like a translator between the device and programs that use the device.
Each device has its own set of specialized commands that only its driver knows.
In contrast, most programs access devices by using generic commands. The driver
accepts generic commands from a program and then translates them into specialized
commands for the device.

Type 1: JDBC-ODBC Bridge Driver

The JDBC Type-1 driver also known as the JDBC-ODBC bridge driver, is a
database driver implementation that employs the ODBC driver connect to the
database. The driver converts JDBC method calls into ODBC function calls.

The driver is platform dependent as it makes use of ODBC which in turn
depends on native libraries of the underlying operating system. Also, use of this
driver leads to other installation dependencies; for example, ODBC must be
installed on the computer having the driver and the database must support an
ODBC driver. The other implication is that any application using a Type 1 driver is
non-portable given the binding between the driver and platform.

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 433

Steps to Perform the Task

• Translates query obtained by JDBC into corresponding ODBC query, which
is then handled by the ODBC driver.

• Client -> JDBC Driver -> ODBC Driver -> Database.

• There is some overhead associated with the translation work to go from
JDBC to ODBC.

Advantages

• Almost any database, for which ODBC driver is installed, can be accessed.

• A Type 1 driver is easy to install.

Disadvantages

• Performance overhead since the calls have to go through the JDBC overhead
bridge to the ODBC driver, then to the native database connectivity interface.

• The ODBC driver needs to be installed on the client machine.

• Considering the client-side software needed, this might not be suitable for
applets.

• Will not be suitable for Java applets.

• It is not platform independent because of ODBC.

Architecture:

Fig. 5.6 Type 1 Driver

The above is the architecture of Type 1 driver.

Program 5.5 (Type-1 Driver)
import java.sql.*;
public class Type1

{
public static void main(String args[])

{
try{

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
Connectioncon=

DriverManager.getConnection(“jdbc:odbc:omm”,
”scott”,”tiger”);

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
434 Material

Statement st=con.createStatement();
ResultSet rs=st.executeQuery(“select * from emp”);
while(rs.next())

{
String name=rs.getString(“ename”);
int salary=rs.getInt(“sal”);
System.out.println(“Employee Name is: “+name+” and
“+”Salary is :”+salary);
}

}catch(Exception e1)
{
System.out.println(e1.getMessage());
}

}
}

Type 2: Native-API/Partly Java Driver

The JDBC Type 2 driver, also known as the Native-API driver, is a database
driver implementation that uses the client-side libraries of the database. The driver
converts JDBC method calls into native calls of the database API.

The Type 2 driver is not written entirely in Java as it interfaces with non-
Java code that makes the final database calls. The driver is compiled for use with
the particular operating system.

However the Type 2 driver provides more functionality and better
performance than the Type 1 driver as it does not have the overhead of the
additional ODBC function calls.

Advantages

Better performance than the Type 1 driver as it does not have the overhead of the
additional ODBC function calls.

Disadvantages

• The vendor client library needs to be installed on the client machine.

• Cannot be used in web-based application due the client side software
needed.

• Not all databases have a client side library.

• This driver is platform dependent.

Architecture:

Fig. 5.7 Type 2 Driver

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 435

The above is the architecture of Type 2 driver.

Program 5.6 (Type-2 Driver)
import java.sql.*;
import java.util.Properties;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.sql.DataSource;
public class Type2

{
public static void main(String[] args)

{
try{

String datasource=”ds1";
String pool=”pool1";
Properties p=new Properties();

p.put(Context.INITIAL_CONTEXT_FACTORY,”weblogic.jndi.
WLInitialContextFactory”);

p.put(Context.PROVIDER_URL,”t3://localhost:7001");
InitialContext ctx=new InitialContext(p);
DataSource source=(DataSource)ctx.lookup(datasource);
Connection con=source.getConnection();
Statement st=con.createStatement();
ResultSet rs=st.executeQuery(“select * from emp”);
while(rs.next())
{
String name=rs.getString(“ename”);
int salary=rs.getInt(“sal”);
System.out.println(“Employee Name is: “+name+”

and “+”Salary is :”+salary);
}
}

catch (Exception e) {
}

}
}

Type 3: All Java/Net-Protocol Driver

The JDBC Type 3 driver, also known as the Pure Java Driver for Database
Middleware, is a database driver implementation which makes use of a middle tier
between the calling program and the database. The middle-tier (application server)
converts JDBC calls directly or indirectly into the vendor-specific database
protocol.

This differs from the Type 4 driver in that the protocol conversion logic
resides not in the middle-tier like Type 4 drivers. The Type 3 driver is written
entirely in Java. The same driver can be used for multiple databases. It depends
on the number of databases the middleware has been configured to support. The
Type 3 driver is platform-independent as the platform-related differences are taken
care by the middleware. Also, making use of the middleware provides additional
advantages of security and firewall access.

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
436 Material

Steps to Perform the Task

• Follows a three tier communication approach.

• Can interface to multiple databases - Not vendor specific.

• The JDBC Client driver written in Java, communicates with a middleware-
net-server using a database independent protocol, and then this net server
translates this request into database commands for that database.

• Thus the client driver to middleware communication is database independent.

• Client -> JDBC Driver -> Middleware-Net Server -> Any Database.

Advantages

• Since the communication between client and the middleware server is
database independent, there is no need for the vendor database library on
the client machine. Also the client to middleware need not be changed for a
new database.

• The Middleware Server (which can be a full fledged J2EE Application
server) can provide typical middleware services like caching (connections,
query results, and so on), load balancing, logging, auditing, etc.

For the above include JDBC driver features in Weblogic to perform the
following:

o Can be used in Internet since there is no client side software needed.

o At client side a single driver can handle any database. It works provided
the middleware supports that database!

Disadvantages

• Requires database specific coding to be done in the middle tier.

• An extra layer added may result in a time-bottleneck. But typically this is
overcome by providing efficient middleware services described above.

Architecture

Fig. 5.8 Type 3 Driver

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 437

The above is the architecture of Type 2 driver.

Program 5.7 (Type-3 Driver)
import java.sql.*;
import java.util.Properties;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.sql.DataSource;
public class Type3

{
public static void main(String[] args)

{
try{

String datasource=”ds3";
String pool=”pool3";
Properties p=new Properties();

p.put(Context.INITIAL_CONTEXT_FACTORY,”weblogic.jndi.
WLInitialContextFactory”);
p.put(Context.PROVIDER_URL,”t3://localhost:7001");
InitialContext ctx=new InitialContext(p);
DataSource source =(DataSource)ctx.lookup(datasource);
Connection con=source.getConnection();
Statement st=con.createStatement();
ResultSet rs=st.executeQuery(“select * from emp”);
while(rs.next())

{
String name=rs.getString(“ename”);
int salary=rs.getInt(“sal”);
System.out.println(“Employee Name is: “+name+” and

“+”Salary is:”+salary);
}

} catch (Exception e)
{
}

}
}

Type 4 Driver-Native-Protocol Driver

The JDBC type 4 driver, also known as the Direct to Database Pure Java Driver,
is a database driver implementation that converts JDBC calls directly into the
vendor-specific database protocol.

The Type 4 driver is written completely in Java and is hence platform
independent. It is installed inside the Java Virtual Machine of the client. It provides
better performance over the Type 1 and 2 drivers as it does not have the overhead
of conversion of calls into ODBC or database API calls. Unlike the Type 3 drivers,
it does not need associated software to work.

Steps to Perform the Task

• Type 4 drivers are entirely written in Java that communicates directly with a
vendor’s database, usually through socket connections. No translation or
middleware layers are required, improving performance.

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
438 Material

• The driver converts JDBC calls into the vendor-specific database protocol
so that client applications can communicate directly with the database server.

• Completely implemented in Java to achieve platform independence.

• To include the widely used Oracle thin driver - oracle.jdbc.driver.
OracleDriver which connect to jdbc:oracle:thin URL format.

• Client -> Native protocol JDBC Driver -> Database server.

Advantages

• These drivers do not translate the requests into an intermediary format,
(such as ODBC), nor do they need a middleware layer to service requests.
Thus the performance may be considerably improved.

• All aspects of the application to database connection can be managed within
the JVM; this can facilitate easier debugging.

Disadvantage

• At client side, a separate driver is needed for each database.

Architecture

Fig. 5.9 Type 4 Driver

The above is the architecture of Type 4 driver.

Program 5.8 (Type-4 Driver)
import java.sql.*;
class Customer

{
public static void main(String args[]) throw SQLException

{
DriverManager.registerDriver(new
oracle.jdbc.driver.OracleDriver());
System.out.println(“Connection to the database……..”);
try{

Connection cn=DriverManager.getConnection

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 439

(“jdbc:oracle:thin:@rashmi:1521:orc11”,”sai”,”sai”);
Statement st=cn.createStatement();
ResultSet rs=st.executeQuery(“select * from emp1”);
while(rs.next())

{
String s=rs.getString(1);
System.out.println(s);
}

st.close();
cn.close();
} catch(Exception ex)

{
System.out.println(“The exception raised is : “ + ex);
}

}
}

In the URL, thin is the JDBC driver, rashmi is the database name, 1521 is the
port on which the connection is to be established, and orc11 is the system ID.

“sai” is the user id and “sai” is password.

JDBC Basics

To store data in the database, you create tables. Later, when you learn about
creating the tables used as examples, the tables will be in the default database. We
purposely kept the size and number of tables small to keep things manageable.

Once you have created the database and tables to store the data, you'll
open a connection with your DBMS. You also need to know some SQL code.
After that, discover how easy it is to use JDBC to pass SQL statements to your
DBMS and then process the results that are returned.

Loading the Driver

We need to connect to the database, which the program uses to connect. Typically,
a JDBC application connects to a target data source using one of two mechanisms:

DriverManager: The DriverManager class loads a specific Driver class by using
the URL. That allows user to customize the JDBC Drivers used by user applications.

Loading the driver by the following code:

Class.forName (“Database driver name”);

Class- It is a class of java.lang package.

forName()- It is a static method of a class known as Class.

Responsibility of the method is to register a .class file at runtime.

Database driver name- It is a class file which is loaded at runtime.

The Class file will vary from driver to driver.

For example, if it is Type-1 then

Class.forName (“sun.jdbc.odbc.JdbcOdbcDriver”);

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
440 Material

Fig. 5.10 Loading driver

Establishing a Connection

The second step is to establish a connection with the appropriate driver to get
connection with the required database.

We need to establish a connection through the following line of code:

Connection conn = DriverManager.getConnection(“JDBC URL”,

“User id”, “Password”);

Connection–It is an interface present in java.sql package. A connection is
a session in a specific database engine. Here, connection is established at runtime.

Conn–It is a reference of Connection Interface.

DriverManager–It is a predefined class present in java.sql package.

getConnection ()–It is a predefined static method present in DriverManager
class.

JDBC URL–It has three components as follows:

• Protocol

• Sub-Protocol

• Context Path

Altogether these three are known as JDBC URL.

“Protocol: Subprotocol:ContextPath”

User id–Here we have to put the concerned database user ID as required
by the program.

Password–In this case we have to put the concerned database password
which follows the user ID previously.

Fig. 5.11 Establishing Connection

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 441

Creating the Statement Object

We can create the object by the following line of code:
Statement st = conn.createStatement ();

Statement–It is predefined interface present in java.sql package. This
interface used to execute the SQL statements, by which we can implement DML,
DDL operation (i.e., SELECT, CREATE, INSERT, UPDATE, DELETE, etc).

conn–Here conn is the object of Connection interface, which we got in
earlier step.

createStatement()–It is the method of Connection interface.

Fig. 30.7 Creating statement object

Retrieving Values from ResultSet

It is an interface present in java.sql package. The number of rows returned in a
result set can be zero or more. A user can access the data in a result set using a
cursor one row at a time from top to bottom. The JDBC API supports a cursor to
move both forward and backward and also allowing it to move to a specified row
or to a row whose position is relative to another row.

Methods present in the ResultSet

These are some methods to retrieve the value from the ResultSet:

• next()—Moves the cursor forward one row. Returns true if the
cursor is now positioned on a row and false if the cursor is positioned
after the last row.

• previous()—Moves the cursor backwards one row. Returns true
if the cursor is now positioned on a row and false if the cursor is positioned
before the first row.

• first()—Mmoves the cursor to the first row in the ResultSet
object. Returns true if the cursor is now positioned on the first row and
false if the ResultSet object does not contain any rows.

• last()—Moves the cursor to the last row in the ResultSet
object. Returns true if the cursor is now positioned on the last row and
false if the ResultSet object does not contain any rows.

• beforeFirst()—Positions the cursor at the start of the
ResultSet object, before the first row. If the ResultSet object
does not contain any rows, this method has no effect.

• afterLast()—Positions the cursor at the end of the ResultSet
object, after the last row. If the ResultSet object does not contain
any rows, this method has no effect.

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
442 Material

• relative(int rows)—Moves the cursor relative to its current
position.

We can get the PreparedStatement object by using the following line of
code:

ResultSet rs = st.executeQuery(“Select * from emp<any

table name>”);

Fig. 5.13 Database Retrieval Result

Example Using The Type-1 Driver

For this example, we need to create a table named as Emp having two fields
(columns). One is name_emp (VARCHAR2) and second one is sal_emp
(NUMBER).This table must contain some data.

Program 5.9
import java.sql.*;
public class javaEmp
{
public static void main(String args[]) throws Exception
{
Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
Connection
jdbcconn=DriverManager.getConnection(“jdbc:odbc:xyz”,”system”,”manager”);
Statement st= jdbcconn.createStatement();

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 443

ResultSet rs = st.executeQuery(“Select * from Emp”);
while(rs.next())
{
String s1= rs.getString(“name_emp”);
int s2=rs.getInt(“sal_emp”);
System.out.println(“Name of the employee is” + s1 + “\t” + “and Salary
is” + s2);
}}}

Output of the program:

For Inserting the Data in the Table

For this example we require one Student table, where we need to insert data
through the Java application. The following fields are in the Student table:
sid(NUMBER), namestudent (VARCHAR2), coursename (VARCHAR2),
lettergrade (VARCHAR2).

Output of the program:

Java Application for this Example (InsertionClass.java)

Program 5.10
import java.sql.*;
import java.io.*;
public class InsertionClass {
public static void main(String[] args) throws Exception
{

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
Connection connection =

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
444 Material

DriverManager.getConnection(“jdbc:odbc:xyz”, “system”, “manager”);
int sid=126;
String nameStudent = “Ankita”;
String courseName = “JDBC”;
String letterGrade= “A”;
String qs = “insert into student values (“+sid+”, “+”
‘“+nameStudent +”’, ‘“+courseName+”’, ‘“+letterGrade+”’)”;
Statement stmt = connection.createStatement();
stmt.executeUpdate(qs);
System.out.println("Insertion is complete");
stmt.close();
connection.close();

}
}

Output of the program:

After inserting the record into the table, the table structure will be

PreparedStatement

It is an interface present in java.sql package. Main objective of this interface is to
retrieve the data at runtime. The PreparedStatement object represents
the precompiled SQL statement. It reduces the time duration of execution. The
PreparedStatement uses the ‘?’ with SQL statement that provides the
facility for setting an appropriate conditions in it.

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 445

We can get the PreparedStatement object by using the following
line of code:

PreparedStatement ps = conn.prepareStatement
(“insert into javaemp <table name> values (?....)”);

Here ‘?’ mark varies with respect to the variables.

Methods present in PreparedStatement:

• executeQuery()—Executes the SQL query in this
PreparedStatement object and returns the ResultSet object
generated by the query.

• executeUpdate()—Executes the SQL statement in this
PreparedStatement object, which must be an SQL INSERT,
UPDATE or DELETE statement; or an SQL statement that returns nothing,
such as a DDL statement.

• execute()—Executes the SQL statement in this
PreparedStatement object, which may be any kind of SQL
statement.

• setBoolean(int i,boolean b)—Sets the designated parameter
to the given Java Boolean value.

• setInt(int a,int b)—Sets the designated parameter to the
given Java int value.

• setDouble(int i,double d)—Sets the designated parameter
to the given Java double value.

• setString(int i,String s)—Sets the designated parameter
to the given Java String value.

• getMetaData()—Retrieves a ResultSetMetaData object that
contains information about the columns of the ResultSet object that
will be returned when this PreparedStatement object is executed.

For this example we required one EMP table, where we need to insert data to the
database through the commandprompt. These are the following fields in the EMP
table NAME_EMP (VARCHAR2), SAL_EMP (NUMBER).

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
446 Material

Insert Data into the EMP Table (Using PreparedStatement)

Program 5.11
import java.sql.*;
class emptest
{
public static void main(String args[]) throws Exception
 {
Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
Connection con =
DriverManager.getConnection(“jdbc:odbc:xyz”,“system”, “manager”);
PreparedStatement ps = con.prepareStatement(“insert into emp
(NAME_EMP,SAL_EMP) values(?,?)”);
ps.setString(1,args[0]);
ps.setInt(2,Integer.parseInt(args[1]));
ps.executeUpdate();
}
}

Output of the program:

Use of ResultSet Interface

Program 5.12
import java.sql.*;
public class resultset
{
public static void main(String args[]) throws Exception
{
Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
Connection conn =
DriverManager.getConnection(“jdbc:odbc:xyz”, “system”, “manager”);
Statement st = conn.createStatement();
ResultSet rs = st.executeQuery(“select * from student”);
ResultSetMetaData rsmd = rs.getMetaData();
int x = rsmd.getColumnCount();
for(int i = 1; i<=x;i++)
{
String y = rsmd.getColumnName(i);
System.out.println(y);
}

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 447

System.out.println(x);
}
}

Output fo the program:

Use of DatabaseMetaData Interface

Program 5.13
import java.sql.*;
public class database
{
public static void main(String args[]) throws Exception
{
Connection con = null;
ResultSet rs= null;
Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
con =
DriverManager.getConnection(“jdbc:odbc:xyz”, “system”, “manager”);
DatabaseMetaData dbmt = con.getMetaData();
String s1 = dbmt.getDatabaseProductName();
System.out.println(s1);
}
}

Output of the program:

How to create one table via JDBC?

Program 5.14
import java.sql.*;
public class create
{
public static void main(String args[]) throws Exception
{

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
448 Material

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
System.out.println(“Connecting to the database....”);
Connection con =
DriverManager.getConnection(“jdbc:odbc:xyz”,“system”, “manager”);
System.out.println(“Connected to the database.”);
DatabaseMetaData dbmt = con.getMetaData();
String s1 = dbmt.getDatabaseProductName();
System.out.println(s1);
System.out.println(“Now we are going to create one table”);
Statement st = con.createStatement();
st.executeUpdate(“create table Interface_employee (emp_id
varchar2(15),emp_name varchar2(15),emp_addr varchar2(32))”);
System.out.println(“Table is created.”);
}
}

Output of the program:

How to drop one table via JDBC?

Program 5.15
import java.sql.*;
public class drop
{
public static void main(String args[]) throws Exception
{
Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
System.out.println(“Connecting to the database....”);
Connection con =
DriverManager.getConnection(“jdbc:odbc:xyz”, “system”, “manager”);
System.out.println(“Connected to the database.”);
DatabaseMetaData dbmt = con.getMetaData();
String s1 = dbmt.getDatabaseProductName();
System.out.println(s1);
System.out.println(“Now we are going to drop one table”);
Statement st = con.createStatement();
st.executeUpdate(“drop table Interface_employee”);
System.out.println(“Table is dropped.”);
}
}

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 449

Output of the program:

Using Joins

Joins are one of the basic constructions of SQL and Databases as such - they
combine records from two or more database tables .

Types of Joins

• Inner Join

• Outer Join

• Cross Join

• Natural Join

• Equi Join

Inner Join

An inner join is the most common join operation used in applications, and represents
the default join-type. Inner join creates a new result table by combining column
values of two tables (A and B) based upon the join-predicate. The query compares
each row of A with each row of B to find all pairs of rows which satisfy the join-
predicate. When the join-predicate is satisfied, column values for each matched
pair of rows of A and B are combined into a result row. The result of the join can
be defined as the outcome of first taking the Cartesian product (or cross-join) of
all records in the tables (combining every record in table A with every record in
table B)—then return all records which satisfy the join predicate.

Syntax
SELECT column_name(s)
FROM table_name1
INNER JOIN table_name2
ON table_name1.column_name=table_name2.column_name

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
450 Material

Fig. 5.14 Inner Join

SELECT Persons.LastName, Persons.FirstName, Orders.OrderNo
FROM Persons
INNER JOIN Orders
ON Persons.P_Id=Orders.P_Id
ORDER BY Persons.LastName

Program 5.16
import java.sql.*;
public class join {

public static void main(String args[]) {
String url = “jdbc:odbc:xyz”;
Connection con;
String query = “select SUPPLIERS.SUP_NAME, COFFEES.COF_NAME”+

 “from COFFEES, SUPPLIERS” +
 “where SUPPLIERS.SUP_NAME like ‘Acme, Inc.’ and” +
 “SUPPLIERS.SUP_ID = COFFEES.SUP_ID”;

Statement stmt;
 try {

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
} catch(java.lang.ClassNotFoundException e) {
System.err.print(“ClassNotFoundException:”);
System.err.println(e.getMessage());

} try {
con = DriverManager.getConnection (url,

 “system”, “manager”);
 stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery(query);
 System.out.println(“Supplier, Coffee:”);
 while (rs.next()) {

String supName = rs.getString(1);
String cofName = rs.getString(2);
System.out.println(“ “+ supName +”,” + cofName);

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 451

}
stmt.close();
con.close(); }

catch(SQLException ex) {
System.err.print(“SQLException:”); }}

}}
 }
 }
}

Output of the program:

Cross Join

A cross join, cartesian join or product provides the foundation upon which all
types of inner joins operate. A cross join returns the cartesian product of the sets
of records from the two joined tables. Thus, it equates to an inner join where the
join-condition always evaluates to True or where the join-condition is absent from
the statement.

If A and B are two sets, then the cross join is written as A × B.

Syntax
SELECT *
FROM employee CROSS JOIN department

Implicit Cross Join
SELECT *
FROM A, B

JDBC Example with Respect to Cross Join

Program 5.17
import java.sql.*;

class CrossJdbc{
public static void main(String[] args)

{
System.out.println(“Cross Join”);
Connection con = null;
try{

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
con = DriverManager.getConnection

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
452 Material

(“jdbc:odbc:xyz”, “system”, “manager”);
try{

Statement st = con.createStatement();
ResultSet res = st.executeQuery

(“SELECT *FROM” + “INTER_EMP1” + “,” + “INTER_SAL”);
System.out.println(“EMP_NAM” + “\t” + “EMP_ID” + “\t”
+ “EMP_SAL”); while(res.next()){
String name = res.getString(“EMP_NAM”);
String ed = res.getString(“EMP_ID”);
String sal = res.getString(“EMP_SAL”);
System.out.println(name + “\t” + ed + “\t” + sal);

}
}
catch (SQLException s){

System.out.println(“SQL statement is not executed!”);
}

}
catch (Exception e){

e.printStackTrace(); } }
}

Output of the program:

Natural Join

Program 5.18
import java.sql.*;

class NaturalJdbc{
public static void main(String[] args)

{
Connection con = null;
try{

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
con = DriverManager.getConnection

(“jdbc:odbc:xyz”, “system”, “manager”);
try{

Statement st = con.createStatement();
ResultSet res = st.executeQuery
(“SELECT *FROM” + “INTER_EMP1” + “NATURAL LEFT JOIN” +
“INTER_SAL”);

System.out.println(“EMP_NAM” + “\t” + “EMP_ID” + “\t” + “EMP_SAL”);

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 453

while(res.next()){
String name = res.getString(“EMP_NAM”);

String ed = res.getString(“EMP_ID”);
String sal = res.getString(“EMP_SAL”);

System.out.println(name + “\t” + ed + “\t” + sal);
}

}
catch (SQLException s){
System.out.println(“SQL statement is not executed!”);}}}
}

}
catch (Exception e){
e.printStackTrace(); } }}

Output of the program:

Using Transactions

Program 5.19
import java.sql.*;
public class Main {

public void Transaction() {
Connection con=null;
Statement statement = null;
try {

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
con = DriverManager.getConnection(“jdbc:odbc:xyz”,
“system”, “manager”);
con .setAutoCommit(false);
statement = con.createStatement();
statement.executeUpdate(“UPDATE Table1 SET Value = 1
WHERE Name = ‘fool’”);
statement.executeUpdate(“UPDATE Table2 SET Value = 2
WHERE Name = ‘Sunidhi’”);
con .commit();
} catch (ClassNotFoundException ex) {
ex.printStackTrace();
} catch (SQLException ex) {

ex.printStackTrace();
try {

con.rollback();
} catch (SQLException ex1) { }

} finally {
try {

if (statement != null)
statement.close();

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
454 Material

if (con != null)
con.close();

} catch (SQLException ex) { }
}

} public static void main(String[] args) {
new Main().Transaction();

}}

Output of the program:

Program on Applet to JDBC Communication

Program 5.20
import java.awt.*;
import java.awt.event.*;
import java.sql.*;
import java.applet.Applet;
public class Login extends Applet implements ActionListener

{
Panel p,p1,p2,p3;
Label l,l1,l2;
TextField tf1,tf2;
Button b1,b2;
Font f1,f2;
public void init()

{
setLayout(new GridLayout(4,1));

p=new Panel();
p1=new Panel();
p2=new Panel();
p3=new Panel();

f1=new Font(“Verdana”,Font.BOLD,24);
f2=new Font(“Arial”,Font.BOLD,18);

l=new Label(“Login”);
l.setFont(f1);
l1=new Label(“User Id”);
l1.setFont(f2);

l2=new Label(“Password”);
l2.setFont(f2);

tf1=new TextField(12);
tf2=new TextField(12);
tf2.setEchoChar('*');
tf1.setFont(f2);

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 455

tf2.setFont(f2);

b1=new Button(“Submit”);
b2=new Button(“Reset”);
b1.setFont(f2);
b2.setFont(f2);
b1.addActionListener(this);
b2.addActionListener(this);

p.add(l);

p1.add(l1);
p1.add(tf1);

p2.add(l2);
p2.add(tf2);

p3.add(b1);
p3.add(b2);

add(p);
add(p1);
add(p2);
add(p3);
}

public void actionPerformed(ActionEvent ae)
{
String userid=tf1.getText();
String pass=tf2.getText();
if(ae.getSource()==b1)

{
try{
Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
Connection

cn=DriverManager.getConnection(“jdbc:odbc:s1”, “system”, “manager”);
PreparedStatement ps=cn.prepareStatement(“insert into

log111 values(?,?)”);
ps.setString(1,userid);
ps.setString(2,pass);
ps.executeUpdate();
ps.close();
cn.close();
}catch(Exception e)

{
e.printStackTrace();
}

}else{
tf1.setText(“”);
tf2.setText(“”);
}

}

}
/*<applet code= “Login” width=300 height=290>
</applet>*/

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
456 Material

Output of the program:

Running Procedure of Applet to JDBC using Type-1 Driver
Before run the program first create the DSN for Type-1 driver then set
the policytool for applet communication to JDBC

How to Create the DSN?

Step 1

First open control panel inside control panel click on “Administrative Tool”.

Step 2

Inside administrative tool choose “Data Sources(ODBC)”.

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 457

Step 3

After Step 2 click on “Add” button from the window given below.

Step 4

After clicking on “Add” button choose “Microsoft ODBC for Oracle”.

Step 5

After selecting “Microsoft ODBC for Oracle” it will open a new window. Inside
that window pass the name of “DSN” (i.e., s1).

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
458 Material

How to set Policy Tool?

Step 1

First click on “Policy Tool” present in “C:\Program Files\Java\jdk1.6.0_16\bin”

Step 2

After click it will open a new window from that window we choose the “Add
Policy Entry” button.

Step 3

After click “Add Policy Entry” it will open a window from that window we choose
“Add Permission” button.

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 459

Step 4

After Step 3 from next screen we choose “All Permission”

Step 5

After choose “AllPermission” save the file name as “.java.policy” in “C:\Documents
and Settings\Administrator\.java.policy”

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
460 Material

An Introduction to SQL

SQL (Structured Query Language) is a database computer language designed
for managing data in relational database management systems or RDBMS. The
most common operation in SQL is the query, which is performed with the declarative
SELECT statement. SELECT retrieves data from one or more tables.

SELECT in a statement, is used to retrieve information from a table. It
specifies one or more column headings, one or more tables from which to select,
and some criteria for selection. The RDBMS returns rows of the column entries
that satisfy the stated requirements. A SELECT in a statement such as the following
will fetch the first and last names of employees who have company cars:

SELECT First_Name, Last_Name

FROM Employees

WHERE Car_Number IS NOT NULL

The result set (the set of rows that satisfy the requirement of not having null
in the Car_Number column) follows. The first name and last name are printed for
each row that satisfies the requirement because the SELECT statement (the first
line) specifies the columns First_Name and Last_Name. The FROM clause (the
second line) gives the table from which the columns will be selected.

FIRST_NAME LAST_NAME
---------- -----------
Axel Washington
Florence Wojokowski

The following code produces a result set that includes the whole table because
it asks for all of the columns in the table Employees with no restrictions (no WHERE
clause). Note that SELECT * means “SELECT all columns.”

SELECT *
FROM Employees

WHERE Clauses

The WHERE clause in a SELECT statement provides the criteria for selecting
values. For example, in the following code fragment, values will be selected only if
they occur in a row in which the column Last_Name begins with the string
‘Washington’.

SELECT First_Name, Last_Name

FROM Employees

WHERE Last_Name LIKE ‘Washington%’

Joins

A distinguishing feature of relational databases is that it is possible to get data from
more than one table in what is called a join. Suppose that after retrieving the
names of employees who have company cars, one wanted to find out who has
which car, including the make, model, and year of car. This information is stored in
another table, Cars, as shown below.

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 461

Table 5.1: Cars Table

Car Number Make Model Year

5 Honda Civic DX 1996

12 Toyota Corolla 1999

There must be one column that appears in both tables in order to relate them to
each other. This column, which must be the primary key in one table, is called the
foreign key in the other table. In this case, the column that appears in two tables is
Car_Number, which is the primary key for the table Cars and the foreign key in
the table Employees. If the 1996 Honda Civic were wrecked and deleted from
the Cars table, then Car_Number 5 would also have to be removed from the
Employees table in order to maintain what is called referential integrity. Otherwise,
the foreign key column (Car_Number) in Employees would contain an entry that
did not refer to anything in Cars. A foreign key must either be null or equal to an
existing primary key value of the table to which it refers. This is different from a
primary key, which may not be null. There are several null values in the Car_Number
column in the table Employees because it is possible for an employee not to have
a company car.

The following code asks for the first and last names of employees who have
company cars and for the make, model, and year of those cars. Note that the
FROM clause lists both Employees and Cars because the requested data is
contained in both tables. Using the table name and a dot (.) before the column
name indicates which table contains the column.

SELECT Employees.First_Name, Employees.Last_Name, Cars.Make,
Cars.Model, Cars.Year

FROM Employees, Cars

WHERE Employees.Car_Number = Cars.Car_Number

This returns a result set that will look similar to the following:
FIRST_NAME LAST_NAME MAKE MODEL
YEAR
----------- ------------ -------- ---------

Axel Washington Honda CivicDX

1996
Florence Wojokowski Toyota Corolla

1999

Common SQL Commands

SQL commands are divided into categories, the two main ones being Data
Manipulation Language (DML) commands and Data Definition Language (DDL)
commands. DML commands deal with data, either retrieving it or modifying it to
keep it up-to-date. DDL commands create or change tables and other database
objects such as views and indexes.

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
462 Material

A list of the more common DML commands follows:

• SELECT—used to query and display data from a database. The
SELECT statement specifies which columns to include in the result set.
The vast majority of the SQL commands used in applications are
SELECT statements.

• INSERT—adds new rows to a table. INSERT is used to populate a
newly created table or to add a new row (or rows) to an already-
existing table.

• DELETE—removes a specified row or set of rows from a table

• UPDATE—changes an existing value in a column or group of columns
in a table

The more common DDL commands follow:

• CREATE TABLE—creates a table with the column names the user
provides. The user also needs to specify a type for the data in each
column. Data types vary from one RDBMS to another, so a user might
need to use metadata to establish the data types used by a particular
database. CREATE TABLE is normally used less often than the data
manipulation commands because a table is created only once, whereas
adding or deleting rows or changing individual values generally occurs
more frequently.

• DROP TABLE—deletes all rows and removes the table definition from
the database. A JDBC API implementation is required to support the
DROP TABLE command as specified by SQL92, Transitional Level.
However, support for the CASCADE and RESTRICT options of DROP
TABLE is optional. In addition, the behavior of DROP TABLE is
implementation-defined when there are views or integrity constraints
defined that reference the table being dropped.

• ALTER TABLE—adds or removes a column from a table. It also
adds or drops table constraints and alters column attributes.

Result Sets and Cursors

The rows that satisfy the conditions of a query are called the result set. The number
of rows returned in a result set can be zero, one or many. A user can access the
data in a result set one row at a time, and a cursor provides the means to do that.
A cursor can be thought of as a pointer into a file that contains the rows of the
result set and that pointer has the ability to keep track of which row is currently
being accessed. A cursor allows a user to process each row of a result set from
top to bottom and consequently may be used for iterative processing. Most DBMSs
create a cursor automatically when a result set is generated.

Earlier JDBC API versions added new capabilities for a result set’s cursor,
allowing it to move both forward and backward and also allowing it to move to a
specified row or to a row whose position is relative to another row.

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 463

Transactions

When one user is accessing data in a database, another user may be accessing the
same data at the same time. If, for instance, the first user is updating some columns
in a table at the same time the second user is selecting columns from that same
table, it is possible for the second user to get partly old data and partly updated
data. For this reason, DBMSs use transactions to maintain data in a consistent
state (data consistency) while allowing more than one user to access a database at
the same time (data concurrency).

A transaction is a set of one or more SQL statements that make up a logical
unit of work. A transaction ends with either a commit or a rollback, depending on
whether there are any problems with data consistency or data concurrency. The
commit statement makes permanent the changes resulting from the SQL statements
in the transaction, and the rollback statement undoes all changes resulting from the
SQL statements in the transaction.

A lock is a mechanism that prohibits two transactions from manipulating the
same data at the same time. For example, a table lock prevents a table from being
dropped if there is an uncommitted transaction on that table. In some DBMSs, a
table lock also locks all of the rows in a table. A row lock prevents two transactions
from modifying the same row, or it prevents one transaction from selecting a row
while another transaction is still modifying it.

Stored Procedures

A stored procedure is a group of SQL statements that can be called by name. In
other words, it is executable code, a mini-program that performs a particular task
that can be invoked the same way one can call a function or method. Traditionally,
stored procedures have been written in a DBMS-specific programming language.
The latest generation of database products allows stored procedures to be written
using the Java programming language and the JDBC API. Stored procedures
written in the Java programming language are byte code portable between DBMSs.
Once a stored procedure is written, it can be used and reused because a DBMS
that supports stored procedures will, as its name implies, store it in the database.

Metadata

Databases store user data, and they also store information about the database
itself. Most DBMSs have a set of system tables, which list tables in the database,
column names in each table, primary keys, foreign keys, stored procedures, and
so forth. Each DBMS has its own functions for getting information about table
layouts and database features. JDBC provides the interface Database Metadata,
which a driver writer must implement so that its methods return information about
the driver and/or DBMS for which the driver is written. For example, a large
number of methods return whether or not the driver supports a particular
functionality. This interface gives users and tools a standardized way to get metadata.
In general, developers writing tools and drivers are the ones most likely to be
concerned with metadata.

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
464 Material

Contents of java.sql package

It has already been seen that the JDBC API defines a set of interfaces and classes,
which are found in the java.sql package.

Interfaces in java.sql package

The various interfaces are as follows:

Array

This interface is used to map Java array into SQL type Array. This interface
contains some predefined methods. These are:

 getArray() getBaseType()
 getBaseTypeName() getResultSet()

Blob

It is an interface present in java.sql package. An SQL Blob is a built-in data
type that stores a binary large object in a database table. The methods of this
interface are:

 getBinaryStream() getBytes()
 length() position()

CallableStatement

It is an interface present in java.sql package and is used to call SQL stored
procedures. A CallableStatement may return a ResultSet or multiple ResultSets.
Escape syntax is used for procedures that return a parameter. This interface extends
the PreparedStatement interface. The methods in this interface include getXXX
(where XXX stands for any datatype) methods and the following:

 registerOutParameter() wasNull()

Clob

It is an interface present in java.sql package. In SQL, Clob is a built-in data
type that stores a character large object in a database table. The methods of this
interface are:

 getAsciiStream()
getCharacterStream()

 getSubString() length()
 position()

Connection

It is an interface present in java.sql package. A Connection is a session in a
specific database engine. Information such as database tables, stored procedures
and other database objects may be obtained from a Connection with the
getMetaData() methods. Some of the important methods in this interface
are:

 commit() createStatement()
 getAutoCommit() isClosed()
 isReadOnly() prepareCall()

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 465

 prepareStatement() rollback()
 setAutoCommit() setReadOnly()

DatabaseMetaData

This interface provides information regarding the database itself, such as, version
information, table names, and supported functions. Many of the methods of this
interface return lists of information in the form of ResultSet objects. Some of the
important methods of this interface are:

 getCatalogs() getColumns()
 getConnection()

getDatabaseProductVersion()
 getDriverName() getDriverVersion()
 getMaxRowSize() isReadOnly()

Driver

Every driver must implement the Driver interface. This interface is used to create
connection objects. When a Driver class is loaded, first it must create an instance
of the Driver and then it is registered in the DriverManager. The following are the
methods present in the Driver interface.

 acceptsURL() connect()
 getMajorVersion() getMinorVersion()
 getPropertyInfo() jdbcCompliant()

Ref

It is an interface present in java.sql package. This interface is a reference to an
SQL structure type value in the database. The reference of the interface is saved in
the persistent storage mechanism. The method present in this interface is
getBaseTypeName().

ResultSet

This interface provides methods for the retrieval of data returned by an SQL
statement execution. A ResultSet maintains a cursor pointing to its current row of
data. The most often used methods, namely, getXXX and updateXXX methods
are present in this interface. The other important methods present in this interface
are:

 absolute() afterLast()
 beforeFirst() cancelRowUpdate()
 close() deleteRow()
 insertRow() next()
 previous() wasNull()

ResultSetMetadata

This interface is used for the collection of meta data information associated with
last ResultSet object. Some of the important methods of this interface are:

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
466 Material

 getCatalogName() getColumnName()
 getColumnCount() isNullable()
 isReadOnly()

SQLData

It is an interface present in java.sql package. This interface is used to map the
SQL user-defined data types. Some important methods of this interface are:

 getSQLTypeName() readSQL()
 writeSQL()

SQLInput

It is an interface present in java.sql package. It contains an InputStream that
contains stream-oriented values. The programmer does not invoke this interface.
Rather, the driver uses it. The readXXX methods (where XXX represents any
data type) of this interface are used to read the attributes from the input stream.
Another method in this interface is wasNull().

SQLOutput

It is an interface present in java.sql package. This interface uses the OutputStream
for writing the attributes of user-defined data types in the data base. This interface
is also used by the driver. However, the programmer does not invoke it directly.
The writeXXX methods (where XXX represents any data type) of this interface
are used to write data on SQLData object.

Statement

The methods of the Statement interface are used to execute SQL statements and
to retrieve data into the ResultSet. A Statement can open only one ResultSet at a
time. Some of the important methods of this interface are:

 cancel() close()
 execute() executeBatch()
 executeUpdate() getConnection()
 getFetchSize() getMaxRow()
 getAttributes()
 getSQLTypeName()

Classes in java.sql

The various classes in Java are given here.

Date

The Date class contains methods to perform conversion of SQL date formats
and Java Date objects. This class contains the following important methods:

 getHours() getMinutes()
 getSeconds() setHours()
 setMinutes() setSeconds()
 setTime() toString()
 valueOf()

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 467

DriverManager

This class is used to load and unload the drivers and establish the connection with
the database. The important methods of this class are:

 getConnection() getDriver()
 getLogStream() println()
 registerDriver()

DriverPropertyInfo

The methods of the DriverPropertyInfo class are used for the insertion
and retrieval of driver properties. It is useful for advanced programmers. This
class inherits its methods from the java.lang.Object class.

Time

The Time class extends the Date class. It allows the JDBC to identify java.util.Date
as an SQL Time value. The methods of this class are used to perform SQL time
and Java time object conversions. The methods available in this class are:

 getDate() getDay()
 getMonth() getMonth()
 getYear() setDate()
 setMonth() setTime()
 setYear() toString()
 valueOf()

TimeStamp

The TimeStamp class also extends the Date class. It provides additional
precision to the Java Date object by adding a nanosecond field. The methods of
this class are:

 after() before()
 equals() getNanos()
 setNanos() toString()
 valueOf()

Types

The Types class extends the java.lang.Object class. This class defines constants
that are used to identify generic SQL types called JDBC types. Its methods are
inherited from the class object.

Exceptions in java.sql package

There are three types of Exceptions in java.sql package. Each of them is given
below in detail.

BatchUpdateException

It extends the SQLException. When an error occurs in the batch update operation,
then the BatchUpdateException is thrown at runtime.

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
468 Material

SQLException

The SQLException class extends Exception class of java.lang package. It
provides information on a database access error. The information given in the
exception includes a string describing the error, a string describing the SQLState,
the error code and a chain to the next exception.

SQLWarning

The SQLWarning extends SQLException. It provides information on database
access warnings and is chained to the object whose method caused it to be
reported.

Steps for using JDBC

There are seven basic steps for using JDBC to access a database. These are:
 Import the java.sql package Register the driver
 Connect to the database Create a statement
 Execute the statement Retrieve the results
 Close the statement and the connection

Import the java.sql Package

The interfaces and classes of the JDBC API are present inside the package called
java.sql. When the programmer wants to make Java-database connectivity, he is
bound to import java.sql package. Its syntax is import java.sql.*;.

Register the Driver

In Java, if the programmer wants to register the driver, he calls the static method
of DriverManager class. Its syntax is:

DriverManager.registerDriver(Driver dr) ;

Connect to the Database

The next step is to connect to the database. The getConnection() method
is used to establish the connection. Its syntax is:

DriverManager.getConnection(String url, String user, String passwd);

Where url is the database. The url is of the form jdbc:subprotocol:
subname.user is the database user, and passwd is the password to be supplied to
get connected to the database. The return value is connected to the url.

Creating a statement

A statement can be created using three methods, namely,
createStatement() , prepareStatement() and
prepareCall(). The syntax of each of these is given below:

createStatement()

Its syntax is:
cn.createStatement();

This is used where cn is a connection object. This method creates and
returns a statement object for sending SQL statement to the database.

cn.createStatement(int rsType, int rsConcur)

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 469

This is used where cn is a connection object, rsType and rsConcur are
type and concurrency of ResultSet respectively. This method creates a statement
object that will generate ResultSet objects with the given type and concurrency.

cn.prepareStatement(String str)

This is used where cn is a connection object and str is an SQL statement
that may contain one or more IN parameter place holders. This method creates
and returns a PreparedStatement object for sending SQL statements with
parameters to the database.

cn.prepareStatement(String str, int rsType, int rsConcur)

This is used where cn is a connection object, str is a SQL statement, rsType
is a result set type and rsConcur is a concurrency type. This method creates a
PreparedStatement object that will generate ResultSet objects with the given
concurrency.

cn.prepareCall(string str)

This is used where cn is a connection object and str is an SQL statement
that may contain one or more IN parameter placeholders. This method creates
and returns a CallableStatement object for calling database-storing procedures.

cn.preparecall(String str, int retype, int reConcur)

This is used where cn is a connection object, str is an SQL statement,
retype is a result set type and rsConcur is a concurrency type. It creates a
CallableStatement object that will generate ResultSet objects with the given type
and concurrency.

SQL statements without parameters are normally executed using Statement
objects. If the same SQL statement is executed many times, it is more efficient to
use a PreparedStatement.

Executing the Statement

There are three methods to execute the statement. These are execute(),
executeQuery() and executeUpadate(). Its syntax is:

stmt.execute();

This is used where stmt is a statement object. This method returns a boolean
value and is used to execute any SQL statement.

executeQuery()

Its syntax is:
stmt.executeQuery(String str);

This is used where stmt is a statement object and str is an SQL statement. It
is used to execute an SQL statement that may return multiple results. The return
value is a boolean, which is true if the next result is a ResultSet and false if it is an
update count or there are no more results. This is used where stmt is a
PreparedStatement object. The method returns a ResultSet generated by executing
the query in stmt. This method takes query as string and is invoked by the statement
object stmt and returns the ResultSet.

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
470 Material

executeUpdate()

Here stmt is an object of PreparedStatement. By the object of PreparedStatement,
this method executes SQL statements. In case of insert, update, delete statement,
this method’s return value is an int, which counts the number of rows which are
affected. The syntax is:

stmt.executeUpdate(String str);

Here stmt is a statement object and str is a SQL statement for performing
insert, update or delete functions.

Retrieving the Results

The results of the SQL statements (in particular queries are) are stored in a ResultSet
object. To retrieve the data from the ResultSet, we need to use the getXXX
methods. These methods retrieve the data and convert it to a Java data type.
There is a separate getXXX method for each data type. For example, getString is
used to retrieve the string value and getDate() is used to retrieve a date
value. The getXXX takes one argument which is the index of the column in the
ResultSet and returns the value of the column. To move into the next row in the
ResultSet, one makes use of the ResultSet.next() method.

Closing the Statement and Connection

The various methods are shown below.

The close() Method

It is not absolutely necessary to close the connection. However, since an open
connection can cause problem, it is better to close the connections. The close()
method is used to close the statements and connection. The syntax for closing an
object is: stmt.close();

This is used where stmt is a statement object to be closed. This method
releases stmt database. The return type is void. The syntax for closing a connection
is:

cn.close();

This is used where cn is the connection to be closed. The return type of this
method is void.

Executing DDL and DML Commands

Once the connection with the database is established, the user can start creating
and working with the objects of the database. In this part, the way to execute
Data Definition Language (DDL) and Data Manipulation Language (DML)
commands is learnt.

DDL Commands

The DDL commands are create, alter and drop. The methods to execute each of
these are given below. The create command is used to create database tables.
The following tables would be needed in case of the rhythm.

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 471

Customer
Custld
CustName
Address

Product
ProdId
ProdName
Price
Stock-on-hand

Transaction
TranDt
TranId
ProdId
CustId

Qty

The create statements for creating the above three tables are as follows:

(a) Create a table named Customer (CustId Number(3), CustName
varchar2(15), Address varchar2(30));

(b) Create a table named Product (ProdId Number(3),ProdName
varchar2(10), Price Number(5,2), Stock- on- hand Number(4));

(c) Create a table named Transaction (CustId Number(3), ProdId
Number(3), tranId Number(3), Qty Number(2), TranDt Date);

The following example clarifies this further:

Create the Table

Program 5.21
import java.sql.* ;
public class Customer1

{
public static void main(String args[])throws SQLException

{
DriverManager.registerDriver(new oracle.jdbc.driver.
OracleDriver());
System.out.println(“Connecting to the database…”);
Connection cn=DriverManager.getConnection
(“jdbc:oracle:thin:@rashmi:1521:orc11”,”sai”,”sai”);
System.out.println(“Connected to the database.”);
Statement st =cn.createStatement ();
try{
st.executeUpdate(“create table Customer(CustId

number(3),CustName varchar2(15),Address varchar2(30))”);
System.out.println(“Table Customer Created”);
}catch(SQLException ex)

{
System.out.println(“The Exception raised is” + ex);
}

st.close();
cn.close();
}

}

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
472 Material

Output of the program:
Connecting to the database…
Connected to the database.
Table Customer Created
The next example shows altered table transanction.

Altered Table

Program 5.22
import java.sql.*;
public class Customer_alt

{
public static void main(String args[])throws SQLException

{
DriverManager.registerDriver(new

oracle.jdbc.driver.OracleDriver());
try{
Connection cn=DriverManager.getConnection

(“jdbc:oracle:thin:@rashmi:1521:orc11”,”sai”,”sai”);
System.out.println(“Connected to the database”);
Statement.st=cn.createStatement();
st.executeUpdate(“alter table Transaction modify(Qty

Number(4))”);
System.out.println(“Table Transaction altered”);
}catch(Exception ex)

{
System.out.println(“The Exeception raised is:”+ ex);
}

}
}

Output of the program:
Connected to the database
Table Transaction altered
Consider the following example:

Table Dropped

Program 5.23
import java.sql.*;
public class Customer_drop

{
public static void main(String args[])throws SQLException

{
DriverManager.registerDriver(new

oracle.jdbc.driver.OracleDriver());
System.out.println(“Connecting to the database…”);
try{
Connection cn=DriverManager.getConnection

(“jdbc:oracle:thin:@rashmi:1521:orc11”,”sai”,”sai”);
System.out.println(“Connected to the database”);
Statement st=cn.createStatement();
st.executeUpdate(“drop table Trans”);
System.out.println(“Table Trans dropped”);

}catch(Exception ex)
{

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 473

System.out.println(“The exception raised is:”+ex);
}

}
}

Output of the program:
Connecting to the database....
Connected to the database....
Table Trans dropped

DML Commands

The data manipulation language commands are: select, insert, update and delete
commands. Using these the tables are created. The insert command is used to
input the data and the select command is used to retrieve the records from the
tables. The following example shows the way to insert a row in the table.

Insert Table

Program 5.24
import java.sql.*;
public class CustomerInsert

{
public static void main(String args[])throws SQLException

{
DriverManager.registerDriver(new

oracle.jdbc.driver.Oracle.OracleDriver());
try{
Connection cn=DriverManager.getConnection

(“jdbc:oracle:thin:@rashmi:1521:orc11”,”sai”,”sai”);
System.out.println(“Connected to the database”);
Statement st = cn.createStatement();
st.executeUpdate(“insert into customer values (100, ‘usha’,

‘100,Naya Bazar,Cuttack , Orissa’)”);
System.out.println(“One row inserted”);
st.close();
cn.close();
}catch(Exception ex)

{
System.out.println(“The Exception raised is “ + ex);
}

}
}

Output of the program:
Connected to the database
One row inserted

Update a Row

Program 5.25
import java.sql.*;
import java.io.*;
public class ProductUpdate

{
public static void main(String args[])throws

SQLException,IOException

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
474 Material

{
DriverManager.registerDriver(new

oracle.jdbc.driver.OracleDriver());
String refValue;
String UpdateValue;
String Str;
try{
Connection cn = DriverManager.getConnection
(“jdbc:oracle:thin:@:1521:orc11”,”sai”,”sai”);
refValue=readEntry(“Enter the product ID: “);
updateValue=readEntry(“Enter the new price: “);
Statement st=cn.createStatement();
str=”update product set price = “+ updateValue + “,”+”where

prodID =”+refValue ;
st.executeUpdate(str);
System.out.println(“Row Updated”);
st.close();
cn.close();
}catch(Exception ex)

{
System.out.println(“The Exception raised is “+ex);
}

}
static String readEntry(String prompt)

{
try{

StringBuffer tempo=new StringBuffer();
System.out.print(prompt);
System.out.flush();
int c=System.in.read();
while (c!=’\n’ && c != -1)
{
tempo.append ((char)c);
c=System.in.read ();
}
return tempo.toString().trim();
}catch(IOException ex)
{
return “”;
}

}
}

Output of the program:

Enter the product ID: 100

Enter the new price: 110.00

Row Updated

Delete One Row

Program 5.26
import java.sql.*;
public class CustomerDel

{

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 475

public static void main(String args[])throws SQLException
{
DriverManager.registerDriver(new

oracle.jdbc.driver.OracleDriver());
try{

Connection cn = DriverManager.getConnection
(“jdbc:oracle:thin:@rashmi:1521:orc11”,”sai”,”sai”);

System.out.println(“Connected to the database”);
Statement st=cn.createStatement();
st.executeUpdate(“delete from Product where

ProdID=105”);
System.out.println(“One row deleted”);
}catch(Exception ex)

{
System.out.println(“The Exception raised is:” +ex);
}

}
}

Output of the program:

Connected to the database

One row deleted

Joins and Transactions

Sometimes, it is required to use two or more tables to get the data. This is a case
where a join is needed. A join is a database operation that relates to two or more
tables by names of values that they share in common.

Joins

There are different types of joins available in Oracle. Examples of equi join and
outer join have been given.

The following example shows the way to join the two tables:

Joining Two Tables

Program 5.27
import java.sql.*;
import java.io.*:
public class ListTran

{
public static void main(String args [])throws

SQLException,IOException
{
DriverManager.registerDriver(new

oracle:jdbc:driver.OracleDriver());
try{

Connection cn= DriverManager.getConnection

(“jdbc:oracle:thin:@rashmi:1521:orc11”,”sai”,”sai”);
Statement st= cn.createStatement();
ResultSet rs = st.executeQuery(“select

product.prodID,ProdName,trained,qty from product,
transaction where product.ProdID=transaction.ProdID”);

System.out.println(“ProdID\tProdName\t\

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
476 Material

tTranID\tQuantity”);
while (rs.next())
{
System.out.Println(rs.getInt(1)+”\t”+rs.

getString(2)+”\
t”+ rs.getgetInt(3) + “\t” + rs.getInt(4)));

}
rs.close();
st.close();
cn.close();
}catch(Exception ex)

{
System.out.println(“the exception is “ +ex);
}

}
}

Output of the program:

ProdID ProdName TranID Quantity

001 Gajani 1 2

001 Gajani 4 3

002 Lagan 2 3

004 Mann 5 1

005 Rangeela 3 1

Transaction

In case of transaction, one SQL statement waits for another statement to be
executed. Let us take the instance of the rhythm. Whenever there is a transaction,
in addition to inserting the corresponding record in the transaction table, the
corresponding row in the product table should also be updated. If either of the
operations fails, then the data will become inconsistent. In order to be sure that
either both the operations are executed or neither of them is executed, one can
make use of transaction. A transaction is a set of one or more statements that
are executed together as a unit.

cn.setAutoCommit (false);

Transaction

Program 5.28
import java.sql.*;
import java.io.*;
public class TransCmt

{
public static void main(String args [])throws

SQLException,IOException
{
DriverManager.registerDriver(new

oracle.jdbc.driver.OracleDriver()) ;
try{

Connection cn=DriverManager.getConnection
(“jdbc:oracle:thin:@rashmi:1521:orc11”,”sai”,”sai”);

cn.setAutoCommit(false);

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 477

Statement stm=cn.createStatement();
stm.executeUpdate(“Insert into transaction values(103,

101, 6, 1,
‘3-jan-09’)”);

Statement st=cn.createStatement();
ResultSet rs;
rs=st.executeQuery(“select stock_on_hand from product

where
ProdID=103”);

rs.next();
int i=rs.getInt(1);
i = i -1;
Statement stmt = cn.createStatement();
stmt.executeUpdate(“Update Product set stock_on_hand

= “ +
i + “where ProdID=103”);

cn.commit();
System.out.println(“Changes committed”)
st.close();
cn.close();
}catch(Exception ex)

{
System.out.println(“The Exception raised is “ + ex);
cn.rollback();
}

}
}

Output of the program:

Changes committed

5.4 SWINGS

The sample program given below shows an example to write a Swing application.
It uses two Swing components: JFrame (top-level container) and JButton
(component which creates a push button).

Example 5.2: A program to demonstrate the creation of a Swing application.
import javax.swing.*;
class MySwingDemo extends JApplet
{
public static void main(String str[])
{
//creates a new frame
JFrame jf = new JFrame(“Swing application”);
//specify the initial size of the frame.
jf.setSize(300,125);
//Terminates the program
jf.setDefaultCloseOperation(jf.EXIT_ON_CLOSE);
//create a new button
JButton b1 = new JButton(“Click”);
//Adding button to the frame
jf.add(b1);
//Display the frame

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
478 Material

jf.setVisible(true);
}
}

Swing programs are compiled and executed like any other Java application. The
program given in Example 5.2 can be compiled by using the following command.
javac MySwingDemo.java

To execute the program, following command is used.
java MySwingDemo

The output of the program is

The explanation of this program is as follows:

1. In the beginning of the program, the javax.swing package is imported.

2. Next, MySwingDemo class which extends the JApplet class is declared.

An object of JFrame class is created using the statement.

JFrame jf = new JFrame(“Swing application”);

It creates a container called jf that defines a rectangular window with a
specified string displayed on the title bar.

3. The size of the window is specified by using the statement.

jf.setSize(300, 125);

The general form of setSize() method to set the size of the window is:

void setSize(int width, int height)

where,

width is the width of the window

height is the height of the window

4. The statement used for terminating the program when the window is closed
is

jf.setDefaultCloseOperation(jf.EXIT_ON_CLOSE);

When the above statement is executed, the entire application terminates

with the closing of window.

The general form of setDefaultCloseOperation() is

void setDefaultCloseOperation(int w)

where,

w specifies the action to be performed on the window when it is closed. It
has several options which are as follows

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 479

JFrame.DISPOSE_ON_CLOSE

JFrame.HIDE_ON_CLOSE

JFrame.DO_NOTHING_ON_CLOSE

By default, when the top-level window is closed, the application is not
terminated. It simply removes the window from the screen.

5. A Swing component JButton is created using the statement.

JButton b1 = new JButton(“Click”);

6. The button is added to the content pane of the frame by using the statement.

jf.add(b1);

The component is added to the frame’s content pane by calling add()

method on the JFrame reference (jf). JFrame inherits the add()

method from the AWT class Container.

The general form of add() method is:

Component add(Component comp)

where,

comp is the object of the component to be added

7. The statement to make the window visible is

jf.setVisible(true);

The setVisible() method is inherited from the AWT Component

class. If it is set to true, the window will be displayed, otherwise not. By
default, a JFrame is invisible.

Note: Prior to JDK 5, the content pane was obtained by calling

getContentPane() method. However, today, the use of

getContentPane() is no longer necessary. We can call add(),

remove(), and setLayout() directly on JFrame as they operate on
the content pane automatically.

5.4.1 Components of Swing

In this section, we will present an overview of some of the components of Swing.

JApplet

JApplet is a class that represents the Swing applet. It is a subclass of Applet
class and must be extended by all the applets that use Swing. It provides all the
functionalities of the AWT applet as well as support for menu bars and layering of
components. Whenever we require to add a component to it, the component is
added to the content pane.

The JApplet defines the following constructor:
JApplet()

Label

A label is an object of JLabel class. Some of the constructors defined by
JLabel class are as follows:

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
480 Material

JLabel()
JLabel(String string)
JLabel(String string, int align)

where,

string is the text used for the label.

align specifies the horizontal alignment of the text contained in the label, and
can have one of the following values: LEFT, RIGHT, CENTER, LEADING or
TRAILING.

Button

A push button is an object of JButton class. Some of the constructors defined
by JButton class are as follows: JButton()

JButton(Icon icon)
JButton(String string)

where,

string represents the string used for the button.

icon represents the icon used for the button.

Note: All the buttons are derived from AbstractButton class.

Toggle Button

Swing provides a variant of push button called toggle button which has two states:
pushed and released. When toggle button is pressed for the first time, it remains
pressed; it is released only when it is pressed for the second time. This button
toggles between pushed and released states. Toggle button is an object of
JToggleButton class.

Some of the constructors defined by JToggleButton class are as follows:
JToggleButton()
JToggleButton(String string)
JToggleButton(String string, boolean state)

where,

string specifies the text.

state can have one of the two values: true, if the button is initially selected,
otherwise false (default value).

Checkbox

A checkbox is an object of JCheckBox class. Some of the constructors defined
by JCheckBox class are as follows:

JCheckBox()
JCheckBox(String string)
JCheckBox(String string, boolean isSelected)

where,

string is the text used as a label for the checkbox.

isSelected is used to set the initial state of the checkbox. If it is true, the
checkbox is checked, otherwise it is unchecked. The default state of the checkbox
is false.

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 481

Text Field

Text field is an object of JTextField class which is a subclass of
JTextComponent. Some of the constructors defined by JTextField
class are as follows:

JTextField()
JTextField(int cols)
JTextField(String string, int cols)
JTextField(String string)

where,

string is the initial string contained in the text field.

cols is the width of the text field in terms of columns.

Text Area

The text area creates a multi-line text area. It does not provide scrolling facility;
however, scroll bars can be added by adding the JTextArea in JScrollPane
container. A text area is an object of JTextArea class which is a subclass of
JComponent.

Some of the constructors defined by JTextArea class are as follows:
JTextArea()
JTextArea(String str1)
JTextArea(int rows, int cols)
JTextArea(String str1, int rows, int cols)

where,

str1 is the initial string contained in text area.

rows represents the height of the text area or the maximum rows a text area can
contain.

cols represents the width of the text area, that is, the maximum number of
characters each line of the text area can contain.

Radio Button

Radio buttons are a group of buttons, in which only one radio button can be
selected at one time. That is, when you select any one radio button, then the other
selected radio button will get deselected automatically. A radio button is an object
of JRadioButton class.

Some of the constructors defined by JRadioButton class are as follows:
JRadioButton()
JRadioButton(String string)
JRadioButton(String string, boolean state)

where,

string specifies the text.

state can have one of the two values: true, if the button is initially selected,
otherwise false (default value).

Note: Button groups (javax.swing.ButtonGroup) are used in combination with radio
buttons to ensure that only one radio button is selected at a time.

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
482 Material

Panel

Panel is a container to hold different Swing components. One can add any number
of components to a panel and there can be multiple panels in the same frame. It
also supports double buffering, which is used in animation to avoid flickering. In
double buffering, object is first written to an off-screen memory before display
and then switched over to the panel. Flow layout is the default layout for the panel.
A panel is an object of class JPanel which is present in package
javax.swing.

Some of the constructors defined by JPanel class are as follows:
JPanel()
JPanel(boolean isDoubleBuffered)
JPanel(LayoutManager layout)
JPanel(LayoutManager layout, boolean isDoubleBuffered)

where,

isDoubleBuffered defines whether the panel is double buffered or not. It
can have one of the values: true (double buffered) or false (not double
buffered)

layout defines the layout of the panel.

Scroll Pane

A scroll pane is a container that represents a small area to view other component.
If the component is larger than the visible area, scroll pane provides horizontal
and/or vertical scroll bars automatically for scrolling the components through the
pane. A scroll pane is an object of the JScrollPane class which extends
JComponent.

Some of the constructors defined by JScrollPane class are as follows:
JSrollPane()
JScrollPane(Component component)
JScrollPane(int ver, int hor)
JScrollPane(Component component, int ver, int hor)

where,

component is the component to be added to the scroll pane.

ver and hor specify the policies to display the vertical and horizontal scroll
bar, respectively. Some of the standard policies are:

HORIZONTAL_SCROLLBAR_ALWAYS,
HORIZONTAL_SCROLLBAR_AS_NEEDED,
VERTICAL_SCROLLBAR_ALWAYS,
VERTICAL_SCROLLBAR_AS_NEEDED.

Note: JScrollPane is a lightweight container.

List

A list is an object of JList class.

Some of the constructors defined by JList class are as follows:

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 483

JList()
JList(Object[] listdata)

where,

listdata represents the array of Object type that displays the elements.

Example 5.2 illustrates the use of Swing components.

Example 5.2: A program to demonstrate the use of the Swing components is as
follows:

import java.awt.*;
import javax.swing.*;
class FormExample extends JApplet
{

// Declaring components
JFrame jf;
JLabel nm, add,sex,hobbies,languages,blank;
JButton ok, clear;
JTextField name;
JTextArea address;
JRadioButton m, f;
JCheckBox cric, bad, dance, music;
ButtonGroup bg;
JList list;
JScrollPane scr;
JPanel panel1, panel2, panel3, panel4,panel5, main;
FormExample()
{

String lang[] = {“C”, “C++”, “Java”, “Pascal”,
“Fortran”,”COBOL” }; // list items
jf = new JFrame(“Demo of Swing components”);
// Instantiation of components
ok = new JButton(“OK”);
clear = new JButton(“Clear”);
m = new JRadioButton(“Male”,true);
f = new JRadioButton(“Female”);
bg = new ButtonGroup();
sex = new JLabel(“ Sex”);
hobbies = new JLabel(“ Hobbies”);
blank = new JLabel();
cric = new JCheckBox(“Cricket”,true);
bad = new JCheckBox(“Badminton”);
dance = new JCheckBox(“Dance”);
music = new JCheckBox(“Music”);
languages = new JLabel(“ Languages Known”);
list = new JList(lang); // Adding items to the list
list.setVisibleRowCount(3); // Three items visible
scr = new JScrollPane(list,
ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED);

// Adding list to scroll pane
nm = new JLabel(“Name”);
add = new JLabel(“Address”);
name = new JTextField(20); // Textfield have 20

/ /
columns

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
484 Material

address = new JTextArea(3,20); // Textarea have 3 rows
/ /

and 20 columns
panel1 = new JPanel();
panel2 = new JPanel(new GridLayout(1,3)); // set

//layout of panel2 to GridLayout
panel3 = new JPanel();
panel4 = new JPanel(new GridLayout(1,2)); //set

//layout of panel4 to GridLayout
panel5 = new JPanel();
main = new JPanel(new GridLayout(5,1)); //hold all

//the five panels

/* Adding radio buttons to the button group so that only
one radiobutton is active at a time

*/
bg.add(m);
bg.add(f);

// Adding components to the corresponding panels
panel1.add(nm);
panel1.add(name);
panel1.add(add);
panel1.add(address);
panel2.add(sex);
panel2.add(m);
panel2.add(f);
panel3.setLayout(new GridLayout(2,3));
panel3.add(hobbies);
panel3.add(cric);
panel3.add(bad);
panel3.add(blank);
panel3.add(dance);
panel3.add(music);
panel4.add(languages);
panel4.add(scr, BorderLayout.NORTH);
panel5.add(ok);
panel5.add(clear);

// Adding all the panels to the main panel
main.add(panel1);
main.add(panel2);
main.add(panel3);
main.add(panel4);
main.add(panel5);

jf.add(main); // adding main panel to the frame
jf.setDefaultCloseOperation(jf.EXIT_ON_CLOSE);
jf.setSize(300, 350);
jf.setVisible(true);

}
public static void main(String str[])
{

FormExample f = new FormExample();
}

}

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 485

The output of the program is:

Check Your Progress

1. Define the term image class.

2. Differentiate between fixed-length records and variable-length records.

3. What are the disadvantages with fixed length records?

4. State about the image class.

5. What is MediaTracker?

6. Define the term JDBC.

7. What is API?

8. Name the container that is not a top-level container.

9. What is JApplet?

5.5 JAVA BEANS

The Java Beans architecture is based on a component model enabling the
developers to create small software units that they call components. These smaller
components can be assembled and integrated to form large components like
applets, applications etc. These core components have the characteristics of
reusability and are self-contained and are known as beans.

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
486 Material

The official definition of a bean, as given in the Java Beans specification, is:
“A bean is a reusable software component based on Sun’s JavaBeans specification
that can be manipulated visually in a builder tool.”

These software components or beans are developed, but run and reused
everywhere as per the requirements .There are various softwares like NetBeans
,JBuilder , BDK , etc. which can help you out to unleash the power of beans –
reusability. The JavaBeans component architecture is backed upon by the set of
APIs called the JavaBeans API specification that deals with the internal
sophistication of this model.

Java Beans are dynamic components and also very crucial implementations
to be dealt with. Dynamic in the sense that you can easily change their nature and
customize them as per your need .For this the design mode of a builder tool can
be used for visual manipulation. Simply, choose a bean from the toolbox, drag and
drop it into a form, restructure its appearance and behaviour, define its interaction
with other beans, and combine it with other beans into an applet, application, or a
new bean.

Some Bean Facts

1. A Java Bean is a reusable and self-contained software component that
inherits the basic implementations from sun’s java bean specification.

2. A Java Bean is a not only reusable but also customizable and can be easily
manipulated visually in a builder tool.

3. The Builder tool is an application development tool which helps you to
build new beans or reuse the pre-existing ones to develop an application
visually.

4. Java Beans help to create simple components first which can be then
reutilised to produce comparatively some more complex components or
applications using the builder tools like NetBeans etc.

5. These builder tools are moreover like IDEs that determine a bean’s features
like its properties, methods, and events .The process of discovering these
facts about the beans is called introspection. There are two ways for Beans
support introspection:

(i) Just adhere to some specific rules, known as design patterns, when
naming bean features. The Introspector class checks the beans for
these design patterns explore out all the bean features.

(ii) And the other method is to explicitly provide all the basic information
like property, method, and event information with a related bean
information class. A bean information class implements the Bean
Info interface. A BeanInfoclass explicitly lists those bean features that
are to be exposed to application builder tools.

6. The appearance and behaviour of a bean determines its properties .These
properties can be manipulated and changed later during the design using
some builder tools. Builder tools introspect on a bean to discover its
properties and expose those properties for manipulation and further changes.

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 487

7. Beans show various properties which can be customized at design time
either by using property editor tools like NetBeans, etc. or by using more
advanced bean customizers.

8. Events are the mechanism of communication between two or more beans.
Beans follow the event delegation model where there is a listener and the
source for every event. It requires a bean builder tool to act as interface and
create appropriate registration of the source (event generator), the listener
(event delegator) and the event handler so that the event gets properly
managed.

9. The literary meaning of “Persistence” is long lasting. So, this enables the
beans to save and restore their state later when needed. After bean
manipulation, beans properties get changed from the initial ones, so this
need to be saved. Why? So, that if there is any error or the bean component
is not performing as desired then it could be reverted back to its initial state.
Java Object Serialization is used to support persistence in java beans.

10. A bean’s methods are similar to the Java methods, and can be called from
other beans or a scripting environment as required. By default all public
methods are exported.

11. On the basis of functionality and purpose, all the beans vary in nature from
each other. Some of the bean implementations you might have probably
met while programming are:

(a) GUI (Graphical User Interface)
(b) Non-Visual Beans, such as a Spelling Checker
(c) Animation Applet
(d) Spreadsheet Application

Benefits of using Java Beans

As discussed beans are reusable, self-contained software components. So, there
are a lot of benefits that a programmer can utilize to create a good software. Some
of the benefits have been discussed below:

 The java beans are java components hence have the “Write once and run
anywhere” property.

 Beans are platform independent and hence can work in different local
platforms.

 Beans follow the message passing concept and therefore can easily capture
the events sent by other objects and vice versa thereby enabling effective
object communication.

 The application developer can add, manipulate and configure the properties,
events and methods of the bean with the help of bean auxiliary software
during design time without creating any havoc at runtime.

 The beans are persistent in nature and hence their configuration settings can
be saved in persistent storage and restored later during any contingency or
failure.

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
488 Material

Power and Capabilities of Java Bean

A Bean can be too simple or too complex, whatever be the design and/or
configurations, but both are equally powerful in implementations. A bean can be
designed to cater the need of performing a simple function, like developing a spell
checking component to be used in a document, or for performing a complex
function, such as forecasting some performance metrics in business models. A
Bean may be visible to an end user.

Builder Tool

Builder tools are the softwares that helps a developer to examine a Java Bean by
a process known as Introspection and exposes the features of the Java Bean so
that it can be visually manipulated. Apart from this, it also maintains a list of all
JavaBeans that are currently available in the development environment. Amongst
the various features, besides customization of the beans behaviour, its appearances
and properties, builder tools can be used to convert the Bean into applets,
application, servlets and composite components (e.g. a JFrame), and connect
different other components to the event of the Bean or vice versa.

Points to Remember While Devising a JavaBeans

Java Beans are special java classes and hence while you are writing any of them
you should always remember the following points, without which your beans will
just get spoilt.

1. A Java Bean class should always be declared “Public”.

2. A Java Bean should implement the “Serializable interface”.

3. A Java Bean should have a “No-argument constructor/default constructor”.

4. A Java Bean class should be derived from “Javax.swing.JComponent or
java.awt.Component” class if it is to be visually manipulated.

The java.beans package consists of the classes and interfaces that help you
to create JavaBeans with proper implementations.

The Java Bean components can exist in either of the following three phases
of development: viz. 1. Construction phase, 2. Build phase and 3. Execution phase.

Java Beans support the standard component architecture that comprises of
components like- properties, events, methods, and persistence.

Composition of a Java Bean

A Java Bean is composed of the followings: Properties, Methods, and Events.
So, you should know the basics of all these components of the java beans.

1. Properties

Java Bean properties are analogous to instance variables of a class in java. A bean
property is a named attribute of a bean that can affect its behaviour or appearance.
It means if you wish to change the behaviour or the appearance of the Java Beans,

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 489

then you can use this attribute. Examples of bean properties include colour, label,
font, font size, and display size.

2. Methods

The Java Bean methods are just the same as normal Java methods. Every
property should have accessor (get) and mutator (set) method. All Public
methods can be identified by the introspection and also there does not exist specific
naming standard for these methods. These are also known as getter and setter
methods.

Events

Events are similar to the events of Swing/AWT event handling. They also follow
the same event delegation model like Swing components.

The Java Bean Component Specification

The Java Beans component specification deals with following properties and
capabilities like customization of Bean properties, persistence, Beans to Beans
communications, etc.

1. Beans Customization: This is the ability of Java Bean to allow its properties
to be modified or altered in build phase and/or execution phase.

2. Beans Persistence: It can be defined as the JavaBeans ability to save its
state to disk or storage device and restore the saved state when it is reloaded.

3. Beans Communication: This can be defined as the ability of Java Bean to
communicate about change in its properties to other JavaBeans or the
container so that they can respond accordingly later on as per modifications.

4. Introspection: This is the ability of a Java Bean to allow an external
application to examine it and know the properties, methods, and events
supported by it so that it can be changed or used as needed.

Features of a Java Bean

1. Java bean supports “Introspection”; it helps a builder tool analyse how a
bean works by inspecting its features.

2. Java bean provides support for “Customization” so that a developer can
easily customise the appearance and behaviour of a Java Bean and create a
new from the existing one.

3. Java beans supports “Events” that act as a glue to bind two or more beans.

4. Java beans have “Properties” that can be used for both customization and
for programmatic use.

5. Java beans support “Persistence”, which is a mechanism of storing the
bean state initially and restoring later on need.

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
490 Material

Fig. 5.16 Components of Java Bean

Beans Development Kit

Beans Development Kit (BDK) is a development environment that can be utilized
to create, configure, and test Java Beans. It has the following basic features:

 It is a graphical user interface helping a bean developer to create, configure,
and test Java Beans.

 It helps the bean developer to introspect the Java Bean properties and also
helps to manage and link multiple Java Beans in an application.

 It consists of a set of sample Java Beans which can be used for application
development.

 It also provides a base for utilising and associating the pre-existing events
with sample Java Beans to understand the event model.

Identifying BDK Components

 Execute the run.bat file of BDK to start the BDK development environment.

Fig. 5.16 Run.Bat File of BDK to Start the BDK Development Environment

 A BDK development environment is composed of the following modules:

 ToolBox

 BeanBox

 Properties

 Method Tracer

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 491

Fig. 5.17 A Complete View of Bean Development Kit

Now, you will learn about the different components of the bean development
kit.

1. ToolBox Window: A window that consists of the lists of sample
JavaBeans of BDK available to be reused to build up an application.

Below is the figure that shows the ToolBox window with various pre-
built beans:

Fig. 5.18 ToolBox

2. BeanBox Window: It is a workspace for creating the layout of Java
Bean application. Figure given below shows the BeanBox window:

Fig. 5.19 BeanBox

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
492 Material

3. Properties Window: This window displays all the exposed properties
of a Java Bean. You can modify Java Bean properties in the properties
window. Given below is the Properties window showing various
properties of a BeanBox:

Fig. 5.20 BeanBox Properties

4. Method Tracer Window: Method tracer window displays the
debugging messages and method calls for a Java Bean application.

The following figure shows the Method Tracer window:

Fig. 5.21 Method Tracer

Steps to Develop a User-Defined Java Bean
Follow the following steps to develop a user defined Java bean.

1. Create a directory for the new bean

Create a directory/folder like C:\Beans

2. Create bean source file - MyBean.java
import java.awt.*;
public class MyBean extends Canvas
{
public MyBean()
{
setSize(70,50);
setBackground(Color.green);
}
}

3. Compile the source file(s)

C:\Beans >Javac MyBean.java

4.Create a manifest file

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 493

Manifest File
The manifest file for a Java Bean application contains a list of all the class files that
make up a Java Bean. The entry in the manifest file enables the target application
to recognize the Java Bean classes for an application. For example, the entry for
the MyBean Java Bean in the manifest file is as shown:

Note: write that 2 lines code in the notepad and save that file as MyBean.mf

Manifest-Version: 1.0

Name: MyBean.class

Java-Bean: true

The rules to create a manifest file are:

 Press the Enter key after typing each line in the manifest file.

 Leave a space after the colon.

 Type a hyphen between Java and Bean.

 No blank line between the Name and the Java-Bean entry.

5. Generate a JAR file

Syntax for creating jar file using manifest file
C:\Beans >jar cfm MyBean.jar MyBean.mf MyBean.class

6. Start BDK
Go to->
C:\bdk1_1\beans\beanbox

Click on run.bat file. When we click on run.bat file the BDK software
automatically started.

Manifest-Version: 1.0

Name: MyBean.class

Java-Bean: true

7. Load Jar file

Go to Beanbox->File->Load jar. Here we have to select our created jar
file when we click on ok, ourbean (userdefined) MyBean appear in the
ToolBox.

8. Test our created user defined bean

Select the MyBean from the ToolBox when we select that bean one +
simple appear then drag that Bean in to the Beanbox. If you want to apply
events for that bean, now we apply the events for that Bean.

Steps to develop a user defined Java bean

1. Create a directory for the new bean

2. Create the java bean source file(s)

3. Compile the source file(s)

4. Create a manifest file

5. Generate a JAR file

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
494 Material

6. Start BDK

7. Load Jar file

8. Test.

5.5.1 What is Java Beans

JavaBeans is a technology that allows one to build complex systems from reusable
software component (called bean). It provides an architecture how these
components can communicate with one another.

A bean is a software component that is designed to be reused in different
environments. These components are written in the Java language like other Java
programs and run in Java Virtual Machine (JVM).

Some of the advantages of JavaBeans are as follows:

 A bean has all benefits of Java’s ‘Write-Once, Run-Anywhere’ paradigm.

 The properties events, and methods of a bean which are exposed to another
application can be controlled.

 The configuration settings of a bean can be saved in the persistent storage,
and restored any time later.

Bean Architecture

A bean consists of three general purpose interfaces listed as follows:

 Properties: These are the attributes that determine the bean’s internal state.
When values are assigned to the properties, they determine the appearance
and behaviour of the component. The properties are equivalent to data
fields of object in Java except that they must be declared as private.
There are two types of properties, namely, simple and indexed.

 Events: Beans can communicate with objects by generating events. The
events are generated upon happening of some action at some specific point
of time. The generated events may be sent to other objects.

 Methods: Methods are the operations through which interaction with a
bean can be done. A bean’s methods are similar to Java methods. Some
methods are special and deal with properties and events.

Introspection

Introspection is the automatic process of analyzing a bean’s properties, events
and methods. It is the important feature of JavaBeans API as it allows other
application such as design tool, to obtain information about a component. The
process of introspection is used at run-time as well as design time.

There are two approaches by which a developer can indicate which of its
properties, events and methods are exposed. In the first approach, JavaBean’s
design patterns are used. The second approach is to implement the BeanInfo
interface which gives explicit information about its associated bean.

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 495

Design Patterns for Properties

The JavaBean’s design patterns specify special methods called accessor methods;
getter and setter methods to get and set a property, respectively. According to the
design patterns, the getter method names must start with the get prefix and setter
methods must start with the set prefix.

Simple Properties

A simple property has a single value. The design patterns for simple property are:

public TP getNP()
public void setNP(TP arg)

where,

NP is the property name

TP is the property type

For example, consider a simple property named length along with its
getter and setter methods, namely, getLegth() and setLength()
respectively as given here.

private double length;

public double getLength()
{

return length;
}

public void setLength(double l)
{

length = l;
}

Indexed Properties

An indexed property holds the multiple values. The design patterns for an indexed
property are:

public TP getNP (int index); //indexed getter
public void setNP(int index, TP value); //indexed setter
public TP[] getNP(); //array getter
public void setNP (TP values[]); //array setter

where,

NP is the property name

TP is the property type

For example, consider an indexed property named list along with its
getter and setter methods as shown here.

private double list[];

public double getList(int index)
{
return list[index];

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
496 Material

}
public void setList(int index, double value)
{
list[index] = value;
}
public double[] getList()
{
return list;
}
public void setList(double[] values)
{
list = new double[values.length];
System.arraycopy(values, 0, list, 0, values.length);
}

Design Patterns for Events

The design patterns to add a listener for the specified event are:

public void addTListener(TListener eventListener) //first

public void addTListener(TListener eventListener) throws
java.util.TooManyListenersException //second

where,

T is type of the event

The first method is used to register many listeners for notification of the
events, that is, to multicast an event.

The second method of throws TooManyListenersException..
Thus, it is used to unicast an event, that is, only one listener can register to the
event.

The design pattern for removing a listener is:
public void removeTListener(TListener eventListener)

Methods and Design Patterns

There is no design pattern for naming non-property methods. The public methods
of a bean are exposed automatically by the introspection mechanism.

Using the BeanInfo Interface

The introspection mechanism is provided by JavaBeans API architecture. The
BeanInfo interface defined in java.beans package provides a set of
methods that gives the explicit information about the associated beans. The name
of the class that implements BeanInfo interface must be
beanName(BeanInfo) where beanName is the name of the bean. The
methods provided by BeanInfo interface are as follows:

 EventSetDescriptor[] getEventSetDescriptors():
This method is used to determine a bean’s events. The
getEventSetDescriptors method returns an array of
EventSetDescriptor.

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 497

 PropertyDescriptor[] getProperyDescriptors():
This method is used to determine the properties of a bean. The
getProperyDescriptors method returns an array of
PropertyDescriptor.

 MethodDescriptor[] getMethodDescriptors(): This
method is used to determine the public methods of a bean. The
getMethodDescriptors method returns an array of
MethodDescriptor.

Note: A static method named getBeanInfo(beanName) of the
Introspector (in API reference documentation) class is used to get detailed
information about a specific bean.

Bound and Constrained Properties

A bound property is a property that generates an event when its value is changed.
A bean provides this notification by following methods.

public void addPropertyChangeListener PropertyChangeListener p)
{

changes.addPropertyChangeListener (p);
//provides notification when an attempt is made to change the //bound
property
}

public void removePropertyChangeListener (PropertyChangeListener
p)
{

changes.removePropertyChangeListener (p); //to remove
 //listener
}

Note: The PropertyChangeListener is an interface that is declared in
java.beans package.

A constrained property is a property that notifies other objects or
components when attempts are made to change their values. When other component
is not agreed to the change of the property it throws
PropertyVetoException. Following are the methods provided by
constrained properties.

public void addVetoableChangeListener (VetoableChangeListener v)
{

vetos.addVetoableChangeListener (v);
}

public void removeVetoableChangeListener (VetoableChangeListener
v)
{

vetos.removeVetoableChangeListener (v);
}

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
498 Material

Persistence

As stated earlier, a bean is a reusable software component that can be used in
other applications. To use it in other applications and to make it portable, its state
should be saved to the non-volatile storage from where it can be retrieved later.
The process of saving the current state of bean is referred to as persistence.

Persistence can be achieved by serializing a bean. A bean can be serialized
by implementing the java.io.Serializable interface. This interface is
a marker interface that makes serialization automatic. In case a bean does not
implement the java.io.Serializable interface, serialization must be
provided explicitly by implementing the java.io.Externalizable
interface.

Note: Object serialization is a method of converting an object into data stream.

Customization

During the development process, it is required to configure the bean according to
requirement. To help other developers configure the bean, customizer can
be provided. A customizer is a step-by-step guide that provides the
instructions to be followed for using the bean in specific context. Online
documentation can also be useful to configure the bean.

Bean Conventions

A bean is a simple Java class that follows some basic conventions which are as
follows:

 A bean should implement the Serializable interface.

 A bean should have a no-argument constructor.

 A bean should be public and provide getter and setter methods for accessing
its properties.

A Simple Bean
package com.start.bean.test //package statement

public class SimpleBeanExample implements java.io.Serializable
{
/* Properties */
private String ename = null;
private int eid = 0;

/* Empty constructor */
public SimpleBeanExample()
{}

/* Getter and Setter methods */
public String getEname()
{
return ename;
}
public void setEname(String s)
{
ename = s;

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 499

}
public int getEid()
{
return eid;
}
public void setEid(int i)
{
eid = i;
}
}

The explanation of this program is as follows:

 The statement package com.start.bean.test is the package
statement.

 The statement public class SimpleBeanExample
implements java.io.Serializable defines a class named
SimpleBeanExample that implements the Serializable
interface to provide persistence to the bean. Note that the
Serializable interface does not contain any method.

 The statements private String Ename = null and private
int Eid = 0 declare properties of the bean. The properties are
declared private, thus, are not accessible directly by other classes.

 The statement public SimpleBeanExample(){} creates an
empty constructor. For behaving Java class as a bean, this is the basic
requirement.

 The methods getEname()and setEname()are the getter and
setter methods respectively of property Ename.

Like any other Java class file, compile the bean. Upon compilation,
SimpleBeanExample.class file will be created.

5.5.2 JAR Files and Introspection

JAR (Java ARchive) file allows you to efficiently deploy a set of classes and their
associated resources. JAR file makes it much easier to deliver, install, and download.
It is compressed. The files of a Java Bean application are compressed and grouped
as JAR files to reduce the size and the download time of the files.

 The syntax to create a JAR file from the command prompt is:
jar <options> <file_names>

 The file_names is a list of files for a Java Bean application that are stored in
the JAR file.

The various options that you can specify while creating a JAR file are:

 c: Indicates the new JAR file is created.

 f: Indicates that the first file in the file_names list is the name of the JAR
file.

 m:Indicates that the second file in the file_names list is the name of the
manifest file.

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
500 Material

 t: Indicates that all the files and resources in the JAR file are to be displayed
in a tabular format.

 v: Indicates that the JAR file should generate a verbose output.

 x: Indicates that the files and resources of a JAR file are to be extracted.

 o: Indicates that the JAR file should not be compressed.

 m: Indicates that the manifest file is not created.

Fig. 5.22 JAR utility as Implemented on Command Prompt

Introspection

Introspection is a technique which helps to retrieve the vital information about the
Java beans like what features does it have(bean properties), how it will
behave(bean methods) and what it can really be used for (bean events) etc.
Introspection is actually an analysis of bean capabilities so as to know what the
bean is capabale to do. Implementation of introspection is an automatic process in
bean builder tool to introspect which properties, methods, and events a bean
supports. It is an eminent process, without which you can never imagine to unleash
the real power of a Java Bean and utilize it further.

BDK Introspection

To automatically analyse the properties of a Java Bean, BDK Introspection is
done. It allows the builder tool to analyse the functioning of the bean. It can be
defined as the mechanism that allows the bean classes to publish their operations
and properties that they support along with a meta-mechanism which leads to the
discovery of such mechanisms. Introspection can be defined as the technique of
obtaining information about bean properties, events and methods or in short, it is
the analysis of bean capabilities as what it can do.

There are two ways in which the developer of a Bean can indicate which of
its properties, events, and methods should be exposed by the builder tool.

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 501

1. First one uses the mechanism of naming conventions that allows the
introspection mechanisms to infer information about a Bean.

2. Secondly, an additional class which contains the basic information is
provided that explicitly provides this information to the builder tools.

5.6 BASIC SERVLET API

The Java Servlet API is not included in the core Java framework and is Standard
Java Extension API. It comprises two packages javax.servlet and
javax.servlet.http, which contain classes and interfaces that are used
to create servlets. Each servlet must implement the Servlet interface included
in the package javax.servlet. Servlets are created by extending one of
the two classes: javax.servlet.GenericServlet or
javax.servlet. http.HttpServlet. Both the classes implement
Servlet interface.

The javax.servlet Package

Some of the interfaces included in the javax.servlet package are listed in Table
5.2.

Table 5.2 The Interfaces Included in javax.servlet Package

Interface Description
Servlet It defines methods that must be implemented by all

servlets.
ServletConfig It represents servlet configuration object that allows

servlets to receive initialization parameters.
ServletContext It allows servlet to write to the log files and access

information related to the environment in which servlet
is executing.

ServletRequest It is used to define an object that can be used to read data
included in a client request

ServletResponse It is used to define an object that can be used to develop
response for a client.

Filter It is used to define an object that is used to perform
filtering tasks on either the request to the resource or on
the response from a resource.

RequestDispatcher It is used to define an object that is used to accept request
from the client and send it to any resource on the server.

 Some of the classes included in this package are listed in Table 5.3.

Table 5.3 The Classes Included in javax.servlet Package

Class Description
GenericServlet It is used to create servlet.
ServletInputStream It provides an input stream that is used to

read data from a client request.
ServletOutputStream It provides an output stream that is used to

send data to the client.
ServletContextEvent It is an event class for notifications related

to the changes to the servlet context of a
Web application.

ServletException It defines a general exception that servlet
can throw when an error occurs.

UnavailableException It defines an exception that a servlet can
throw to indicate that it is unavailable.

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
502 Material

The javax.servlet.http Package

Some of the interfaces included in the javax.servlet.http package are
listed in Table 5.4.

Table 5.4 The Interfaces Included in javax.servlet.http Package

Interface Description
HttpSession It enables data of a session to be read and

written.
HttpServletRequest It extends the ServletRequest

interface to read data form an HTTP
request.

HttpServletResponse It extends the ServletResponse
interface to send data as response to the
HTTP request.

HttpSessionBindingListener It provides information to an object
whether it is bound to or unbound from a
session.

 Some of the classes included in this package are listed in Table 5.5.

Table 5.5 The Classes Included in javax.servlet.http Package

Class Description
Cookie It is used to create cookie that allows state

information to be stored on the client
machine.

HttpServlet It is an abstract class that provides
methods for handling HTTP requests and
responses.

HttpSessionEvent It represents event notifications related to
the changes to sessions within a Web
application.

HttpSessionBindingEvent It provides information whether listener is
bound to or unbound from a session and
whether a session attribute has changed.

Creating and Executing Servlets

Servlets are platform independent and can work with almost all the Web servers.
They can be executed on any Web server that supports the servlet API. Some of
the Web servers having built-in support for Java servlets are listed in Table 5.6.

Table 5.6 Web Servers Supporting Java Servlets

Product Vendor
Tomcat server Apache
Java Web server Sun Microsystems
Enterprise server Netscape
Zeus Web server Zeus Technology
Tengah application server Weblogic
Sun Web server Sun Microsystems

In this unit, we will be using the Tomcat server to explain the steps required
to execute the servlet in Windows environment. Assume that the default location
of Tomcat 6.0 is as follows:

C:\Program Files\Apache Software Foundation\Tomcat 6.0\

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 503

The steps to create and execute the servlet are as follows:
1. Create a .java source file containing the code for creating servlet

and save it with the name, say Sample.java.
2. Compile this source file, as a result Sample.class file will be

created.
3. Copy the Sample.class file in the directory under the Webapps

directory of Tomcat. The path for the directory is as follows:
C:\Program Files\Apache Software Foundation\Tomcat

6.0\Webapps\MyApp\WEB-INF\classes

4. Add the name and mapping of this servlet in the Web.xml file. The
path of this file is as follows:

C:\Program Files\Apache Software Foundation\Tomcat
6.0\Webapps\MyApp\WEB-INF

Add the following statements in the section, which defines the servlets:
<servlet>

<servlet-name>Sample</servlet-name>
<servlet-class>Sample</servlet-class>

</servlet>

Also, add the following statements in the section which defines the
servlets mappings.

<servlet-mapping>
<servlet-name>Sample</servlet-name>
<url-pattern>/servlet/Sample</url-pattern>

</servlet-mapping>

5. Start the Tomcat. To start the Tomcat, click the Start menu, point to
All Programs, point to Apache Tomcat 6.0 and then click Configure
Tomcat. This displays the Apache Tomcat Properties. Click the
Start button.

6. Start a Web browser and request for the servlet. Note that the HTML
code can be included in the servlet code or a separate HTML file can
be used. If the HTML code is included in the servlet code, enter the
following URL in the address bar:

http://localhost:8080/MyApp/servlet/Sample
or

http://127.0.0.1:8080/MyApp/servlet/Sample

If separate HTML file is used for the HTML code, enter the following URL
in the address bar:

http://localhost:8080/MyApp/Sample.html
or

http://127.0.0.1:8080/MyApp/Sample.html

Here, 127.0.0.1:8080 is an IP address of the local system. Note
that the .html file must be saved in the MyApp directory.

The output of the servlet will be displayed in the display area of browser.
Note: Tomcat must be running in the background before executing the servlet.

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
504 Material

Using HttpServlet Class

The HttpServlet class is the commonly used class for developing servlets,
which can handle HTTP requests. It is the subclass of GenericServlet
class. Some of the methods defined in this class are listed in Table 5.7.

Table 5.7 Some of the Method of HttpServlet Class

Method Description
doDelete() It allows servlet to handle HTTP DELETE request.
doGet() It allows servlet to handle HTTP GET request.
doPost() It allows servlet to handle HTTP POST request.
doHead() It allows servlet to handle HTTP HEAD request.
doOptions() It allows servlet to handle HTTP OPTIONS request.
doPut() It allows servlet to handle HTTP PUT request.
doTrace() It allows the servlet to handle HTTP TRACE request.
getLastModified() It returns the time when the HttpServletRequest object

was last modified.
service() It receives the HTTP request and sends it to corresponding

method defined in this class.

The servlet created by using this class overrides one of these methods.
When servlet is invoked, the information is passed to the service() method,
which in turn determines the type of request sent and invokes the appropriate
method. For example, if request made is of GET type, the doGet() method is
invoked by the service() method. Similarly, if request is of POST type,
doPost() method is invoked by the service() method and so on. The
doGet() and doPost() methods are the commonly used methods. In this
section, you will learn about the usage of these two methods.

The doGet() Method

The doGet() method is invoked by server through service() method to
handle a HTTP GET request. This method also handles HTTP HEAD request
automatically as HEAD request is nothing but a GET request having no body in
the code for response and only includes request header fields. To understand the
working of doGet() method, consider a sample program to define a servlet for
handling the HTTP GET request.

Example 5.8: A program to define a servlet for handling HTTP GET request
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ServletGetExample extends HttpServlet
{

public void doGet(HttpServletRequest req, HttpServletResponse
res) throws ServletException, IOException

{
PrintWriter out = res.getWriter();
String login = req.getParameter(“loginid”);
String password = req.getParameter(“password”);
out.println(“Your login ID is: “);
out.println(login);
out.println(“Your password is: “);

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 505

out.println(password);
out.close();

}
}

In this example, the doGet() method of HttpServlet class is
overridden to handle the HTTP GET request. The two parameters passed to the
doGet() method are req and res, the objects of HttpServletRequest
and HttpServletResponse interfaces respectively. The req object allows
to read data provided in the client request and the res object is used to develop
response for the client request.

The corresponding HTML code for this servlet is as follows:
<HTML>
<BODY>
<CENTER>
<FORM NAME=”Form1"
 ACTION=”http://localhost:8080/MyApp/servlet/ServletGetExample”>
Login ID <INPUT TYPE=”text” NAME=”loginid” SIZE=”30">
<P>
Password <INPUT TYPE=”password” NAME=”password” SIZE=”30">
</P>
<P>
<INPUT TYPE=submit VALUE=”Submit”>
</P>
</BODY>
</HTML>

This HTML code creates a Web page containing a form; see the screen.

Enter the required data and press the submit button on the Web page. The
browser will display the response generated dynamically by the corresponding
servlet (see the following screen).

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
506 Material

Note that the getParameter() method of
HttpServletRequest interface is used to retrieve data attached to the
URL sent to the server. For example, consider the URL in the address bar of the
afore mentioned screenshot. The string appearing to the right of the question mark,
known as the query string, contains the parameters for the HTTP GET request.

The doPost() Method

Like doGet() method, the doPost() method is invoked by server through
service() method to handle HTTP POST request. The doPost() method
is used when large amount of data is required to be passed to the server, which is
not possible with the help of doGet() method. In doGet() method, parameters
are appended to the URL; whereas, in doPost() method parameters are sent
in separate line in the HTTP request body. The doGet() method is mostly used
when some information is to be retrieved from the server and the doPost()
method is used when data is to be updated on server or data is to be submitted to
the server. To understand the working of doPost()method, consider a sample
program to define a servlet for handling the HTTP POST request.

Example 5.9: A program to define a servlet for handling HTTP POST request
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ServletPostExample extends HttpServlet
{

public void doPost(HttpServletRequest req, HttpServletResponse
res) throws ServletException, IOException

{
PrintWriter out = res.getWriter();
String loginid = req.getParameter(“loginid”);
String password = req.getParameter(“password”);
out.println(“Your Login ID is: “);
out.println(loginid);
out.println(“Your Password is: “);
out.println(password);
out.close();

}
}

This servlet can be tested by using HTML code

5.6.1 MIME Content Types

Content type is also known as MIME (Multipurpose Internet Mail
Extension) type. It is a HTTP (HyperText Transfer Protocol) header that
provides the description about what the user is sending to the browser.

MIME is an Internet standard that is used for extending the limited capabilities
of e-mail by allowing the insertion of sounds, images and text in a message.

The features provided by MIME to the e-mail services are as given below:

 It supports the non-ASCII (American Standard Code for Information
Interchange) characters.

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 507

 It supports the multiple attachments in a single message.

 It supports the attachment which contains executable audio, images
and video files, etc.

 It supports the unlimited message length.

List of Content Types

There are many content types. The commonly used content types are given below:

 Text/HTML (HyperText Markup Language)

 Text/Plain

 Application/Microsoft WORD

 Application/ Microsoft EXCEL

 Application/JAR

 Application/PDF

 Application/OCTET STREAM

 Application/X-ZIP

 Images/JPEG

 Images/PNG

 Images/GIF

 Audio/MP3

 Video/MP4, etc.

The MIME types file in the config directory contains mappings between
the Multipurpose Internet Mail Extensions (MIME) types and file extensions. For
example, the MIME types file maps the extensions .html and .htm to the type
Text/HTML:

type=text/html exts=htm,html

When the Web Server receives a request from a client, it uses the MIME type
mappings to determine the kind of resource that is requested.

MIME types are defined by the following three attributes:

 Language (lang)

 Encoding (enc)

 Content Type (type)

At least one of these attributes must be present for each type. The most
commonly used attribute is ‘type’. The server frequently considers the type
when deciding how to generate the response to the client. The enc and lang
attributes are rarely used. The default MIME types file is mime.types.

Determining the MIME Type

During the ObjectType stage in the request handling process, the server
determines the MIME type attributes of the resource requested by the client. The
user can use different SAFs to determine the MIME type. The most commonly

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
508 Material

used SAF (Store-And-Forward) is type-by-extension, which tells the server to
look up the MIME type according to the requested resource file extension in the
MIME types table. The MIME types table is stored in a MIME type file.

The directive in obj.conf that tells the server to look up the MIME type
according to the extension is given as,

 ObjectType fn=type-by-extension

If the server uses a different SAF, such as force type for determining the
type, then the MIME types table is not used for that particular request.

5.7 CORBA CONNECTIVITY IN JAVA

CORBA or Common Object Request Broker Architecture is a standard
architecture for distributed object systems. It allows a distributed, heterogeneous
collection of objects to interoperate.

The Internet is a constant reminder that we live in a highly connected world,
where people and products communicate quickly and easily. This connected world
depends on embedded systems ranging from massive central office switches and
routers and compact cell phones. Connectivity is, however, not just geographical
distribution. Many embedded products are themselves distributed systems consider
a small local network to provide connectivity of processors with in the system.
Distribution is often used to increase the performance scalability and availability of
embedded systems. The increasing customer demand for distributed applications,
coupled within advances in the enabling technologies of networking hardware and
high speed processors, has made distribution a mandatory ingredient of many
embedded systems. You will learn here the key issues consider for a distribution
infrastructure, and how Object Request Broker (ORB) can extend operating system
capability to, provide a bridge between the embedded and the connected worlds.
By using commercial solutions, designers can focus on application development
rather than infrastructure, thus accelerating product delivery.

Java and CORBA Connectivity

Java SE Leverage CORBA: Common Object Request Broker Architecture
(CORBA) technology is the open standard for heterogeneous computing. CORBA
complements the Java™ platform by providing a distributed object framework,
services to support that framework, and interoperability with other languages.
The Java platform complements CORBA by providing a portable, highly productive
implementation environment, and a very robust platform. By combining the Java
platform with CORBA and other key enterprise technologies, the Java Platform is
the ultimate platform for distributed technology solutions.

CORBA standards provide the proven, interoperable infrastructure to the
Java platform. IIOP (Internet Inter-ORB Protocol) manages the communication
between the object components that power the system. The Java platform provides
a portable object infrastructure that works on every major operating system.
CORBA provides the network transparency, Java provides the implementation
transparency.

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 509

Object Request Broker (ORB): An Object Request Broker (ORB) is part of
the Java Platform Standard Edition (SE), since version 1.3. The ORB is a runtime
component that can be used for distributed computing using IIOP communication.

CORBA is a standard architecture for distributed object systems as it permits
a distributed, heterogeneous collection of objects to interoperate. The CORBA is
a specific standard defined by the OMG (Object Management Group) and
describes an architecture, interfaces, and protocols that distributed objects use
for interacting with each other.

Part of the CORBA standard is the Interface Definition Language (IDL),
which is an implementation-independent language for describing the interfaces of
remote objects. The OMG comprises over 700 companies and organizations,
including almost all the major vendors and developers of distributed object
technology, including platform, database, and application vendors as well as
software tool and corporate developers.

The Java IDL is an implementation of the standard IDL-to-Java mapping
and is provided by Sun in version 1.3 of Java 2 and is compliant with CORBA 2.x
specification. Java IDL provides an Object Request Broker or ORB. The ORB is
a class library that enables low-level communication between Java-IDL applications
and other CORBA-compliant applications.

The key components that frame the CORBA architecture include the
following:

1. Interface Definition Language (IDL) states how CORBA interfaces
are defined.

2. Object Request Broker (ORB) is responsible for all interactions
between remote objects and the applications that use them.

3. Portable Object Adaptor (POA) is responsible for object activation/
deactivation, mapping object IDs to actual object implementations.

4. ‘Naming Service’ is a standard service in CORBA that helps the remote
clients in finding remote objects on the networks.

5. Internet Inter-ORB Protocol (IIOP) is an Internet communications
protocol that runs on distributed platforms.

Interface Definition Language (IDL)

An Interface Description Language or Interface Definition Language (IDL), is a
generic term for a language that lets a program or object written in one language
communicate with another program written in an unknown language. IDLs describe
an interface in a language-independent way, enabling communication between
software components that do not share one language, for example, between those
written in C++ and those written in Java.

IDLs are commonly used in remote procedure call software. In these cases
the machines at either end of the link may be using different operating systems and
computer languages. IDLs offer a bridge between the two different systems.

Software systems based on IDLs include Sun’s ONC RPC or Open
Network Computing (ONC) / Remote Procedure Call (RPC), Distributed

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
510 Material

Computing Environment (DCE) of the Open Group, IBM’s System Object Model,
the Object Management Group’s (OMG) CORBA, which implements OMG IDL
(Interface Definition Language) and an IDL based on DCE/RPC (Distributed
Computing Environment / Remote Procedure Call) and Data Distribution Service,
Mozilla’s XPCOM (Cross Platform Component Object Model), Microsoft’s
Microsoft RPC (which evolved into COM (Component Object Model) and
DCOM (Distributed Component Object Model)), Facebook’s Thrift and WSDL
(Web Services Description Language) for Web services.

Open Network Computing (ONC) / Remote Procedure Call (RPC),
commonly known as Sun RPC is a remote procedure call system. ONC was
originally developed by Sun Microsystems in the 1980s as part of their Network
File System (NFS) project. Distributed Component Object Model (DCOM) is a
proprietary Microsoft technology for communication between software
components on networked computers. DCOM, which originally was called
‘Network OLE’, extends Microsoft’s COM, and provides the communication
substrate under Microsoft’s COM+ application server infrastructure. The addition
of the ‘D’ to COM was due to extensive use of DCE/RPC (Distributed Computing
Environment/Remote Procedure Calls) – more specifically Microsoft’s enhanced
version, known as MSRPC.

Cross Platform Component Object Model (XPCOM) is a cross-platform
component model from Mozilla. It is similar to Microsoft Component Object
Model (COM) and Common Object Request Broker Architecture (CORBA). It
features multiple language bindings and Interface Description Language (IDL)
descriptions; thus programmers can plug their custom functions into the framework
and connect it with other components. The most prominent usage of XPCOM is
within the Firefox web browser. Many of its internal components interact via
XPCOM interfaces.

The Web Services Description Language (WSDL) is an XML-based
(Extensible Markup Language-based) interface description language that is used
for describing the functionality offered by a web service. The acronym is also used
for any specific WSDL description of a web service, also referred to as a WSDL
file, which provides a machine-readable description of how the service can be
called, what parameters it expects, and what data structures it returns. Therefore,
its purpose is roughly similar to that of a type signature in a programming language.

Typically, an Interface Definition Language (IDL) is a language that is used
to define the interface between a client and server process in a distributed system.
Each IDL also has a set of associated IDL compilers, one per supported target
language. An IDL compiler compiles the interface specifications, listed in an IDL
input file, into source code (e.g., C/C++, Java) that implements the low-level
communication details required to support the defined interfaces. IDL can also be
used to populate an implementation repository, which other programs can use to
look up information on an interface at runtime. This is necessary when a program,
such as a debugger or interface browser, does not have access to an application’s
IDL file.

One advantage of an interface definition language is that it does not contain
any mechanism for specifying computational details. The stubbed out routines,

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 511

generated by the IDL compiler, must be filled in with implementation specific details
provided by the application developer. Thus, an IDL clearly enforces the separation
of a distributed application’s interface from its implementation.

Another advantage of an IDL is the productivity enhancement provided by
the IDL compiler. Without the IDL compiler, the developer would have to custom
craft the network protocol for each distributed application developed, which would
be both time consuming and error prone. The IDL compiler frees the developer
from these low-level details, thus providing more time for the developer to focus
on the application’s core functionality.

IDL provides a basic set of atomic data types (e.g., long, double,
string) and a mechanism, struct, for combining these atomic types into
more complex structures. The typedef command can be used to create a new
name for a data type.

A client and server are typically on different machines, so message passing
must be used to pass parameters, including any return value, between them. Thus,
the client sends a request message to the server object, which sends a reply message
back (if required). However, it is unnecessary for both messages to contain all
parameters, so CORBA IDL introduces constructs to deal with this.

IDL Compilation: An IDL compiler takes as input an IDL file, with its associated
interface definitions, and produces a set of output files for both the client and
server application. The names and number of generated files varies from one
development environment to another. The client side code consists of a set of
routines that transparently access the server. On the server side, the IDL compiler
generates a skeleton framework that must be fleshed out with application specific
implementation details.

Internet Inter-ORB Protocol (IIOP)

Internet Inter-ORB Protocol (IIOP) is a transport level protocol used by both
Remote Method Invocation (RMI) over IIOP and Common Object Request Broker
Architecture (CORBA).

Principally, the Internet Inter-ORB Protocol (IIOP) is an Internet
communications protocol that runs on distributed platforms. Using this protocol,
software programs written in different programming languages and running on
distributed platforms can communicate over the Internet.

IIOP, a part of the CORBA standard, is based on the client/server computing
model, in which a client program makes requests of a server program that waits to
respond to client requests. With IIOP, you can write client programs that
communicate with your site’s existing server programs wherever they are located
without having to understand anything about the server other than the service it
performs and its address, called the Interoperable Object Reference, IOR, which
comprises the server’s port number and IP (Internet Protocol) address. An IP
address is a unique address that identifies a device on the Internet or a local network.
IP is the set of rules governing the format of data sent via the Internet or local
network.

Between the ORBs (Object Request Brokers), communication proceeds
by means of a shared protocol, the ‘IIOP’ or the Internet Inter-ORB Protocol.

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
512 Material

IIOP is based on the standard TCP/IP (Transmission Control Protocol/Internet
Protocol) which works across the Internet and defines how CORBA-compliant
ORBs pass information back and forth.

Like CORBA and IDL, the IIOP standard is defined by OMG or the Object
Management Group. IIOP allows clients using a CORBA product from one vendor
to communicate with objects using a CORBA product from another vendor thus
permitting interoperability, which is one of the goals of the CORBA standard. The
ORB provided with Java IDL supports one optional service, i.e., the ability to
locate objects by name.

Java RMI over IIOP

Java Remote Method Invocation (RMI) over Internet Inter-ORB Protocol (IIOP)
or simply the ‘RMI-IIOP’ technology is part of the Java Platform Standard Edition
(Java SE). The RMI programming model enables the programming of CORBA
servers and applications via the rmi API (Application Programming Interface).
The user can select to work completely within the Java programming language
using the Java Remote Method Protocol (JRMP) as the transport or to work with
other CORBA-compliant programming languages using the Internet Inter-ORB
Protocol (IIOP).

RMI-IIOP utilizes the Java CORBA Object Request Broker (ORB) and
IIOP, therefore the user can write all of the programming code in the Java
programming language, and use the rmic compiler to generate the code necessary
for connecting the user’s applications via the Internet Inter-ORB Protocol (IIOP)
to others written in any CORBA-compliant language. To work with CORBA
applications in other languages, IDL can be generated from Java programming
language interfaces using the rmic compiler with the -idl option. To generate
IIOP stubs and connect classes, use the rmic compiler with the -iiop option.

RMI over IIOP

Java™ Remote Method Invocation (RMI) provides a simple mechanism for
distributed Java programming. RMI over IIOP (RMI-IIOP) uses the Common
Object Request Broker Architecture (CORBA) standard Internet Inter-ORB
Protocol (IIOP) to extend the base Java RMI to perform communication. This
allows direct interaction with any other CORBA Object Request Brokers (ORBs),
whether they were implemented in Java or another programming language.

5.7.1 Working CORBA System

The Common Object Request Broker Architecture (CORBA) is a specification
that helps to integrate heterogeneous systems that have different hardware, operating
systems, networks and different programming languages.

CORBA Components

There are several CORBA components available. Typical CORBA components
are as follows:

 Object Request Broker (ORB): It is the core component of CORBA
that acts as communication channel between client and server. With the

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 513

help of ORB, client application can invoke a method on a server object
anywhere across the internet. The client application is totally unaware of the
location of the server object; neither it has any knowledge of server systems
hardware, operating systems, nor the programming language in which server
object is implemented. ORB keeps track of object’s location, type of
platform, programming language, types of requests and responses and
exceptions between client objects and server objects. It taps the method
call from the client application and gives information about server objects
(see Figure 5.23) as it maintains repository of server objects.

 Client Server

ORB ORB

Fig. 5.23 Client-Server Communication through ORB

 CORBA Services: ORB uses the CORBA services to make CORBA
implementations. Some of the CORBA services are as follows:

 Life Cycle Service: This service is used to define operations for creating,
deleting and moving objects in a CORBA application.

 Persistence Service: This service provides capability to store objects
persistently. The objects may be stored on servers like files, relational
database and object database.

 Naming Service: Naming service helps the CORBA client in finding the
objects on the network. A reference to the object name is requested by
clients using a naming Service.

 Event Service: This service enables a client or object to send messages in
the form of event objects. The event object may be sent to more than one
receiver.

 Security Service: It supports access control, confidentiality and
authorization there by provides security to the distributed objects.

 Query Service: This service provides query operations for the objects.

 CORBA Facilities: CORBA facilities define application level services.
These services include firewalls, data interchange, work flow, business object
frame works, etc.

 Internet Inter-ORB Protocol (IIOP): This protocol specifies the
specifications about how ORBs communicate, how messages are sent and
how parameters and return values are marshaled in remote object invocation.

 Interface Definition Language (IDL): It provides a language construct
with which interfaces can be defined independent of any programming
language. The IDL language constructs are similar to C and C++ syntax but
they cannot be compiled directly into the binary code. The interface

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
514 Material

specifications defined by IDL language constructs are compiled by special
tool called IDL compiler. The IDL compiler translates the general constructs
to the specific programming language constructs. For example, an IDL to
Java compiler converts the IDL specifications to the Java files. In the same
way, IDL to C++ compiler converts the IDL specifications to C++ files.
Nowadays, CORBA vendors provide tools to translate the IDL specification
to C, C++, Java, SmallTalk, ADA and COBOL programming languages.

5.7.2 Simple CORBA Service

Although the implementation of an ORB is complex, how it operates is fairly
simple. Each node on the network has an ORB library or core that is linked
into the application at build time as shown in Figure 5.24.The stubs and skeletons
created as part of the IDL translation processes isolate the clients and serve
from the actual location of the objects with which they are interacting, thus
providing location transparency; for example, to communicate with an object
using CORBA, the source object only needs a reference to the target object
it wants to communicate with.

Client
Server

Object request
broker library

Object request
broker library

1 2

34

Network

Fig. 5.24 Operations of ORB

Check Your Progress

10. Give the definition of Java Beans architecture.

11. Define the term introspection.

12. What is a JAR file?

13. Define basic servlet API.

14. Define the term MIME content.

15. What is CORBA?

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 515

5.8 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. The java.awt package contains an abstract class, Image. This class
provides the mechanism to handle operations that are related to an image.

2. All the records in a file of fixed-length record are of same length and number,
size of each field is fixed whereas, exact length of field is not fixed in advance
in variable length records. Hence, special separator is used to determine
the start and end of each field within the record.

3. A fixed length record may contain some optional fields and space is reserved
for optional fields as well. These fields store null value if no value is supplied
which results in wastage of lots of memory space. Also, it is difficult to
delete a record as deletion of a record leaves blank space in between the
two records.

4. The Image class is used to load and display images. To load an image the
getImage () method of the Image class is used and to display the
image the drawImage () method of the Graphics class is used.

5. The java.awt.MediaTracker class is a general utility that tracks
the loading of a number of images or other media types for the users.
Basically, the java.awt.MediaTracker is a utility class that simplifies
the problems when the user have to wait for one or more images to be
loaded completely before they are actually displayed. A MediaTracker
monitors the loading of an image or a group of images and helps the user to
check those either periodically or to wait until the loading is completed.

6. JDBC (Java DataBase Connectivity) defines an API (Application Program
Interface) designed to support basic SQL (Structured Query Language)
functionality independent of any specific SQL implementation. This means
the focus is on executing SQL statements and retrieving their results. JDBC
is an international standard for programming access to SQL databases. It
was developed by JavaSoft, a subsidiary of Sun Microsystems

7. API is the abbreviation of Application Program Interface, a set of routines,
protocols, and tools for building software applications. A good API makes
it easier to develop a program by providing all the building blocks. A
programmer then puts the blocks together. Simply, it provides a set of rules
for performing a particular task but in case of JDBC API the task is connect
to the database. They are completely invisible to users and Web surfers.
Their primary role is to provide a channel for applications to work with
each other.

8. JPanel is not a top-level container.

9. JApplet is a class that represents the Swing applet. It is a subclass of
Applet class and must be extended by all the applets that use Swing. It
provides all the functionalities of the AWT applet as well as support for
menu bars and layering of components. Whenever we require to add a
component to it, the component is added to the content pane.

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
516 Material

10. The Java Beans architecture is based on a component model enabling the
developers to create small software units that they call components. These
smaller components can be assembled and integrated to form large
components like applets, applications etc. These core components have
the characteristics of reusability and are self-contained and are known as
beans.

11. Introspection is the automatic process of analyzing a bean’s properties,
events and methods. It is the important feature of JavaBeans API as it
allows other application, such as design tool, to obtain information about a
component. The process of introspection is used at run-time as well as
design time.

12. JAR (Java ARchive) file allows you to efficiently deploy a set of classes and
their associated resources. JAR file makes it much easier to deliver, install,
and download. It is compressed. The files of a Java Bean application are
compressed and grouped as JAR files to reduce the size and the download
time of the files.

13. The Java Servlet API is not included in the core Java framework and is Standard
Java Extension API. It comprises two packages javax.servlet and
javax.servlet.http, which contain classes and interfaces that are
used to create servlets. Each servlet must implement the Servlet interface
included in the package javax.servlet. Servlets are created by
extending one of the two classes:javax.servlet.
GenericServlet or javax.servlet. http.HttpServlet.
both the classes implement Servlet interface.

14. Content type is also known as MIME (Multipurpose Internet Mail
Extension) type. It is a HTTP (HyperText Transfer Protocol) header that
provides the description about what the user is sending to the browser.
MIME is an Internet standard that is used for extending the limited capabilities
of e-mail by allowing the insertion of sounds, images and text in a message.

15. CORBA (Common Object Request Broker Architecture) is a standard
architecture for distributed object systems. It allows a distributed,
heterogeneous collection of objects to interoperate.

5.9 SUMMARY

 The java.awt package contains an abstract class, Image. This class provides
the mechanism to handle operations that are related to an image.

 All the records in a file of fixed-length record are of same length and number,
size of each field is fixed whereas, exact length of field is not fixed in advance
in variable length records. Hence, special separator is used to determine
the start and end of each field within the record.

 A fixed length record may contain some optional fields and space is reserved
for optional fields as well. These fields store null value if no value is supplied
which results in wastage of lots of memory space. Also, it is difficult to

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 517

delete a record as deletion of a record leaves blank space in between the
two records.

 Variable-length records may be used to utilise the memory more efficiently.
In this approach, the exact length of the field is not fixed in advance.

 The Image class is used to load and display images. To load an image the
getImage () method of the Image class is used and to display the
image the drawImage () method of the Graphics class is used.

 The java.awt.MediaTracker class is a general utility that tracks
the loading of a number of images or other media types for the users.
Basically, the java.awt.MediaTracker is a utility class that simplifies
the problems when the user have to wait for one or more images to be
loaded completely before they are actually displayed. A MediaTracker
monitors the loading of an image or a group of images and helps the user to
check those either periodically or to wait until the loading is completed.

 JDBC (Java DataBase Connectivity) defines an API (Application Program
Interface) designed to support basic SQL (Structured Query Language)
functionality independent of any specific SQL implementation. This means
the focus is on executing SQL statements and retrieving their results.

 JDBC is an international standard for programming access to SQL
databases. It was developed by JavaSoft, a subsidiary of Sun Microsystems

 API is the abbreviation of Application Program Interface, a set of routines,
protocols, and tools for building software applications. A good API makes
it easier to develop a program by providing all the building blocks. A
programmer then puts the blocks together. Simply, it provides a set of rules
for performing a particular task but in case of JDBC API the task is connect
to the database. They are completely invisible to users and Web surfers.

 The JDBC driver Manager is a very important class that defines objects
which connect Java applications to a JDBC driver.

 SQL (Structured Query Language) is a database computer language designed
for managing data in relational database management systems or RDBMS

 The two components of swing: JFrame (top-level container) and
JButton (component which creates a push button).

 JApplet is a class that represents the Swing applet. It is a subclass of
Applet class and must be extended by all the applets that use Swing. It
provides all the functionalities of the AWT applet as well as support for
menu bars and layering of components. Whenever we require to add a
component to it, the component is added to the content pane.

 Radio buttons are a group of buttons, in which only one radio button can be
selected at one time. That is, when you select any one radio button, then the
other selected radio button will get deselected automatically.

 Panel is a container to hold different Swing components. One can add any
number of components to a panel and there can be multiple panels in the
same frame. It also supports double buffering, which is used in animation to

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
518 Material

avoid flickering. In double buffering, object is first written to an off-screen
memory before display and then switched over to the panel.

 The Java Beans architecture is based on a component model enabling the
developers to create small software units that they call components. These
smaller components can be assembled and integrated to form large
components like applets, applications etc. These core components have
the characteristics of reusability and are self-contained and are known as
beans.

 JavaBeans is a technology that allows one to build complex systems from
reusable software component (called bean).

 Introspection is the automatic process of analyzing a bean’s properties,
events and methods. It is the important feature of JavaBeans API as it
allows other application, such as design tool, to obtain information about a
component. The process of introspection is used at run-time as well as
design time.

 JAR (Java ARchive) file allows you to efficiently deploy a set of classes and
their associated resources. JAR file makes it much easier to deliver, install,
and download. It is compressed. The files of a Java Bean application are
compressed and grouped as JAR files to reduce the size and the download
time of the files.

 Introspection is a technique which helps to retrieve the vital information
about the Java beans like what features does it have(bean properties), how
it will behave(bean methods) and what it can really be used for (bean events)
etc.

 The Java Servlet API is not included in the core Java framework and is
Standard Java Extension API.

 Servlets are platform independent and can work with almost all the Web
servers. They can be executed on any Web server that supports the servlet
API.

 The doGet () method is invoked by server through service ()
method to handle a HTTP GET request.

 Like doGet () method, the doPost () method is invoked by server
through service () method to handle HTTP POST request. The
doPost () method is used when large amount of data is required to be
passed to the server, which is not possible with the help of doGet ()
method.

 Content type is also known as MIME (Multipurpose Internet Mail
Extension) type. It is a HTTP (HyperText Transfer Protocol) header that
provides the description about what the user is sending to the browser.
MIME is an Internet standard that is used for extending the limited capabilities
of e-mail by allowing the insertion of sounds, images and text in a message.

 CORBA (Common Object Request Broker Architecture) is a standard
architecture for distributed object systems. It allows a distributed,
heterogeneous collection of objects to interoperate.

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 519

 Common Object Request Broker Architecture (CORBA) technology is
the open standard for heterogeneous computing.

5.10 KEY TERMS

 Image class: The java.awt package contains an abstract class, Image.
This class provides the mechanism to handle operations that are related to
an image.

 Graphics class: Provides different methods to draw and fill various
shapes.

 JDBC (Java DataBase Connectivity): JDBC (Java DataBase
Connectivity) defines an API (Application Program Interface) designed to
support basic SQL (Structured Query Language) functionality independent
of any specific SQL implementation.

 JDBC driver: The JDBC driver Manager is a very important class that
defines objects which connect Java applications to a JDBC driver.

 SQL (Structured Query Language): SQL (Structured Query Language)
is a database computer language designed for managing data in relational
database management systems or RDBMS.

 Beans customization: This is the ability of Java Bean to allow its properties
to be modified or altered in build phase and/or execution phase.

 Beans persistence: It can be defined as the JavaBeans ability to save its
state to disk or storage device and restore the saved state when it is reloaded.

 JavaBeans: It is a technology that allows one to build complex systems
from reusable software component (called bean). It provides an architecture
how these components can communicate with one another.

 Introspection: This is the ability of a Java Bean to allow an external
application to examine it and know the properties, methods, and events
supported by it so that it can be changed or used as needed.

 Servlets: These are small programs written in Java, which are loaded and
executed by Web server.

 MIME type: Content type is also knows as MIME (Multipurpose Internet
Mail Extension) type.

 CORBA: CORBA (Common Object Request Broker Architecture) is a
standard architecture for distributed object systems.

5.11 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Write the two types of image files.

2. What is file format?

Images, JDBC, Java
Beans, Servlet API and
CORBA Connectivity

NOTES

Self - Learning
520 Material

3. What do you mean by ImageObserver?

4. Write the application of JDBC.

5. Elaborate on the term ResultSet.

6. What do you mean by JDBC metadata API?

7. State about the radio bottom.

8. Define the term Bean.

9. What do you understand by persistence?

10. Elaborate on the term introspection in JAR file.

11. What does javax.servlet consist of?

12. Name the list of MIME types.

13. Explain the Interface Definition Language (IDL).

14. Write the application of CORBA.

Long-Answer Questions

1. Explain how to image is drawn in frame with the help of diagram and
examples.

2. Briefly explain the fixed-length records and variable-length records with
the help of relevant examples.

3. Analyse the image class with the help of example program.

4. Discuss about the ImageObserver and MediaTracker with the
help of example programs.

5. Explain in detail about JDBC drivers and its types giving examples.

6. Discuss about the JDBC Type 2 and JDBC Type 4 drivers
implementation. Support your answer with the help of relevant examples.

7. Describe the components of swing with the help of example programs.

8. Briefly explain the Beans Development Kit (BDK) and its components
giving appropriate examples.

9. Discuss about the components of Java Bean with the help of examples.

10. Briefly discuss the constrained and bound properties.

11. Describe the JAR files with the help of examples.

12. Explain the basic servlet API with the help of C program.

13. Differentiate between doGet() and doPost () methods gving Java
programs.

14. Discuss the features of the MIME content with the help of example
program.

15. Briefly explain the Java and CORBA connectivity.

17. Discuss in detail the basic concpet of CORBA system with the help of
examples520.

Images, JDBC, Java
Beans, Servlet API and

CORBA Connectivity

NOTES

Self - Learning
Material 521

5.12 FURTHER READING

Balagurusamy, E. 2007. Programming with Java, 3rd Edition. New Delhi: Tata
McGraw-Hill.

Naughton, Patrick and Herbert Schidt. 1999. Java 2: The Complete Reference,
3rd Edition. New Delhi: Tata McGraw-Hill.

Das, Rashmi Kanta. 2013. Core Java for Beginners, 3rd Edition. New Delhi:
Vikas Publishing House Pvt. Ltd.

Schildt, Herbert. 2006. Java: The Complete Reference, 7th Edition. New Delhi:
Tata McGraw-Hill.

Hunter, Jason and William Crawford. 2001. Java Servlet Programming, 2nd
Edition. California: O’Reilly Media.

Arnold, Ken, James Gosling and David Holmes. 2005. The Java Programming

Language, 4th Edition. Boston: Addison-Wesley.

Wigglesworth, Joe and Paula Lumby. 1999. Java Programming Advanced
Topics, 2 Edition. Boston: Course Technology.

Deitel, Paul and Harvey Deitel. 2011. Java: How to Program, 9th Edition. New
Delhi: Prentice-Hall of India.

NOTES

NOTES

	Prelims
	Intro
	Unit 1
	Unit 2
	Unit 3
	Unit 4
	Unit 5
	endnotes

