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Introduction

INTRODUCTION

Quantum Mechanics (QM), also known as quantum physics, quantum theory, the
wave mechanical model, matrix mechanics or quantum field theory, is a fundamental
theory in physics which describes nature at the smallest scales ofenergy levels of
atoms and subatomic particles. Principally, the quantum mechanics differs from
classical physics in that energy, momentum, angular momentum and other quantities
of'abound system are restricted to discrete values (quantization); objects have
characteristics of both particles and waves (wave-particle duality); and there are
limits to the precision with which quantities can be measured, uncertainty principle.

NOTES

The foundations of quantum mechanics were established during the first half
of'the 20th century by Max Planck, Niels Bohr, Werner Heisenberg, Louis de
Broglie, Arthur Compton, Albert Einstein, Erwin Schrédinger, Paul Dirac, David
Hilbert, and others. The modern theory is formulated in various specially developed
mathematical formalisms. In one of them, a mathematical function, the wave
function, provides information about the probability amplitude of position,
momentum, and other physical properties ofa particle. The Schrédinger equation,
applied to the free particle, predicts that the centre of a wave packet will move
through space at a constant velocity.

This book, Quantum Mechanics is divided into five units that follow the
self-instruction mode with each unit beginning with an Introduction to the unit,
followed by an outline of the Objectives. The detailed content is then presented in
a simple but structured manner interspersed with Check Your Progress Questions
to test the student’s understanding ofthe topic. A Summary along with a list of Key
Terms and a set of Self-Assessment Questions and Exercises is also provided at
the end of each unit for recapitulation.

Self - Learning
Material 1






UNIT1 TIME -INDEPENDENT
PERTURBATION THEORY AND
VARIATIONAL METHOD

Structure

1.0 Introduction
1.1 Objectives
1.2 Ehrenfest Theorem
1.3 Expansion of Wave Function in Eigen Function
1.3.1 Orthogonality, Normality and Closure Properties of Eigen Function
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1.8 Summary
1.9 Key Terms
1.10 Self-Assessment Questions and Exercises
1.11 Further Reading

1.0 INTRODUCTION

The Ehrenfest theorem is a special case of a more general relation between
the expectation of any quantum mechanical operator and the expectation of
the commutator of that operator with the Hamiltonian of the system. Wave
function expansion, a very abstractly method, is the fundamental importance
in physics. This calculation, transferred to the process of the molecule’s
decomposition, it is identical to an approach where the ground state wave
function ¥ (G) is obtained by expanding the rotational Eigen functions.

The Dirac delta function is the name given to a mathematical structure,
i.e., intended to represent an idealized point object, such as a point mass or
point charge. The condition for two eigen functions to be orthogonal is that
their inner product is zero.

Time-independent perturbation theory is one of two categories of
perturbation theory, the other being time-dependent perturbation. Time-
independent Perturbation theory is a mathematical tool for treating quantum
systems whose Hamiltonian involves small static perturbing terms which do
not induce transitions to other quantum states.

The spin quantum number has only two possible values of +1/2 or -1/2.
If a beam of hydrogen atoms in their ground state (n = 1, £ =0, m, = 0) or
Is is sent through a region with a spatially varying magnetic field, then the
beam splits into two beams.

Time — Independent
Perturbation Theory and
Variational Method

NOTES

Self - Learning
Material 3
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In quantum mechanics, the variational method is one way of finding
approximations to the lowest energy eigen state or ground state, and some
excited states. This allows calculating approximate wave functions, such
as molecular orbitals. The basis for this method is the variational principle.

In this unit, you will study about the Ehrenfest theorem, expansion
of wave function in eigen function, orthogonality, normality and closure
properties of eigen function, Dirac delta function, time-independent
Perturbation theory, with and without electron spin in hydrogen like atom,
variational method and it’s applications to ground state of helium atom.

1.1 OBJECTIVES

After going through this unit, you will be able to:
e Explain the Ehrenfest theorem
e Discuss the expansion of wave function in eigen function
e State the Dirac delta function

e Interpret the orthogonality, normality and closure properties of eigen
function

e Describe the time-independent Perturbation theory for degenerate and
non-degenerate cases

¢ Elaborate on the variational method and its applications to ground state
of helium atom

1.2 EHRENFEST THEOREM

P. Ehrenfest in 1927 stated, in regard to the correspondence between the
motion of a classical particle and the motion of a wave packet representing
the particle, the following theorem.

The averages or the expectation values of the quantum mechanical
variables satisfy the same equations of motion as the corresponding classical
variables in the corresponding classical description. Specifically the theorem
states that,

d /

Ly =
7 (x)=—(p,)

m

d, | arw
dt<p">_< dx>

provided that the wavefunction y(x, #) with respect to which averages
are computed satisfies the time-dependent Schrodinger equation,

ihwz{ " i-}- V(x)} v(x,1)

ot E x>

or

L oy(x, 1)~
I Frg(x
ih—— W(x, 1)



Proof of Ehrenfest’s Theorem

Consider a particle of mass m moving along the x-axis under the action of a
force-field described by the potential energy V(x) for the particle. If y(x, 7) be
the wave function describing the state of the particle at the instant # we have
the expectation value of the coordinate x of the particle in the state given by,

)= J v 1) xy(x, Hdx

The time derivative of (x) is,
d(x) a
dt

The Schrodmger equation satisfied by y(x, ?) is,
_oy(x,0) | -1 9
h—=

Y { o
The above gives,

W (x, 1) _—i —h2 0’
ot | 2m ox®

Taking complex conjugate of Equation (1.3), we get,

Ay * (x, 1) —_{hz >

J v (x, 1) xy(x, t)dx (1.1

+ V(x)} *(x, 1) (12)

+ V(x)} *(x, 1) .(1.3)

ot 2m o’
Equation (1.1) gives,

+ V(x)} *(x, 1) ..(1.4)

+o00
WANCTS
ot

d(x) _ f Ay * (x, 1)
dt ot

Using Equat{ons (1.3)and (1.4) in thé above, we get,

xy(x, t)dx + j v *(x, f)x

%: J. { " 8822 + V(x)} *(x, 1) xy (x, t)dx

2 2
+j\|; (x, t)x( M - §2+V(x)}w(x )dx

Simplifying, we get,

dxy inf 3Py(x, 1) 3y * (x, 1)
7:E7m {XW*(X,I)T—XW(X,I)T dx (15)
Let,
*e v
I= J xyr(x, t) (x t)

—oo

Time — Independent
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Integrating by parts, we get,

I= {xw(x, 0 W} j QD 2 Ly, (1.6)

For a localized wave packet we have the boundary conditions,

y(x,1)—>0 as x —too
* (L7
LAIC] and LA C)) —0 as x >*eo (L.7)

ox ox
Use of conditions given by Equation (1.7) in Equation (1.6), we obtain,

j 2 oy, ) 20D

Integratmg once again by parts, we get

I=- | {—[x\v(x DIy *(x, t)} j v, r) Loy Ol

Using condition given by Equation (1 .7), the above becomes,

2

s 0
I= £ W (1) = [y Ol

= J W*(x,t)i[\u(x,t)wLxM}dx
ox

2
_ jw*(x t){aw(x 0, aw<§,t>+aw(x,r)} "
ox ox
or
_ w(x.0 Y(x1)
I= jq; (xt){ - e }dx (1.8)

Usmg Equation (1.8) in Equation (1.5) we obtain,

e 2 2
i’tij{w () L gy 1, Dy, Y0 ‘gif’l)}dx

dt 2m a
or

cx) _ oy(x, 1)
y j 2y () T ds
or

dixy 177 9
;’? - j v (x, t)(ih a_x) w(x, 1)dx
or

+ oo
K 8D ince (p)= [ w0 b, wix.
dt m oo
or

d
(p)=m f;;) (1.9
In the limiting case if the wave packet reduces to a point, i.e., the

particle becomes completely localized, we get,




() =xand {(p,)=p, ..(1.10)

so that Equation (1.6) reduces to the classical definition,

p=m— .(1.11)
We have the expectation value of p_in the state described by the

wavefunction y(x, #) given by,

+ oo
., 0
<px> = .[ \4 * ()C, t) (_Zh a_j“}(x’ t)dx
— 0 . . . X .
Taking time derivative of the above we obtain,

d d
<£x - j W (x, t)(—lha—j\y(x £)dx

or
d(pk _ i J dy * (x 1) Bw(x D

, N Kl aw(x,t)
th;\U (x, 1) ax( - jdx

Substituting for oy E(x’ ) and ang, D from Equations (1.4) and (1.3)
t t

in the above we obtain,

dip,y . (i[-n* @ oy(x, 1)
7__zhj [ 82+V(x):|\|!( ) d

_lhjw*(x t)( jaa[ —h ;2+V(x)} (x, 1) dx

—h2+°° 92 ow(x, ¢
= sz(x)}u ) “’;}f WD) 4

n . | o
+ . _'[0 v *(x,1) ™ L’xz + V(x):| w(x,1)dx

_n PRy dwlnn T QY (x, 1)
= EJ = P+ _[ VoW * (e, ) =0 ds

—oco —oo

*y(x, 1) o d
+—jw (x, x[ L ] xjww (e, 5[V (e, )] d

20 L9 () Pyt dy(x, 1)
{w (x, 1) x( ) d

2m ox> ox? ox>

—oo

o e Dy 2 o s

_n i) v t)a \u(x D) vrEn Py Pyrn Py |,
2m ax ox ox? ox? ox?

—oo

+ j v (x, Z){—a;;(x)} w(x, £)dx
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o L Pyn)| d [a\p*(x 1) dy(x z)} oV
- _ . ’t R SRS o b b dx + o
2m 7 [ax (\If (x 1) ox? ox ox ox ox

Using the condition given by Equation (1.7) in the above we find the
first term in the above equation to vanish to yield,

dp,) _ <aV<x)

dt ox

The force F'_corresponding to the potential energy function ¥(x) is,
Toox

The above two equations give,

AP _ iy L(112)

dt
In the limiting case of the wave packet reducing to a point, i.e., the

particle being completely localized we get,
(pd=p, and (F)=F,
and Equation (1.12) in that case takes the form,
_ dp,
< d
Which is Newton’s second law of motion.

1.3 EXPANSION OF WAVE FUNCTION IN
EIGEN FUNCTION

The wave equation given by Equation (1.13) can be solved using the method
of separation of variables.

1 9 (. .oy 1 oy 2T,
— 0— |+ + —-F
sin 8 00 [Sm aej sin20 %02 # Y
=0 .. (1.13)
We can write Equation 1.12 y(6, ¢) = © (6) ® () ..(1.14)

where © and @ are respectively functions of 0 alone and ¢ alone.

Using Equation (1.14) in Equation (1.13) we obtain
0 [ d@) 1 d*® 2I,E

sin @ — |+ + D=
sin® 0 do* A’

sin 6 00

Dividing the above throughout by _6—?6, we get
sin

2
isinei(sin9@j+2lof sinzﬂz—id qz) ..(1.15)

do ) D do
The left hand side of Equation (1.15) depends only on 0 while the right
hand side depends only on 6. Hence for the Equation (1.15) to be valid, each

side of it must separately be equal to a constant. For convenience we set

1 d’®

= m? (m = constant)

D 4y’



d*®

Or > +m® =0 ...(1.16)
do
Let us call it @ equation.
We also have
isinei sin6@)+21—0Esin2 0 =m’
© de do n
.2
Dividing the above by 5" © we obtain
2
.1 a sined—® +2]OE o=—"_0
sin® 40 do n* sin” @
or
2
1 4 (GredO) [2hE M 1oy (1.17)
sin © do do n*  sin’ @
Let us call it © equation.
Solution of the ® Equation
The most general solution of Equation (1.16) is given by
= et (1.18)

where A is an arbitrary constant, and can be evaluated using the
requirement of the normalization of ®

ch*cbdq)zl

0

Using Equation (1.18) in the above we obtain

2
4P j do =1
Or o
|4 2 =1
Or

|A‘2_ L
Or 21

1
A= ——
J2n

For @ to be a factor in the total wavefunction of the rotator, the single

valuedness of @ demands
D(p) = (0 + 2m)

(1.19)

Using Equation (5.65) in the above we get
Aei[m(D:Aeirim((DJan)

or
otimd = gtimo orommi

or
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e_2n mi — 1

or
cos 2mm = i sin 2mm = 1

The above demands m to be zero or an integer positive as well as
negative, i.e.,
m=0,+1,£2,... ..(1.20)

Using the results given in Equations (1.19) and (1.20), we obtain from
Equation (1.19)

®0)= =

The integer m can be identified as the magnetic quantum number.

e ..(1.21)

Note: The Lagrangian function L for the rigid rotator is by definition given by
L=T-V.
Or L=E(:V=0andE=T)
Using the expression for the total energy £ so we get
L= %1(62 +sin” 0 ¢%)
We observe that ¢ does not appear explicitly in the Lagrangian function

and hance ¢ is a cyclic or ignorable coordinate.

Solution of the ©® Equation

21 E
Putting A= h‘; .(1.22)
the © equation which is given by Equation (1.17) becomes
2

1 i(sined—gj+ A" _lo=0 (1.23)
sin® do do sin® 0

Let us introduce a new variable § as
E=cos O ..(1.24)
Now

CZIC; Z’Cg Zg ed_z’; (using Equation 1.24)

or

d
4 - sne L .(1.25
o sin i ( )
Using Equations (1.24) and (1.25) in Equation (1.23) we get
, dO m* B
- A-———10=0
vz { 1&2}
or
(e 4O e dO 1y M gy (1.26)
& & e (1.

For mathematical convenience let us substitute



© = (1 - X&) (1.27)

where X(§) is a function of only &.

oy de  d'© : : .
Substituting for d—gand e as obtained from Equation (1.27) in
Equation (1.26) and simplifying we obtain
2
(1—&_,2)flf—z(m+1)gj—)g+[x—m(m+1)]x=0 ..(1.28)

Equation (1.28) can be solved using power series method. For this we
express the function X as a power series in & as

x=Y ag, n=012.
n=0

..(1.29)
The above gives
X & .
—=>» nat" ..(1.30
a2 (1.30)
and
X < .
& =Z;n(n71)§ 2 .(1.31)

Substitution of Equations (1.29), (1.30) and (1.31) in Equation (1.31)
yields

oc =)

2 n(n—1)a,E" > - z nn-1a,k" —2(m+1) i na,"

n=2 n=2

+[A—m(m+D]Y a,&" =0 (1.32)

n=0

For Equation (1.32) to be valid for all possible values of &, the
coefficients of the individual powers of § must separately vanish.

Thus we obtain, in general, for the coefficient of &”

(n+1)y(n+2)a, ,—nm-1)a -2 (m+na +[h—mm+1)]a =0

or
_nn-D+2n(m+D+m@m+1)—A
an+2_ an
(n+1)(n+2)
or
Apey  n(m—1)+2n(m+1)+m(m+1)—A (1.33)
a, (n+1)(n+2) B

Equation (1.32) is referred to as the Recursion formula for the
coefficients of the series for X(&). In order that the polynomial X represents a
satisfactory part of the total wavefunction of the rotator, the series for X must
break off (terminate) after a finite number of terms (otherwise it diverges).
Considering that polynomial breaks off after the nth term we get,

an+2 - 0
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and hence Equation (1.33) gives
nn—1)+2n(m+1)+mm+1)-A=0
or A=m+m)(n+tm+1) ..(1.34)

In Equation (1.34)m=0, 1,2, ...andn=0, 1, 2,..., Hence we may write
n +m =[1s an integer including 0 ..(1.35)

We can thus write Equation (1.34) as
=ll+1) ...(1.36)

Using the above values of A, Equation (1.26) becomes

1— 2

It is well known that the associated Legendre function p/”(€) of degree
[ and order |m| where /=0, 1, 2,...and m =0, 1, 2,..., [ is defined in terms of
Legendre polynomial P (§) as

5 |m| d\m\
P& =1-8)2 R

A 2§—+{l(1+1) ;}ezo (137

IA(S) ..(1.38)

P (&) satisfies the Legendre differential equation

i{( —&%) C;S)}+I(I+I)P,(§)= 0 ..(1.39)

Differentiating Equation (1.39) |m| times with respect to & and using
Equation (1.38) we obtain,

dzp\m\ le\ .
gy o g@) {z(z " }p, ) = (1.40)
Comparing Equations (1.38) and (1.42) we identify
() = P/"I(§) = P/"(cos 0) ...(1.40)

Thus we can express the general solution of the ® equation as,
O(8) =B P/" (cos 0) ...(1.42)

In the above the constant B is determined by requiring ©(0) to be
normalized, i.e.,

j O*(0)0(0)sin0 do = 1
0

Using Equation (1.42) in the above we obtain,

+1
B j (P" (cos 8)}" (P (cos B)} d(cos ©) = 1
|
or
o 20!
20+ 11— |m])!



The above gives

B [l =|m]! (1.43)
\ 20+ m])!

Thus the general solution of the © equation given by Equation (1.43)

becomes
— /M MDY i ..(1.44
0(0) 20 + ) P (cos 0) ( )

In view of Equation (1.21) and Equation (1.44) we can now write the
wavefunction y for the rigid rotator with free axis as

1 20+ - |m|)!
2\ 20+ m))!

Set of values of / and |m| give the different energy eigenfunctions for
the rotator.

Y = OO)D(6) = P (cos B)e™ ...(1.45)

The corresponding energy eigenvalues are obtained from

h=1I(1+1) (1.46)
or
25;’—2’5' — K+ 1) (1.47)
or
hZ
B =1+ 1) (1.48)

0

1.3.1 Orthogonality, Normality and Closure Properties
of Eigen Function

Orthogonality Eigen Function

The condition for two eigen functions to be orthogonal is that their inner
product is zero. In Dirac notation this would mean:

(v,lw,)=0, m#n, (1.49)
And in wave function notation for Equation (1.49) will be becomes is
following equation:

(Lljn|wm):I_mm\vn(x)*me(X)dX:O, m#n (1 50)

You can from here verify that the eigenstates of the infinite square well
Hamiltonian corresponding to different values of 7 (the y ) are orthogonal.

You could also infer this from the fact that since H is Hermitian its eigen
functions corresponding to different eigenvalues are necessarily orthogonal.
Since each energy eigen function of the 1D-infinite square well has a different
energy value they must be pairwise orthogonal.

Orthogonality Theorem: Eigen functions of a Hermitian operator are
orthogonal if they have different eigenvalues. Because of this theorem, we
can identify orthogonal functions easily without having to integrate or conduct
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an analysis based on symmetry or other considerations.

Proof: y and ¢ are two eigen functions of the operator 4 with real eigen
values al and a,, respectively. Since the eigenvalues are real, a*,=a, and

Ay = a1

e
A tb* — ﬂlgwl
(1.52)
Multiply the first equation by ¢* and the second by y and integrate.

f o Avdr — a f Grbdr )
f YA Y dr — ay f Y dr (154)

Subtract the two equations in Equation (1.54) to obtain

fw*,it.bd-r—fapﬁ*w* dr = (a —ag)fw*wdT (1.55)

The left-hand side of Equation (1.55) is zero because A is Hermitian
yielding

0= (a1 — as) fﬁf)*’q")d’r

(1.51)

(1.56)

If a, and a, in Equation (1.56) are not equal, then the integral must be zero.
This result proves that non-degenerate eigen functions of the same operator

are orthogonal.

Normality of Eigen Function

Principles of Quantum Mechanics by R. Shankar, he describes finding the
eigen values and eigen functions of the operator K= —iD = —i d/dx. For
context, he does this:

Kk) = K]k) (1.57)
Following to standard procedure

x| Klk»=k{x| k>

j(xlﬂf> (x| ke dx’ = kyy(x)

d
—i— wal(x)=kwyi(x)
dx

Where by definition y,(x) = (x|k). This is equation could have been
written directly had we made the immediate substitution K= —i d/dx in the



X basis. The solution of the above equation simply form are following:

Y, (x) =Ae™ (1.58)

Where A, is the overall scale, is a free parameter unspecified by eigen
value problem. So the eigen value K is a fully solved: any real number of K
is an eigen value and the corresponding eigen value is given by Ae™*. A usual
the freedom in scale will be used to normalised the solution. We choose to
A to be (1/21)"2 so that

ifc}H;e

{:2?1'}1 ;2

ihx
And

Gﬁlk'}*'[ Cklx) (II»‘:‘MI*;- J. EE_'.dk_*']*rix-—ﬁ[k—kiJ
_ T

- —
(1.59)
Equation 1.60 is also are equal to Fourier transform,
1 o0
ilk—K)z - /
— € dr = §(k — k).
Dar - (1.60)

The eigen functions of an operator are orthogonal functions. We will
as well assume that they are normalized. Consider two eigen functions «

u_ of an operator 4 and the inner product defined by (flg) = [dx f(x)g(x).
Then we have

4 i s a C
}‘-!II T Uy, (X)ug(xX) = dpm

Closure of Eigen Function

The coefficients of expansion given by following Equation (1.61) can be
found using the orthonormality relation:

(vl v )=d, (1.61)
Taking the scalar product of both sides of (1.60) with eigen
function y we ge

(.. | W) = Zc W lw.) =2 .6,

- (1.62)

=

L

Considering the case of one particle system, we write explicitly
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w(P.n)= ) va;{p]‘l’{p,r}:fJ?] w, (F)
:f[zw;{ﬂ}w,,{ﬁ }l‘{p,!;dﬂ

And therefore
E{.-'f; {.E'}w” (F)=a(F - .E'}

This is the closure relation of eigen function.

1.4 DIRAC-DELTA FUNCTION

Consider a function d(x) which is zero everywhere except at x = 0 and

, |7 8(x) ax
tends to o in such a manner that * =1 ...(1.63)
with 8() =0ifr=0 ..(1.64)
=owifr=0

This is known as Dirac-delta function and used in mathematical phys-
ics wherever functions exist with non-zero values in very short interval,
e.g., an impulsive force acting for a short while is defined as d(x — &) by

Lim Ce (*~%)%/¢

a—0
2

, [7 8(x-g)ax
where the constant C(a) is chosen such that * =

and hence using the mean value theorem of integral calculus, we have

[" rese-gyax _

SE).
Let us again consider a function
—,—a<x<a
3 (x) = 2a
=0,x>a ...(1.65)

Then, jjomﬁa(x)dx _ jiﬁa(x)ak+jfa8a(x)dx+jjaa(x)dx

il 1
o jﬁagdx+0:£{a7(fa)}

=1 ...(1.66)
In case f(x) in integrable in the interval (— a, a), then from mean value
theorem,
0 1 a
f()8,(x)ydx  ——|_ f(x)dx
L ol L /@ a) 8] <1

Lim 8, (x)
Let us now define d(x) = «>=



As such (1.65) and (1.66) yield
d(x) = 0, when x # 0 ..(1.67)

and =1 ...(1.68)
which define Dirac-delta function.
Further, since we have

Jwaf(x)ﬁa(x)dx _ ij._awf(x)dx

= /(0 a),10]<1
? f(x) 8(x) dx
'["" = £(0). ..(1.69)
which by change of variable, reduces to
” f(x)d(x—a)dx

J.*‘” = f(a) ..(1.70)

or symbolically, f(x) d(x — a) = f(a) d(x — a) -(1.71)

In case f(x) = x, Equation (1.71) yields, xdx = 0 ..(1.72)
In a similar manner we can show

d(—x) = dx ..(1.73)
lE)()c), a>0

O(ax) = @ ..(1.74)

€ {Blx—a)+8(x+a)t, a=0
(o> —x?) = 24 ..(1.75)
Now assuming that d8'(x) i.e., differential of 6(x) exists and regarding
O(x) and &'(x) both as ordinary functions in the rule for integrating by parts,
we have

[T rosmar [fesm]”, -7 fixsd

=0-/(0) [by Equation (1.76)]
= — 1 (0) -(1.77)

If 8" be the nth derivative of d(x), then similarly we find on repeating
this process n times,

© 1) 8™ (x) dx
.[700 = (=1)" f(0) ..(1.78)

COROLLARY: Heaviside unit function or (unit step function).
We define Heaviside unit function H(x) as

H(x) = 1forx>0 ..(1.79)
=0forx<0
For a > 0, we can write this result as
Hx—a) = 1forx>a ...(1.80)
=0forx<a
It is evident that
d(x) = H'(x) ..(1.81)
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Illustrations
Cs(x -8 (y-a)dy
1. To show that J.""’ R o(x —a)
We have,

[2 7 res -y sy-aydyadx _ jiﬁ(y—a){jif(x) S(x—¥) dx}dy
fiS(y— a)- f(y)dy

" dGx—a)d
_ [ LS @8-y ds (on replacing y by x)

which follows that

P8 (x— )8y —a)d
[ 8x—»s(y a)y=6(x—a)

2. 1o show that
I:cos (x, v) cos(xy") dx B énﬁ(x—y')

where y > 0,y > 0 and 3(y — ') is the Dirac-delta function.
€OS 27nx cos 2nnx
. e .
Noting that  =mx asx > 0and 7x as x = 0, but it
is sufficiently large. This follows that cosine function tends to become a
Dirac-delta function if divided by mx, so that taking xy = ¥ — X and xy' =
Y — X, we have

cos xy = cos (¥ —X) = 0o(Y — X) (say)
and cos xy' = cos (X —Y)=03(X—-7) (say)
In view of Illustration 1,

[°[7 rpe-x8(x-ydrax  m [’ f@)8@ 1Y) ar

as 8(Y — V') is a function of cosine.
Ji)cosxycos xwdae = mx-0(Y-Y)
:>2I(jocos xycosyy'de = mx - O(xy —xy')as Y - Y =xy—x)
e r —_ ™ 1 7/
:>_[0 cos xy cos xy'dx = 7';5(37*} )
1
8(ax) = —§(x),a>0
a

Y

= Pl

Check Your Progress
State the Ehrenfest theorem.
Give the definition of Lagrangian function L for rigid rotator.
What do you understand by Recursion formula for coefficients?
State the orthogonality theorem.
Define the Dirac delta function.

A i e

Heaviside unit function is a corollary of what function?




1.5 TIME-INDEPENDENT PERTURBATION
THEORY

In quantum mechanics, perturbation theory is a set of approximation schemes
directly related to mathematical perturbation for describing a complicated quantum
system in terms of a simpler one. Perturbation theory is applicable if the problem
at hand cannot be solved exactly, but can be formulated by adding a ‘small’ term
to the mathematical description of the exactly solvable problem. For example, by
adding a perturbative electric potential to the quantum mechanical model of the
hydrogen atom, tiny shifts in the spectral lines ofhydrogen caused by the presence
ofan electric field (the Stark effect) can be calculated. This is only approximate
because the sum of'a Coulomb potential with a linear potential is unstable (has no
true bound states) although the tunneling time (decay rate) is very long.

The expressions produced by perturbation theory are not exact, but they
can lead to accurate results as long as the expansion parameter, say a, is very
small. Typically, the results are expressed in terms of finite power series in a that
seem to converge to the exact values when summed to higher order. After a certain
order n~ 1/ahowever, the results become increasingly worse since the series are
usually divergent (being asymptotic series). There exist ways to convert them into
convergent series, which can be evaluated for large expansion parameters, most
efficiently by the variational method.

Time independent perturbation theory is one of two categories of perturbation
theory, the other being time dependent perturbation. In time independent
perturbation theory the perturbation Hamiltonian is static, i.e., possesses no time
dependence. The time independent perturbation theory was presented by Erwin
Schrodinger in a 1926 paper, shortly after he produced his theories in wave
mechanics. In this paper Schrodinger referred to earlier work of Lord Rayleigh,
who investigated harmonic vibrations ofa string perturbed by small in-homogeneities.
This is why this perturbation theory is often referred to as Rayleigh—Schrédinger
perturbation theory.

First Order Corrections

Consider an unperturbed Hamiltonian, HO, which is also assumed to have no time
dependence. It has known energy levels and eigenstates, arising from the time
independent Schrodinger equation of the form:

H, 'n':'“]> = EY ‘:rz-r"“]:) , n=123,---

For simplicity, assume that the energies are discrete. The (0) superscripts
denote that these quantities are associated with the unperturbed system. Note the
use ofbra—ket notation.

We now introduce a perturbation to the Hamiltonian. Let 7be a Hamiltonian
representing a weak physical disturbance, such as a potential energy produced by
an external field. Thus, V is formally a Hermitian operator. Let A be a dimensionless
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parameter that can take on values ranging continuously from 0 (no perturbation)
to 1 (the full perturbation). The perturbed Hamiltonian is represented as,

H=Hy+ AV

The energy levels and eigenstates of the perturbed Hamiltonian are again
given by the Schrodinger equation:

(Ho + AV) [n) = E,|n)

The objective is to express £ and |72) in terms of the energy levels and
eigenstates of the old Hamiltonian. Ifthe perturbation is sufficiently weak, we can
write them as a (Maclaurin) power series in A:

Ey=EBY LB + BB 4.
In) = F”{”]> LA |nm> 12 ‘n[z}> s

Where,
gt _ 1 d'By
TR dk a=o
dk
In{kj> — i |lnfl
kU dAF =0

When £ =0, these reduce to the unperturbed values, which are the first
term in each series. Since the perturbation is weak, the energy levels and eigenstates
should not deviate too much from their unperturbed values, and the terms should
rapidly become smaller as we go to higher order.

Substituting the power series expansion into the Schrodinger equation, we
obtain,

(Hy + AV) (lnw]> + Mn“’) - ) = (E‘H}’ + B 4+ ) (|ﬂ‘”’> - A|nm> 4 )

Expanding this equation and comparing coefficients of each power of A results
in an infinite series of simultaneous equations. The zeroth-order equation is simply
the Schrodinger equation for the unperturbed system. The first order equation is,

Ho oY) + V[ = BO [0 1 D o)

Operating through by (rn'®!| , the first term on the left-hand side cancels the

first term on the right-hand side as per the unperturbed Hamiltonian is Hermitian.
This leads to the first order energy shift:

B = (n®| v )



This is simply the expectation value of the perturbation Hamiltonian while
the system is in the unperturbed state.

The Stark Effect for » = 2 Hydrogen

The Stark effect for the n = 2 states of hydrogen requires the use of degenerate
state perturbation theory since there are four states with (nearly) the same energies.
In the first calculation, we will not consider the hydrogen fine structure and assume
that the four states are exactly degenerate, each with unperturbed energy of £,

That s Hogoem = Eotoem -
The degenerate states are $200, $211, $210 and p21(-1).
The perturbation due to an electric field in the z direction is H| = +e€z .

So the first order degenerate state perturbation theory equation is,

Z o <¢(J) ‘HO -+ €£Z| ¢(z)> — (EO -+ E(l))o:j,
This is essentially a 4 x 4 matrix eigenvalue equation. There are 4 eigenvalues

(Eo + E'), distinguished by the index 72 .
Because of the exact degeneracy (Hop) = Eq¢'?)), the H and E can

be eliminated from the equation.

Z i (Egdy; + <¢(j) le€ 2| (p(i)>) = (Eo+ EM)aq,
Eoaj + Z a; <(I5U) le€z| q_‘)(i)> = Eya;+EWa;
Z a; <<f>(j) le€ 2| ¢_'>(i)> = EWaq,

This is just the eigenvalue equation for /| which we can write in (pseudo)
matrix formas follows,

a1 g

a2 &%)
H = W

a3 a3

g g

Now, in fact, most of the matrix elements of //, are zero. We can define that
because [L.,2] =0, hence all the matrix elements between states of

unequal ¢, are zero. Another way of saying this is that the operator z does not
‘change’ m . Here is a little proof.

(Km |[Lz: Z” Y'm’} =0= (?n, — Tn,’) {iflm |2| E'm’)
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This implies that (¥j,, |2| Yirm) = 0 unless . = m/.

Let us define the one remaining nonzero (real) matrix element to be y.

v = €& {¢a00 |2] P210)
The equation that is labelled with the basis states to define the order is.

200 0 0 ~ O o o
0211 0 0 0 0 az | _ g | @2
o210 {v O 0 0 ag o3
b1 N0 0 0 0/ \ay a4

We can see by inspection that the eigenfunctions of'this operator are ¢p211,
¢21-1,and 75 4520[} + ¢210) with eigenvalues (of /) 0f0, 0, and £ .

What remains is to compute y. Recall Yoo = # and Yip = /- cos@.

— —3/‘2 L r,‘?ag —3;"2 L 1 =r/2ag 3
¥ eE/(Zag (1 5a )e Yooz (2ap) 7 (ﬂu) € Yiod'r

. 1
= 2ef (2aq) rdr ( ! )(L) e_r‘(“”f — cos @Y7 ;dQ)
0) "_f 2ay ag e 1
1 - r.J
= 2eF(2)7? f (— )e—ff"ndr
@zl (7

) E . |4
= a( € [f Lo~ dy — —f :c"e_”dx]
0

anci -4-3-2-1
= 4.3.2. l——
12 [ 2 ]
agel
= —36
B (—36)

= —3eag = EW = F3efaq
This is first order in the electric field, as we would expect in first order
(degenerate) perturbation theory.

Ifthe states are not exactly degenerate, we have to leave in the diagonal
terms of H . Assume that the energies of the two (mixed) states are £y + A,
where A comes from some other perturbation, like the hydrogen fine structure. The
$211 and 21 (—1) are still not mixed by the electric field.

Ey— A Y (05} — E ag
5 Ey+ A @) T \az

E=Ey+ /42 + A2

This is correct in both limits, A > «,and v >» A.Itisalso correct when
the two corrections are of the same order.



1.5.1 Application of Perturbation to Theory Ground State
of Helium Atom
Helium atom is a three particle system (2 electrons and one nucleus) for which the

Schrodinger equation cannot be solved exactly. Therefore, we use here perturbation
theory in first order to solve helium atom Schrédinger equation.

The helium atom has two electrons with co-ordinates r,and r, with respect
to nucleus which carries +2e charge (Z=2). The Schrodinger equation for helium
atom s given as

" ; W , 27 2¢’ e’
VaeWhl Vi +
Br m, dme,r, e, daern,

h:

87 °m,

H=-

.(1.82)

Where m, is the mass of electron, m_is the mass of the nucleus; «zw o is the
Laplacian operator with respect to the position of the nucleus and “?_ is the Laplacian
operator withrespect to the electronic coordinates of the two respective electrons
present in the system. To simplify this 3 body problem, nucleus is considered fixed
at the origin as m_>>m , which reduces the Schrédinger equation for helum atom

$=-h’/ 8n> m, (A% + A?)) — 2e’/4n’e r — 2e/dn’e r, + e*/dn’e 1,

(1.83)

The last term in the Hamiltonian expression (e*/4n°g 1) is the inter-electronic
repulsion term which causes difficulty in solving the Schrodinger equation (1.83).
Ifwe neglect this electron-electron repulsion term, then the Hamiltonian becomes
a two body problem.

$=-hY/ 8nm (A2, + A%,) —l/dn’e, [2e¥/r —2e¥r] (1.84)

Rearranging equation (1.84) gives

)

" 5 - 2 ) 2

h= 2 2e” h 2 2e”
‘If:E‘T(‘?ElJ‘ ”“ﬂ—(ﬁz ]‘—,
8T m, 4z o1 8T m, 4l

.. (1.85)

That means, if we consider nucleus at origin and ignore inter-electronic
repulsion, we get helium atom Hamiltonian as a sum of two hydrogen like
Hamiltonian (or one electron Hamiltonian). Or, one can say that the ground state
Hamiltonian of helium atom becomes equal to sum oftwo helium ion (He") terms,
1.€., one electron Hamiltonian.
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M

: 2 2 2 2
gy h {?3]) 2e Y h (vg )_ 2e
4&2‘{}.“2

- 2 ... (1.86
S:rzmﬁ, U dmegn o ( )

872m i

The zero order ground state wave function for helium atom then can be taken
as a product of individual electron wave function, i.e., wave function of two He*
ions not interacting with each other (approximated as hydrogen like one electron
wave function).

Fo(n.m)=yi(n)ya(mn)

Where one electron hydrogen like wave function is given by
—Zr
L A
W =——{—)/Ee Va, .(1.87)

With a_representing the Bohr’s radius and Z the charge on the nucleus. And
ground state helium atom energy (sum of one electron hydrogen atom like energy)
is given by Equation (1.88)

E,=-2n* mZ’ &'/ n*h’ (4ng )*— 2n* m Z° &'/ n*h’ (4ng )’
L (1.71)
1.5.2 Degenerate Time Independent Perturbation Theory

Degeneracy: Degeneracy occurs when more than one possible state of a system
corresponds to the exact same energy. If take a measurement of the energy of one
of these degenerate states, and then took a measurement of the energy of another
of the degenerate states, both being fundamentally and physically different states,
and we get the same result. The two states would appear identical. Degeneracy
stems from symmetries inherent to a systems geometry. Distortion ofthe symmetry
that allows multiple states to have the same energy spreads the energies of the
different states apart, and they become measurably distinguishable.

Consider a Hamiltonian of the form:
§=5,+%
Where § is the total Hamiltonian, § , is the unperturbated Hamiltonian, and
$’ is the relatively small contribution due to the perturbation.

We now suppose that §, has degenerate eigenstates, and in so doing depart
from non-degenerate perturbation theory. Suppose for example that the ground
state of

$, has q degenerate states (g-fold degeneracy). Ifa perturbation potential
is applied that destroys the symmetry permitting this degeneracy, the ground state
E  will separate into q distinct energy levels.

One of'the primary goals of Degenerate Perturbation Theory is to allow us
to calculate these new energies, which have become distinguishable due to the
effects of the perturbation. As in the non-degenerate case, we start out by expanding
the first order wave functions of § in terms of the eigenstates of §,
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Solving for the coefficients {c } gives the expression:

H!

7t

Chi =

EY) — B

But consider the denominator of ¢ . when E © = E© (our degeneracy
condition) .it is zero. This causes ¢ . to blow up to infinity due to the degeneracy of
H,. Infactc blows up for any (n,i < q) because all g of those eigen energies are
equal.

EP =g = = g®

1.5.3 Application of Perturbation Theory to Zeeman Effect

The Zeeman effect is a phenomenon by which the energy eigen states of an atomic
or molecular system are modified in the presence of a static, external, magnetic
field. This phenomenon was first observed experimentally by P. Zeeman. Let us
use perturbation theory to study the Zeeman effect.

Consider a hydrogen-like atom placed in a uniform z-directed magnetic field,
B. The change in energy ofthe outermost electron is:

Hy=—pB,

Where,

e
2Me.

(L+28S)

Its magnetic moment, including both the spin and orbital contributions.

B e B
" 2m,

Hpg (L, +28,).

Suppose that the energy-shifts induced by the magnetic field are much smaller
than those induced by spin-orbit interaction. In this situation, we can treat H ,as a
small perturbation acting on the eigenstates of H + H, .. Of course, these states
are the simultaneous eigenstates of J? and J . Let us consider one of these states,
labelled by the quantum numbers j and m, where j =/ £ 1/2. From standard
perturbation theory, the first-order energy-shift in the presence of a magnetic field
IS,

‘dEMmJ;I; = {E + l/ﬁ,mﬂ H3|£:|: lfg,‘ﬂ’i'.j).

Because

L;+28:,=J,+ 8
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We find that

B |
By = 53— (myh+ (L £1/2,my] 8, | £1/2,m,))..

e

E:I:m_, \/E:ij—l—l,fﬂ
+4/ i im; +1/2,-1/2).

It follows that

i 1,
{E£1/2,my| £= gy EEm+1/2) == 2£+1Z)]

Thus, we obtain the so-called Landé formula for the energy-shift induced
by a weak magnetic field:

1
ZLE;,JmJi = lip B?HJ: (1 + ﬁ)

Where

eh

= 5788 x 107°eVT
2Me

HB =

is called the Bohr magnetron. Incidentally, for the special case in which /
=0, the plus sign applies. Note, finally, that the eigenstates of H + H, ; are not
eigenstates of H,. However, H , only couples eigenstates with different values of}.
It follows that such eigenstates are non-degenerate (because the eigenvalues of
H, . are different for states with different values ofj. Hence, there isno danger of
singular terms arising in the perturbation expansion to second order.

1.5.4 Application With and Without Electron Spin in
Hydrogen Like Atom

In atomic physics, the inherent angular momentum of a particular particle is
parametrized by spin quantum number. The spin quantum number is the fourth
number. The rest three are a principal quantum number, azimuthal quantum number,
and magnetic quantum number. The spin quantum number explains the unique
quantum state of'an electron. This is denote as‘s’

The Spins play a remarkable role in quantum mechanics in computing the
characteristics of elementary units like electrons. The direction of spin of the particle
regulates several things like the spin quantum number, angular momentum, the degree
of freedom, etc. Let us learn more about the electron spin in this segment.



The electron spin is one of the three inherent properties ofthe electrons; the
others are mass and charge of the electron. The electron spin is described as the
spinning of'the electron around its axis.

It is expressed as: [|S]| =4/|s (s + 1)A
Where,

s is equivalent to a quantized spin vector

The spin vector is expressed as ||s||

The spin quantum number () is associated with the spin angular momentum
and £ is the Planck’s constant.

The spin quantum number can be expressed as: s =1/2

Any non-negative integer can be 7. The permitted values of the spins are 0,
1/2, 1, 3/2, 2, etc. The intrinsic angular momentum of electron is signified by
quantum number %2.The total angular momentum s is expressed by:

s=./|s(s+DAls=n(n+1)h

s = \/12(12+1)h s=12(12+1)h

S= |34 n
Where,
The reduced Planck’s constant is
‘=h/2m.

Electron Spin Theory: The electron spin theory describes the electron as a quantum
particle instead ofthe simple sphere as in the classical theory. The theory says that
the electron spin direction and its influence on certain properties like the magnetic
properties of the atom.

=il ~
Ms-+2 M = 2
S

S

Magnetic
field lines

ElectronSpin

S

N
(North pole) (South pole)

The electron can spin in two directions:

e Spin up
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¢ Spin down

The spin up and spin down direction are corresponding to the spinning in
the +z or —z direction. These spins (spin up and spin down) are the particles that
have spins equal to 1/2, i.e., for electrons. In the quantum theory, the electron is
thought of like the minute magnetic bar, and its spin points the north pole of the
minute bar. Iftwo proximate electrons have a similar spin direction, the magnetic
field formed by them strengthens each other and therefore a strong magnetic field
is gained. If the proximate electrons have an opposite spin direction, the magnetic
field formed by them cancels each other and no magnetic field is existent.

With Electron Spin in Hydrogen Atom

The spin of the electron adds a last quantum number, the projection of the electron’s
spin angular momentum along the z-axis, which can take on two values.
Therefore, any eigenstate ofthe electron in the ‘Hydrogen Atom’ is described
fully by four quantum numbers. According to the usual rules of quantum mechanics,
the actual state of the electron may be any superposition of these states. This explains
also why the choice of z-axis for the directional quantization of the angular momentum
vector is immaterial: an orbital of given/ and m’ obtained for another preferred
axis z” can always be represented as a suitable superposition of the various states
of different m (but same /) that have been obtained for z.

Mathematical Summary of Eigenstates of Hydrogen Atom: In 1928,
Paul Dirac found an equation that was fully compatible with special relativity, and
(as aconsequence) made the wave function a 4-component ‘Dirac Spinor’ including
‘Up’ and ‘Down’ spin components, with both positive and ‘Negative’ energy (or
matter and antimatter). The solution to this equation gave the following results, more
accurate than the Schrodinger solution.

Energy Levels: The energy levels of hydrogen, including fine structure
(excluding Lamb shift and hyperfine structure), are given by the Sommerfeld fine
Structure expression:

Eijp=—pc |1-|1+ “

n—j—%+1b,-j(j+%}'—a2

— i o’ n 3
- 2n? NGt 4 '
2

Where a is the fine-structure constant and j is the total angular momentum

quantum number, which is equal to |E H % | depending on the orientation ofthe

electron spin relative to the orbital angular momentum. This formula represents a
small correction to the energy obtained by Bohr and Schrédinger equation. The
factor in square brackets in the last expression is nearly one; the extra term arises
from relativistic effects. It is worth noting that this expression was first obtained by



A. Sommerfeld in 1916 based on the relativistic version of the old Bohr theory.
Sommerfeld has however used different notation for the quantum numbers.

Consider a H, atom, which has the simplest atomic configuration with a single
electron revolving round the nucleus. The total energy of such an electron is given

4
me

PRPEREE where m and e are mass and charge of the electron respectively, g
goh’n

by -
is the permittivity of free-space, / is the Planck’s constant and # is known as
principal quantumnumber. Thus, the total energy for such an electron solely depends
on n. We know that for a given value of , we get other three quantum numbers
whose values depend on 7 in the following manner:

[ (orbital quantum number) =0, 1,2, 3, ..., (n—1)

my (magnetic orbital quantum number) =—1, (-1 + 1), (-1 +2), ..., -2,

-1,0,1,2,...,(1-1), 1

. . 1 1
mg (magnetic spin quantum number) = 5> + 5 (for each value ofm)

All n, / and m, are integers or zero (but 7 # 0).

A specific energy level corresponds to a specific value of n2. For different integral
values ofn, we get different discrete energy levels. On the other hand, each discrete
set of the four quantum numbers, i.e. {n, /, m, m,}, designates each energy state.
Let’s have an example to make these concepts clear.

Consider n =2 energy level.

n-value l-value m,-value m-value Energy No. of
states energy states
2 0 O _17 l (290309 lj
2°2 2 5
1
(2,0,(),+ —j
2
2 1 ~1 _171 (2,1,— 1,—lj
272 2
(2,1,— L+ lj
2
0 R (2,1,0,— %j
2°2 6
(2,1,();)
2
1 R (2,1,+ 1, 1)
272 2
(2,1,+ l,lj
2
Forn=2,/=0, 1.
1 1
For/=0, my=0and m,=——,+ —
} 2 2
1 1
For/=1, m=-1,0,+1 and m,= -5 + 5 for each value of m;.
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Thus for n =2 energy level, we get eight distinct energy states, But all these
eight energy states have the same value of the total energy because, the total energy,
as already stated, depends only on the principal quantum number. Such type of
distinct energy states having the same total energy are known as degenerate states
and it is said that the energy level n = 2 is §-fold degenerate. Similarly, we can
show that » =3 energy level is 18-fold degenerate. Note that this type of degenerate
states are direct consequence of the symmetry of the respective system.

Without Electron Spin in Hydrogen Atom

Each atomic orbital is associated with an angular momentum L. It is a vector
operator, and the cigenvalues of its square L? a” L *+ L * + L * are given by:

1V, = K6+ )Y,

The projection of this vector onto an arbitrary direction is quantized. If the
arbitrary direction is called z, the quantization is given by:

L: }.}m — ﬁjﬂ'ﬂ'fil 1

Note that L? and L_commute and have a common eigenstate, which is in
accordance with Helsenberg s uncertainty principle. Since L and L do not
commute with L , it is not possible to find a state that is an elgenstate ofall three
components sunultaneously Hence the values of the x and y components are not
sharp, but are given by a probability function of finite width. The fact that the x and
»y components are not well-determined, implies that the direction of the angular
momentum vector is not well determined either, although its component along the
z-axis is sharp. These relations do not give the total angular momentum ofthe
electron. For that, electron spin must be included. This quantization of angular
momentum closely parallels that proposed by Niels Bohr in 1913, with no
knowledge of wave functions.

1.6 VARIATIONAL METHOD AND ITS
APPLICATION TO GROUND STATE OF
HELIUM ATOM

The variational method is the key approximate method/technique typically used
in quantum mechanics. Compared to perturbation theory, the variational method
can be more robust in situations where it is hard to determine a good unperturbed
Hamiltonian, i.e., one which makes the perturbation small but is still solvable.
On the other hand, in cases where there is a good unperturbed Hamiltonian,
perturbation theory can be more efficient than the variational method.

The variational principle is a scientific principle used within the calculus of
variations, which develops general methods for finding functions which extremize
the value of quantities that depend upon those functions. Any physical law which
can be expressed as a variational principle describes a self-adjoint operator.



These expressions are also called Hermitian. Such an expression describes an
invariant under a Hermitian transformation.

In quantum mechanics, the variational method is one way of finding
approximations to the lowest energy eigenstate or ground state, and some
excited states. This allows calculating approximate wavefunctions, such as
molecular orbitals. The basis for this method is the variational principle. The
method consists of choosing a ‘trial wavefunction” depending on one or more
parameters, and finding the values of these parameters for which the expectation
value of the energy is the lowest possible. The wavefunction obtained by fixing
the parameters to such values is then an approximation to the ground state
wavefunction, and the expectation value of the energy in that state is an upper
bound to the ground state energy. The variational principle states that if we
simply guess the wave function, the expectation value of the Hamiltonian in that
wave function will be greater than the true ground state energy.

Basically the ‘Trial Wavefunction’ for the problem consists of some
adjustable parameters called termed as the ‘variational parameters’. These
parameters are adjusted until the energy of the trial wavefunction is minimized.
The resulting trial wavefunction and its corresponding energy are variational
method approximations to the exact wavefunction and energy.

Suppose we are given a Hilbert space and a Hermitian operator over it
called the Hamiltonian, H. Ignoring complications about continuous spectra,
consider the discrete spectrum of H and the corresponding eigenspaces of each
eigenvalue »:

(W | Wag) = O,

Where rf,-_ j 1s the Kronecker delta,

5. =10 ifi # 4,
YOl1 ifi=g.

And the Hamiltonian is related to » through the typical eigenvalue relation,

H ) = Alpy)

Physical states are normalized, meaning that their norm is equal to 1.
Once again ignoring complications involved with a continuous spectrum of H,
suppose it is bounded from below and that its greatest lower bound is E.
Suppose also that we know the corresponding state [E€’. The expectation value
of H is then,

(WIH 9= D (o) (o [Hly,) (8, [¥)
Ay Az =Bpec( )
g f 2 s v 12
= > A 9= Y Eliun |9 =B
A=Bpec| H) AcSpec| H)
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Evidently, in order to vary over all possible states with norm 1 trying to
minimize the expectation value of H, the lowest value would be £ and the
corresponding state would be an eigenstate of £ . Varying over the entire
Hilbert space is usually too complicated for physical calculations, and a subspace
of the entire Hilbert space is chosen, parametrized by some (real) differentiable
parameters + (i = 1, 2, ..., N). The choice of the subspace is called the ansatz.
Some choices of ansatzes lead to better approximations than others, therefore
the choice of ansatz is important.

Assume that there is some overlap between the ansatz and the ground
state (otherwise, it is a bad ansatz). We still wish to normalize the ansatz, so we
have the constraints,

(W(a) | ¥(a)) =1

And to minimize,

ela) = (o) | H|t(ex))

If v (o) is expressed as a linear combination of other functions (o, being
the coefficients), as in the Ritz method, there is only one minimum and the
problem is straightforward.

Although generally limited to calculations of the ground state energy, this
method can be applied in certain cases to calculations of excited states as well.
If the ground state wavefunction is known, either by the method of variation or
by direct calculation, a subset of the Hilbert space can be chosen which is
orthogonal to the ground state wavefunction.

|tr"lJ:' = |'*T'IIJH=.5:I: i:' e 'i"r_-'ﬁgs | 1.l'l‘rt:-!si’r -l: |"!|L'I-’L_~;r ::'
The resulting minimum is usually not as accurate as for the ground state,
as any difference between the true ground state and g results in a lower

excited energy. This defect is worsened with each higher excited state.

In another formulation,

Ehr,m:md E ’.;{,'5| Hlfﬂl}n

This holds for any trial Z since, by definition, the ground state wavefunction
has the lowest energy, and any trial wavefunction will have energy greater than
or equal to it.

Proof: ¢ can be expanded as a linear combination of the actual
eigenfunctions of the Hamiltonian (which we assume to be normalized and
orthogonal):

tﬁ = E r:il'l 1."“’!?1
I

Then, to find the expectation value of the Hamiltonian,
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Now, the ground state energy is the lowest energy possible, ie., £, = E,.

Therefore, if the guessed wave function Z is normalized:

(B H|p) = By Y |eal* = B,

n
For a Hamiltonian A that describes the studied system and any normalizable
function y with arguments appropriate for the unknown wave function of the
system, we define the functional,

eM=—gmw

The variational principle states that,

e = > Ey, where Eis the lowest energy eigenstate (ground state) of the
Hamiltonian.

e = = [, if and only if y is exactly equal to the wave function of the
ground state of the studied system.

The variational principle formulated above is the basis of the variational

method used in quantum mechanics and quantum chemistry to find
approximations to the ground state.

Another feature in variational principles in quantum mechanics is that
since y and y " can be varied separately (a fact arising due to the complex
nature of the wave function), the quantities can be varied in principle just one
at a time.

Helium Atom Ground State

The helium atom consists of two electrons with mass m and electric charge
—e, around an essentially fixed nucleus of mass M >> m and charge +2e. The
Hamiltonian for it, neglecting the fine structure, is:

R s : e 2 2 1

dreg \'m 3 |ry —raf
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where 5 is the reduced Planck constant, ¢, is the vacuum
permittivity, », (for i = 1, 2) is the distance of the ith electron from the nucleus,
and |r, — r | is the distance between the two electrons.

If the term V= e*/(4me |r, — r|), representing the repulsion between the
two electrons, were excluded, the Hamiltonian would become the sum of
two hydrogen-like atom Hamiltonians with nuclear charge +2e. The ground
state energy would then be 8E, =109 €V, where E| is the Rydberg constant,
and its ground state wavefunction would be the product of two wavefunctions
for the ground state of hydrogen-like atoms:

i — [ry4ra)/a
p(r1,rp) = ——e Z0itrian
may

Where a is the Bohr radius and Z = 2, Helium’s nuclear charge. The
expectation value of the total Hamiltonian // (including the term V) in the state
described by v, will be an upper bound for its ground state energy. <V > is
—SE /2 = 34 €V, so <H>is 8E —5E /2 = -5 eV.

A tighter upper bound can be found by using a better trial wavefunction
with ‘tunable’ parameters. Each electron can be thought to see the nuclear
charge partially ‘shielded’ by the other electron, so we can use a trial wavefunction
equal with an ‘effective’ nuclear charge Z <2: The expectation value of H in this
state 1s:

2
(H) = [—zzz + %z] E,

This is minimal for Z = 27/16 implying shielding reduces the effective
charge to ~1.69. Substituting this value of Z into the expression for H yields
T29E /128 = -77.5 €V, within 2% of the experimental value, —78.975 eV.

Deuteron Ground State

Deuterium or hydrogen-2, symbol D or *H, also known as heavy hydrogen, is
one of two stable isotopes of hydrogen (the other being protium, or hydrogen-
1). The nucleus of deuterium, called a deuteron, contains one proton and one
neutron, whereas the far more common protium has no neutron in the nucleus.
Deuterium has a natural abundance in Earth’s oceans of about one atom in
6420 of hydrogen. Thus deuterium accounts for approximately 0.02% (or, on
a mass basis, 0.03%) of all the naturally occurring hydrogen in the oceans, while
protium accounts for more than 99.98%.

The deuteron has spin +1 ‘triplet state’ and is thus a boson. The NMR
frequency of deuterium is significantly different from common light hydrogen.
Infrared spectroscopy also easily differentiates many deuterated compounds,
due to the large difference in IR absorption frequency seen in the vibration of



a chemical bond containing deuterium, versus light hydrogen. The two stable
isotopes of hydrogen can also be distinguished by using mass spectrometry.

The triplet deuteron nucleon is barely bound at £, = 2.23 MeV, and none

of'the higher energy states are bound. The singlet deuteron is a virtual state, with
a negative binding energy of ~60 keV. There is no such stable particle, but this
virtual particle transiently exists during neutron-proton inelastic scattering,
accounting for the unusually large neutron scattering cross-section of the proton.

Variation method — ground state of helium atom — ground state of Deuteron.

7. What is perturbation theory? When is it applied?
8. State the time independent perturbation theory.
9. Define the stark effect.
10.
11.
12.

Check Your Progress

State the electron spin theory.
Define variational principle.

What does variational principle state?

1.7

ANSWERS TO ‘CHECK YOUR PROGRESS’

. The averages or the expectation values of the quantum mechanical variables

satisfy the same equations of motion as the corresponding classical variables
in the corresponding classical description. Specifically the theorem states
that,

d

/
E<x>:;<px>

d _/ dV(x)
E(px>_< dx >

The Lagrangian function L for the rigid rotator is by definition given by
L=T-V.

Or L=E (-V=0andE=T)

Eigen functions of a Hermitian operator are orthogonal if they have different
eigenvalues. Because of'this theorem, we can identify orthogonal functions

easily without having to integrate or conduct an analysis based on symmetry
or other considerations.

The Recursion formula for the coefficients of the series for X(&). In order
that the polynomial X represents a satisfactory part of the total wavefunction
of'the rotator, the series for X must break off (terminate) after a finite number
ofterms (otherwise it diverges).

. Consider a function d(x) which is zero everywhere except at x = 0 and

20
tends to oo in such a manner that J. o(x) dx =1
o0
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10.

11.

12.

with 3= 0ift=0
= owift=0
This is known as Dirac-delta function.
Heaviside unit function is a corollary of Dirac delta function.

In quantum mechanics, perturbation theory is a set of approximation schemes
directly related to mathematical perturbation for describing a complicated
quantum system in terms of a simpler one. Perturbation theory is applicable
ifthe problem at hand cannot be solved exactly, but can be formulated by
adding a ‘small’ term to the mathematical description of the exactly solvable
problem. For example, by adding a perturbative electric potential to the
quantum mechanical model of the hydrogen atom, tiny shifts in the spectral
lines of hydrogen caused by the presence of an electric field (the Stark
effect) can be calculated.

Time independent perturbation theory is one of two categories of perturbation
theory, the other being time dependent perturbation. In time independent
perturbation theory the perturbation Hamiltonian is static, i.e., possesses
no time dependence.

. The Stark effect for the n = 2 states of hydrogen requires the use of

degenerate state perturbation theory since there are four states with (nearly)
the same energies. In the first calculation, we will not consider the hydrogen
fine structure and assume that the four states are exactly degenerate, each

with unperturbed energy of £. Thatis Hopoem = Eodoem, -

The degenerate states are $200, $211, $210 and p21(-1).

The electron spin theory describes the electron as a quantum particle instead
of the simple sphere as in the classical theory. The theory says that the
electron spin direction and its influence on certain properties like the magnetic
properties of the atom.

The variational principle is a scientific principle used within the calculus
of variations, which develops general methods for finding functions which
extremize the value of quantities that depend upon those functions. Any
physical law which can be expressed as a variational principle describes
a self-adjoint operator. These expressions are also called Hermitian.
Such an expression describes an invariant under a Hermitian
transformation.

The variational principle states that if we simply guess the wave function,
the expectation value of the Hamiltonian in that wave function will be
greater than the true ground state energy.



1.8 SUMMARY

Consider a particle of mass m moving along the x-axis under the action of
a force-field described by the potential energy V(x) for the particle.

We observe that ¢ does not appear explicitly in the Lagrangian function and
hance ¢ is a cyclic or ignorable coordinate.

The Recursion formula for the coefficients of the series for X(&). In order
that the polynomial X represents a satisfactory part of the total wavefunction
ofthe rotator, the series for X' must break off (terminate) after a finite number
ofterms (otherwise it diverges).

The expressions produced by perturbation theory are not exact, but they
can lead to accurate results as long as the expansion parameter, say a, is
very small. Typically, the results are expressed in terms of finite power series
in a that seem to converge to the exact values when summed to higher
order.

There exist ways to convert them into convergent series, which can be
evaluated for large expansion parameters, most efficiently by the variational
method.

Time independent perturbation theory is one of two categories of perturbation
theory, the other being time dependent perturbation. In time independent
perturbation theory the perturbation Hamiltonian is static, i.e., possesses no
time dependence.

The time independent perturbation theory was presented by Erwin
Schrodinger ina 1926 paper, shortly after he produced his theories in wave
mechanics.

Consider an unperturbed Hamiltonian, HO, which is also assumed to have
no time dependence. It has known energy levels and eigenstates, arising
from the time independent Schrédinger equation.

Ifthe states are not exactly degenerate, we have to leave in the diagonal
terms of H . Assume that the energies of the two (mixed) states
are Ffy 4+ A, where A comes from some other perturbation, like the
hydrogen fine structure. The ¢211 and $21 (—1) are still not mixed by the
electric field.

A specific energy level corresponds to a specific value of . For different
integral values of nz, we get different discrete energy levels. On the other hand,
each discrete set of the four quantumnumbers, i.e. {n, [, m;, m,}, designates
each energy state. Let’s have an example to make these concepts clear.

Such type of distinct energy states having the same total energy are known
as degenerate states and it is said that the energy level n = 2 is §-fold

Time — Independent
Perturbation Theory and
Variational Method

NOTES

Self - Learning
Material 37



Time — Independent
Perturbation Theory and
Variational Method

NOTES

Self - Learning
38 Material

degenerate. Similarly, we can show that n = 3 energy level is 18-fold
degenerate.

e The variational method is the key approximate method/technique typically
used in quantum mechanics. Compared to perturbation theory, the
variational method can be more robust in situations where it is hard to
determine a good unperturbed Hamiltonian, i.e., one which makes the
perturbation small but is still solvable.

e Basically the ‘Trial Wavefunction’ for the problem consists of some
adjustable parameters called termed as the ‘variational parameters’. These
parameters are adjusted until the energy of the trial wavefunction is
minimized. The resulting trial wavefunction and its corresponding energy
are variational method approximations to the exact wavefunction and
energy.

e Physical states are normalized, meaning that their norm is equal to 1.
Once again ignoring complications involved with a continuous spectrum
of H, suppose it is bounded from below and that its greatest lower bound
is E.

0

e Although generally limited to calculations of the ground state energy, this
method can be applied in certain cases to calculations of excited states
as well. If the ground state wavefunction is known, either by the method
of variation or by direct calculation, a subset of the Hilbert space can be
chosen which is orthogonal to the ground state wavefunction.

e The resulting minimum is usually not as accurate as for the ground state,

as any difference between the true ground state and g, results in a

lower excited energy. This defect is worsened with each higher excited
state.

e The helium atom consists of two electrons with mass m and electric
charge —e, around an essentially fixed nucleus of mass M >> m and
charge +2e.

e Deuterium or hydrogen-2, symbol D or *H, also known as heavy
hydrogen, is one of two stable isotopes of hydrogen (the other being
protium, or hydrogen-1). The nucleus of deuterium, called a deuteron,
contains one proton and one neutron, whereas the far more common
protium has no neutron in the nucleus.

1.9

KEY TERMS

¢ Perturbation theory: It is a set of approximation schemes directly related
to mathematical perturbation for describing a complicated quantum system
in terms of a simpler one.



Time independent perturbation: The theory is one of two categories of
perturbation theory, the other being time dependent perturbation. In time
independent perturbation theory the perturbation Hamiltonian is static, i.e.,
possesses no time dependence.

Electron spin theory: The electron spin theory describes the electron as a
quantum particle instead of the simple sphere as in the classical theory. The
theory says that the electron spin direction and its influence on certain
properties like the magnetic properties of the atom.

Variational principle: It is a scientific principle used within the calculus of
variations, which develops general methods for finding functions which
extremize the value of quantities that depend upon those functions.

Hermitian: Any physical law which can be expressed as a variational
principle describes a self-adjoint operator are also called Hermitian.

Variational parameters: The trial wavefunction for the problem consists
of'some adjustable parameters called termed as the variational parameters.

1.10 SELF-ASSESSMENT QUESTIONS AND

EXERCISES

Short-Answer Questions

1.

U

What dose Ehrenfest theorem state?

Give the orthogonality property of eigen function.

What do you understand by Dirac delta function?

Give the application of Perturbation theory related to helium atom.
What is Zeeman effect?

What is perturbation theory of first order?

Define the stark effect in hydrogen atom.

Long-Answer Questions

1.

Discribe the expansion of wave function in eigen function.

2. Analyse the orthogonality, normality and closure properties of eigen function.
3.
4. Discuss in detail about the time-independent Perturbation theory by giving

Discuss the significance of perturbation theory in quantum mechanics.

its applications to ground state of helium and Zeeman effect.

Discuss the time independent perturbation theory by giving appropriate
examples.

Discuss the variational method by giving appropriate examples.

Explain the equations involved in expressing and evaluating the ground state.

. Discuss the ground state of helium atom and deuteron.
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2.0 INTRODUCTION

In quantum chemistry and molecular physics, the Born-Oppenheimer (BO)
approximation is the best known mathematical approximation in molecular dynamics.
Specifically, it is the assumption that the wave functions of atomic nuclei and electrons
in amolecule can be treated separately, based on the fact that the nuclei are much
heavier than the electrons. The Heitler-London (HL) theory for H2 is the simplest
example of Valence Bond (VB) theory applied to the covalent part of the wave
function for H2.

The WKB approximation or WKB (Wentzel-Kramers-Brillouin) method
is amethod for finding approximate solutions to linear differential equations with
spatially varying coefficients. It is typically used for a semi-classical calculation in
quantum mechanics in which the wave function is recast as an exponential function,
semi-classically expanded, and then either the amplitude or the phase is taken to
be changing slowly.
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In quantum physics, Fermi's golden rule is a formula that describes the
transition rate (the probability of a transition per unit time) from one energy
eigenstate of'a quantum systemto a group of energy eigenstates ina continuum, as
aresult of a weak perturbation.

Absorption is when electrons in a substance take up energy from
electromagnetic radiation or types of light. Emission is when a substance gives off
electromagnetic radiation. The electromagnetic radiation in both cases has some
type of energy with a specific wavelength.

The Einstein A coefficients are related to the rate of spontaneous emission
oflight, and the Einstein B coefficients are related to the absorption and stimulated
emission of light.

Exchange degeneracy in physical systems consisting of several particles
describes the process in which the system changes the state by exchanging space
between two particles, which is degenerate with the original state, i.e., has the
same energy.

In quantum mechanics, the physical state of an electron is described by a
wave function. According to the standard probability interpretation, the wave
function ofan electron is probability amplitude, and its modulus square gives the
probability density of finding the electron in a certain position in space. The Pauli
exclusion principle is the quantum mechanical principle which states that two or
more identical fermions (particles with half-integer spin) cannot occupy the same
quantum state within a quantum system simultaneously.

In this unit, you will study about the Born-Oppenheimer (BO) approximation
OF LCAO, Heitler-London (HL) theory for hydrogen atom, WKB approximation
and its applications to alpha decay, transition probability and Fermi's golden rule,
absorption and emission of radiation, Einstein A and B coefficients, exchange
degeneracy for indistinguishable particle, wave function for many electron systems,
Pauli exclusion principle.

2.1 OBJECTIVES

After going through this unit, you will be able to:
¢ Analyse the Born-Oppenheimer (BO) approximation OF LCAO
e Describe the Heitler-London (HL) theory for hydrogen atom
e State the WKB approximation and its applications to alpha decay
e Elaborate on the transition probability and Fermi's golden rule
¢ Explain in detail about the absorption and emission of radiation
e Discuss the Einstein’s Aand B coefficients
¢ Describe the wave function for many electron systems

e State the Pauli exclusion principle



2.2 BORN-OPPENHEIMER APPROXIMATION
OF LCAO

In quantum chemistry and molecular physics, the Born—Oppenheimer (BO)
approximation is the best known mathematical approximation in molecular
dynamics. Specifically, it is the assumption that the wave functions of atomic nuclei
and electrons in a molecule can be treated separately, based on the fact that the
nuclei are much heavier than the electrons. The approach is named after Max
Born and J. Robert Oppenheimer who proposed it in 1927, in the early period of
quantum mechanics.

The approximation is widely used in quantum chemistry to speed up the
computation of molecular wave functions and other properties for large molecules.
There are cases where the assumption of separable motion no longer holds, which
make the approximation lose validity (it is said to ‘Break Down’”), but is then often
used as a starting point for more refined methods.

In molecular spectroscopy, using the BO approximation means considering
molecular energy as a sum of independent terms, for example E_ =E
sibrational " Erotational T Ernuclear spin’ These terms are of different orders of magnitude
and the nuclear spin energy is so small that it is often omitted. The electronic
energiesE | consist ofkinetic energies, inter electronic repulsions, inter nuclear
repulsions, and electron—nuclear attractions, which are the terms typically included
when computing the electronic structure of molecules.
1. When nuclei of two atoms come close to each other, there election cloud
interact and result in the formation of molecular orbitals.

2. Each molecular orbital can be described by a wave function y*, known as
molecular orbital wave function v’ represent the probability density or
election density.

3. Each y’is associated with a definite set of quantum numbers which describes
the shape and energy of the molecular orbital.

4. Each v is associated with a discrete value of energy.

5. The total energy of the molecule is the sum of the energies of the occupied
molecular orbitals.

6. Elections tend to fill in molecular orbitals in similar way as they do in atomic
orbitals by obeying Afbau’s principle, Pauli’s exclusion principle and Hund’s
rule.

7. Each election in a molecular orbital belong to all the nuclei present in the
molecule.

1
8. Eachelection in as molecular orbital is either having clockwise (Jf Ej or

1
anticlock wise (_Ej spin.
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Formation of Molecular orbitals in H, molecule by LCAO method/
Formation of bonding and anti bonding molecular orbitals by LCAO
method

According to linear combination of atomic orbitals (LCAO) method, there are
two ways of linear combination of atomic orbitals or their wave functions forming
bonding and anti-bonding molecular orbitals. Suppose that the wave functions of
two atomic orbitals on two atoms Aand B of AB type molecule (hetero-diatomic

molecule) are represented as v, and v, respectively. There are two different ways
in which y, and vy, can combine linearly with each other. These two different
ways are discussed below:

(a) Additive overlap (also called positive overlap of ++ overlap) and
formation of bonding molecular orbital: In this type of linear combination,
the positive lobe (i.e., the lobe having +sign) of v, overlaps with the positive
love of v, and a molecular orbital is formed. This molecular orbital has
lower energy than each of the two isolated atomic orbital wave functions
viz. vy, and v, (decrease in energy) and hence the formation of this molecular

orbital produces attraction between the two nuclei of A and B atoms. This
attraction results in the establishment ofa stable chemical bond between A
and B. Since this molecular orbital leads to the formation of a stable bond,

it is called bonding molecular orbital which is represented as y°.

(b) Subtractive overlap (also called negative or + - overlap) and
formation of anti-bonding molecular orbital: In this type of linear
combination the positive lobe of v, overlaps with the negative lobe (i.e.,
the lobe having-sign) of y, and amolecular orbital is formed. This molecular
orbital has higher energy than each of the two atomic orbital wave functions
(v, and v, ) (increase in energy) and hence the formation of'this molecular

orbital produces repulsion between the two nuclei of A and B. This repulsion
opposes the formation of any bond between the nuclei. Since this molecular
orbital opposes the formation of any bond between the nuclei, it is called

anti-bonding molecular orbital which is represented as " .

Here, it should be understood clearly than + and — sings ofthe lobes are
only geometric signs of the atomic orbital wave function and should not be
confused with positive (+) and negative (-) charges.

Above discussion shows that the formation of bonding molecular orbital
wave function (\ub ) and anti-bonding molecular orbital wave function (\u* )
by the linear combination of two atomic orbital wave functions viz., y, and
v, canbe represented by the following equations:

v’ =+y, +vy, (++overlap) .21
v =+vy, -y, (+-overlap) ....(2.2)

When we show the contributions made by v, and y, in y* and v’



molecular orbitals, Equations (2.1) and (2.2) are written as:

b 1
V=g (Wa +Ws) ...(2.3)
* 1
V=7 (Wa —Ws) ...(2.4)

Obviously the sum of'the squares of the coefficients of atomic orbital wave
functions v, and vy, appearing in the bonding molecular orbital wave

1Y (1Y
function is equal to unity{[ﬁj + (ﬁj } :
Similarly this sum for anti-bonding molecular orbital is also equal to unity.

The relative order of the energy ofvy, ,y,,y" and " can be shown
pictorially in Figure 2.1.

$

x|
v :fz(‘v,\ - V¥p)

7] v

ergy increasing

b_ 1
V=5 (Wa +¥p)

——Ene

Fig. 2.1 Relative Order of the Energy of w, , Wy, y" and y" .

Probability Density Variation with Internuclear Distance in H, Molecule
Consider two H-atoms H, and H, combine to form H, molecule let the wave
function ofthese atoms may be represented by v, and v, . The positive overlap

of v, and v, will give bonding molecular orbital v}, and the negative overlap of
v, and v, will produce anti-bonding molecular orbital, vy, thus
Wi, =W, Wy, (2.5)
Vi, =Wy, — Vg, ...(2.6)
On squaring equation (2.5), we get:
(v, ) =i, + v +2v, vy, - (2.7)
In equation (2.7) (\y;: )2 denotes electron probability density or electron

charge density in the bonding molecular orbital (v}, ) while 7, and v}, indicate
the electron charge density in the isolated (i.e., uncombined) atomic orbitals viz.

vy, and vy, . From equation (2.7), it is clear that (y;, )2 is greater than

(\vi,A + \vi,B ) by an amount equal to 2wy, v, . This means that the electron charge
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density in the bonding molecular orbital (v}, ) is greater by 2v,,, v, than the sum
of'the electron charge densities of the isolated atomic orbitals, v, and vy, . The

excess or increase in electron charge density (y2y,, v, ) occurs in the region

lying in between the two positively charged nuclei. The increase in electron charge
density between the two positive nuclei shields (i.e., screens) the two nuclei from
mutual repulsion, i.e., due to the increase in electron charge density, the two nuclei
are attracted towards each other. Thus the formation of bonding molecular orbital
produces attraction between the two nuclei and hence leads to the establishment
of'a stable chemical bond. The attraction between the nuclei (i.e., the formation of
a stable bond) leads to a decrease in the energy of the bonding molecular orbital
in the event of its being occupied by electrons. In other words, the bonding
molecular orbital has lower energy than each of'the isolated atomic orbitals from
which this molecular orbital is derived.

—p

wh)'

Elegtron charge
# density

— Electron charge
densit;

~

s
H, -
b Hy b M0 Node point
I e

A
Internuclear distancg ————————————

distance
@ )

Fig. 2.2 Inter Nuclear Distance and Electron Density Graph in H, Molecule
At this stage it should be easy to understand since vy, leads to the formation

of a state bond, it is called bonding molecular orbital.

On squaring equation (2.6), we get:

. \2
(vie, ) =wi, + i, — 2w, v, - (28)
In this equation (\y;: )2 represents the electron charge density in the anti-

bonding molecular orbital (v}, ). As is evident from Equation (2.8), (v, )2 is
smaller than (\vi,A + wi,B) by an amount equal to 2y, v, . This means that

electron charge density (\y;: )2 the anti-bonding molecular orbital (\u;z ) is smaller
by 2y, vy, than the sum of the electron charge densities of the uncombined

atomic orbitals, vy, and vy, . The decrease in the electron charge density

(= 29y Wy, ) occurs in the region lying in between the two positively charged

nuclei. The decrease in electron charge density between the nuclei means that
there is no shielding of the nuclei, i.e., due to the decrease in electron charge
density between the nuclei, these are repelled from each other. Thus the formation
of anti-bonding molecular orbital produces repulsion between the two nuclei and
hence opposes the formation of any bond between the nuclei. The repulsion



between the nuclei leads to an increase in the energy ofthe anti-bonding molecular
orbital in the event of its being occupied by electrons. In other words, the anti-
bonding molecular orbital has higher energy than each ofisolated atomic orbitals

from which this molecular orbital is derived (Refer Figure 2.2). Since vy, molecular

orbital opposes the formation of any bond, it is called anti-bonding molecular
orbital.

2.3 HEITLER-LONDON THEORY OF
HYDROGEN MOLECULE

Walter Heitlor and Fritz London proposed the theory called Heitler-London theory
in 1927 and it talks about exchange of electron in orbital of H, molecule and it was
the first quantum-mechanical system which explains chemical bonding hydrogen
molecule. Understand the Heitler-London theory; first we need to know about
hydrogen molecule bonding as well as interaction between their electron and nuclei.

The Hydrogen Molecule

When two atoms brought together and form a covalent bond then their combine
energy will be lower than the sum of individual hydrogen atom it shows that when
two hydrogen atoms form a bonding then their dynamical system changed

Ahydrogen molecule H, has a simplest electron bond pair, and it has a
covalent bond. The hydrogen molecule is a four-particle system, two electron and
two nucleons.

We have drowned hydrogen molecule in coordinate’s term as shown in
Figure (2.3):

1 Bp)

A Fis B

Fig. 2.3 Hydrogen Molecule in Term of Coordinates
The Hamiltonian four-particle Hydrogen molecule system is given by

ﬁ:—lvf—lvg— ! VeV —
2 2 2M, 2M, ha The hhay Hp Ny T

Since the masses of nuclei are much greater than compare with electron
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1.e., mass of Proton= 1836 AMU
and mass ofelectron=1 AMU.

Therefore, kinetic energy of nucleon will be negligibly small compared to
those electrons.

Using Born-Oppenheimer approximation, we can write Schrodinger wave
equation for electron as

A

Heleal// (I/i ’ FZ’R) = Eelecn (R)l// (I/'I’FZ’R)
Where, Hamiltonian is

A 1
2
elec = __vl A
‘ 2 2 7 r 7 r r v
14 1B 24 2B 12 AB

The separation 7, i.e., the separation between nucleus occurs as parameter.

Suppose r,, asR. so that

Y =2V 2
2 2 hu ts Ta By h R
The internuclear separation R occurs as parameter in the Schrodinger
equation therefore, in concept, Schrédinger equation must be solved for every
value of R. The solution of Schrédinger equation for the hydrogen molecule is
shown in the following figure:

U(r)

Repulsive state.|

@) ~ Bound state r —-»
D

Attractive state.
R

€

Fig. 2.4. Potential Energy Curve for Diatomic Molecule

For the bound state, the energy minima occur at R = R, that is called
equilibrium inter-nuclear distance. The potential depth at internuclear distance R ,
that is D,, called binding energy or dissociation energy. For the hydrogen
molecule /,, the value of dissociation energy D, =4.52 ¢V and the value of
internuclear equilibriumdistance R, = 0.074 nm.

When there is a heavier nucleus then the massive nuclei willmove slowly in
comparison to the electron. Therefore, if we see from nuclei point of view, that the
electron will adjust its position instantaneously to any changes in the internuclear
distance.



Therefore, now we can conclude that the electronic energy will behave as
potential energy for the motion of nuclei in the Schrédinger equation.

Thus,
1

T O =B )

Where, V(r)=E,...(r), w(r,r;) is the wavefunction of nucleus,
M , is mass of nucleus ofhydrogen atomA and M , is the mass of the nuclease of
hydrogen atom B.

The hydrogen molecule is a homogeneous molecule, and it must me neutral
therefore, we can take a condition when the nuclei of hydrogen atom are far apart
and then the attraction between two hydrogen atoms will be negligibly. Therefore,
the system can be taken as two approximate hydrogen atom independent system,
shown in following figure.

1 2

B

Fig.2.5 Atom at a Far Apart-Attractive Potential will be Negligible and it behave like
Two Independent Electron-Nuclei System

The potential energy of the hydrogen atom A would be proportional to
e e
T and the potential energy of atom B is proportionalto — PR Therefore, the
14 1B

total potential energy of hydrogen molecule system is.

2 2
e e

V(l’i,l"z)Z————'

ha TNs

The wave function of ground state of hydrogen atom would be product of
wave function of s-orbital of hydrogen atom A and wave function of s-orbital of

hydrogen atom B. If wave function for the ground state energy of atomAis Ls,, (1)

and the wave function for ground state energy of atom B is 1s, (r2 ) . Therefore,

the total wave function is given by

l//(ri7r2):1SA (7”1)'1*;3 (’3)

Approximation Methods
and Time-Dependent
Perturbation Theo

NOTES

Self - Learning
Material 49



Approximation Methods
and Time-Dependent
Perturbation Theo

NOTES

Self - Learning
50 Material

Substitute this wave function in Schrodinger wave equation and it would
give the same behavior as attractive potential state but not the same behavior. The

wave function y (r1 ) =1s, (rl )-1s, (r2 ) behavior is shown in figure with dotted
blue line.

Ulr) .

i | Repulsive No exchange of particle.
"'.I \  state win,n)=1s (r)1s;(r)

o [T r
\ /r BnundstF

\i Aftractive state

R

4

Fig.2.6 Behaviour of Diatomic Molecule Wavefunction without Exchange of Electrons

2.3.1 Heitler-London Theory Treatment for Hydrogen
Molecule

The quantum-mechanical treatment for hydrogen atom was first given by Hietlor-
London theory in the 1927. Heitlor-London theory came into picture after one
year of Schrodinger equation. It shows how to use Schrodinger equation to explain
the interactions between atom and particle quantum mechanically. According to
Heitlor-London theory, since the hydrogen molecule is of combination of two
hydrogen atoms A and B, the wave function of its electronic state will be
approximately.

W(rlnrz)zlsA (’i)'lSB (rz)

And the treatment of hydrogen molecule H, by Heitlor-London theory
allow nuclei A and B to share the electrons 1 and 2, i.e., the electron exchange

between nuclei A and B. Now, we should consider both 1s (r1 ) Is, (rz) and

ls, (r2 )-Ls, (r1 ). Therefore, wave function will become.
1
‘V(’”l:”z) zﬁ[l‘% (’”1)'1‘93 (r2)+1SA (Vz)'lss (”1)]

Where, the factor ﬁ 1s normalization constant.



Repulsive potential

No exchange

Bound state

Hitler-London treatment of H,

Experiment (spectroscopy)
R, =0.7414°

Fig.2.7. Behavior of Diatomic Molecule with Heitlor-London Treatment

overlap integral.

Electron exchange between nuclei will occur only on one condition orbital
overlap. We can calculate orbital overlap by the following expression. It is called

S= JWAWBdT

Where, and is called valence orbital wave function for nuclei A and B
respectively.

For the exchange of particle or exchange ofelectron between hydrogen
atom S =(.

Internuclear distance.

Overlapping
Atom
Particle

separate atom
L

distance.

Overlap (S)

0.5

1.0

3.0
r{A4")

Fig.2.8. Position of Nuclei when it would be Overlapping, when it is at Inter-Nuclear
Distance and when they are not Bond Together
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2.4 WKB APPROXIMATION AND ITS
APPLICATION TO ALPHA DECAY

In mathematical physics, the WKB approximation or WKB method is a method for
finding approximate solutions to linear differential equations with spatially varying
coefficients. It is typically used for a semi-classical calculation in quantum mechanics
in which the wavefunction is recast as an exponential function, semi-classically
expanded, and then either the amplitude or the phase is taken to be changing slowly.

The abbreviation WKB approximation refers to Wentzel-Kramers—Brillouin,
i.e., the WKB approximation method is named after physicists Gregor Wentzel,
Hendrik Anthony Kramers, and Léon Brillouin, who all developed it in 1926. In
1923, mathematician Harold Jeffreys had developed a general method of
approximating solutions to linear, second order differential equations, a class that
includes the Schrodinger equation. Early texts in quantum mechanics contain any
number of combinations of their initials, including WBK, BWK, WKBJ, JIWKB
and BWKJ.

The WKB approximation is specifically used for obtaining an approximate
solution to a time independent one-dimensional differential equation, typically the
Schrddinger equation. Its principal applications include the calculations of bound
state energies and tunnelling rates through barriers.

WKB Method

The WKB theory is a method typically used for approximating the solution ofa
differential equation whose highest derivative is multiplied by a small parameter
‘¢’. The method of approximation is as follows.

For a differential equation,

d‘ny du-»ly
dzn T G(T) dzxn—1

Assume that following is the solution of the form of an asymptotic series
expansion in the limit 6 — 0,

y(z) ~ exp |:% Z 0" S, (.r)]

d.
£ + e+ k(;r.}d—i + m(z)y = 0,

n=(0

The asymptotic scaling of d in terms of € will be determined by the equation,
€ = (i d" SL)- | L i Syl =Q(x).
6° n=0 é n=0
WKB theory is a special case of multiple scale analysis.
Precision or Exactness of the Asymptotic Series

The asymptotic series for y(x) is typically considered as a divergent series, whose
general term 6" S (x) starts to increase after a certain value n=n__ . Therefore,
the smallest error attained by the WKB method is the order of the last included
term.



For the equation,

, d*y
€ — = Qlz
T~ 2@y
With O(x) <0 an analytic function, the value n__and the magnitude of the last
term can be estimated as follows:

Nmax = 2¢ !

(| 27
5"71|.«‘n S’"m“ (mll) o~ l|| exp[_nm;\xl_\
\u Mmax

Where x, is the point at which y(x ) needs to be evaluated and x, is the
(complex) turning point where Q(x,) = 0, closest to x = x,.

The number n__ can be interpreted as the number of oscillations between
x,and the closest turning point.

If €' O(x) is a slowly changing function,
dQ

€|l—| <& ( 2,
dzx 2

The number n__ will be large, and the minimum error of the asymptotic
series will be exponentially small.

Derivation of the Schriodinger Equation

Solving the Schrodinger equation is one of the essential problems in quantum
mechanics. Since a non-linear second order Ordinary Differential Equation (ODE)
has, in general, no analytic solution, hence an approximation method is typically
applied. Instead of starting with a simplified potential and adding small terms,
which leads to perturbation theory, the WKB approximation makes an assumption
ofaslowly varying potential.

To derive the approximation, consider the Schrodinger equation,

121 .
Y k(@) =0 (2.9
da?
With the abbreviations,
k(z) = (éi;(g _ v if E> V()
. L 2‘”1 - w172 . . e
k(r) = 1{?(? — E))Y* =ik(z) if E<V(x) ..(2.10)

If k(x) = Constant is the function has the solution W(x) = ¢** . If k is no longer

constant but varies at a slow rate, then reasonably we can use the solution, with x
dependent £,

e [ k() L2.11)

Substituting it in to the Schrodinger equation gives us,
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d*y o2 P 2y i [ k(t)dt 1 +i [ k(t)dt 2.12
— + k()Y = (== + k°)e" "IT = ik (z) e T P -(2.12)
dz? ‘ “dz? ‘ '
Thus the solutions in Equation (2.11) solves the equation only when £'(x) is equal
to 0. However, Equation (2.12) suggests that Equation (2.11) remains a good

approximation, if k' is negligible, or, more precisely, if
K| < K ..(2.13)

This is the condition used in the derivation of the WKB approximation.

Application to Bound States

In quantum physics, a bound state is a special quantum state ofa particle subject
to a potential such that the particle has a tendency to remain localised in one or
more regions of space. The potential may be external or it may be the result of the
presence of another particle; in the latter case, one can equivalently define a bound
state as a state representing two or more particles whose interaction energy exceeds
the total energy of each separate particle. One consequence is that, given a potential
vanishing at infinity, negative-energy states must be bound. In general, the energy
spectrum ofthe set of bound states is discrete, unlike free particles, which have a
continuous spectrum.

In a bound state problem with potential V" (x), for a given energy E, we can
divide space into classically allowed regions, for which £ > V' (x), and classically
forbidden regions for which E < V' (x). Assume that there are only three regions in
total, classically forbidden for x <a and x > b, and classically allowed
fora<x<b.

In the classically allowed region a < x < b the wave function will be oscillating
and we can write it either as a superposition of right- and left-moving complex
exponentials or as,

W(x) = A k(x) coijk(x2 )dx* + ¢

For the particular case ofa well with infinite sides the solution must vanish at
the boundaries, so (taking the lower limit of integration as a for definitness; any
other choice just shifts ¢) ¢ = (n" + 1 2)n andfabk(x’)dx’ +¢=m"+12)min
other Words_[abk(x’)dx’ = (n + 1)m, with integer n > 0. Evidently for
constant k this gives k = nn/(b — a), which is exact.

For amore general potential, outside the classically allowed region we will have
decaying exponentials. If we approximate the potential as linear we can solve the
Schrodinger equation exactly (in terms of Airy functions). For WKB solutions in
the locality of x = a and x = b gives the surprisingly simple result that inside the
well, y(x) = A k(x) cos [axk(x)dx' —n/4 and y(x) = A’ k(x) cos [ bxk(x")dx'

+ 1/4 which can only be satisfied if A’ =+ A andjabk(x’ )dx' =(n+12)m.
This latter is the quantisation condition for a finite well; it is dilierent from the
infinite well because the solution can leak into the forbidden region. For a semi-
infinite well, the condition is that the integral equal (z + 3 4)r. This is the appropriate

form for the 1 = 0 solutions of a spherically symmetric well.



2.4.1 Applications to Alpha Decay

The WKB approximation can be used to calculate the bound state energy levels
of a one-dimensional potential well. To study the penetration of a potential barrier,
potential wells with several turning points. We will study with deep detail the alpha
decay, we will find the energy values of the alpha particle in different Uranium
isotopes. We will assume that the alpha particle is confined by a Coulomb barrier
in a potential well of radius R. We will represent the potential of the strong nuclear
binding as a simple potential well.

—Va, ifr< R
f [y 27 o2
Vir) 1 2Ze* . o . (2.14)

For simplicity we assume we have s-waves and that we can write y (r) =1/
ru (r), where the wave function is:

sinK'r, fr<R
I r ¥
. Aelrrs)de 4 e~ "f”"’“] L fR<r<h
u(r)=N \'flﬁf (r) ..2.15)
——Cexp i [, kq (z) dz] if r > b,

where K = -.,..-"21:! (E + V).

Figure 2.9 shown the four energy potentials are plotted versus the Uranium
nuclear radius: Coulombic, Wood-Saxon, total potential, and WKB approximation
as in Equation (2.14).

Potentials
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Fig. 2.9 Four Energy Potentials are Plotted Versus the Uranium Nuclear Radius
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In Figure (2.9) a constant energy of 0 < E <V__ will intersect the
approximation potential twice, thus creating three regions. Now we study the r =
b: So ifwe are inregion I1, R 6 r 6 b we will use matching relations at the formulas
described for when we are at the left of a classically allowed region and s will be
negative. Notice that

b r T
/ Kf () dzx + [ ke (z) do = / Kf (z) dz. (2.16)
JR Jb R

Ifwe do the following changes of variables

b
oy = /R kf(z)dz A'=Be? B =Ae", (2.17)

The WKB will then be:

[A’e.f:' wp(@)dz 4 ple— 7 NJ(I}dr] 2.18)

1

And being the solution of u, (s) =adi(*s) + bBi(*s), we have:

14 2 —2 a9
upw g ls) = A" [(—s) L exp 3 (—s ]“2 + B —'s,'l e exp 5 [—#}'i’ ‘)

. 1 g ok 3 N
ity [8) = m [% exp (T {—.‘i]'h') + b exp (E [—.‘i‘!a’g)] ;

Thus a=2VnB’ and b=\7A’. Now on the other side of point b, in region
111, thus s > 0:

. /2 R . P 1 |
—1a + b) i A 12/ 35" + |::m. +j}}(.~-nr, lp—i2/3s 1

tup (8) = ——— )‘/_“ : [
9

UWKB = =7 :i'-.p i {a‘ '] :
(2.19)
Thus we have that ia+ b5 =0 and b = C Vre ™*, a =iCVre ™. Therefore,
A = Ce™ /4 N AeY = Ee‘"‘“ A B,
o = —e .
2B' = je—i7/4 Be—" =2(:'e_‘“f4 2
(2.20)

By continuity of the wave function and its derivative atr = R:

A+ B
sinkK R = .
Ry A+ B K
"-’ = tanK R = ﬁ— (2.21)
cosKR = ‘: ~(A-B) o



By substitution in Equation (2.20) we have

I_x + tanK R = e (tanKR I—k) (2.22)

Kg Ka

The right-hand side of the last equation is extremely small. Furthermore, the
first term of the left-hand side can be neglected since for high Coulomb barriers
and lowlying states K <<«_(R). The real part of the eigenvalue will almost be the
same as in the case ofan infinite square well:

tanKEB~0=KR=nm ne€e NAndbythe definition of K we find:

B _ inmt\?% 1 v
= R 5m 0- (2.23)

Notice that the constant well depth V has an electrostatic component and
a strong force component.

2.5 TIME-DEPENDENT PERTURBATION
THEORY AND FERMI’S GOLDEN RULE

In quantum mechanics, perturbation theory is a set of approximation schemes
directly related to mathematical perturbation for describing a complicated quantum
system in terms of'a simpler one. The basic notion is to use a simple system for
which a mathematical solution is known, and then adding an additional ‘Perturbing’
Hamiltonian representing a weak disturbance to the system. If the disturbance is
not too large, then the various physical quantities associated with the perturbed
system, for example its energy levels and eigenstates, can be expressed as
‘Corrections’ to those of the simple system. These corrections, being small
compared to the size of the quantities themselves, can be calculated using
approximate methods, such as asymptotic series. The complicated system can
consequently be studied based on the simpler one.

Time dependent perturbation theory, developed by Paul Dirac, typically
explains the effect of a time dependent perturbation V() applied to a time
independent Hamiltonian, /. Since the perturbed Hamiltonian is time dependent,
accordingly are its energy levels and eigenstates. Thus, the goals of time dependent
perturbation theory are slightly different from time independent perturbation theory.
Following are the two significant quantities of the time dependent perturbation:

1. The time dependent expectation value of some observable 4, for a given
initial state.

2. The time dependent amplitudes of those quantum states that are energy
eigenkets (eigenvectors) in the unperturbed system.

General Time Dependent Perturbations

Assume that the unperturbed energy eigenvalue problem is exactly of the
formHD(f)n = En(f)n .
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To this is added a perturbation that depends on time, v(). To solve the time
dependent problems we use the following time dependent Schrédinger equation.

ou(t)
(o +v(©) wit) = i 22D

Then we expand 7 in terms of the eigenfunctions as,

= 3 en(Bpgwe P/ wih (e = (oulu (D).

The time dependent Schrodinger equations is then given as,

i —iEt/R
> (Ho+ V() ci(t)e Etihgy, = hZ dck(t : .
k
ZCk(t)e*iEkt/h (Bp + V() o = Z (macakt( ) +Ekck(t)) it g,

b
ZV(t)ck(t)e*iEkf/ﬁqbk — hzack(t et Bt gy
&

Now dot (¢,| into this equation to get the time dependence of one

coefficient.
Z Vs (e (e Petih - = iﬁwe—iﬂnt/ﬁ
k ot
de(t) 1 (B B
ot = % Vnr(t)cr(t)e

Assuming that at =0, we are in an initial state ¥(t =0) = ¢i andhence

all the other €, areequalto zeroas ¢, = 0p,; -

acn (t) 1 zw zw t
ot - ik Vni(t f+ ; Vik (t)cr (t k
7

Next we calculate the transition rates. Considering that for the first order, all
the ¢, (1) are small in comparison to ¢;(t) ~= 1, therefore the sum can be

neglected.

5..(1)
dC’n (t) ivni(t)eiwnz’f

ot iR
1 t
(1) ) twnit' vy | Nt
0= [ Vit
0
This equation is used to calculate transition probabilities for a general time

dependent perturbation. This can also be used as a basis to calculate the transition

rates for the specific problem of harmonic potentials.
Assuming again that ‘7’ is small enoughhence the €; maynothave changed

much.



Remember that, if there is a large energy difference between the initial and
the final states, then a slowly varying perturbation can average to zero.

Subsequently we can find that the perturbation may require frequency
components that are compatible with w,,; in order to cause transitions.

Ifthe first order term is zero or higher accuracy is required, then the second
order term can be calculated. In second order, first a transition is made to an
intermediate state ¢ and then a transition to ¢,, . We simply put the first
order cg) (t) into the sum.

6Cﬂ(t) 1 Wit (1) Wt
- = (Vm(t)e + 3 Var(t)ey (t)e

ki

t
e, (t 1 o Lo f oo
cat( ) = (Vni(t)ewmt + ZVnk(f)E‘fmnkt-/ eiWiit Vki(t,)dt’)

k#i 9

. o
1 < g0 —_p
iy = ?Z/dtnvnk(t”)ew“"'t /dt’ewht Vi ()

k#i 0

"

t
-1 it iwy it
() = h—gz / At Vi (") ! f dt' e Vi (t)

ki 0

The Golden Rule and its Applications

In quantum physics, Fermi’s golden rule is a formula that describes the transition
rate (probability of transition per unit time) from one energy eigenstate of a quantum
system to a group of energy eigenstates in a continuum, as a result of a weak
perturbation. This transition rate is effectively independent of time (so long as the
strength of the perturbation is independent of time) and is proportional to the
strength of the coupling between the initial and final states of the system, typically
described by the square of the matrix element of the perturbation, along with the
density of states. It is also applicable when the final state is not part of a continuum
if there is some de-coherence in the process, like relaxation of the atoms or like
noise in the perturbation, in which case the density of states is replaced by the
reciprocal of de-coherence bandwidth.

Fermi’s Golden Rule, also referred to as, the Golden Rule of time dependent
perturbation theory, is an equation for calculating transition rates. The result is
obtained by applying the time dependent perturbation theory to a system that
undergoes a transition from an initial state | i) to a final state | f) that is part ofa
continuum of states.

Fermi’s golden rule describes a system which begins in an eigenstate, | i), of
an unperturbed Hamiltonian, £/, and considers the effect ofa perturbing Hamiltonian,
H' applied to the system. If H'is considered time independent, then the system
goes only into those states in the continuum that have the same energy as the initial
state. If H' is oscillating sinusoidally as a function of time, i.e., it is a harmonic
perturbation, with an angular frequency E, then the transition is into states with
energies that differ by ‘E from the energy of the initial state.
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Inboth cases, the transition probability per unit of time from the initial state | i)
to a set of final states| /) is essentially constant. It is given, to first order
approximation, by,

2 i
Pigy = FHﬂH )" p(Ey)

Where ( f| /' |i)is the matrix element (in bra—ket notation) of the perturbation

H' between the final and initial states and p( E'+ )is the density of states (number of

continuum states in an infinitesimally small energy interval £ + dE at the energy £
of'the final states. This transition probability is also called ‘Decay Probability’ and
is related to the inverse of the mean lifetime. Thus, the probability of finding the

system in state | fy is proportional to —Tist.
The standard way to derive the equation is to start with time dependent

perturbation theory and to take the limit for absorption under the assumption that
the time ofthe measurement is much larger than the time needed for the transition.

Check Your Progress

1. State the Born—Oppenheimer (BO) approximation in quantum mechanics.
2. Define the subtractive orbital.

3. How does the formation of bonding molecular orbital produce attraction
between the two nuclei?

State the Heitler-London theory.

State the WKB approximation.

What is WKB method?

What do you understand the perturbation theory?
Define the time-dependent perturbation theory.

A S B  U

What is Fermi’s golden rule?

2.6 EMISSION AND ABSORPTION OF
RADIATION

Semi-classical physics, or simply semi-classical refers to a theory in which one
part ofa system s described quantum-mechanically whereas the other is treated
classically. For example, external fields will be constant, or when changing will be
classically described. In general, it incorporates a development in powers of
Planck’s constant, resulting in the classical physics of power 0, and the first nontrivial
approximation to the power of (—1). Thus, there is a clear link between the quantum-
mechanical system and the associated semi-classical and classical approximations,
as it is similar in appearance to the transition from physical optics to geometric
optics.

Four examples of a semi-classical approximations include:

e WKB approximation: electrons in classical external electromagnetic fields.



e Semi-classical gravity: quantum field theory within a classical curved
gravitational background (see general relativity).

¢ Quantum chaos: quantization of classical chaotic systems.

¢ Quantum field theory: only Feynman diagrams with at most a single closed
loop are considered, which corresponds to the powers of Planck’s
constant.

The semi-classical radiation theory consists of two elements: the classical
Maxwell equations that is satisfied by the electric ‘E’ and the magnetic ‘B’ fields,
and the ordinary quantum mechanics that is based on the SchrQdinger equation of
a single charged matter particle interacting with the electromagnetic field. The single
particle SchrQdinger quantum mechanics can be modified to take into account
spin or be replaced by the nonrelativistic quantum mechanics of many particles.

The distribution of energy in the spectrum of radiations of a hot body cannot
be explained by applying the classical concepts of physics. Max Planck gave an
explanation to this observation by his ‘Quantum Theory of Radiation’. His
theory states that,

1. The ‘Radiant Energy’ is always in the form of tiny bundles of light called
‘quanta’, i.e., the energy is absorbed or emitted discontinuously.

2. Each quantum has some definite energy ‘£’, which depends upon the
frequency of'the radiations as,

E=hy

Here, E is the energy of each quantum in Joules, y is the frequency of the
radiations ins™, /2 is known as Planck’s constant (a fundamental constant), whose
value is, h = 6.626 x 10 J-s.

Also, E = hcw, where wis known as wave number. w= (1/A) m’".
From these equations, it is evident that y = ¢/A = cw.

The energy emitted or absorbed by a body is a multiple ofa quantum, i.e.,
a body cannot absorb or emit energy in fractions of quantum. This concept is
known as quantization of energy.

‘Absorption’ is the phenomenon when electrons in a substance take up
energy from electromagnetic radiation or types of light. Whereas ‘Emission’ is
the phenomenon when a substance gives off electromagnetic radiation. The
electromagnetic radiation in both cases has some type of energy with a specific
wavelength.

In our world of material, all the objects emit thermal radiation fromits surface
at any temperature. The radiation characteristics depend on the temperature and
properties of the surface. As the surface temperature of the object increases,
wavelength of the radiation goes from infrared to white region.

The thermally agitated accelerating particles emits the radiation and distributed
the energies in continuous manner, as the result continuous spectrum of
electromagnetic radiation emitted by the object. The classical theory of thermal
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radiation was inadequate, when one consider the distribution of wavelengths in
the thermal radiation emitted by a blackbody.

Fig. 2.10 Absorption of radiations in a blackbody

A blackbody is defined as it absorbs all the thermal radiations, whatever
may be the wavelength incident on it. It neither reflects nor transmits any radiation,
and appears black.

Anisothermal enclosure behaves same as a blackbody. Let us consider a
blackbody, placed in an isothermal enclosure. In thermal equilibrium, the body
will emit the full radiations independent of the nature ofthe substance. The thermal
radiations in an isothermal enclosure are, therefore, termed as ‘Blackbody
Radiations.”’

2.7 EINSTEIN’S A & B COEFFICIENTS

Let us consider £(v) as the energy density at equilibrium, where v is the frequency
ofphoton.

If N, and N, are the number of atoms in the lower energy state (ground
state) and higher energy state (excited state) respectively, then we can write,

NP, = NB_E®) (2.24)

12
where P . is the probability of absorption proportional to energy density £(v) and
B, is the Einstein’s coefficient of absorption.

Therefore, we can express the energy state of N, as follows:
NP, = N,[A4, + B, E(v)] ..(2.25)

27 21
Where P, is the probability (stimulated) proportional to energy density E(v) with
addition to 4, , 4, is the Einstein’s coefficient of spontaneous and B, is the
Einstein’s coefficient of stimulated emission.

When thermal equilibrium exists, we can say that the total absorption
probability is equal to the total emission probability.



So, from Equations (2.27) and (2.28), we have
NB_E(v) = N4, + B, EW)]
A21 /321

or E() = [Nlj[lizj 1 .(2.26)
N2 B21

According to Einstein’s assumption, coefficient of stimulated absorption and
coefficient of stimulated emission are equal, i.e., B, = B = B (say) and if we
consider 4, = A (say), then the Equation (2.26) reduces to,

A/B

Ev) =N _ .(2.27)

2

A and B in the above equation are called Einstein’s ‘A’ and ‘B’ coefficients.

According to Planck’s radiation law, we know that

8mhv’
By comparing Equations (2.27) and (2.28), we can write,
N,
_ ehv/ KT
N,
A 8zhv’
And — =
B c’

(Ratio of coefficients of spontaneous and stimulated emission, i.e., ratio of
Einstein’s ‘A’and ‘B’ Coefficient)
Where 4 is the Planck’s Constant.
K is the Boltzman’s Constant.
c is the Velocity of Light.

T'is the Temperature in Kelvin.

2.8 EXCHANGE DEGENERACY OF
INDISTINGUISHABLE PARTICLES

The coulomb potential, with the interaction of electron-electron and electron-nucleus
mteraction

2 2

. =~ Ze e
V(rl,rz,lg,...,rz)z—z —— +Z ——
i=1 "”,-—R‘ i>j ’”,-—le

It is invariant under the permutation of any electrons, the Hamiltonian is also
invariant under such permutation. This symmetry also true for the orbital, spin, and
angular momentum of an atom.
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The N particles of any system said to be identical if the various observables

of the system (for example Hamiltonian H angular momenta and so on) are
symmetrical when any two particles are exchanged.

Ifthese observables are not symmetric under particle interchange, then the
particle would be distinguishable.

The Hamiltonian invariance under particle interchanges is not without physical
implications: the eigen value /7 ofare degenerate. The wave function corresponding
to all possible electron permutations order will have the same energy E: Ay = Evy .
This is known as exchange degeneracy.

For more understanding, the degeneracy associated with the system of two

identical particle is equal to 2, since I,U( rz) and y (rz, ) correspond the same

energy E.

The Hamiltonian of system of N particles with the same masses (m = m)

is symmetric with respect to the coordinates of the system.

A N p ~
H(Vp ] )=22— (rl, ol ,..,rj,...rN)=H(rl,...,rf,...,ri,...rN)

Because potential is invariant under the permutation of any pair of particles.
i<

V(rl,...,r,.,...,rj,...rN)= V(lq,...,rj,...,rl.,‘..rN)

Since V/ is invariant therefore particle interchange operator will commute
with Hamiltonian.

[4.4]-0
Where, interchange operator ]3,] is constant of motion.

2.8.1 Symmetrization Postulate

The wave function of a system of N-identical particles is either symmetric or anti-
symmetric under the interchange of any pair of particles.

IV(I"I,...,I’;,...,Vj,...,I"Z)= il;/(rl,...,rj,...,};,...,rz)

Experimentally, symmetrization postulate state that the system containing N
particles are either totally symmetric or anti-symmetric under the interchange of
any pairs of particle and state that mixed symmetry does not exist. Beside these
there is two more postulate.

e Particles with integral spins, or bosons have symmetric state.
e Particle with halfintegral spins or fermions have antisymmetric state.

Fermions obey Fermi-Dirac statics and bosons obey Bose-Einstein static.



2.8.2 Constricting Symmetric and Antisymmetric Wave
Function

According to postulate, the identical particle system will be totally symmetric or
totally antisymmetric system.

Consider a system of two identical particles. Starting from any normalized

asymmetric wave function ¥ (rl o1 ) , We can constrict a symmetric wave function
v, (o) as

And antisymmetric wave function y,, (’”1 T ) as

v, (n:rz)=%[w(n,rz)+w(rz’ﬁ)]

1
Where ﬁ 1s normalization factor.

Similarly, for system of three identical particles, we can construct and from
an asymmetric wave function as follows:

1
v, (rprzarg)=%[W(n,rzaa)W(M,rz)W(rzargafi)W(rz,m)w(rg,mrQ)W(rg,rzarl)]

And

1
Vi (no5.s) = [ )0 (s 9 (s )=y (o) o Y (s

Similarly, we can construct symmetric and antisymmetric wave function for
any system of N identical particle.

2.8.3 System of Identical Non-Interacting
Indistinguishable Particle

A system of N noninteracting identical particles, with particles have equal masses

(m, =m) and under same potential ¥, (1) =V (1;), therefore the Schrodinger

equation of the system separate into N identical one particle equations.

Where the energy willbe givenas £, ,, ..., = Z E, but the function can

i=N
not be given as product of wave function for individual identical particle for at
least two reasons. First, the wave function cannot be given as product because the
particle is identical and indistinguishable so there is no way to tell which particle in
which state.

The second reason is that wavefunction of a system can is not given as
because such product has no definite symmetry. Since it is a mandatory thata N
identical particle system will be either totally symmetric or antisymmetric. We can
construct completely symmetric and antisymmetric wave function form single particle
state
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2.8.4 Wave Function of Two Particle System

Wave function a symmetric and antisymmetric wave function for two identical
non-interacting indistinguishable from a single particle state.

v, (o) = v, (3w, (2) 4, (2w, (1)

v, ()=l (v, (5) v, (5)v, ()]

Here n, = n,. When n, = n, = n the symmetric wave function is given by
v, (n.r [l//n v, (r )] and the antisymmetric wave function will be zero.

The symmetric wave function can be written as

v f[zwm o ()]

Where p is permutation operator. Similarly, we can write i, as

v, <n,rz>=ﬂz<—lmm (1w )

P

Where (—I)P is positive for even permutation and negative for odd

permutation. Now, again, rewrite ¥/ as

v, (n) v, ()
v, (n) Y., ()

1

v, (’ﬂarz):@

2.8.5 Wave Function of Three Particle System

For a system of three non-interacting identical and indistinguishable particle, the
symmetric wave function is given by

v (r.5.1) \/E{ZPW B, (FZ)V/VB(’%)}

Or by,

v, (r.han)=—=

o
+
<
=

e e e e e e
oY

SN ' N —
A



. . . .. Approximation Methods
And when the n, # n, # n,, the antisymmetric wave function is given by and Time-Dependent

Perturbation Theo
1 P A
wa(n,rz,rgﬁﬁg(—l) P, (1) () ()]

Or in the form of matrix as

NOTES

1 v, (n) w.(n) v, (n)
wa(n,rz,rg)=ﬁ v, (1) v, (n) v, ()

‘//n3(r1) l//n3( ) ‘//n3( )

If n =n,=n, so v, (r.n.n)=v,(n)w,(r)w,(r) and

oY
oY

oY
oY

v, (1:13.15) =0.
2.8.6 Wave Function of Many Particles System

Write the symmetric and antisymmetric wave function for a system of N non-
interacting identical particle as.

1 .
v, (rl,rz,...,rN) =ﬁZP:PI//nI (’”1)‘//;12 (rz)-..l//nN (rzv)

(ot ) = S0 Py ()0, (), ()

Or

1
l//a (rlarza"',r]\/)zﬁ

This N x N determinant, which involve one-particle states only, is known

as the Slater determinant. An interchange of any pair of particles correspond to an
interchange oftwo columns of the determinant will introduce change in sign of

determinant.

For even permutation we have (—I)P =1 and for odd permutation we

have (—I)P =—1.
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N

v, (r.n.n) = {w. (n)=w, (n)v, (n).v,, (n).

i=1

If there is multiplicity in numbers n,,n,,...,n, 1.e., some of the n, are

repeated. We must be careful regarding this and avoid double counting.
For instance, if », occur N, times inthe sequence #,,n,,...,n, andif N,

occur n, times and so on. The symmetric wave function will be.

N/IN,!..N,!
BT

v, (r Ty,.. ,rN) 1//"2 rz) W, (rN)

For example, take the case of three independent identical boson where

n, =n, =n and n, # n, the multiplicity of »n, is N, = 2. Hence y, is given by

0 (o) = P ), 2 1)
:%[% (W), (2)w, (1) +w, (R, (5w, (1) +w, (5)w, (1), ()]

3

In case of antisymmetric when among the numbers #,,n,, ..., n,, , only two

are equal, the antisymmetric wave function vanishes. For example, if », = n,

therefore the ith and jth rows of determinant will be identical; hence the determinant
vanishes identically. Antisymmetric wave functions, therefore, are nonzero only

for those cases where all the numbers #,,n,,...,n, are different.

2.8.7 Pauli Exclusion Principle

It states that in a system of N identical particles, no two fermions can occupy
the same single-particle state at a time,; every single-particle state can be
occupied by at most one fermion. This is the Pauli exclusion principle, first
postulated in 1925 to explain the periodic table.

Pauli exclusion principle for periodic table states that no two electrons can
occupy simultaneously the same (single particle) particle state on the same atom.
Therefore, there can be only one electron occupying quantum state

nlmm, : Y .im m, - The Pauli exclusion principle has a direct effect on the spatial
part of distribution of fermions.

When a Schrodinger equation include the spin, the wave function of a single
particle state is equal to product of the spatial part and spin part-

y(7.5)=w(%)x(S).

The wave function of a system of N particles, which have spins, is the
product of the spatial part and spin part of the particle.



Y (7,878,557, 8y ) =W (77 ) 2 (51,555, )

The wave function given above must satisfy the symmetry requirements
when N particles are identical.

In the case of a system of N identical boson, the wave function must be
symmetric; hence the spatial and spin parts must have the same parity.

v (ﬁ,gl;@,ﬁz;...;fNjN):

And when a system of N identical fermions, for fermions spin and spatial
part must have different parity, to leading to the overall wave function antisymmetric:

2.9 WAVE FUNCTION FOR MANY ELECTRON
SYSTEM

For the case of matter waves, the function that make up the waves and by which
we can describe the different characteristics and properties of the said waves is
called wave function, denoted by  (psi). The value of the wave function ()
associated with a matter wave helps us in finding the particle at a particular time ¢
in space.

Thus, a complete wave function  for a matter wave depends on the positions
of all the particles associated with the wave and on time explicitly. From our above
discussions, we can describe a wave function of a matter wave as:

y(r, 1) = ge'kron ..(2.29)

. 21 .
where (o=2nv) is the angular frequency of the matter wave, &, = Tn is the wave
propagation vector or wave number.

Physical Interpretation of y; Normalization, Probability, Density

The wave function y described above often takes complex value. The square of
its magnitude, 7.e., [y|* = * y is always real and positive, where y* is the complex
conjugate of the wave function . The quantity [y|? is proportional to the probability
per unit volume of finding a particle associated with the wave function y at a given
point at an instant 7. The wave function y gives us all the information about the
particle associated in it.

Let us consider the particles of the wave function y is propagating along x-
direction. The wave function for that case is given by wy(x, #) and
I (x, H)Pdx = y*(x, 1) y(x, f)dx is proportional to the probability of finding the
particle associated with the wave function y(x, 7) in the position interval x to x +
dx at any instant 7. The total probability of finding the particle in the position interval
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x to x + dx at any instant  anywhere along x-direction is given by

Poe [ Jy(x, 1) [* d

o J‘ V¥ (x, 1) Wi, 1) dx ..(2.30)

The position probability density ofa particle associated with the wave function
y(x, ) along x-direction in the interval x to x + dx at any instant # is given by

2
p(x, 1) = — YOI L(2.31)
[ 1w P ax

and hence the total probability will be

P = Tp(x,t)dx

[ 1ween P dx
= =1 .(2.32)
[ 1w P ax

— oo

[i.e., the total probability of any event must be one (1)].

Therefore, the particle must be somewhere along x-direction, the sum ofthe

probabilities over all values of x must be equalto 1 (one). Let us consider a wave
function as:

WM, 1) = Ay(x, 1) ..(2.33)
where A4 is a constant.

According to the definition of total probability and by equation
(2.30), we can write

[ Iyt Paxe = 47 [ w0 [P dx =1 .(2.34)

— oo

where yp(x, ?) is called normalized wave function and A is called the
normalization constant. From Equation (2.34), we can write

1
A — .(2.35)

[ 1wen P v

[Note: If we consider a complex number as x = a + ib, The complex conjugate of x will be x* = a
— ib. The product of a complex number and its complex conjugate is always real and positive. i.e., x*x
=(a—ib)a+ ib)=a*— (i =d*+ b*as * =—1].
Operators in Quantum Mechanics
The operator operates on a function (given) and gives an another function. An
operator is often represented by 0.

For example, if 62 operates on a function x°, then we can write
X



0
a(?g) = 3x%

Here, 62 is the operator that operates on the function x’.
X

In quantum mechanics, there are several dynamical variables or functions, such
as position, momentum, energy those are represented by operators.

The Momentum Operator
Let us consider a wave function

w(x’ t) = foi(Keman)

aW(x,t) zi{Aei(KxX""[)}
ox ox

= iK A" % = K i (x, 1)
Multiplying both sides by —i 72, we get

RAICR)

Wx =—ih {inW(xa t)} = thW(xa t)

. Oy (x,1)
— h— =
= Poy(x, 1)

[from de Broglie hypothesis, P, = 7 K]
Thus, the momentum operator P, denoted by P. is given by

A ., 0 .
P =—ih . [momentum operator along x-direction]

X

Similarly, the momentum operator along y- and z-directions is given by

D =_ihi

y ay

0

s _ _n0

and P, i P

In general, the momentum operator is given by

.0 _
P=zh5=ihv

The Energy Operator
Let us consider a wave function
W(xa t) — Aei(K"x_m[)

aW(xat) _ E{Aei(KX‘X’W’)}
ot

ot
= —im 4" = —joy(x, 1)
Multiplying both sides by i 71, we get
. Oy (x, : :
lhy =ih{—ioy(x, 1)} = hroy(x, 1)
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5oV (x1)

o Ey(x, ?) [from de Broglie hypothesis, £ = 7 o]

Thus, the energy operator £ denoted by £ is given by
N 0

= ih—
E ot

The Commutator
If & and 5 are two operators, the commutator correspondence of these two
operators is denoted by [ a, 5 ] and is defined as
[a,b]=(ab—ba)
If[a, 5] =0, i.e., ab = b a, then the two operators are said to be
commutative.

If[a, 5]#0,ie, ab # b a, then the two operators are said to be non-
commutative.

The Expectation Values
We can calculate the expectation value or average value of a particle anywhere is
space at any instant ¢ by the following:

By considering y*(x, #) y(x, ) with the position probability density, the
expectation value or average value of a particle along x-direction is given by

[ w* oy, d
) = v oyt de
where d7 is the volume element and we integrate it over the entire space.
As the particle is somewhere in space, we can say that the total probability of

finding the particle in the entire space is unity (1). We can write it mathematically
as

[[[hween P ar = [[[w* oy di=1 .(2.37)
[normalization condition]

.(2.36)

From equations 9.8 and 9.9, we can write

(x) = [[[x w*Caowx dr

= [[Jw* (0% wxn dt (2.38)
(where X is the operator of position x)
In general, (f(r)) = _U_[w* Fr)y dt ...(2.39)

The expectation value of potential energy V(7) is given by

@) = [[[w*re) v

The expectation value of momentum P is given by

(P) = [[Jw=Pyar



= [[Jw* [_,h j\udx = [[Jw*inVyy dt

The expectation value of energy E is given by

= jjjw*é ¥ dt

= [fjue(L v o

2

P
We know that, E= —+V
2m

Thus, using operator symbol, we have
P2
5 = (o))
In terms of expectation value, we can write
”I\u (zh j\u dt
= ”I\V {——Vz v dt +m\y * V(r)\u dt

|
where < > mw*[_%v jwdf

Therefore, we can write

@) = [[Jw v

...(2.40)
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and ﬂj\u * (ih %]\Vdr

e[ e o

The Probability Current Density
From equation (2.40), we can write

Oy o,
ih—— = ——V V
o . y+Ty ..(2.41)

and its complex conjugate

) ow * 2
BT A N ..(2.42)
ot 2m

where the potential energy V(r, 7) is assumed to be a real quantity.
Multiplying equation (2.41) by y* and equation (2.41) by v, we get

2

. 0 h
iny* L — —— Vi Ty ...(2.43)
ot 2m
. oy * n 2
and —ih y—— = ——yViy*ryly* ...(2.43a)
ot 2m

Subtracting equation (2.43a) from equation (2.43), we get

_ 0 oy * h?
zh[\y*a—\f+w%} = E[w*vz\y—\yvzw*] ...(2.44)
o &* &
Since Vi=—Ft——St—%

+
ot 9t ozt

oy oy * 0
* Y Ly — Z(y*
and 7 P U} Py Py (v*vy),

we can rewrite the equation (2.44) in the form

0, oJx dJy dJz
— | === =
Gt(w V) {6)( o 82} 0 ...(2.45)
I VAR
where Jx = o _\V o \ ax}
L e
B =om| Vo Y Gy}

L *G_W}
and JZ_Zm_W oz v oz

Now, we can rewrite equation (2.25) in the form



oP - -
—+V.J =
=t 0 ...(2.46)
where yH*y =P
= ih oy * oy
and J= %{‘“F“"*E}
ih
= L yVy g Vy]
2m

Equation (2.46) is termed as equation of continuity in electro-magnetic theory.
Here, P represents the charge density and J represents the current density.

2.9.1 Formation of Energy Bands in Solids

In the case of a single isolated atom, the electron in any orbit as shown in Figure
2.11 have a definite energy. As a result, they occupy discrete energy levels, as
shown in Figure 2.12(a).

Nucleus

Fig. 2.11 The energy levels of a single isolated atom

The pauli exclusion principle allows each energy level to contain only two
electrons. For example, the 2s level of a single atom contains one energy level
with two electrons and 2p level contains 3 energy levels with two electrons in
each level thus, with a total of six electrons as shown in Figure 2.12(a).

Electrons
3s _.4 3s Band }ZN electrons
————
—————
—_——— ) ——o— Band 6N clectrons
————— —————
2s o Band }ZN electrons
ZS —————— —_——
ls —eo—o— Is Band }ZN electrons
1 atom 2 atoms N atoms
(a) (b) (c)

Fig. 2.12: The energy levels broaden into energy bands
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Band Structure in Solid
Let us consider the formation of bands in a solid sodium.

The single energy level of an isolated sodium (Z = 11) based on the electron
configuration 1s? 2s? 2p® 3s! is shown in Figure 2.12(a).

When an another sodium is brought close to it, the electrons will be subjected
to the effect of an additional field. As a result, each energy level is split in to
two as shown in Figure 2.12(b). Similarly, when three atoms come close together,
the original level splits into three levels and so on.

More generally, when a solid is formed by bringing N atoms together, the
Pauli principle still demands that only two electrons in the entire solid should have
the same energy. Hence, in a solid the different split energy levels of electrons
come together to form continuous bands of energies as shown in Figure 2.12(c).

Consequently, the 2s band in a solid sodium contain N discrete energy
levels and 2N electrons, two in each energy level. Similarly, each of the 2p
level contain N energy levels and 2N electrons. Hence, a broad 2p band
will contain 3N energy levels and 6N electrons since the three 2p bands
overlap.

Hence in general, each energy band has a total of N individual levels
and each energy band can hold a maximum of 2(2/ + 1) N electrons.

[Each energy level can hold 2 (2/ + 1) electrons. 2 corresponds to the
electrospin and (2/ + 1) corresponds to the orientation of the electron orbital
angular momentum)].

The result is that, electrons in any orbit of atom within a solid can have
a range of energies rather than a single value. Thus, the range of energies
possessed by an electron in a solid is known as energy band. i.e., Each
energy level of an isolated atom becomes a band in a solid.

Check Your Progress

10. What do you understand by semi-classical physics?
11. State the semi-classical theory.

12. State quantum theory of radiation?

13. What is Einstein’s coefficient of absorption?

14. State the symmetrization postulate.

15. Define the wave function.

16. What do you understand by energy band?

2.10 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. In quantum chemistry and molecular physics, the Born-Oppenheimer (BO)
approximation is the best known mathematical approximation in molecular
dynamics. Specifically, it is the assumption that the wave functions of atomic
nuclei and electrons in a molecule can be treated separately, based on the
fact that the nuclei are much heavier than the electrons.



. In this type of linear combination the positive lobe of v, overlaps with the

negative lobe (i.e., the lobe having-sign) of v, and a molecular orbital is
formed. This molecular orbital has higher energy than each ofthe two atomic
orbital wave functions (v, andy, ) (increase in energy) and hence the

formation of this molecular orbital produces repulsion between the two nuclei
of Aand B.

The increase in electron charge density between the two positive nuclei
shields (i.e., screens) the two nuclei from mutual repulsion, i.e., due to the
increase in electron charge density, the two nuclei are attracted towards
each other. Thus the formation of bonding molecular orbital produces
attraction between the two nuclei and hence leads to the establishment ofa
stable chemical bond.

. Heitler-London theory state the exchange of electron in orbital of H2

molecule and it was the first quantum-mechanical system which explains
chemical bonding hydrogen molecule. Understand the Heitler-London theory;
first we need to know about hydrogen molecule bonding as well as interaction
between their electron and nuclei.

. In mathematical physics, the WKB approximation or WKB method is a

method for finding approximate solutions to linear differential equations with
spatially varying coefficients. It is typically used for a semi-classical calculation
in quantum mechanics in which the wavefunction is recast as an exponential
function, semi-classically expanded, and then either the amplitude or the phase
is taken to be changing slowly.

. The WKB theory is a method typically used for approximating the solution

ofa differential equation whose highest derivative is multiplied by a small
parameter ‘€.

. In quantum mechanics, perturbation theory is a set of approximation schemes

directly related to mathematical perturbation for describing a complicated
quantum system in terms of a simpler one. The basic notion is to use a
simple system for which a mathematical solution is known, and then adding
an additional ‘Perturbing’ Hamiltonian representing a weak disturbance to
the system.

. Time dependent perturbation theory, developed by Paul Dirac, typically

explains the effect of a time dependent perturbation V(7) applied to a time
independent Hamiltonian, /.

. In quantum physics, Fermi’s golden rule is a formula that describes the

transition rate (probability of transition per unit time) from one energy
eigenstate ofa quantum systemto a group of energy eigenstates in a continuum,
as a result of a weak perturbation. This transition rate is effectively
independent oftime (so long as the strength of the perturbation is independent
oftime) and is proportional to the strength of the coupling between the
initial and final states of the system, typically described by the square ofthe
matrix element of the perturbation, along with the density of states.
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10.

11.

12.

13.

14.

15.

16.

Semi-classical physics, or simply semi-classical refers to a theory in which
one part ofa system is described quantum-mechanically whereas the other
is treated classically.

The semi-classical radiation theory consists of two elements: the classical
Maxwell equations that is satisfied by the electric ‘E’ and the magnetic ‘B’
fields, and the ordinary quantum mechanics that is based on the SchrQdinger
equation of a single charged matter particle interacting with the
electromagnetic field.

The distribution of energy in the spectrum ofradiations of a hot body cannot
be explained by applying the classical concepts of physics. Max Planck
gave an explanation to this observation by his ‘Quantum Theory of
Radiation’. His theory states that,

e The ‘Radiant Energy’ is always in the form of tiny bundles of light
called ‘quanta’, i.e., the energy is absorbed or emitted discontinuously.

¢ Each quantum has some definite energy ‘£’, which depends upon the
frequency of'the radiations as,

E=hy

If N, and N, are the number of atoms in the lower energy state (ground
state) and higher energy state (excited state) respectively, then we can write,

NP, = NB_E®)
where P ,is the probability of absorption proportional to energy density
E(v) and B ,is the Einstein’s coefficient of absorption.

Symmetrization postulate state that the system containing N particles are
either totally symmetric or anti-symmetric under the interchange of any pairs
of particle and state that mixed symmetry does not exist. Beside these there
is two more postulate.

e Particles with integral spins, or bosons have symmetric state.

e Particle with half integral spins or fermions have antisymmetric state.
For the case of matter waves, the function that make up the waves and by
which we can describe the different characteristics and properties of the said
waves is called wave function, denoted by y (psi). The value ofthe wave
function () associated.

The result is that, electrons in any orbit of atom within a solid can have
a range of energies rather than a single value. Thus, the range of
energies possessed by an electron in a solid is known as energy
band. i.e., Each energy level of an isolated atom becomes a band in
a solid

2.11 SUMMARY

e When nuclei of two atoms come close to each other, there election cloud

mteract and result in the formation of molecular orbitals.



e Each molecular orbital can be described by a wave function y*, known as

molecular orbital wave function v’ represent the probability density or
election density.

e According to linear combination of atomic orbitals (LCAO) method, there
are two ways of linear combination of atomic orbitals or their wave functions
forming bonding and anti-bonding molecular orbitals.

e In other words, the bonding molecular orbital has lower energy than each
of the isolated atomic orbitals from which this molecular orbital is derived.

e The repulsion between the nuclei leads to an increase in the energy of the
anti-bonding molecular orbital in the event of its being occupied by electrons.

¢ The abbreviation WKB approximation refers to Wentzel-Kramers—Brillouin,
i.e., the WKB approximation method is named after physicists Gregor
Wentzel, Hendrik Anthony Kramers, and Léon Brillouin, who all developed
itin 1926.

The WKB approximation is specifically used for obtaining an approximate
solution to a time independent one-dimensional differential equation, typically
the Schrddinger equation. Its principal applications include the calculations
ofbound state energies and tunnelling rates through barriers.

e The asymptotic series for y(x) is typically considered as a divergent series,
whose general term 6” S (x) starts to increase after a certain value n=n

max”

Therefore, the smallest error attained by the WKB method is the order of

the last included term.

e In quantum mechanics, perturbation theory is a set of approximation schemes
directly related to mathematical perturbation for describing a complicated
quantum system in terms of a simpler one. The basic notion is to use a
simple system for which a mathematical solution is known, and then adding
an additional ‘Perturbing’ Hamiltonian representing a weak disturbance to
the system.

e The time dependent amplitudes of those quantum states that are energy
eigenkets (eigenvectors) in the unperturbed system.

e Fermi’s Golden Rule, also referred to as, the Golden Rule of time dependent
perturbation theory, is an equation for calculating transition rates. The result
is obtained by applying the time dependent perturbation theory to a system
that undergoes a transition from an initial state | i) to afinal state | /) thatis
part of a continuum of states.

¢ The standard way to derive the equation is to start with time dependent
perturbation theory and to take the limit for absorption under the assumption
that the time of the measurement is much larger than the time needed for the
transition.

e Thus, there is a clear link between the quantum-mechanical system and the
associated semi-classical and classical approximations, as it is similar in
appearance to the transition from physical optics to geometric optics.

¢ Quantum field theory: only Feynman diagrams with at most a single closed
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loop are considered, which corresponds to the powers of Planck’s constant.

e The single particle SchrQdinger quantum mechanics can be modified to
take into account spin or be replaced by the nonrelativistic quantum
mechanics of many particles.

o For the case of matter waves, the function that make up the waves and by
which we can describe the different characteristics and properties of the said
waves is called wave function, denoted by y (psi). The value ofthe wave
function () associated The wave function y described above often takes
complex value. The square of its magnitude, i.e., [y|* =y * y is always
real and positive, where y* is the complex conjugate ofthe wave function
.

e More generally, when a solid is formed by bringing N atoms together, the
Pauli principle still demands that only two electrons in the entire solid should
have the same energy.

e Consequently, the 2s band in a solid sodium contain N discrete energy
levels and 2N electrons, two in each energy level. Similarly, each of
the 2p level contain N energy levels and 2N electrons. Hence, a broad
2p band will contain 3N energy levels and 6N electrons since the three
2p bands overlap.

e Hence in general, each energy band has a total of N individual levels
and each energy band can hold a maximum of 2(2/ + 1) N electrons.

2.12 KEY TERMS

¢ Born—Oppenheimer (BO) approximation: In quantum chemistry and
molecular physics, the Born—-Oppenheimer (BO) approximation is the best
known mathematical approximation in molecular dynamics.

e WKB approximation or WKB method: It is a method for finding
approximate solutions to linear differential equations with spatially varying
coefficients. The WKB approximation refers to Wentzel-Kramers—Brillouin.

¢ Bound state: Abound state is a special quantum state of a particle subject
to a potential such that the particle has a tendency to remain localised in one
or more regions of space.

¢ Time dependent perturbation theory: It was developed by Paul Dirac
that typically explains the effect ofa time dependent perturbation V(t) applied
to a time independent Hamiltonian, /.

¢ Absorption and emission: ‘Absorption’ is the phenomenon when electrons
in a substance take up energy from electromagnetic radiation or types of
light. Whereas ‘Emission’ is the phenomenon when a substance gives off
electromagnetic radiation. The electromagnetic radiation in both cases has
some type of energy with a specific wavelength.



2.13 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions
1. Define the Born-Oppenheimer approximation.
. State the Heitler-London theory.
. What do you understand by WKB approximation?
Define the Fermi’s golden rule.
Give the phenomenon of emission and absorption of radiation.
What is Einstein A and B coefficient?

How will you define the exchange degeneracy?

© N o v AW

State the Pauli exclusion principle.
Long-Answer Questions

1. Explain in detail about the Born-Oppenheimer approximation of LACO
with appropriate examples.

2. Discuss about the Heitler-London theory of hydrogen atom.
3. Describe the WKB approximation and its applications to alpha decay.

4. Elaborate on the time dependent perturbation theory and Fermi’s golden
rule.

5. Analyse the Einstein A and B coefficient.
6. Interpret the exchange degeneracy of indistinguishable particle.

7. Explain the wave function for many electron systems with the help of
examples.

8. Comprehend the Pauli exclusion principle.
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UNIT3 ANGULAR MOMENTUM AND
SPIN

Structure

3.0 Introduction

3.1 Objectives

3.2 Eigenvalues And Eigenvectors of Angular Momentum
3.2.1 Angular Momentum Operator Algebra
3.2.2 Definitions and Notation for the Eigenvalues of J2 and jz
3.2.3 Properties of the Eigenvalues and Eigenvectors of J2 and jz
3.2.4 Spectrum of J2 and .fz

3.3 Orbital Angular Momentum and the Spherical Harmonics
3.3.1 Spectrum of L>and L,
3.3.2 Definition Construction of Spherical Harmonics

3.4 Angular Momentum and Rotation Operator
3.4.1 Rotational Invariance and Conservation of Angular Momentum
3.4.2 Rotational Degeneracy

3.5 Electron Spin and Spin 1/2
3.5.1 Pauli Matrices
3.5.2 Observable and Wave Function Of Spin ' Particles
3.5.3 Vector Fields and Particles of Spin 1
3.5.4 Spin Independent Interaction of an Atom

3.6 Addition of Angular Momenta
3.6.1 Eigenvectors of Total Angular Momentum
3.6.2 Clebsch-Gordan Coefficients
3.6.3 Two Nucleon System and the Application to the Two Nucleon System

3.7 Answers to ‘Check Your Progress’

3.8 Summary

3.9 Key Terms

3.10 Self-Assessment Questions and Exercises
3.11 Further Reading

3.0 INTRODUCTION

In linear algebra, an eigenvector is the characteristic vector which has linear
transformation is a non-zero vector that changes at most by a scalar factor
when that linear transformation is applied to it. Whereas the function is called
an eigen function, and the resulting numerical value is called the eigenvalue.
It is a general principle of Quantum Mechanics that there is an operator for
every physical observable. A physical observable is anything that can be
measured.

Orbital angular momentum is a property of the electron’s rotational
motion, i.e., related to the shape of its orbital. In mathematics and physical
science, spherical harmonics are special functions defined on the surface of
a sphere. They are often employed in solving partial differential equations
in many scientific fields.

An electron spin refers to a form of angular momentum of electrons.
Moreover, it is a quantum property of electrons and its magnitude happens

Angular Momentum and
Spin
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Angular Momentum and to be permanent. The spin quantum number provides information about an
v electron’s unique quantum state. Also, the spins play an important role in
quantum mechanics. The spin number describes how many symmetrical facets
a particle has in one full rotation a spin of 1/2 it means that the particle must
NOTES be rotated by two full turns (through 720°) before it has the same configuration

as when it started.

The nuclear force (or nucleon—nucleon interaction, residual strong
force, or, historically, strong nuclear force) is a force that acts between the
protons and neutrons of atoms.

Clebsch-Gordan coefficients are mathematical symbol used to
integrate products of three spherical harmonics. Clebsch-Gordan coefficients
commonly arise in applications involving the addition of angular momentum
in quantum mechanics.

In this unit, you will study about the eigenvalue and eigen vectors of
angular momentum, angular momentum operator algebra, definitions and
notation for the eigenvalues of j* and j , properties of the eigenvalues and
eigenvectors of j> and j , spectrum of j* and j , orbital angular momentum
and the spherical harmonics, spectrum of and , definition construction of
spherical harmonics, rotation operators and angular momentum operators,
rotational invariance and conservation of angular momentum, rotational
degeneracy, electron spin, Pauli matrices, observable and wave function
of spin 'z particles, vector fields and particles of spin 1, spin independent
interaction of an atom, addition of angular momenta, eigenvectors of total
angular momentum, Clebsch Gordan coefficients, two nucleon system and
the application to the two nucleon system.

3.1 OBJECTIVES

¢ Understand the eigenvalue and eigen vectors of angular momentum
e Know about the angular momentum operator algebra
e Analyse the definitions and notation for the eigenvalues of j* and j,

e Comprehend the properties of the eigenvalues and eigenvectors of j?
andj

e Illustrate the spectrum of j* and j,

e Interpret the orbital angular momentum and the spherical harmonics
e Explain the spectrum of and

¢ Discuss about the definition construction of spherical harmonics

e Describe the rotation operators and angular momentum operators

e Elaborate on the rotational invariance and conservation of angular
momentum

¢ Define the rotational degeneracy

e Understand the electron spin and Pauli matrices

Self - Learning e Know about the observable and wave function of spin 2 particles
84 Material



e Comprehend the vector fields, particles of spin 1and spin independent Angular MomentumSar{d
interaction of an atom i

e Interpret the addition of angular momenta and eigenvectors of total
angular momentum

e Calculate the Clebsch Gordan coefficients

NOTES

o Know about the two nucleon system and their applications

3.2 EIGENVALUES AND EIGENVECTORS
OF ANGULAR MOMENTUM

The eigenvalues of angular momentum states in quantum mechanics, we
can solve the Hamiltonian and get the allowed energy levels of an object
with angular momentum. The eigenvalues of the angular momentum are the
possible values the angular momentum.

Derive eigen state equations with,

Birax @Nd By, (3.1)
Note that L> ~L*>=1L >+ Lyz, which is a positive number, so
L?-L*>0 (3.2)
That means,
<a, J‘LE—L?' o, B 520
BIIL*-LZ ) enf 53

And substituting in Equation (3.2)
Lo, B >=ah?[o, B> and L2|or,p>= Biile, >, 54

And using the fact that the eigenstates are normalized, gives you
Equation (3.5):

{&.ﬁ‘(LE—LE]a.,H:v: n2(e-B2)20

Therefore, o = f2. (3.5)

So there’s a maximum possible value of B, which is also call B,
because there has to be a state is:

|0 By >
If you apply the raising operator, we get zero:
Lo By, > =0
Applying the lowering operator to this also gives you zero:
LL |0 By, >=0
And
L L=1%%-hL, (3.6)
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(L3=L3= AL, ||t ey >=0 37)
Putting in Equation (3.7)

LE ‘alﬁma: = ﬂﬁz and Lz ‘alﬁrrm = ﬁumxﬁ‘a'ﬁm ’

NOTES

We get,
(0= B a0

a:ﬁm{ﬁmxﬂ}:ﬂ

Breay @/ and pasm, so |e,f > becomes |/, m> and
-LE|J',m:::J'(I+1)?J2|I,m:>
o L |.m>=mh|lm>

In addition to a B, there must alsobea B,

Such that when apply the lowering operator, L , we get zero
-H rmin -
L_|.Bmin =10
And you can apply L, from Equation (3.6) on this as well:
L,L_|l.Byn>=0
We also know that
(L= L2+ L, o By >=0
This gives the following equations:
{ﬂ' — BEint ,{i’m-n)hz =0
o = Jﬁrzrlﬁ'_ rarrin =0
oc=p r?'lin_ Brmin
o= ﬁl‘l‘l'rl{'ﬁl'l'l'l'l - 1}

And comparing this equation to following equation’

0 = Bra ( Bona +1)=0

We get

Self - Learning
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So that,
| By, >
By n successive applications of Equation (3.8)
L on | o, By, > (3.8)

We get the following equation:
BMax - BMin tn
Coupling these two equations gives

By = 12

Therefore, B, can be either an integer or half an integer (depending
on whether # is even or odd).

I= BMax’ m=b
And 7 is a positive number, we can find that,
A1<m<l

So now you have it:
The eigenstates are | 1, m >.
The quantum number of the total angular momentum is 1.

The quantum number of the angular momentum along the z axis is m.
. L2|f,m:~.-: ﬁzi[:.f+1}|f,m >, where =0, ¥4,1,%,...
e L |t m>=nm|l.m>, where m=—I, —(1-1),..../=11.
e =l<m=<l

For each 1, there are 21 + 1 values of m. For example, if | = 2, then m
can equal —2,-1,0, 1, or 2.

IH:%, then m can equal -%, -%, -%, % % and %

You can see a representative L and L in the Figure 3.1 are following

Fig.3.1 L is the Total Angular Momentum and L_is the Projection of Total Angular
Momentum on the z Axis

Angular Momentum and
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3.2.1 Angular Momentum Operator Algebra

Would be two different eigenvectors associated with the same eigenvalue a,
which is incompatible with the hypothesis that is a non-degenerate eigenvalue.
Therefore, we can write

Cla,b) =1 (B|ﬂ.-h_}) = v bla, b), (3.9)

Because 5a.b) = bla.b) and vy is a numerical constant. Multiplying

by B both sides of this equation, we obtain:

BCla,b)y = ~b fB a, F}}) = v b%|a, b). (3.10)
On the other hand, applying ¢ to both sides of

Bla,b) = bla,b),
- | (3.11)

We find

CBla,b) = b ({” a, f}}) = v b*|a, b), (3.12)

Where (3.9) has been used. Subtracting (3.12) from (3.10) we obtain

|B.C|a,b) = 0. 513

This equality cannot be true for all the basis vectors { |n . f)} }- , because
this would imply

[B.C] =0, (3.14)
Therefore, the presupposition that the eigenvalue is non-degenerate

cannot be valid for all eigenvalues of the operator A. This means that A has
at least one degenerate eigenvalue.

3.2.2 Definitions and Notation for the Eigenvalues of J* and jz

It follows that for any ket |t, } , the expectation value {;,|I “|47) is non-
negative, because

{L'|.f3|t‘} = {L‘l-fﬂt‘} ¢ (1 I"j e {e.'|.ff|e.'}

The Eigenvalues of J? and jz

T |0

Rl

|y 1)

L) 20, (3.14)

Where (y| 2jy) = (y| jx* jx|\|/) = ||jX |v)||*, remember that jx is Hermitian,
therefore (y| J "= (y| ] ). If |y) is an eigenvector of J*associated with the
eigenvalue Ah?* (h is thus dimensionless), then (3.14) implies:

A0 (3.15)

It is conventional (but not mandatory) to introduce a non-negative



number j > 0 defined by Equation (3.16)
A=jG+1) (3.16)
For j > O the function j (j + 1) is positive or null and

monotonically increasing, as shown in Figure 3.2.

A= jj+1)

Fig. 3.2 Graph of the Function 2 =j (j + 1), for j > 0. The vertical gray line mark the
value j = (N5 — 1)/2, which gives 1 = 1

Therefore, if necessary, we can invert Equation (3.16) to obtain

1
j= 3( Dy + 1 1)
2 (3.17)

Since J?and JZ commute, it is possible to find a set of common
eigenvectors {|j,m)}, such that

,F']|; m) = j(j + 1A% |j, m),

(3.18a)
J.li.m) = mh|i.m).
2|7, m, 7. m) Gish)
And,
(7'.m'j.m) = 8,0,
J |7, m) = d;; 5.19)

Only J J and J it is not possible to build an additional
(non-trivial) ‘Hermitian operator commuting with both J? and J This
can be also rigorously demonstrated using group theory, but this is outs1de
the scope of these lectures. In short, in the language of group theory, the set
of the three Hermitian _operators J J and J Since the J? is compatible
with J J and J but J J and J are remprocally incompatible, we

expect the eigenvalue j (j + 1) h? to be degenerate.

3.2.3 Properties of the Eigenvalues and Eigenvectors of
J? and J,

Let j(j + 1) h? and m h be the eigenvalues of J* and JZ associated with the

eigenvector |j, m ). Then j and m satisfy the following inequality
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—<m<j (3.20)

To prove this assertion, consider first the two vectors j+ j,m)and] [j,
m ). By definition, their squared norms are non-negative, i.e.

| Foli.m) " = (G mlJ- T |g.m) > 0. (321a)

”L“ ’”}”2 = {j, :rrz|.f_.f_ j,m) = 0, (3.21b)

Where we have used J = (Jl) f

iy

{;'_.r:rz|.f_.f+|_j_.r?z}=ﬁ.m|j3 Jo h.f:|j.rrz}
= [j(j + 1) = m(m + 1)]|K*(j, m|j.m) > 0,
(3.22a)
{7, m|.f+j_|_j_. m) = ".:j..'ri'1|j2 I_’ f h.lej.m:}
= [(j + 1) = m(m — 1)|K*{j, m|j,m) = 0.
(3.22b)
These equations imply
G+ -mm+1)=(j-m)j+m+1) >0,
(3.23a)
741 —mm-1)=(j+m)(j—m+1) =0,
(3.23b)

Where to obtain the right sides we have added the null term jm — mj
= 0 to the left sides. For example,

Ji+1l)—mm+1)=34(7+1)—m(m+ 1)+ jm —mj
=j7+14+m)—m(m+1+7)

=(j—m)(7+m+1).

(3.24)

Then, from Equations (3.23a) and (3.23b) it follows that:
~(G+1)<m<j, (3.25a)
—<m<j+1, (3.25b)

Respectively From j > 0, it follows that —(j + 1) <—j <j <j + L
Therefore, equations (3.25a) and (3.25b) are satisfied together only if m
satisfies the inequality

—J<m<j (3.26)



This proves in Equation (3.20).

A necessary and sufficient condition for a ket |y) to be a null vector,
i.e., |y) = 0, is that its norm vanishes: (y|y) = 0. Therefore, from Equations
(3.21a, 3.22a, 3.23a) it follows that

J [ymy=0 iff G-m)G+m+1)=0 (3.27)

The solutions of the algebraic equation (j —m)(j +m+1) =0 are m =
jand m = —) — 1 <—j. Since the values of m are constrained by —j <m <,
only the solution m = j is acceptable and Equation (3.27) implies:

5 0i,i)y=0 (3.28)
Similarly, from Equations (3.21b, 3.22b, and 3,23b) it follows that
jlj,my=0 iff (j+m)j—m+1)=0, (3.29)
Therefore,
I, -)=0 (3.30)
The converse relations are also true, namely
Jlj,my=0= m = = (3.31)

This is easy to prove. Applying ji to both sides of jiU, m) = 0 and
using we obtain

F:FF+|; m) = (J? — J2F hiﬂ; m)

B2 [5(7 + 1) — m(m £ 1)]|j, m}

= I [(§ Fm)(j £ m+ 1)]|5,m) = 0.
[ J1j,m (332)

The last equality together with Equation (3.20) implies m = +j. Then,
the following two statements are true:

1) If m > —j, J |j, m) is a non-null eigenvector of J2 and jz associated
with the eigenvalues j(j + 1) h? and (m — 1) h?, respectively.

2)Ifm<j, jj, m) is a non-null eigenvector of J? and jz associated with
the eigenvalues j(j + 1) h? and (m + 1) h?, respectively.

It follows that J [j, m) is a non-null vector because its norm is positive
for m > —j.

Then, we show that J |j, m) is an eigenvector of J%.

J2. J_1j.my = 0.
[ ]l"l " (3.33)

This can be rewritten as

J? (f_ |7, m}) = J_J?%|j,m)

= jl7 + 1)k~ (.T_|_,l. m}) : (3.34)

Angular Momentum and
Spin

NOTES

Self - Learning
Material 91



Angular Momentum and
Spin

NOTES

Self - Learning
92 Material

Which signifies that J |j, m) is an eigenvector of J? associated with the
eigenvalue j(j + 1) h?

Now, we prove that J |j, m) is an eigenvector of J , If we multiply from
right both sides of [J - J =-hJ ] by |j, m), we obtain

[T f_] |7.m) = B |7, m),
(3.35)

Which is, equivalent to

J, (f_“ m}) = J_J.|7, ) hJ_|j, )

= (m — 1)h (F_ 7. m}) :
(3.36)
This shows that J [j, m) is an eigenvector of jz with the eigenvalue (m +
1) b2 If m <j, we can use arguments similar to the ones leading to Equation

(3.34) and (3.36), to prove statement 2). Of course, we must replace J |j, m)
with J [j, m).

J? (f_,_ 1, m:})

I, (f+ 7, m}) = (m + 1)k (f+ 7 ?Ii',:}) : (337)

These relations may be straightforwardly generalized to include powers
of J, thatis (J,)",, wheren =1, 2, ... is a positive integer. Specifically, we
assert that

i+ 1)k* (f_|,l m})_

3) If 5j + n <m < j, then (J)|j, m) is an eigenvector of J2 and jz
associated with the eigenvalues j(j + 1) h? and (m — n) h?, respectively.

4) If ) <m <j — n, then (i)“[j, m) is an eigenvector of J? and jz
associated with the eigenvalues j(j + 1) h? and (m + n) h?, respectively.

The proof is very simple,
(72, (J2)"]ld.m) =0, (3.38)

This can be rewritten as,
J? {.f_,.]l” 1, m:}] — {.?_,_]”.?2 j,m)

= (G + DR [(J) "l m)] - (3.39)

This relation means that (j+)“|j, m)is an eigenvector of J* with
eigenvalue j(j + 1) h? Next, if we multiply from right both sides of equation
by |j, m), is we obtain,

[J" l:.f+}”] |7, m) = £nh {L]"U. m),
(3.40)



Namely,

J, [{.?_,_]”Ll'_ m}] = [:.f_l_]”.f: 7, m) £ :i-h{.L]" |7, m)
= mh[.j?]“[j. m) + r;'h{.f.,.]"|_,l'. m)

=(m=Ln)h [{-L]H |7, Ir.'}] _
(3.41)

Therefore, (ji)“[j, m) is an eigenvector of jz with eigenvalue (m + n)
h2However, since Equation (3.20) requires that —j <m <j, we must demand

j=m-+n=j — j=m=7j-—mn,

jE=m=—mn=j — j+n=m=j (3.42)
This concludes the demonstration of statements 3) and 4).

3.2.4 Spectrum of j? and jz

Now we are able to determine the possible values of j and m, i.e., the spectrum
of J? and jz. According to our previous findings, since the set {J* and jz} is
a CSCO, the knowledge of j and m uniquely identify the eigenvector [j, m)
common to J2 and jz. Therefore, once we know the spectrum of J2 and jz
we also know the common eigenvectors. Thus, let j(j + 1) h? and mh be the
eigenvalues of J2 and jz associated with the eigenvector [j, m). We do not
make any hypothesis about the values of j and m; we only require, according
to Equation (3.20), that j and m satisfy the inequality —) <m <j, with j > 0.
So, at this stage m can be any real number between —j and j.

Consider the two vectors (j+)PU, m) and(J )4j, m) where p and q are
non-negative integers. According to 3) of the previously discussed, (J )4j, m)
is an eigenvector of J2 and jz with the eigenvalues j(j + 1) h? and (m-q) h
respectively. Similarly, from 4) it follows that (J P, m) is an eigenvector of
J? and jz with the eigenvalues j(j + 1) h? and (m-q) h respectively. As usual,
in Equation (3.20) requires that

] <m=q.

m+p=]j (3.43)
Now, let us choose p and q to be the greatest non-negative integers
such that:

) (g -+ 1) = 7.

m 4+ (p+ 1) > j.
' ' (3.44)

As illustrated in following Figure 3.3 showing th graphical
representation of the inequalities of Equation (3.44) By hypothesis, the
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gnsular Momentum and non-negative integers q and p are chosen to satisfy a =j+(m—q) < 1 and b
o = j—(m+p) <1. The intervals a and b are pictured as gray bands
m-q m—1 m m+ I m+p

—t—
NOTES e // / b

Fig. 3.3 Graphical representation of the inequalities of Equation (3.44)

The unnormalized eigenvectors of J2 and J , with the eigenvalues of jz
proportional to

m—¢,....,m—1l,mm+1,... m+p,

Are, according to (3) and (4) of the as per previous discussed,

(.f_j]”|_,|'. my, ..., .f_L.i.m}. |7, m), f+|; my, ..., {.i”'+]“|j. m).

(3.45)

It is important to understand that these are the only possible vectors with
these properties, because the pair (j, m) uniquely identify (up to an irrelevant
multiplicative numerical constant) the eigenvector [j, m). Given the leftmost
and the rightmost vectors (j+)"|j, m) and(J )4j, m) we can calculate

. [{-i_]r{+l|l,l'.m}] =(m—gq-1)h F[.f-}“ﬂ 7, 111

© (3.46a)

" = ypt+l, , ~ o pdl ;

g [{.L) 17, m}] =(m+p+1)h [(.Lr) J,m) (3.46b)
According to Equation (3.46a), either (J)7"!|j, m)=0 and (J )*"'|j, m)
is an eigenvector of J with eigenvalue m — q — 1. However, from Equation
(3.44) it follows that m — q — 1 < —j, in contradiction with Equation (3.20).
Therefore, we conclude (J )"'[j, m)=0. An analogous argument yields to (J)

"1, m)=0 When a vector is null, its norm is equal to zero, that is
)

2 i .
= {7, i'n||:.f+}“+] {.I_}l”_] j,m) =0,

2

‘ [.L}p_] J,mi| = {J, i'n||:.f_}p_] I::.j_:l'lj+L|_j. m) = 0. (3.47)

It is convenient to rewrite these equations as:

(1., m|{j_]”+l{.f_]”+l|_,l'. m) = (3, m|{j_]”[.f+j_][.f_}”Lf'. m) =0,

(7. i'n|[.f_}p_] {.f_jl!1+l|_j. m) = (7, m|{.f_]“{.f_.j_)(.f.,.jl“ 7,m) = 0.

(3.48)
We find,

Self - Learning
94 Material



{a|J J_|la}y = (a|J? — J2 + hJ.|a)
= [4(F + 1) — (m — g)(mm — g — 1} E*{a]a)
=0,

(Bl J_J, |8y = (B|J* — T — h.J.|3)

= [4(F + 1) — (m + p)(m + p + 1) K> (3|3}

= 1,
(3.49)
Where we have used the shorthand notation,
a) = ()%, m). 8) = (J. )5, m).
W= (L lhim. =@ lm

Equations (3.49) imply that:
i+ =(m=-g)m-—g-1)=(+m=-g)(j-m+q+1) =0,

ji+1)—(m+p)m+p+1)=(-—m-p)(j+m+p+1)=0.

(3.50)
The solution of these two algebraic equations is:
m=q-7, or m=j+(g+1) > 7,
m=j—np, or m=—j—(p+1) < —j. (3.51)

According to the condition (3.50), the only acceptable solutions are:

m=q -7 — m—qg=—j,
m=3j—p — m+p=j. (3.52)

Clearly, these two equalities are satisfied simultaneously only if

|
q _}. = ,i‘ L — j: % (3.53)

Therefore, j is equal to a positive or zero integers (by hypothesis q and

p are non-negative integers) divided by 2:

3

_ 1
¥ = (. E 1. 2 (3.54)

Angular Momentum and
Spin

NOTES

Self - Learning
Material 95



g;i“’“’ Momentum and Equations (3.52) imply that ifj is an integer, all m values are
integers; if j is a half-integer, all m values are half-integers. The
allowed values of m for a given j are therefore:

NOTES —“=m-qm-q+1,...,m+p—1,m+p=j, (3.55)
That is,
m=-7, —31+1, ..., 7—=1, 7.

Yo re T3]
27 + 1 values (3.56)

3.3 ORBITAL ANGULAR MOMENTUM AND
THE SPHERICAL HARMONICS

In quantum mechanics, we can easily understand the concept of orbital
angular momentum if we already have an idea about the angular momentum
in ‘Classical Mechanics’. So in classical aspect, ‘Angular Momentum’ is
the rotational equivalent of linear momentum, thus used in systems involving
rotational motion. We can denote it by the letter L in the general cases.

In the quantum mechanics, there is an analogous representation for it,
which is the ‘Orbital Angular Momentum’. The key difference lies in the
fact that in quantum mechanics, we use operator representation for physical
quantities and this leads to the following:

In Classical: L=r X p
In Quantum: = L=f* X P

vields . _

So the quantization of L=rxp =% x (—f;—;V) (3.57)

In quantum mechanics, we have our orbital angular momentum as

represented by L= (L,.L,.L,) (in Cartesian coordinates). From Equation
(3.57), we get:

Since, B, = -in- 2
- Px 2m dx
.~ _ -h 9
y 2w dy
" .h 2
2=
2w 9z

T . h
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The commutator operation of the Orbital Angular Momentum can be Angular Momenfumst"{d
calculated, and the same can be written as follows: i

h —

[L.L,]=i—L,

211'

IR NOTES

—— . h ——
[LZL.\"]ZIE Ly

Now, after that we proceed to the spherical harmonics are defined as
the Eigen functions of the operator of the orbital angular momentum.
They play a really important role in ‘Quantum Mechanics’ and play a central
role in the theory of orbital angular momentum. They are used in many
problems but most importantly, spherical harmonics are used in the hydrogen
atom problem.

Now since the phenomenon of the rotation is done by the angular
momentum, when we perform rotation about x axis and y axis in one order
and then again we perform rotation in reverse order, we do not get the same
result.

From the concept of vector spaces, we already know if we get same
results after reversing the order then it would be a commutative or Abelian
group. But since they are not giving the same result, so they are Non Abelian,
1.e., in quantum mechanics, orbital angular momentum is a non- commutative
group or a non-Abelian group.

Therefore, after calculating the commutator bracket of the angular
momentum, we find that it does not come out to be zero. This can be
represented as follows. For that we need the Laplacian operator in spherical
coordinates and can further proceed. With respect to the spherical coordinates,
the Laplacian operator is written as:

a2
251n28 (d(bz)

VZ___( 2 d)

Zar 2sm@ 68(31119 _)

The mathematical form for the spherical harmonics can be understood
by solving the quantum mechanical operations in spherical coordinates which
lead us to our next topic.

3.3.1 Spectrum of L? and L

In the previous topic, we already defined the orbital angular momentum
as L. We dealt with the orbital angular momentum in Cartesian coordinates
but mostly it is more convenient to work in spherical coordinates rather than
in the Cartesian coordinates.

Spherical coordinates, we know, are r, 6 and @. Also:

x =1 sin 0 cos @ (3.58)
y =1 sin 0 sin ® (3.59)
z=rcosH (3.60)
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So, =/ (x2 + y2 + z%) ,6=cos ' ——u— @= tan_l% (3.61)

V2 tyitz?)y
Now, we already know that:

Tyl 2
LZ_ 1211' (Xay yax )

(3.62)

So putting the expressions from Equartions (3.58),(3.59),(3.60) and
(3.61) in (3.62), we get:

— . h . . . d  cosfsin® d  cos® 4 . .
L,=—i ;[r sinfcos®@ (simfsin@————+———) - r sinfsind®

ar r 38 rsinb dd
. d  cosBcos® d sind I
O—— —
(SH]BCOS ar r 26 rsind afb)] (363)

After solving (3.63), we are left with:

L= —i:—r(cossz + sin?®) %

2730 (3.64)

Now, similarly solving for and, we get:

— . h . d cosd 9
L Gl e 3 (3.65)
— . h . 0 sin® 9
Ly— 1; (—cosm£) (3 66)
Calculating 2= I,"+T,"+T," (3.67)
72_  hp. 02 1 9 1 0%
We get, L '(27:) (aaz "tan® a0  sin26 ad>2) (3.68)
Also, T A:f_] iw 9 L i 3.69
Ly Lxﬂl'y Me (ae tanf arb) ( )
A Y L Y A
L Lx lLy 27re ( 20 tanf BCID) (370)

For eigenvalues equation, we have:

I, m>=1 (1+1) |, m> 1=0, 1, 2... (3.71)
And, ,Lm>m(|Lm> m=L1-1+1...1-1,1 (3.72)
So, from Equations (3.68) and (3.64) we have,

h 62 1 d 1 aZ . h
-(_1)2(332 I tanB 26 } sinzew) .l‘bim(r‘ 0, (D) - l(l_‘—l)(g)z lp:‘.m(l‘v 0, @)

2w
(3.73)
. h @ h
_IEE lpf_m(l‘., 0, ®)=m (E) lpblm(l‘* 0, D) (3.74)

Thus, the spectra of L? and I, has been discussed with the help of the
spherical coordinates which again proved the importance of writing the orbital
angular momentum equations in spherical coordinates. The calculations
made above will be used in deriving further the Definition Construction of
Spherical Harmonics.



3.3.2 Definition Construction of Spherical Harmonics

As per previous knowledge, we know that the spherical harmonics
are the eigenfunctions of the operator of orbital angular momentum.
eigenfunction of angular momentum allows us to describe the states that
correspond to the fixed quantized eigenvalues of the angular momentum. So
to find out those eigenfunctions, we will proceed as follows:

(3.73) and (3.74) gives us the eigenvalues equations for L and I, in
spherical coordinates. One important thing to note here is that the operators in
both of these equations only depend on the angles 6 and ® but don’t depend
on 1, so we can have a separable trial solution for .

Therefore, 1, (r, 6. @)= f(1)Y;""(6. ) (3.75)
Putting (3.75) in (3.73), we get:

1 4 1

(_) ( 382 tanb 06 sin20 afD2) f(1)}’}m(8 (D) B l(l+l)(_ : f(l)}/}m(e’ @)

The f(r) term cancels from both sides, we can rewrite the above equation

as:
d m e
(_) (882 tan0 a0 | sin20 afD2) Y“ 6. @)= l(l+l)( )2 Y (8 )
(3.76)
Similarly, for L,. we write:
—iz—ﬁygn(e (D)—m( )Y’”(B d) (3.77)

So we have to figure out the (8, @) of these two Equations (3.76) and
(3.77) and further we are going to get something which is known as Spherical
Harmonics.

In (3.77), we saw that the dependence is only on ® which means that
we can separate the eigenfunction Y;"* (6, @) as :

Y,"™(8, @)= A;"(6) B/" (D) (3.78)
Now using (3.78) in (3.77), we get:

—i=== A7'(8) B"(®)=m (;-)A7" () BJ" ()

Cancelling (0) from both sides due to the non dependence on 0, we get
the final expression as:

— B (®)=1mB;" (D)

Solving this first order differential solution, we get:

B[*(®)=Fe'™?® (3.79)
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So, V™(6, @)= AT*(6) e™® (3.80)

The value of A7*(0) can be calculated by the use of ladder operators
as mentioned in Equations (3.69) and (3.70).

Putting m=1 in A7*(0) and then using the operator (3.69) on A]*(0),
after solving we get that:

Al(®)=c,(sinb)"
So, (3.24) can be rewritten as:
YII(B, (I)): C[(Si]‘le)l eﬁ'd) (381)

Now the normalization constant, after a long and exhausting calculation,
we get:

_ (Db i+
T am
I _ =D |@HED! L A D
Therefore, Y1 (8. ®) == o (sin6)" ¢’ (3.82)

This is the eigenfunction ¥;"(0, @) for 1 = m. For the rest of the
eigenfunctions we can use operator in (3.70) and can get the eigenfunctions
y/1(6, @), ¥/ (6, @) and so on.

After calculating these, we can get the eigenfunction y;"(6, @) of the
orbital angular momentum operators L? and L, as:

m _ D leunim)! e I . -
VO ©) = Ty € IO e (sind) (3.83)

These eigenfunctions are called spherical harmonics.

Some of the spherical harmonics are written as follows, we can also
calculate to find out the spherical harmonics using Equation (3.83) too.

For I=0 and m=0 we have: Y (6, ®)= \/g

For I=1, m=-1,0,1 we have: Y;"%(8, ®)= \/BE e~ ® sinb
T

Y, (e. fD)ZECOSG
Y16, ®)=— \/é e'® sinf

And we can similarly find out the spherical harmonics for 1=2, 3 and
SO on.



Check Your Progress

. State the eigenvalue of angular momentum.

. When two different eigenvectors associated with the same eigenvalue?
. Give the solutions of the algebraic equation.

. What is angular momentum in classical aspects?

. Define the spherical harmonics.

. Write a short note on spectra of [2 and L, .

~N N L bW N~

. What do you understand the eigen function of angular momentum?

34 ANGULAR MOMENTUM AND
ROTATION OPERATOR

We are already done defining the orbital angular momentum in spherical
polar coordinates and it is found out that we are left with functions, purely
of angular variables namely 0 and ©.

The commutation relation LxL=1 (:I—W) L which implies that L. does not
commute with itself.

Also, [I? Lyy2]=0 which implies that there are simultaneous
eigenfunction of and any component of L.

Angular momentum operators depend only on angular coordinates so
any radial component f(r) will commute with L.

In general, any isolated system is taken invariant under
rotation. Let Oz be the rotation operator. After operating on s,
let us say the y will become , i.e. Oz ¥ =¥’

</ >=<Ox Y0 y>=<[0r Oz |h>=<YIY > (gince
rotation operator is unitary)

Rotation Operator represents rotation of coordinate system.

f

y v
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Spin So, here Og Y(x, y) = Y(x', ¥')
Here, x” = xcos(AfQ)+ysin(Af)
NOTES y’ = -xsin(Af)+ycos(AF)
For the small anglef, we get:
X’ =x+yAf
y’ = -xAfG+y
Therefore, 0y (X, y) = Y(x+ A, -xAB+y)
=Y(x,y) +yAl % - xAd %

From (3.58), 5 and— and can be written in the forms of momentum
as follows:

Or X, Y)= (X V) + APz — XPy)

Since, L,= (Yﬁx - xﬁy)
1AI9LZ

Op P(x.y)=(1 - ) Y,

Therefore,

21'[

lAGL

Or=(1-—2) (3.84)

27
This is the Rotation Operator for small angle AB.

The operator for rotation through angle 0 further given by:

ro="2
N

We have to apply Equation (3.84) N times to get operator for rotation
through angle 0:

N
G2 6) - lim ((1 I(G/NJLZ))

-eL,

h
Which gives, 0, (6)= e(z”j (3.85)
This is rotation about z axis through angle 6.
So, we saw the importance of Angular Momentum Operators in defining
the Rotation Operators.
One important rotation operator is the rotation about an axis, which
is given by:
—i6Ly
—— h
OR(B) =e =27 (3-86)
S Learmi In the next section, we will discuss about the rotational
elf - Learning . . .
102 Material invariance and the conservation of angular momentum.




3.4.1 Rotational Invariance and Conservation of
Angular Momentum

In general, any isolated system is taken invariant under rotation. Rotational
invariance can be proved by the commutator relation of the rotational operator
and the Hamiltonian of the system which is further given by:

[05. H] = (to find)
Suppose, for an arbitrary operator, g, A = A’
Then,

rnoar r - T = .
<YA|Y' >=<y[0g AOg |Y>=<YlA|Y>

Since expectation value remains invariant, as from Equation (3.83),
therefore,

0n A" Op= A
—t
Or, 0. A Op= A’
If A=H
Then. H = 0z H '[')::}Jr =H
Which gives, Or H=HO0z
Therefore, [0 .H]=0

(3.87)

Also, If a system is invariant under rotation, then
[0z . H]=0

And since angular momentum is the generator for infinitesimal rotations
and rotation by an angle, therefore it follows:

[L,H]=0and [L% H]=0 (3.88)

Thus rotational invariance is proved.
Now,

Conservation laws in quantum mechanics tell us that if a quantity does
not explicitly depend on time and it commutes with H, then it is a conserved
quantity.

And here, The Angular Momentum does not explicitly depend on time
and from Equation (3.88) it is clear that the angular momentum commutes
with H and therefore the conservation of Angular Momentum is proved.

3.4.2 Rotational Degeneracy

In this section, we will discuss about the degeneracy in rotating systems in
quantum mechanics. We already know that the angular momentum operators
are used in defining the rotation operators, thus representing rotating systems.
Now using the orbital angular momentum, the spherical harmonics have been
discussed which plays an important role in hydrogen atom. It has been noticed
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that there is degeneracy of energy associated with the hydrogen atom which
can be explained by discussing the angular momentum operators and their
degeneracy. We dealt with the orbital angular momentum and then with the
important idea of spin angular momentum in quantum systems.

So, for discussing rotational degeneracy, we will take the example
of hydrogen atom as its spherical harmonics are derived from the angular
momentum operators which are the operators for the rotation phenomenon
in quantum mechanics.

There are two types of degeneracy in Hydrogen Atom: ‘Without Spin’
and ‘With Spin’.
For discussing the case of degeneracy (without spin) case of hydrogen atom:

The total quantum number n takes only non-zero values i.e. n =
1,2,3,4... For a given n, the quantum number | can vary from 0 to n-1, and
for each ‘I’, the value of ‘m’ can take the (21+1) values since m can vary from
—1,-1+1,....I-1,1 as we know from Equations (3.71) and (3.72), so the rotational
degeneracy is (21+1) in this case, and the degeneracy of the state n which
is specified by the total no. of different states associated with n is given by:

gn = X5 (2l+ 1) =n? (3.89)
When we consider degeneracy with spin then:

We know that the state of the hydrogen atom is denoted by the three
quantum numbers n, 1 and m which are called the single particle states.
According to the spectroscopic notation, we get that the states corresponding
to the numerical values 1=0,1,2,3.4,5.... are called the s,p,d,f,g,h,... states.

For 1= 0, we have s;
For1=1, we have p;
For 1= 2, we have d;
For 1 =3, we have fand so on.

And the letters s, p, d, f refers to the sharp, principle, diffuse and
fundamental levels respectively.

Therefore, for a given or fixed n,
We have: s state with 1 orbital i.e. |n,0,0>
p state with 3 orbitals |n,1,m> with m=-1, 0, 1
d state with 5 orbitals [n,2,m> with m=-2,-1,0,1,2
Therefore, after including the spin, the degeneracy of the energy level
of the hydrogen becomes:
gn = 23521+ 1) =2n? (3.90)
The inclusion of spin results in doubly degenerate levels.

For example, the ground state of the atom becomes doubly degenerate

for the same energy value with wave functions y/(r) _ and /(r) | which
corresponds to the same energy value and thus called doubly cfg:g?enerate
ground state when the spin is included.

Also, the first state becomes eight fold degenerate as n =2 which gives

gn = 8.
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3.5 ELECTRON SPIN AND SPIN 1/2 Spin

In quantum mechanics, there is an analogous quantity of the classical spin. In classical
aspect, spin S=I w is associated with the motion about the centre of mass of the NOTES
rigid object whereas in quantum mechanics, especially when we talk about the
electron spin, added together to the orbital angular momentum which is linked
with the motion of the electron that is around the nucleus, the electron has another
type of angular momentum which does nothing with the motion in space but it is
analogous to the classical spin but electron is without any structure and a point
particle, so we say that electron has intrinsic angular momentum (S) and extrinsic
angular momentum (L).

The algebra of spin is the carbon copy of that of the orbital angular momentum
and is given by:

[S..S, ]=i552 (3.91)
~ ~_ . h $
[S,.8. 1515 9 (3.92)
~ ~_ . h =
[S..8,1H5 S, (3.93)
Also the eigenvectors of g2 and S_ are given by:
]’l 2
S2 s, m>=s (s+l)(g) s, m> ,s=0, %, 1, 3/2 (3.94)
~ h
S_ |s, m>=m (E) |s, m> , m=-s,-s+1...s-1,s (3.95)
h
And, S, |s, m>=(g)\/s(s+l)—m(mil) s, (m+1)> (3.96)
Where, S,= 8, +iS,

Here one thing to note is that the eigenvectors are not the spherical harmonics
and s are allowed with the halfinteger spins.

Every particle has its own value of's, for pi meson the value of s is 0 and
here the particle of concern is electron, and the spin of the electronis s=1/2, i.e.,
electron is a spin-half particle.

Once we understand the algebra of spin-half particles, dealing with the higher
spins become easier. For spin half particles, we have only two eigenstates, i.e.,

11
spin up eigenstate which is written as | 25 > and another one is the spin down
1 -1

eigenstate i.e., | 2 > since s is fixed and its value for electron is %2 and for m,
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! na’_1
= —Ad _—
we getm 5 5

Solving further will get us our next important topic in the domain of quantum
mechanics, famously known as the Pauli Matrices.

Spin 1/2

In quantum mechanics, spin is an intrinsic property of all ‘Elementary Particles’.
All known fermions, the particles that constitute ordinary matter, have a spin of 1/
2. The spin number describes how many symmetrical facets a particle has in one
full rotation; a spin of 2 it means that the particle must be rotated by two full turns
(through 720°) before it has the same configuration as when it started. Particles
having net spin 1/2 include the proton, neutron, electron, neutrino, and quarks.
The dynamics of spin- objects cannot be accurately described using classical
physics; they are among the simplest systems which require quantum mechanics to
describe them. As such, the study ofthe behaviour of spin-1/2 systems forms a
central part of quantum mechanics.

General Properties

Spin-1/2 objects are all fermions (a fact explained by the spin—statistics theorem)
and satisfy the Pauli exclusion principle. Spin- particles can have a permanent
magnetic moment along the direction oftheir spin, and this magnetic moment gives
rise to electromagnetic interactions that depend on the spin. One such effect that
was important in the discovery of spin is the Zeeman effect, the splitting of a
spectral line into several components in the presence of a static magnetic field.
Unlike in more complicated quantum mechanical systems, the spin ofa spin-1/2
particle can be expressed as a linear combination of just two eigenstates, or
eigenspinors. These are traditionally labeled spin up and spin down. Because of
this, the quantum-mechanical spin operators can be represented as simple 2 x 2
matrices. These matrices are called the Pauli matrices. Creation and annihilation
operators can be constructed for spin-1/2 objects; these obey the same
commutation relations as other angular momentum operators.

Mathematical Description: A spin-1/2 particle is characterized by an angular
momentum quantum number for spin s of 1/2. In solutions of the Schrodinger
equation, angular momentum is quantized according to this number, so that total
spins angular momentum

; 171 , 1y V3
5=1I||".1‘('_;|‘"| l}ﬁ_lE— A

However, the observed fine structure when the electron is observed along
one axis, such as the z-axis, is quantized in terms of a magnetic quantum number,
which can be viewed as a quantization of a vector component of'this total angular
momentum, which can have only the values of£1/2 . Note that these values for
angular momentum are functions only ofthe reduced Planck constant (the angular
momentum of any photon), with no dependence on mass or charge.



3.5.1 Pauli Matrices

After getting the two eigenfunctions, namely spin up and spin down, the general
state of the spin /2 particle can be written as a two element column matrix also
called the spin or as follows:

q
X:(rj =qX, trX_

1
Where, X, = (Oj

This is the spin up operator.

0
And, X_= 1

This is the spin down operator.
Now, we are getting a 2x2 matrix, which we can work it out by taking a

note of their operationon X, and X _ and from Equation (3.94) we get:

. 3(hY

S*X, = Z(EJ X, (3.97)
. 3(hY

And, S°X_= Z(EJ X_ (3.98)

Let us write §2 interms ofa matrix, we get:

X c d
$ e r

From Equations (3.97) and (3.98), we get:
c d\(1 3( h jz 1
e f)\0) alon)\o0
i)
c 2 L
OI', ( j — 4\ 21

0
Also, we get:
(c dj(o 3(h V(0
e Fl1 ZZ(EJ 1
0

(1))
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O, finally the result that we get is:

3( Y (1 0
A2=_ -
S 4l2x) (0 1 (3:99)
1( h
mi - —|—|X
Similarly, S.X, 2(275) .
1( h
- | —|X
and, S X_ 2(275) -

Solving this, we get:

1(11 1 0
S.=5 g) 0 —1 (3.100)

From (3.99), we get that:

h
= |x
S.X_ (m) .

h
And, §_X, = (—) X
2

ie,S,X, =85X =0

h(0 1 h (0 0
Therefore, Si=5710 o and S =521 o

Also, §,= S *i§,

1
So, § = §(S++ S))

1
AIld, Sy: E(S+' Sy)

Therefore,
1 h) 0 1
Sx:E(Zn 1 0 (3.101)
1 h) 0 —i
And, Sy=5(2n P (3.102)
Let us denote
1 h
=— (—)O
2 (27r)



0 1 0 —i 1 0
Therefore, o, =| | ], ©, = i o) % 7lo .

These 6., 6, and o, are famously known as the Pauli Spin Matrices.

3.5.2 Observable and Wave Function Of Spin
Particles

We can describe the quantum state of a spin 'z particles by a two-component

vector which is complex-value and is called a spinor. The spin operators S, S,

and S_are used to find the observable states of the particle and S is considered as
the total spin operator.

The Observables are: We already know that when spinors are used to describe
the quantum states, the three spin operators (S, S, S ,) isdescribed by the 2 x 2

I{h

matrices called the Pauli matrices whose eigenvalues are + B (E) .

For example, we have the spin projection operator S . It is responsible
for altering the measurement of the spin in the z direction.

sa(2)s )

I{h
We know that + 3 (E) are the two eigenvalues of S , and they give us

the following eigenspinors:

%= o)
(1)

To describe the spinl/2 particle, we get these eigenspinors which forma
complete basis for the Hilbert space. Thus, all of the possible states of the spin
can be represented by the linear combinations of these two states, in which the x-
and y-directions are also included.

Also, the ladder operators are:

sz )0 o
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sz )0 o

We know that:
S, =S + 1 Sy and it results in:

S, =1/2(S,+S.) and S, =(112i)(S_ - S.).

Thus:
1 h (0 1 1 h (0 —i
5.3 Gl o Sy:E(E) i 0

The eigenspinors for these which are also normalized, they are found as
follows.

For S , they are:

()

Thus the observables and the wave functions of the spin 2 particles have
been described as above. The previous Pauli matrices part was already covered
in the previous section which boosted up in this section.

Spin of Field

Spin field may refer to: Spinor field, assignment of a spinor to every point in space,
used in quantummechanics and quantum field theory. A kind of Torsion field, used
in pseudophysics. In differential geometry, given a spin structure on an n-dimensional
orientable Riemannian manifold (M, g), a section of the spinor bundle S is called a
spinor field. A spinor bundle is the complex vector bundle ©: S — M.

Associated to the corresponding principal bundle n:P—>M of'spin frames
over M via the spin representation ofits structure group Spin(n) on the space of
Spinors A .



In particle physics, particles with spin s are described by a 2s-dimensional
spinor field, where s is an integer or a half-integer. Fermions are described by
spinor field, while bosons by tensor field.

Formal Definition

Let (P, F,) be a spin structure on a Riemannian manifold (M, g) that is, an equivariant
lift of the oriented orthonormal frame bundle F, (M) — M withrespect to the
double covering p: Spin(rn) — SO(n),.

One usually defines the spinor bundle 7t : S — M to be the complex vector
bundle

S=P x. A,

3.5.3 Vector Fields and Particles of Spin 1

To find the nature of'the spin property as we do for the mass and the charge also
describing, how it interacts with the other forces and particles in the universe,
experiments have been performed. And we found out that the spin behaves weirdly
too when taken into consideration.

For one, the value of the same type ofthe particle’s spin is fixed. By definition,
electrons have a spin equal to 1/2. Other particles may have the spins 0f3/2, 2, 0
or even 1. Also the value of a particle’s spin decides the directions of the spin
which we can measure actually.

For example, an electron is a spin half particle and they give the up and
down spins or the deflections in the Stern-Gerlach experiment, and it can only be
measured to have the values -1/2 or +1/2,. A spin 1 particle, such as a photon,
when measured, it results to only have the directions -1, 0, or +1.

The spin 1 particles such as the photon are again related to the vector field
and this topic is of hot discussions among the physicists, that the description of the
spin 1 particles is done by the vector field.

Vector field as we know in vector calculus and physics, a vector field is to
assign a vector to each point in a subset of space. For example, in a plane, a
vector field can be envisioned as a collection of the arrows with a fixed given
magnitude and direction, where each of themis attached to a point in that plane.

3.54 Spin Independent Interaction of an Atom
Earlier when the concept of spin was not known to people, then the interaction of
an atom was studied under the spin independent consideration.
With spin consideration we get the total angular momentum as:
J=L+S

And without the spin consideration, we are left with the orbital angular
momentum which has been discussed in details above; it is generally represented
by the letter L.
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One important rule that we had noticed about the inclusion ofthe spin which
in turn generated the total angular momentum J i.e. when we wrote the eigenvalue
equation of that of the total angular momentum, then the results are as follows:

]’l 2
J2lim==j G D) (g) om0, %, 1,372

~ h
Jz Ij’ m>=m(§) Ija m> 9m=_ja-j+1"‘j_1’j

And, J. i, m>=(£)\/j(j+l)—m(mil) lj, (m£1)>

Where, J.=J, £iJ,

Here, the eigenvalue equation of J? has j in its eigenvalue equation which
takes the values of half integrals due to the consideration of the spin but if the spin
is not included, the after considering the orbital angular momentum, we get the
eigenvalue equation of the L*as follows:

]’l 2
Al m>=1(1+1)(g) Lm> 1=0,1,2,...

h
LI m>=m(g) |1, m> , m=-1-1+1... -1, 1

h
And, L |l m>=(g)\/l(l+l)—m(mil) I, (me1)>

Where, L=L +ilL,

Here, we noticed that the | included in the eigenvalue equation of L? takes
only the integral value because it’s a spin independent consideration which has
been taken into the account here.

This makes us ponder more about the difference that spin can create while
dealing with the atomic systems further.

3.6 ADDITION OF ANGULAR MOMENTA

Let us suppose there is a system of two spin 1/2 particles, for example: electron
and proton. Each one of them can have a spin up or a spin down state, so we
come up with four different possibilities, i.e.:

LT 1T, W

Here, the first arrow is for electron and the second is for the proton. So we
have to find the total angular momentum of'the system and for that we use the
concept of the addition of the angular momentum which is as follows:

S= g0 4 g



Angular Momentum and

Here, each one of the four states is the composite state is an eigenstate of o
pin

S and now adding the z components which simply adds, gives us:

S.X.X,=(8U+ 59y x.x, =(sY x)Xx, +X, (SPX,)  (3.103)
NOTES

h h
=((5,)mX) Xt X, (5,)mX)

h
(E)(ml_i'mz) Xle

We saw that m=m, +m, ie.:
4T :m=0
T :m=0
™ :m=1
Jl im=-1

Now after applying the lowering operator, we can proceed as follows:

S_=85W+ §@ to the state 71 and then using the (3.103), we get:

STy =(sV 1)1 +T (s 1)
h h

h
= -1+ 1)

We are having the notation |s, m>, and the evident states for s=1 is the three
states as follows:

11, 0>=17

1
1L1>= 5 (1)
|1"1>= \L\L

So we get a triplet for the spin s=1 and it is known as the triplet because we
got three states for s=1.

Ifwe do the same for s=0, we get a singlet i.e. a single state which is given
as follows:

Since for s=0, we get m=0 and thus the state is given by:

1
0.0>= "5 (TL-41).
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This is singlet for s=0. If we apply lowering or raising operator to this state,
we will get zero in this case.

So, in other words we can say that the combination of the two spin 2
particles can carry in total a spin of 0 or 1 and it depends on whether they occupy
the singlet or the triplet in configuration.

To confirm this, we have to show that the eigenvalue of the triplet state is

h 2
2 (a) and the triplet states are the eigenvectors of §2. Also, the singlet is the

eigenvector of §2 with the eigenvalue 0. Now,

g2 = (S(1)+ S(Z)) . ( S(1)+ S(z)) = (S(l))z —|—( S(z))z +2 S(l) S(2)

s0. 5O (MY = (SO Y B Ly+ (U THSP Ly Ty s? L)

1 hY
Similarly, we can get:

h

s0. sAT) = %(g) 2T -1

Which further gives, g. ¢ |1,0>

1(hY 1 1(nY
ZZ(E) —2(2\LT—T¢+2T\L—\LT) ZZ(EJ 11, 0>

1(hY 1
Also, ¢ ¢(|0,0>= Z(g) 3(2 IT-TL 2Tl +1T
_ _é(if
~ il ) 0

11,0 3(h 2+3(hj2+2(hj2 L,0> z(hj210>
>=—— —| — —| — = _—
s* I, ((427r 4\ 2x 4\ 21 )11, 27r|’

So, we showed that |1, 0> is the eigenvector of g§2 with the

h 2
eigenvalue 2 (E) .

3(hY 3(hY (2Y kY
Now, §2(0,0>=((7| 5| *71 5, ) >\ 3 )\ 27 ) 210,0>=0

Therefore, it is evident from the above proofthat the |0, 0> is the eigenstate
ofthe g2 withthe eigenvalue 0.



So, we just saw that the combination of the two spin ' particles can carry
in total a spin of 0 or 1. It was one of the examples but now, if we are given spins

s, and s, and we are said to combine spin s, with s,, then what is the total spins

do we get is given by the following:
S=(s5,+5,), (5,+5,-1), (5,45, 2)... [ 8,7+, |

The highest total spin forms when the individual spins are aligned parallel to
each other and the lowest total spin forms when the individual spins are aligned
anti parallel.

3.6.1 Eigenvectors of Total Angular Momentum

Firstly, we define the total angular momentum. The total angular momentum
J=(,,J,,J)) combines both the spin and orbital angular momentum ofa particle
or system:

J=L+S

The conservation ofthe angular momentum states that for a closed system,
J is conserved, or J is conserved for the whole universe. The
L and S are not generally conserved.

We can define the angular momentum and also generalize it in quantum
mechanics as the observable J (J,, J, J)) which satisfies the following commutation
relations:

[JiJ;] = egritey -
By defining that, now we declare the operator J°=J +J) ’+J7, then using

[JiJs] = egnitedi » We can show, that 172 71=[72 7,1=[J2 7] =0 This is
often expressed as [ﬂ,.}] =0 .

Now we have to find the simultaneous eigenstates of the J* and .J_operators
or J? and J, operators or J? and J_ operators but we cannot find that of J2, J , ],
and Jy since we already know that J , J , and Jy do not commute.

To find the simultaneous eigenstates of the operators J and J , we are going
to define the eigenstates with their respective eigenvalues. We know that the

hY h
A (E) is the set of the eigenvalues of operator J* and the (mg) is the set of

the eigenvalues of the operator J . Let us label the eigenstates by [k, A, m>. We
have:

Pl A, m >= A2, A,m >, Tl A, m >=mhlk A, m >

J*and J in general don’t constitute a complete set of commuting observables,
i.e. the eigenvalues of J> and Jdo not completely specify the state. For example,
for a particle without spin in a central potential H, L* and L makes a CSCO
i.e. complete set of commuting operators only if we specify the eigenvalues
of H, L* and L_are the eigenstates which are no longer degenerate. In order to
distinguish between the degenerate eigenvectors having the same A and m, the k
is used by us above.
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The eigenvalues of J? are >=0.

Let | ¥ > be an eigenstate of J2.

<Yy >=| [y > >=0

< P = AR <l >

But we also know that:
Pl =il >+ <ublw o+ <uElw d = Waiw 2+ Wk I + el 2 [P 2 0

Therefore, it is obvious that 12 = . Wewrite d = j(f + 1}, withj= 0 and
so we showed the eigenstates of J> and J_by [k, j, m>. So now we have:

Pl gom 2=+ Dl g,m >, Tl g, m >=mblkj,m > .

h
Also, the eigenvalues of J_are (mg ) with—jd” md”;j.

Letus now introduce the operators 7, = 7, +47, and J- = J, — i1, . These
operators commute with J°, but they do not commute with the J_and also with
each other.

(I = 0] =0, [feds]=als [dade]=ffs [Jwli]=20
After the multiplication, we find the products as follows:

JoJ-= B+ bd, =R - 4nd,, JJe=B+IR-b, =P -JE- ),
and

2= LT+ T T+ T2

Also, the norm of the vectors J iz » atd J_|kia >is >0,

Therefore,

el jomm = |1 =<k, g, mlTETulk jom =<k jm |- Jul fm = =0, and
=, f, a2 | |2 =< ke, sl FEF-|E, e 2= ke, | P e o > 2 0.
But we also do have:

Chegoml-Taflem >=C k% = J2 = e g, m o=l + 1042 - m2i2 - 2
And

ChgomP T o =Lk P =GR A RIS m o=+ 1R - mt R Rt
Therefore we have

it —mim+ 1120 or (j-wmijtm+1)20 o —(j+l)j=ms]
And

D —mlm—-1120 or (j+adi-m+1) =0 or —j=Zm=ji+1.
To simultaneously satisfy both conditions we need =/ = 7 =7,

If m=-j then J |k, j,->=0.

Wb > 112 =52 (15 + 1) =l = 1)), Wi > |2 =22 (it + 1) +i(~- 1)) = 0

When we find out the norm of a null vector, we get only zero as a result
every time.



If## —i then |7_|k. 7. m = | 20 and J_|k, 7, = > is anon-zero vector.
FoT e, wm o= T-Jk j,m o=+ DR > J-|k jm >
Is an eigenvector of J* with eigenvalue i+ 132 .

Jed_lk o o= J_Jelejom o =R o fom o= (m— DRI o fm > J b jm >

Is eigenvector of J with eigenvalue (m-13% . So, then
J e gom ze g (m =17 =

If m=j then J |k, j,->=0.

Wb > |2 =82{i+ 1) =t + 1)) Woeid > P =225+ 1y i+ 1)) =0

So as we find out the norm of a null vector, we get only zero as a result
every time.

Ifme = then||Filk m > ||* # 0 and 7. |& 7 m =is anon-zero vector.

JT e o o= TePie jom o=l + VWAl m >, Jalkjm »18 an
eigenvector of J* with eigenvalue j; + 1342 .

Tedobe o o= T 0ol g om > +hd Yo jomm o= (m + VT g > T g > 18
an eigenvector of ] with eigenvalue (m + 134 . S0, 7, |k 5. m 2= |k 7 (m+1) =

The eigenvalues of J* are j{;+ 1j%2 , where j is a non-negative integer
divided by 2.

After we considered the |k, j, m> as a non-zero eigenvector
of Pand J . j |k jm »= ki (m—1)=> then
SRV, 7 e 1L (i =) 2 i £ i A
If g3y —pp = —jbut sy —p — 1 < —jthen

J_ |k, j, m = p >This has to be zero, since an eigenstate with the value
of m = (m-p-1) <-j is not allowed, except of cases:

J_lkj,m - p > isonlyzero if m-p =-j.

Similarly, FAkimelhimtg)> if m+gs;
Ifm+g=jbut®+d+1>then

Julk. j.m + ¢ > Must then be zero, since an eigenstate with m’ =m-+q+1 >

jisnotallowed. But J+ |k, i, m +¢ > isonlyzero if m+q=j. We therefore have m
+q-m+p=2jand j= (q tp)/2;

Where j is a non-negative integer divided by two.

The conclusion that can be drawn from the above discussion is that let us
assume that J be an arbitrary angular momentum operator, obeying the commutation

relations [/J;] = egriftli . If 77+ 1)32* defines the eigenvalues of the operator

h
J?>and mo— defines the eigenvalues of the operator J , after that:

The non-negative half integers are the only possible values for the j and they
I3
are (D, T l.j, 2, :I .
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For the fixed j, the only possible values of the m will be the (2j+1)
(=i, =i+ 1,=j+ 2, *+j= 1, 1), where m will be an integer whenever the j will be
an integer, and m will be a half integer whenever the j be ofhalf integral value.

3.6.2 Clebsch Gordan Coefficients

Firstly, we will define it. In the quantum mechanics, the Clebsch—
Gordan (CG) coefficients are those numbers that comes to the notice when we
talk about coupling of the angular momentum. They appear to us as the expansion
coefficients of the total angular momentum eigenstates in an uncoupled basis of
tensor product. More in the terms of being mathematical, the CG coefficients are
extensively used in compact Lie groups, to be able to do the explicit direct
sum decomposition ofthe multiplication of tensors, i.e., tensor product of the two
representations which cannot be reduced. This name found its origin from those of
the German mathematicians whose names are Alfred Clebsch and Paul Gordan.

So, we already studied that the combinations of the two spin %% particles
can carry in total a spin of O or 1. Also, if we are given spins and and we are said
to combine spin with, then the total spins that we get, is given by the following:

S=(s+5,),(s+s,-1),(s,+s,-2)... |s+s, |

We also know that the highest total spin forms when the individual spins are
aligned parallel to each other and the lowest total spin forms when the individual
spins(of'the electron and the proton) are aligned anti parallel. If we take an example,
if we put together a particle of spin 2 with a particle of spin 3/2, then we will get a
total spin of 5/2, 7/2, 1/2 or 3/2 depending on the configuration. Now, if we take
the example of hydrogen atom, suppose it is in the state, then the net angular
momentum is I+1/2 or I-1/2, if we also consider the spin of the proton, then the
total quantum number of the angular momentum ofthe atom is I+1 or I-1

So, ifwe combine the state, the combined state will be |s, m> with the total
spin as s and the z-component will be m and they will be the linear combination of
the state [s1, m1>[s2, m2>:

Therefore, the combined state is written as:

sls2s
|S, m>= 2 lemZm |Sl ml> |52 m2>

ml+m2=m

sls2s

Here, the constants (" are known as the Clebsch-Gordan Coefficients.

mlm2m

1 J3 1
= 7= >+ = + 7= |2.- i
13, 0> NG 12, 1>1, -1> NG 12, 0>[1, 0> NG 12,-1>|1, 1> is also
another example for the illustration of the Clebsch-Gordan coefficients.

3.6.3 Two Nucleon System and the Application to the
Two Nucleon System

Protons and neutrons are said to be the bound states of the lowest energy of the
quarks and the gluons. When we try to put two or more of these protons and



neutrons all together, they interact, scatter and they form the bound states because
of'the strong interactions. [f we want to invest our time in the low-energy region.
This is the place where the nucleons generally do not get excited internally, we can
say that those nucleons are inert, structure less fundamental particles, and by studying
the nucleon-nucleon interactions we can realize many of'the properties of the multi-
nucleon systems. The interaction of the non-relativistic nucleons can be described
with the help of a potential. QCD is the fundamental theory which describes the
interaction of nucleon-nucleon. The interactions can be calculated from the physics
ofthat of quarks and gluons. Nonetheless, this problem is not easy to deal with
and less amount of progress is done from the 1st principles so far. Therefore, we
are going to take the pretty good approach which is as follows: Firstly, we have to
extract the interaction of the nucleon-nucleon from scattering data of the nucleon-
nucleon or some of the properties of the nucleon, and after that we will try to make
the predictions further for the nuclear many-body system by making the use of
these interactions. In order to proceed in the discussions of the nuclear forces
firstly we have to make a point of all the differences between the electrons in the
atoms and the nucleons in the nuclei.

The deuteron properties, neutron-proton and the proton-proton scattering
can be studied to know about the two nucleon system which can further be studied
for the many body systems too:

The deuteron:
Properties:
Constituents 1 proton 1 neutron
Mass 2.014732 u
Binding energy 2.224589 +/- 0.000002 MeV
Angular momentum 1 (h-bar)
Magnetic moment 0.85741 +/- 0.00002 nuclear magnetons

Electric quadruple moment ~ +2.88 x 10 barn
RMS separation 4.2 fm

Vir) 2im 4

\ Bound state of

deuterium at
about - 2 MeV

=30
MeV! :
: deuteron
|
Uir) 1 wavelunction
1 .
: /exponential fall
s
sitie-like|
|

42fm T
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The above figure shows us the two nucleon system configuration.

An isospin singlet is an example of the two nucleon system (T = 0) or the triplet
(T=1).
isospin triplet isospin singlet

(combines with parallel normal spin only) (combines with antiparallel

normal spin only)
=1 T=0
T,=1(pp)
T, =0(pn +np) T,=0(pn-np)
T,=-1(nn)

a

Here the red arrows denote the protons and the blue arrows show us the
neutrons and their spin states are indicated by the arrows that are stacked to them.

In the graph below, we have shown a rough sketch of the nucleon-nucleon
potential which shows some kind of'the particles that exchange and which of them
are supposed to take contribution:

vl |

w exchange (m = 783 MeV /o)

quark region
# [3mnl

radiug = 0.3 fin

|
|
|
|
|
[ r
1
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complicated 210 b

fm, = 140 MV /c2)
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8. What do you understand the conservation law in quantum mechanics?
. Define the spin 1/2.

10.
11.
12.

Check Your Progress

What is Pauli matrix?
What do you understand by spin field?
Define the Clebsch—Gordan (CG) coefficients.

3.7

ANSWER TO CHECK YOUR PROGRESS

. The eigenvalues of angular momentum states in quantum mechanics, we

can solve the Hamiltonian and get the allowed energy levels of an object
with angular momentum. The eigenvalues of the angular momentum are the
possible values the angular momentum.

. The two different eigenvectors associated with the same eigenvalue a, which

is incompatible with the hypothesis that is a non-degenerate eigenvalue.

. The solutions ofthe algebraic equation (j—m)(j +m+1) =0 are m=j and m

=—J-1<4.

. Inclassical aspect, ‘Angular Momentum’ is the rotational equivalent of linear

momentum, thus used in systems involving rotational motion. We can denote
it by the letter L in the general cases.

. Spherical harmonics are defined as the Eigen functions of the operator of

the orbital angular momentum. They play a really important role in ‘Quantum
Mechanics’ and play a central role in the theory of orbital angular momentum.
They are used in many problems but most importantly, spherical harmonics
are used in the hydrogen atom problem.

. The spectraof 2 and Z; has been discussed with the help of the spherical

coordinates which again proved the importance of writing the orbital angular
momentum equations in spherical coordinates.

. Eigen function of angular momentum allows us to describe the states that

correspond to the fixed quantized eigenvalues ofthe angular momentum.

. Conservation laws in quantum mechanics tell us that ifa quantity does not

explicitly depend on time and it commutes with H, then it is a conserved
quantity.

. In quantum mechanics, spin is an intrinsic property of all ‘Elementary

Particles’. All known fermions, the particles that constitute ordinary matter,
have a spin of 1/2. The spin number describes how many symmetrical facets
a particle has in one full rotation; a spin of 72 it means that the particle must
be rotated by two full turns (through 720°) before it has the same
configuration as when it started.
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10.

11.

12.

The quantum-mechanical spin operators can be represented assimple 2 x 2
matrices. These matrices are called the Pauli matrices.

Spinfield may refer to: Spinor field, assignment of a spinor to every point in
space, used in quantum mechanics and quantum field theory. A kind of
Torsion field, used in pseudophysics. In differential geometry, given aspin
structure on an n-dimensional orientable Riemannian manifold (M, g), a
section of the spinor bundle Sis called a spinor field. A spinor bundle is
the complex vector bundle ©: S — M.

In the quantum mechanics, the Clebsch—Gordan (CG) coefficients are those
numbers that comes to the notice when we talk about coupling of the angular
momentum. They appear to us as the expansion coefficients of the total
angular momentum eigenstates in an uncoupled basis oftensor product.

3.8

SUMMARY

The eigenvalues of angular momentum states in quantum mechanics, we
can solve the Hamiltonian and get the allowed energy levels of an object
with angular momentum. The eigenvalues of the angular momentum are the
possible values the angular momentum.

The presupposition that the eigenvalue is non-degenerate cannot be valid
for all eigenvalues of the operator A. This means that A has at least one
degenerate eigenvalue.

The language of group theory, the set of the three Hermitian operators ; ,
jyand 7 ,- Since the ;*is compatible with ; , j’yand j.but j j’y

and j _are reciprocally incompatible, we expect the eigenvalue
j (G + 1) h?to be degenerate.

It is important to understand that these are the only possible vectors with
these properties, because the pair (j, m) uniquely identify (up to an irrelevant

multiplicative numerical constant) the eigenvector [j, m ).

® j(j+1) n>andm 3 be the eigenvalues of j?and ; associated with the

eigenvector [j, m )

It is important to understand that these are the only possible vectors with
these properties, because the pair (j, m) uniquely identify (up to an irrelevant

multiplicative numerical constant) the eigenvector [j, m ).

In the quantum mechanics, there is an analogous representation for it, which
is the ‘Orbital Angular Momentum’.

Therefore, after calculating the commutator bracket ofthe angular momentum,
we find that it does not come out to be zero. This can be represented as



follows. For that we need the Laplacian operator in spherical coordinates
and can further proceed.

Angular momentum operators depend only on angular coordinates so any
radial component f{r) will commute with L.

The spherical harmonics have been discussed which plays an important
role in hydrogen atom. It has been noticed that there is degeneracy of energy
associated with the hydrogen atom which can be explained by discussing
the angular momentum operators and their degeneracy.

The hydrogen atom as its spherical harmonics are derived from the angular
momentum operators which are the operators for the rotation phenomenon
in quantum mechanics.

The motion ofthe electron that is around the nucleus, the electron has another
type of angular momentum which does nothing with the motion in space but
it is analogous to the classical spin but electron is without any structure and
a point particle, so we say that electron has intrinsic angular momentum (S)
and extrinsic angular momentum (L.).

Every particle has its own value of's, for pi meson the value of sis 0 and
here the particle of concern is electron, and the spin of the electron is s=1/
2, 1.e., electron is a spin-half particle.

Particles having net spin 1/2 include the proton, neutron, electron, neutrino,
and quarks. The dynamics of spin- objects cannot be accurately described
using classical physics; they are among the simplest systems which require
quantum mechanics to describe them.

Spin-1/2 objects are all fermions (a fact explained by the spin—statistics
theorem) and satisfy the Pauli exclusion principle. Spin- particles can have
a permanent magnetic moment along the direction of'their spin, and this
magnetic moment gives rise to electromagnetic interactions that depend on
the spin.

A spin-1/2 particle is characterized by an angular momentum quantum
number for spins of 1/2.

The value of the same type of the particle’s spin is fixed. By definition,
electrons have a spin equal to 1/2. Other particles may have the spins of 3/
2,2,0o0reven 1. Also the value ofa particle’s spin decides the directions of
the spin which we can measure actually.

Vector field as we know in vector calculus and physics, a vector field is to
assign a vector to each point in a subset of space.

The highest total spin forms when the individual spins are aligned parallel to
each other and the lowest total spin forms when the individual spins(of the
electron and the proton) are aligned anti parallel.
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¢ Protons and neutrons are said to be the bound states of the lowest energy
of'the quarks and the gluons. When we try to put two or more of these
protons and neutrons all together, they interact, scatter and they form the
bound states because of the strong interactions.

3.9 KEY TERMS

e Non-degenerate eigenvalue: The two different eigenvectors associated
with the same eigenvalue a, which is incompatible with the hypothesis that is
anon-degenerate eigenvalue.

e Spherical harmonics: Spherical harmonics are defined as the Eigen
functions of the operator of the orbital angular momentum. They play a
really important role in ‘Quantum Mechanics’ and play a central role in the
theory of orbital angular momentum. They are used in many problems but
most importantly, spherical harmonics are used in the hydrogen atom
problem.

e Spin: The spin number describes how many symmetrical facets a particle
has in one full rotation; a spin of 2 it means that the particle must be rotated
by two full turns (through 720°) before it has the same configuration as
when it started.

¢ Pauli matrices: The quantum-mechanical spin operators can be represented
as simple 2 x 2 matrices. These matrices are called the Pauli matrices.

¢ Clebsch—Gordan (CG) coefficients: In the quantum mechanics, the
Clebsch—Gordan (CG) coefficients are those numbers that comes to the
notice when we talk about coupling of the angular momentum.

3.10 SELF-ASSESMENT QUESTIONS AND
EXCERCISES

Short-Answer Questions
1. What do you understand by eigenvalue of angular momentum?
Give the properties of J*and J .
Define the spherical harmonic in quantum mechanics.
What is electron spin?
Define the spin field.
What is Clebsch—Gordan (CG) coefficients?

7. Give the applications of two nucleon system.

S kv

Long-Answer Questions
1. State and prove the eigenvalue and eigenvector of angular momentum.
2. Illustrate the spectrum of J*and J .

3. Explain in detail about the angular momentum and rotation operator.



4. Discuss about the electron spin and spin 2 with appropriate examples.
5. Analyse the spin independent interaction ofan atom.

6. Describe the spin independent nucleon -nucleon interaction and giving
applications.

3.11 FURTHER READING

Rajasekar, S. and R. Velusamy. 2014. Quantum Mechanics I: The
Fundamentals, 1st Edition. United States: CRC Press.
Dass, HK. 2008. Mathematical Physics. New Delhi: S. Chand.

Mathews, P. M. and K. Venkatesan. 1978. 4 Textbook of Quantum Mechanics.
New Delhi: Tata McGraw-Hill.

Devanathan, V. 2005. Quantum Mechanics. Oxford: Alpha Science International
Ltd.

Schiff, Leonard L. 1968. Quantum Mechanics, 3rd Edition. New York: McGraw
Hill.

Angular Momentum and

Spin
NOTES
Self - Learning
Material 125






UNIT4 SCATTERINGTHEORY

Structure

4.0 Introduction
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4.5 Scattering by a Central Potential
4.6 Partial Wave Analysis and Phase Shift Method
4.7 Impact Parameter
4.8 Relation Between Phase Shift and Logarithmic Derivative
4.8.1 Behaviour Of Phase Shift at Low Energy Scattering By Hard Sphere
4.9 Resonance Scattering
4.10 Scattering by a Deep Square Well
4.11 Dependence Upon Potential
4.12 Sign Of The Phase Shift
4.12.1 Born Approximation
4.13 Effective Range Theory
4.13.1 Bethe Formula
4.14 Scattering: a Wave Packet Approach
4.14.1 Stationary States and Scattering in one Dimension
4.14.2 Resonance Tunnelling and Metastable States
4.15 Integral Representation for Scattering Phase Shifts
4.16 Answers to ‘Check Your Progress’
4.17 Summary
4.18 Key Terms
4.19 Self-Assessment Questions and Exercises
420 Further Reading

4.0 INTRODUCTION

In mathematics and physics, scattering theory is a framework for studying and
understanding the scattering of waves and particles. In physics, the cross section
is a measure of the probability that a specific process will take place when some
kind of radiant excitation intersects a localized phenomenon. Standing wave, also
called stationary wave, combination of two waves moving in opposite directions,
each having the same amplitude and frequency. A wave packet refers to the case
where two (or more) waves exist simultaneously. The centre of mass is a position
defined relative to an object or system of objects.

They are the systems that have a central potential, i.e., a potential energy
that depends only on the distance r from the origin: V (r) =V (r). Partial-wave
analysis, in the context of quantum mechanics, refers to a technique for solving
scattering problems by decomposing each wave into its constituent angular-
momentum components and solving using boundary conditions. With the method
of partial waves the scattering amplitudes are then obtained from the phase shifts
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for spherically symmetric potentials. The impact parameter perpendicular distance
from the original centre ofa set of scattering particles to the original line of motion
of a particle being scattered.

Elastic scattering of a particle by an atomic nucleus at an energy of the
incident particle for which the scattering cross-section is large compared with that
for adjacent values ofthe energy; also called resonant scattering. The finite potential
well (also known as the finite square well) is a concept from quantum mechanics.
It is an extension of the infinite potential well, in which a particle is confined to a
‘Box’, but one which has finite potential ‘Walls’. Metastable state, in physics and
chemistry, particular excited state of an atom, nucleus, or other system that has a
longer lifetime than the ordinary excited states and that generally has a shorter
lifetime than the lowest, often stable, energy state, called the ground state.

Generally in scattering theory and in particular in quantum mechanics, the
Born approximation consists of taking the incident field in place of the total field as
the driving field at each point in the scatterer. Effective range may describe a
distance between two points where one point is subject to an energy release at the
other point. The Bethe formula or Bethe-Bloch formula describes the mean energy
loss per distance travelled of swift charged particles (protons, alpha particles,
atomic ions) traversing matter (or alternatively the stopping power of the material).

In this unit, you will study about the scattering theory, cross section, stationary
wave, wave packet, laboratory system and centre of mass, scattering by central
potential, partial wave analysis and phase shift method, impact parameter, relation
between phase shift and logarithmic derivatives, behaviour of phase shift at low
energies scattering by hard sphere, scattering resonance, scattering by deep square
well, metastable state, integral representation of phase shift, dependence upon
potential, sign of phase shift, Born approximation, effective range theory, Bethe
formula.

4.1 OBJECTIVES

After going through this unit, you will be able to:
¢ Explain the scattering theory
e Describe the laboratory system and centre of mass
e Discuss the scattering by central potential
¢ Explain the partial wave analysis and phase shift method
¢ Explain the impact parameter
e Describe the relation between phase shift and logarithmic derivatives

¢ Discuss the behaviour of phase shift at low energies scattering by hard
sphere

¢ Elaborate on the scattering resonance and scattering by deep square well
¢ Analyse the Born approximation

e State the effective range theory and Bethe formula



Scattering Theory

4.2 AN INTRODUCTION TO SCATTERING
THEORY

The ‘Scattering Theory’ is significantly used for studying and understanding NOTES
the scattering of waves and particles in mathematics and physics. Typically the
wave scattering corresponds to the collision and scattering of a wave with some
material object, for example formation of rainbow is resultant of sunlight scattered by
rain drops. Latest technology of ultrasonic testing is another example of scattering
theory which is used in medical imaging, non-destructive testing of metals and
quantum field theory.

Rayleigh scattering is one commonly known type of'scattering which mainly
consists of scattering from atmospheric gases, it occurs when the particles causing
scattering are smaller in size than the radiation wavelengths in contact with them.

Mie scattering, and non-selective scattering are the two other types of wave
scattering. Principally, the Mie scattering is considered to be elastic scattered light
of particles that have a diameter similar to or larger than the wavelength of the
incident light. The Mie signal is proportional to the square of the particle diameter,
where as in case of non-selective scattering also known as Raman scattering, it
occurs in all wavelengths of electromagnetic radiation equally in the atmosphere
and is usually caused by particles which are much larger than the energy wavelengths.

Definitions of Scattering

1. Scattering, in physics, is defined as a change in the direction of motion ofa
particle because of a collision with another particle. As defined in physics, a
collision can occur between particles that repel one another, such as two
positive (or negative) ions, and need not involve direct physical contact of
the particles.

2. Scattering occurs when light or other energy waves pass through an
imperfect medium, such as air filled with particles of some sort, and are
deflected from a straight path. The light is deflected off of its straight path
and scatters in many directions.

3. Scattering is a general physical process where some forms of radiation, such
as light, sound, or moving particles, are forced to deviate from a straight
trajectory by one or more paths due to localized non-uniformities in the
medium through which they pass.

4. As per the Encyclopaedia Britannica, the ‘Scattering, in physics, a change
in the direction of motion of a particle because of a collision with another
particle. A collision can occur between particles that repel one another,
such as two positive (or negative) ions, and need not involve direct physical
contact of the particles.

The physicist Ernest Rutherford passed a stream of alpha particles through a thin
sheet of gold foil. The alpha particles were emitted by a radioactive material and
had enough energy to penetrate an atom; although most passed right through the
gold foil, some were deflected in a way that indicated that the scattering was
produced by a Coulomb force. Because the alpha particles are positively charged
and the electrons in the atom are negatively charged, it followed that there must be
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a large positive charge inside the atomto create the Coulomb force by interacting
with the alpha particles. In this way the nucleus of the atom was discovered.

Elastic and Inelastic Scattering

The term ‘Elastic Scattering” implies that the internal states of the scattering particles
do not change, and hence they emerge unchanged from the scattering process. In
inelastic scattering, by contrast, the particles’ internal state is changed, which may
amount to exciting some of'the electrons of a scattering atom, or the complete
annihilation of a scattering particle and the creation of entirely new particles.

When two atoms are scattered off one another, one can understand them
as being the bound state solutions of some differential equation. Thus, for example,
the hydrogen atom corresponds to a solution to the Schrédinger equation with a
negative inverse-power, i.e., attractive Coulombic, central potential. The scattering
oftwo hydrogen atoms will disturb the state of each atom, resulting in one or both
becoming excited, or even ionized, representing an inelastic scattering process.

4.2.1 Rayleigh Scattering

Rayleigh scattering is named after the nineteenth-century British physicist Lord
Rayleigh (John William Strutt). It is the predominantly elastic scattering of light or
other electromagnetic radiation by particles much smaller than the wavelength of
the radiation. Rayleigh scattering does not change the state of material and is,
hence, a parametric process. The particles may be individual atoms or molecules.
It can occur when light travels through transparent solids and liquids, and is most
prominently seen in gases. Rayleigh scattering results from the electric polarizability
of'the particles. The oscillating electric field ofa light wave acts on the charges
within a particle, causing them to move at the same frequency. The particle therefore
becomes a small radiating dipole whose radiation we see as scattered light. This
radiation is an integral part of the photon and no excitation or de-excitation occurs.

Rayleigh scattering of sunlight in Earth’s atmosphere causes diffuse sky
radiation, which is the reason for the blue colour of the daytime and twilight sky, as
well as the yellowish to reddish hue ofthe low Sun.

For wave frequencies that are below the resonance frequency of the
scattering particle (normal dispersion regime), the amount of scattering is inversely
proportional to the fourth power ofthe wavelength.

Rayleigh scattering of molecular nitrogen and oxygen in the atmosphere
includes elastic scattering as well as the inelastic contribution from rotational Raman
scattering in air, since the changes in wavenumber of the scattered photon are
typically smaller than 50 cm™. This can lead to changes in the rotational state of
the molecules. Furthermore, the inelastic contribution has the same wavelengths
dependency as the elastic part.

Scattering by particles similar to, or larger than, the wavelength of light is
typically treated by the Mie scattering theory, the discrete dipole approximation
and other computational techniques. Rayleigh scattering applies to particles that
are small with respect to wavelengths of light, and that are optically ‘soft’ (i.e.,



with a refractive index close to 1). Scattering Theory

In 1871, Lord Rayleigh published two papers on the colour and polarization
of skylight to quantify Tyndall’s effect in water droplets in terms of the tiny
particulates’ volumes and refractive indices. In 1881 with the help of James Clerk NOTES
Maxwell’s 1865 proofofthe electromagnetic nature of light, he exhibited that his
equations followed from electromagnetism.

Small Size Parameter Approximation
The size of a scattering particle is often parameterized by the ratio,

2ar
T3

Where 7 is its characteristic length (radius) and A is the wavelength of the
light. The amplitude oflight scattered from within any transparent dielectric is
proportional to the inverse square of its wavelength and to the volume of material
that is to the cube of'its characteristic length. The wavelength dependence is
characteristic of dipole scattering and the volume dependence will apply to any
scattering mechanism. Objects with x >> 1 act as geometric shapes, scattering
light according to their projected area. At the intermediate x = 1 of Mie scattering,
interference effects develop through phase variations over the object’s surface.
Rayleigh scattering applies to the case when the scattering particle is very small,
i.e., x << 1, with a particle size < 1 /10 wavelength, and the whole surface re-
radiates with the same phase. Because the particles are randomly positioned, the
scattered light arrives at a particular point with a random collection of phases; it
is incoherent and the resulting intensity is just the sum of the squares of the
amplitudes from each particle and therefore proportional to the inverse fourth
power of the wavelength and the sixth power of its size.

In detail, the intensity / of light scattered by any one of the small spheres of
diameter d and refractive index » from a beam of unpolarized light of
wavelength » and intensity / is given by,

7 1+ cos* @ E_ﬂ)J(ﬂz—l)z(Q)“
R 2R? A n®+2 2

Where R is the distance to the particle and 0 is the scattering angle. Averaging
this over all angles gives the Rayleigh scattering cross-section,

2% b (n: = 1)2
Ty = —_
3 MA\n?42

The fraction oflight scattered by a group of scattering particles is the number
of particles per unit volume N times the cross-section. For example, the major
constituent of the atmosphere, nitrogen, has a Rayleigh cross section of 5.1%
107" m* at a wavelength of 532 nm (green light). This means that at atmospheric
pressure, where there are about 2x 10* molecules per cubic meter, about a fraction
10 of'the light will be scattered for every meter of travel.
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The strong wavelength dependence of the scattering (~A*) means that
shorter (blue) wavelengths are scattered more strongly than longer (red)
wavelengths.

From Molecules

The above expression can also be written in terms of individual molecules by
expressing the dependence on refractive index in terms of the molecular polarizability
‘o, proportional to the dipole moment induced by the electric field ofthe light. In
this case, the Rayleigh scattering intensity for a single particle is given in CGS
units by,

- b
gt a”

I=1I _
Az R2

(1 + cos” 6).

The Rayleigh scattering gives the atmosphere its blue colour as shown in
Figure (4.1).

n
o

Rayleigh scattering gives the
atmosphere its blue color

n
o
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w

450 500 550 600 650
Wavelength (nm)

o

Fig. 4.1 Blue Light Scattered by the Atmosphere Relative to Red Light

The Rayleigh scattering is mostly seen occurring in nature, and therefore it is
considered to be one of the most commonly observed optical phenomena. Foremost
example for this phenomena is that the sky looks blue because of the intensity of
light scattered by a molecule is inversely proportional to the fourth power of the
wavelength of the incident light, which means that 10 times more blue light than
red light gets scattered from a molecule. As such, sunlight incident on gas molecules
in the air gets scattered as blue light in every direction, and the sky looks blue.
Therefore, the Rayleigh scattering is the elastic scattering of light by particles which
are much smaller than the wavelength of the light.

Figure (4.1) illustrates the greater proportion of blue light scattered by the
atmosphere relative to red light. This phenomena occurs when radiation or beam
of'light interacts with molecules and particles in the atmosphere which happen to
be smaller in diameter than the wavelength of the incoming radiation. Shorter
wavelengths are more quickly and promptly scattered than the longer wavelengths.
Light at shorter wavelengths (blue and violet) are scattered by small particles that
include NO, and O,. Since blue light is at the short wavelength end of the visible



spectrum, it is more strongly scattered in the atmosphere than longer wavelength
red light. This results in the blue colour ofthe sky. Rayleigh scatter is also responsible
for haze in the photographic images. In aerial photography special filters are used
to filter out the scatter blue light to reduce haze. In digital images there are different
techniques used to minimize the impacts of Rayleigh scatter.

Effect of Fluctuations

When the dielectric constant € ofa certain region of volume Vis different from the
average dielectric constant of the medium &, then any incident light will be scattered
according to the following equation,
2172 42
ol U
I —_ I[]—;‘— (1 + l'_'.f_.'ln":i2 fj:]
2AR?

Where &2 represents the variance of the fluctuation in the dielectric constant €.

Rayleigh Scattering Theory

Rayleigh scattering theory refers to the scattering of light off of the molecules of the
air, and can be extended to scattering from particles up to about a tenth of the
wavelength of the light. It is Rayleigh scattering off the molecules ofthe air which
gives us the blue sky. Lord Rayleigh calculated the scattered intensity from dipole
scatterers much smaller than the wavelength to be:

4 2 . .
8" No (1 +cos2@) Scattering at right angles
24 R: ) is half the forward intensity
for Rayleigh scattering

I =1,

Rayleigh scattering
from air molecules _

N = # of scatterers
0. = polarizability

v I - — R = distance from scatterer

1 The strong wavelength dependence of Rayleigh
scattering enhances the short wavelengths,
Observer giving us the blue sky.

Fig. 4.2 Rayleigh Scattering Theory

Figure (4.2) illustrates Rayleigh scattering theory considering an air molecule. The
Rayleigh scattering can be considered to be elastic scattering since the photon
energies ofthe scattered photons is not changed. Scattering in which the scattered
photons have either a higher or lower photon energy is called Raman scattering.
Usually this kind of scattering involves exciting some vibrational mode of the
molecules, giving a lower scattered photon energy, or scattering offan excited
vibrational state of a molecule which adds its vibrational energy to the incident
photon.

Advantages of Rayleigh Scattering
e [t is an easy technique.

e Arbitrary laser wavelength can be used, but shorter wavelengths leads to
stronger signal (the A*-dependence).

e Signal is proportional to number concentration — N and/or 1/T.
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e Signal is proportional to laser pulse energy, i.e., no quenching or saturation
effects.

Limitations of Rayleigh Scattering

¢ The technique is not species selective, since all atoms/molecules/particles
scatter at the same wavelength.

e For accurate thermometry, the Rayleigh cross-sections for individual species
must be taken into account, since the mole fraction distribution must be
known in every point.

e [t is an incoherent technique.

e Stray light from particles, optics and surfaces can interfere with the Rayleigh
signal.

4.2.2 Raman Scattering

Raman scattering or the Raman effect is the inelastic scattering ofa photon by
molecules which are excited to higher energy levels. The effect was discovered in
1928 by C. V. Raman and hence named as Raman scattering or the Raman effect.

When photons are scattered by a material, most of them are elastically
scattered (Rayleigh scattering), such that the scattered photons have the same
energy (frequency and wavelength) as the incident photons but different direction.
However, a small fraction ofthe scattered photons (approximately 1 in 10 million)
are scattered in-elastically, with the scattered photons having an energy different
from, and usually lower than, those of the incident photons—these are Raman
scattered photons. Because of conservation of energy, the material either gains or
loses energy in the process. Typically this is vibrational energy and the incident
photons are of visible light, although rotational energy (if gas samples are used)
and electronic energy levels (ifan X-ray source is used) may also be investigated.
The Raman effect forms the basis for Raman spectroscopy which is used by
chemists and physicists to gain information about materials.

It isalso possible to observe molecular vibrations by an inelastic scattering
process. In the inelastic (Raman) scattering, an absorbed photon is re-emitted
with lower energy; the difference in energy between the incident photons and
scattered photons corresponds to the energy required to excite a molecule to a
higher vibrational mode.

Typically, in Raman spectroscopy high intensity laser radiation with
wavelengths in either the visible or near-infrared regions of the spectrumis passed
through a sample. Photons from the laser beam produce an oscillating polarization
in the molecules, exciting them to a virtual energy state. The oscillating polarization
of'the molecule can couple with other possible polarizations of the molecule,
including vibrational and electronic excitations. Ifthe polarization in the molecule
does not couple to these other possible polarizations, then it will not change the
vibrational state that the molecule started in and the scattered photon will have the
same energy as the original photon. This type ofscattering is known as Rayleigh
scattering.



When the polarization in the molecules couples to a vibrational state that is
higher in energy than the state they started in, then the original photon and the
scattered photon differ in energy by the amount required to vibrationally excite the
molecule. In perturbation theory, the Raman effect corresponds to the absorption
and subsequent emission ofa photon via an intermediate quantum state of a material.
The intermediate state can be either a ‘Real’, i.e., stationary state, or a virtual
state.

Stokes and Anti-Stokes
The Raman interaction leads to following two possible outcomes:

1. The material absorbs energy and the emitted photon has a lower energy
than the incident photon. This outcome is labeled Stokes Raman scattering
in honour of George Stokes who showed in 1852 that fluorescence is due
to light emission at longer wavelength, now known to correspond to lower
energy, than the absorbed incident light.

2. The material loses energy and the emitted photon has a higher energy than
the absorbed photon. This outcome is labeled anti-Stokes Raman scattering.

The energy difference between the absorbed and emitted photon corresponds to
the energy difference between two resonant states of the material and is independent
of'the absolute energy ofthe photon.

The spectrum of'the scattered photons is termed the Raman spectrum. It
shows the intensity of the scattered light as a function of'its frequency difference
2 to the incident photons. The locations of corresponding Stokes and anti-Stokes
peaks form a symmetric pattern around Av=0.

The frequency shifts are symmetric because they correspond to the energy
difference between the same upper and lower resonant states. The intensities of
the pairs of features will typically differ, though. They depend on the populations
of'the initial states of the material, which in turn depend on the temperature. In
thermodynamic equilibrium, the lower state will be more populated than the upper
state. Therefore, the rate of transitions from the more populated lower state to the
upper state, the ‘Stokes Transitions’ will be higher than in the opposite direction,
the ‘Anti-Stokes Transitions’. Correspondingly, Stokes scattering peaks are
stronger than anti-Stokes scattering peaks. Their ratio depends on the temperature,
and can therefore be exploited to measure it.

Raman Spectroscopy

Raman spectroscopy is named after Indian physicist Sir C. V. Raman. It is a
spectroscopic technique used to observe vibrational, rotational, and other low-
frequency modes in a system. Raman spectroscopy is commonly used in chemistry
to provide a structural fingerprint by which molecules can be identified.
Figure 4.3 illustrates the Energy-level diagram showing the states involved in Raman
spectra.
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Fig. 4.3 Energy-Level Diagram Showing the States Involved in Raman Spectra

Raman spectroscopy relies on inelastic scattering, or Raman scattering, of
monochromatic light, usually from a laser in the visible, near infrared, or near
ultraviolet range. The laser light interacts with molecular vibrations, phonons or
other excitations in the system, resulting in the energy of the laser photons being
shifted up or down. The shift in energy gives information about the vibrational
modes in the system. Infrared spectroscopy yields similar, but complementary,
mformation.

Distinction from Fluorescence

The Raman effect differs from the process of fluorescence in that it is a scattering
process. For fluorescence, the incident light is completely absorbed, transferring
the system to an excited state. After a certain resonance lifetime, the system de-
excites to lower energy states via emission of photons. The result of both processes
is in essence the same.

A photon with a frequency different from that of the incident photon is
produced and the molecule is brought to a higher or lower energy level. But the
major difference is that the Raman effect can take place for any frequency of
incident light. In contrast to the fluorescence effect, the Raman effect is therefore
not a resonant effect. In practice, this means that a fluorescence peak is anchored
at a specific frequency, whereas a Raman peak maintains a constant separation
from the excitation frequency.

Selection Rules

A Raman transition from one state to another is allowed only if the molecular
polarizability of those states is different. For a vibration, this means that the derivative
of the polarizability with respect to the normal coordinate associated to the vibration
is non-zero:

In general, a normal mode is Raman active if it transforms with the same

symmetry of the quadratic forms, (z*, 4°, 2%, 2y, £z, yz), which can be verified
from the character table of the molecule’s symmetry group.



The specific selection rules state that the allowed rotational transitions are Seattering Theory

AJ = 2, where ‘J is the rotational state.

The allowed vibrational transitions are Ay = 41, where ‘u’ is the vibrational
at NOTES
state.

Advantages of Raman Effect

¢ Organic and inorganic materials are suitable for Raman analysis. These can
be solids, liquids, polymers or vapours.

No sample preparation is required.

e [t is not interfered by water.

e It isanon-destructive application.

e [t is highly specific like a chemical fingerprint of a material.

e Raman spectra are acquired quickly within seconds.

e Samples can be analyzed through glass or a polymer packaging.

e Laser light and Raman scattered light can be transmitted by optical fibers
over long distances for remote analysis.

e In Raman spectroscopy, the region from4000 cm to 50 cm can be covered
by asingle recording.

e Raman spectra can be collected from a very small volume (< 1 Y4m in
diameter).

e Inorganic materials are easily analysable with Raman spectroscopy.

Disadvantages of Raman Effect

¢ This cannot be used for metals or alloys.

e Raman effect is very weak. The detection needs a sensitive and highly
optimized instrumentation.

e Fluorescence of impurities or of the sample itself can hide the Raman
spectrum. Some compounds fluoresce when irradiated by the laser beam.

e Sample heating through the intense laser radiation can destroy the sample
or cover the Raman spectrum.

4.3 DEFINITION AND CALCULATION OF
CROSS SECTION

Let us consider a beam of particles having a mass mand it is travelling along the z
direction with velocity v. A target has a potential V centred at the origin. The
travelling beam experience a force only when they are in the range of potential V.
When the beam of particles interact with the scattering potential, the incident beam
ofparticles get scattered in all the directions. After leaving the target again they
travel in a straight line. The angle is measured between incident and the scattered
lines and it is known as scattering angle g (Refer Figure 4.4).
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Fig. 4.4 Incident and the Scattered Lines Scattering Angle é

Let N number particles is crossing unit area normal to the beam in unit time.
In that, nis the number of particles scattered into the solid angle 73 inthe direction

(0, ¢ ). Experimental results on scattering are expressed in terms of differential
cross section. Let, o/(6, @) represents the differential scattering cross section and
it is defined as

n/dQ
N

The numerator term in the Equation (4.1) gives the number of particles
scattered per unit solid angle.

o(0,9) =

...(4.1)

The solid angle is defined using spherical coordinate.

2 .
40 = Sn040db _ o odeds L (42)

2
r

The total cross section can be found by integrating the differential cross
section.

o= j (0,4)dQ
o= ]isin GdGT o(0,¢)d¢ ... (4.3)

Here o is the total cross section.
Total cross section and the differential cross section have the dimension of
area. Ifthe potential is spherically symmetric, then differential cross section is

independent of . The total cross section becomes
o= Zﬁja(ﬁ)sin odo .. (4.4)
0

The Equation (4.4) shows that, when the targets potential is spherically
symmetric, the cross section depends only on scattering angle. The scattering
cross section gives the idea of the nature of target. It is not equal to the exact
spatial area of the target. Usually, cross sections are measured in barns,

where| parn =107 c¢cm?-



4.4 LABORATORY AND CENTRE OF MASS
SYSTEM

Experimental observations are done using laboratory coordinate system. But centre
of'mass coordinate system reduces the two body problem into one body problem.
In these way degrees of freedom reduces by half. Thus centre of mass coordinate
system is more convenient for the calculation of scattering problem. In the laboratory
coordinate system scattering centre is initially at rest. In the centre of mass coordinate
system, the two interacting particles are always at rest. So the coordinate systems
move relative to each other and its velocity is equal to the velocity of centre of
mass in the laboratory coordinate system. Hence the total momentum is always
Zero.

Let us consider a particle of mass m is moving in the positive z direction with
the velocity v, and it is colliding with another particle of mass M at rest at the
origin. After the collision, incident particle gets scattered in the direction (6, , ¢, ).

/ﬂ !
A W
\/. En]
rd
7~
m L (6.9
ey i R ____”__@ entre ——
v, b = miy, O of mass Z-axis
M m+M N
Before collision \@

.
After collision Ny

Fig. 4.5 Centre of Mass Before and After Collision

The velocity ofthe centre of mass is given by

)7
M me M
When the observer is at centre of mass, he sees the particle M approaching

... (4.5)

my
him from right with the velocity ————=
1m fromright wi e velocity i M

and the particle m approaching him

from left with velocity
Ve =V = Vewu
my,
m+ M
My

_ L
-y ... (4.6

Ve =V, —

Ve

To keep the centre of mass at rest, the two particles must be scatter in
opposite direction just after the collision in opposite directions. The speed of the
particles must be unchanged.

Scattering Theory

NOTES

Self - Learning
Material

139



Scattering Theory

140

NOTES

Self - Learning
Material

Centre of mass

- M
— — e — — -(-—-@
Mu, AT LA
|y
¢ m+M m+M _—
M After collision
Before collision muy

de-M

Fig. 4.6 Two Particles Scattered in Opposite Direction
From the above Figure 4.6, the two systems move relative to one another
with v,
v', cosf, =v.cosb.+v.,,
V', sing, =v.sing,

¢, =dc .. (4.7
And it follows that

sin@,

tand, =
bcosO. + (v, I ve)

sin 6,

tan o, = ... (4.8)

cosb. +a

Here, ¢ = m / M . IfM is infinitely large in comparison with m, then 6, = 6,
In this condition, the scatterer behaves like a fixed one.

Let 0.(6,.,4.)and o, (6, ,¢,) are the differential cross sections in centre

off mass and the laboratory systems respectively. The relations can be obtained
by imposing the condition that the number of particles scattered into the given
solid angle must be the same in both the systems.

Noc(6.,¢.)d =No, (6,,4,)d .. (4.9)
By substituting for solid angle we get,
c.(6.,¢.)s1n6,.d0.d¢. =c,(6,,¢,)sinb,do,d¢, ... (4.10)

From Equation (4.7) and Equation (4.8),

s 2 c 2
sin“¢,  sin" 6,

2 - 2
cos" g, (cosO.+a)

By simplifying we get,
1 sin’6. +(cosf, +a)’
cos’ 6, (cosO,. +a)’



1 1+2acosf.+a’
cos’ 6, (cosO. +a)’
|a+cos ¢9C|
cosd, =

(1 +a’ +2acosé, )1/2

By differentiating, we get
|a + cos ¢9C|

sind,do, = sin6,.d6,

3/2
(1+ a’ +2acosé,

(1 +a’ +2acos . )3/2

|1+acos€c|

=0,(6,.4,)= o (e, 9c) ... (4.11)

The Equation (4.11) gives the relation between differential scattering cross
section of centre of mass and the laboratory system.

fM>>m,a=0

0,(0,,¢,)=0.(0..4.)
IfM =m,a=1
FromEquation (4.7),6, =6, /2,

0,(0,,¢,)=40.(26,,¢.)cosb, .

4.5 SCATTERING BY A CENTRAL POTENTIAL

The method of partial wave is best for the analysis of elastic scattering. The
Schrodinger equation which represents the scattering is given by

hZ
——Vy +V(r)y = Ey . (4.12)
2u

Solution of the Schrodinger equation will have radial and angular part. Central
potential is a symmetric one. So, angular part must be independent of ¢, as the
incident wave is along the z-axis. By variable separable method, the solution ofthe
equation (4.12) is

y(r,0)=R/(r)P(cos@), where, /=0,12,.... ... (4.13)

Here, R,(r) is theradial part and it satisfies the radial equation
izi 2 dR, N 2;12E_2;12V_l(l-|2-1) R =0
redr dr h h r

When the wave is far away from the central potential, the equation reduces
to the free particle equation.

d’R, {Eﬁ]{kh’(l”)}z@ ~0 . (415

ar* rodr P

.. (4.14)
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2uF
Where, k° = ;_;2

The differential equation (4.15) has two independent solutions. One

... (4.16)

is j,(kr) , is spherical Bessel function and another one is #, (kr) , is spherical

Neumann function.
So, the general solution to the equation (4.15) is given by

R (kr)= A j,(kr)— B n,(kr) .. (4.17)
Here 4 and g’ are constants. When the wave is far away from the

central potential (» — oo ), asymptotically, the radial part ofthe free particle
wave equation is given by

A’ I\ B' Iz

R (kr)=—sin| kr —— |+— kr ——
 (kr) = (r 2) krcos(r 2} ... (4.18)
Now the wave enters the potential region where V() # 0 . The value of

B
ratio of the constants Vi must be determined using equation (4.14) by applying

the boundary conditions. Then the value is matched with the asymptotic
solution, equation (4.18). We can write,
A = 4,cosd, and B = 4, sinJ,, where 4, and &, are constants.
Now we can write the asymptotic solution of equation (4.14) as

Rl(kr):%sin(kr—%[+5,j, [=0,L12,... ... (4.19)

Here, A, is the asymptotic amplitude and ¢, is called phase shift. It is
measures the phase shift of the radial function for angular momentum quantum
number / for the case between V' (r) # 0 and V' (r) = 0. From the equation
(4.13), the general asymptotic solution is given by

[°e)

A . I
w(r,0) =Z;’sm(kr—7+5;jl’l(cos6) ... (4.20)

1=0
We know that, when particle is far away from the central potential its
asymptotic solution can be found using Schrédinger equation (4.12) and that is
given by

ikr

w(r,0)=¢"+ f(0)— . (421)
r

The two asymptotic solutions, equation (4.20) and (4.21) are equal.

) ikr 0 A ) l
e + £(0)° =z—’sm(kr—£+5;JP;(0059) .. (4.22)

ro = kr 2

Replacing the o, we get

= 1+ . Iz e &4 ( Ix )

kr—2 | P =S4 -z
; . sm( r 2) (cos )+ £(0) p ;krsm kr > +3, | P(cos®)
... (4.23)



By rewriting the sin function in terms of exponential form and comparing Scattering Theory
the coefficient of exponential terms we get,

© . —ilz/2 0 ./ 2[5, )
z 2l+Di'e P(cos0) + (@) _ Z 21+ l)l e ef’l”/zP,(cos 0)
an 2ikr r = 2ikr NOTES

... (4.24)

1(0)= ﬁi(zz FDe " [exp(2i8) ~1]B(cosO) . (4.25)
IK "o

ilw
We know that,  _ %

And, exp(2i5;) 1= exp(id,)[exp(i5;) — exp(—id; )]

exp(2i5,) —1=2iexp(io,)sin S, ... (4.26)
Thus equation (4.25) can be written as

1(0) = %i(zn 1) exp(i5,)P(cos f)sin L 427)

1=0
Here equation (4.27) represents the result of partial wave analysis. The
wave equation contains an exponential term which allows us to do the physical
interpretations. The scattering potential shift the phase of scattered waves
relative to the incident waves.

The differential cross section is given by, o(89) = | f ((9)|2

From equation (4.27) we get
2

0(0)=5| X (21 + 1 exp(id)) B (cos 0)sin 5 . (428)

By using orthogonal property of Legendre polynomial we can find total
cross-section.

o= TO‘(@)dQ
o= TG(H)(ZH sin 8)d o

A .
o :72(2l+1) sin’ &, ... (4.29)
1=0

The differential cross section (Equation (4.28)) and total cross section

(Equation (4.29)) depends on phase shift 6, ofthe partial wave.

4.6 PARTIAL WAVE ANALYSIS AND PHASE
SHIFT METHOD

In scattering experiment the detector is far away from the target. The intensity of
scattered wave depends only on gand ¢ in spherical coordinate, the spherically

Self - Learning

diverging scattered wave amplitude is denoted by f'(€) and it is called as scattering ~ Marerial 143



Scattering Theory

144

NOTES

Self - Learning
Material

amplitude. Scattering amplitude depends on. This can be found using partial wave
analysis.

We know that the plane wave can be rewritten by expanding as a linear
combination of spherical waves as

e = iil(2l+1)j,(kr)P,(c059) ... (4.30)

1=0
Here, are the Legendre polynomials and is the spherical Bessel function.
So each termin the Equation (4.30), that is and represents the spherical waves.
Thus, the plane wave is equivalent to the linear combination of infinite number of
spherical waves. The each individual waves are known as partial waves.
Here, and when, it is called s-wave, is known as p-wave and gives the d-
wave and so on. Asymptotically we can write the spherical Bessel function as

) 1 . Ir
Jy(kr) %;sm(kr—g) .. (431

We can write the sin function in terms of exponentials.

Jilkr) — ﬁ [exp(ikr —1 %r) — exp(—ikr+i %r} ... (4.32)

Then substitute spherical Bessel function into the Equation (4.30), we get

A /

e = Z L@l 1)P( cos 9) exp(ikr — il—ﬂ) —exp(—ikr + i—ﬂ} ... (4.33)

1=0 2lk 2 2

The Equation (4.33) shows that every partial wave can be represented as

sum of'incoming and a scattered spherical wave. The second exponential term

indicates the incoming wave and the outgoing wave is indicated by the first
exponential term in the bracket.

= ZA,B(cose)l[exp(ikr—i%r)—exp(—ikr+i%ﬂ} ... (4.34)
— r

21+ )i’
2ik
Momentums of the incoming and outgoing partial wave are conserved (equal)
and the wavelength of the oscillation does not change in this process. So we can
multiply the amplitude of each outgoing partial waves in the Equation (4.34) by a
complex number, that is. Here represents the phase shift of the outgoing wave and

it is depends only on. So, the scattered wave is shifted by an amount of when
compared it to the incident wave.

Where, 4, =

4.7 IMPACT PARAMETER

According to the classical scattering theory, let us say particle incident on some
scattering centre (we can say target), it comes with some enrgy E and it will get



deviated. We can assume that the target is heavy and recoil of target substance is
negligible.

Scattering angle

Particle's -
gtraj ectory e
_____________________________________

Fig. 4.7 Tanget to the Trajectory of Scattered Particle

Inthe Figure 4.7 we have a target and particle’s trajectory is shown. When
we draw a tanget to the trajectory of scattered particle, it will cut the horizontal
line and makes an angle . This angle is known as scattering angle. The distance
between two horizontal line (as shown in the figure, one line is going through the
centre of'the target) is called impact parameter. The particles which are moving in
this regoin will only get scattered. The particle’s which are moving above this
region will not get deviated. The imapact parameter is denoted by . In general, the
scattering angle increases when impact parameter decreases.

Let us find the relation between scattering angle and the impact parameter.

Fig. 4.8 Incident within the Small Patch of Cross Sectional Area

In the above Figure 4.8, let us say particles incident within the small patch of
cross sectional area (Refer Figure 4.8) will scatter into the small angle and we call
it as a solid angle. Obviously larger will lead to the greater in the. So we can write

do<dQ
So here we can define a proportionality factor,

do = D(§)dQ ... (4.35)

By referring to the above Figure 4.8 we can write cross sectional area and
solid angle using spherical coordinate as

do = bdbd@ ... (4.36)
And, dQ =sin6dOd¢@ ...(437)
By substituting Equations (4.36) and (4.37) in Equation (4.35), we get
bdbd@ = D(8)sin 6d6d¢@
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bdb = D(8)sin 8460

= D(6) =

b |db
do

9 ... (4.38)

Equation (4.38) gives the relation between impact parameter and the
scattering angle. Here angle is decreasing function of. So its derivative will have a
negative sign, hence the absolute value sign is used.

4.8 RELATION BETWEEN PHASE SHIFT AND

LOGARITHMIC DERIVATIVE
d’R, 2 dR I(1+1
Radial wave equation is given by —-+———+[k 2 X 2 )]Rz =0
dr r dr r
We can write above equation for , < R
I(I+1
X "+[k2 - (r2 ) —2771V(7”)} 2=0, v =rR ... (439)

The wave function and its derivative on the sphere are continuous. Hence,
we can write the equation for wave function continuity as

1
R (k,R)= j,(kR)+ Ea/hz(l) (kR) ... (4.40)
By deriving the wave at ,
dr,(k,r)| | . 1 W
o | —k[J ,(kR)+5(x,h, (kR) ... (4.41)

Prime notation in the Equation (4.41) denotes the derivative with respect to
the argument of the function.

Divide Equation (4.41) by Equation (4.40) we get,

T P e
dr — 2
— ... (4.42
Rl(k,R) jl(x)_i_%alhl(l)(x) s X kR (44 )
r=R

By considering dr = rdlogr
We can rewrite the above Equation (4.42) as

1
] 37]’1(1)' :
B IIOg Rl(k,l")} _x|:Jl('x) 2 "% (‘X):|

dlogr |’=R j,(x)+%a,hl(1)(x)

... (4.43)

Here is the logarithmic derivative. Rewrite the above Equation (4.43) in
terms ofby considering



o, =e* -1 . (4.44)

{xj () + ;xalhl(l) '(x)}

L= : ... (4.45)
7 (x) +506,h,(1)(x)
. O 1 ' 1
Lyji(x) =", (x) = Exazh/(l) (x) —EL,oc,hl(”(x)
By solving for we get
... (4.46)

Hence, the Equation (4.46) shows the relation between phase shift and the
logarithmic derivative. Iflogarithmic derivative is known, we can find the phase
shift using the Equation (4.46).

4.8.1 Behaviour of Phase Shift at Low Energy
Scattering By Hard Sphere
Consider a wave is scattering by a hard sphere ofradius.
The potential is given by co at < g, and 0 at » > .
When potential is infinity, the wave function will be zero.
At r=a, y(a,0)=0 ... (4.47)

The wave function from the partial wave analysis is given by

1=0

y(r,0)=4 {e""z + ki i"'(21+1)a,h" (kr) B (cos 9)} ... (4.48)

The wave function in the exterior region (that is, » > g ) is

w(r,0)=A4 {i i' U+, (k) + ika,h” (k)P (cos 9)}

1=0

1=0

So, w(r,0) = {i i' 21+ D[ j,(kor) + ika,h " (kr)] P (cos 9)} =0

... (4.49)

Here, is the partial wave amplitude. By using orthogonal property of Legendre
polynomials, the coefficients with different values of/ must separately vanish. So in
this situation partial wave amplitude is

a =i Ji(ka) 4.50
1 khl(l)(ka) e ( . )
From partial wave analysis, the total cross section is given by
2
An & Jj,(ka)
o=—) 21+1)|-*
k2 IZ;(( ) hl(l)(ka) e (4.51)
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Scattering Theory At low energy scattering, kg << 1. Here the wavelength is much greater

than the radius of the sphere.

We kiow that Ji(2) _ Ji(2) (4.52)
NOTES COWREL 102 @) +in(2) -4

For a small, Neumann function is larger than the j,(z).

Ji(2) ~j Ji(2)
J(2)+in(z) n,(z)

_iz’nz’/(zz+1)!: i |2 2221+1
—QN1Z 20 20+ 1| (2D)!

Thus,

a1 [211!

4
0 =—— I k 47142
K& 20+1 (21)1} (ka) .. (4.53)

For low energy scattering kg << 1, so the higher order powers are too
small and it is negligible. In this situation / = () terms is dominating and it is called
S-wave scattering.

Hence, / = () inthe Equation (4.53) gives

ar[ 20 T
Gz?[@} (ka)

4
O = F(ka)z

Thus total cross section is

o~ dnd .. (4.53)

Here total cross section is equal to the total surface area ofthe hard sphere.
In quantum scattering, waves feel their way around the whole sphere. But in case
of classical scattering, the particles can see the head on cross section or a head on
surface area.

Check Your Progress

State the scattering theory.

Define the elastic scattering.

State the Rayleigh scattering theory.

What do you mean by Raman scattered photons?
Define the scattering angle.

What do you understand by scattering cross section?

What is centre of mass coordinate system?

© Nk L=

Self - Learning
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4.9 RESONANCE SCATTERING

By solving the radial part of the Schrodinger equation we can explain the s-wave
scattering by an attractive square well potential. Let us consider an equation from
the scattering by an attractive square well potential

tan(ka+9,) = kﬁtan(kla) ... (4.55)
1

Let us consider the situation of very low energy scattering by attractive
square well potential. By expanding tan function and rearranging, we get

1+ kﬁ tan(ka) tan(k,a) [tan§, = kﬁ tan(k,a) —tan(ka) _ (4.56)

1 1

When the potential is shallow, the ratio &/ k, is very small (if potential is
shallow, £ is large) for very low energy scattering. So kg << 1 then tan(ka) = ka

If k / k, 1stoo small, then the factor in square bracket (in Equation (4.56))
is nearly equal to 1. So we can rewrite the Equation (4.56) as

tan(k,a)
tan 6, = ka| ————1
0 [ ka } ... (4.57)

The value of k,a will be less than 7/ 2 . By increasing the value of k, we
can increase the value of k,a to 57 /2. If depth of the potential is increased to a

certain stage, k, increasesand angle k,a willbeequalto /2.

As, ka— /2 tan§, — o= (because, tan 90 — oo )

In this case total cross section can be found using the formula from the
central potential scattering.

So, the total cross section is given by

4
N

Equation (4.40) is the maximum value ofthe total cross section. Ifthere is a

... (4.58)

bound state then phase shift §, will take the value 7 /2 and the cross section will
attain the maximum value. This is known as resonance. The total cross section at
2UE
h2
talk about the behaviour of the cross section near resonance.

the resonance depends on j2 (where, k = ). The Breit-Wigner formula will
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4.10 SCATTERING BY A DEEP SQUARE WELL

The finite potential well (also known as the finite square well) is a concept
from quantum mechanics. It is an extension of the infinite potential well, in
which a particle is confined to a ‘Box’, but one which has finite potential
‘Walls’. Unlike the infinite potential well, there is a probability associated
with the particle being found outside the box. The quantum mechanical
interpretation is unlike the classical interpretation, where if the total energy
of the particle is less than the potential energy barrier of the walls it cannot
be found outside the box. In the quantum interpretation, there is a non-zero
probability of the particle being outside the box even when the energy of
the particle is less than the potential energy barrier of the walls (cf quantum
tunnelling).

Asymmetric Square Well

Consider a particle of mass m moving in a one-dimensional infinitely deep
asymmetric potential well as shown in the Figure (4.9), the potential function
V(x) being of the form,

V(x)=+ oo
for x<0 [Region I]
=0
for 0<x<a [Region II]
= + oco
for x>a [Region III]
+ oo “+ oo
V(x)
| 11 111
X
x=0 X=a

Fig. 4.9 Asymmetric Square Well

Classically, the particle remains confined within the well and moves
with constant momentum back and forth as a result of repeated reflections
from the walls of the well at x =0 and at x = a.

Since V(x) =+ o for x <0 (i.e., in Region I) as well as for x > a (i.e.,
in Region III), the wavefunctions of the particle in these two regions are
Zero, 1.€.,

Yyx=0)=0=y(x=a) ...(4.59)

If w(x) represents the wavefunction for the particle inside the well
(0 £x <a), we have the Schrodinger equation



4 o) Scattering Theory
;’CS‘) + h—’? Ey(x)=0
d2
Or % Y0 =0 (4.60) NOTES

Where k= /i—’?E .(4.61)

The general solutions of Equation (4.60) are

Y(x) = Ce*+ De &
Or Y(x) = A sin kx + B cos kx ...(4.62)
where 4 and B are constants.

Using the boundary condition given by Equation (4.59), namely
Y(0) = 0 in Equation (4.62) we get

B=0
so that the solution becomes
Y(x) = A sin kx ..(4.63)

Further, applying the other boundary condition namely y(a) = 0, we
get from Equation (4.63)

Asinka=0

The above gives either 4 = 0 or sin ka = 0. However, 4 = 0 leads to
Y(x) = 0 everywhere which is not possible. Hence, we obtain

sinka=0
The above gives
ka=nm, n=Apositive integer
=1,2,3, ... .. (4.64)

We may note that n» cannot be 0 because that would make & = 0 so that
wavefunction would vanish everywhere.

From Equation (4.64) we thus get

k=" ..(4.65)
a

Using Equation (4.65) in Equation (4.63) we get the energy
eigenfunctions of the particle to be given by

W (x) = 4 sin (ﬂx) n=1,2,.. ...(4.66)
a
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Constant 4 can be determined from the requirement that the
eigenfunctions are normalized, i.e.,

[, v, (0 de=1
0

The above gives,

Azjsin2 (ﬂ x) dx =1
g a

Or 429
2

2

Or A== ...(4.67)
a

The energy eigenfunctions are thus

)= ﬁsm (ﬂx); n=1,2, . L (4.68)
a a

Using Equation (4.68) we get the energy eigenvalues of the particle
to be given by

242
ThT
2n’

Or E =

n

n=1,2, .. .(4.69)

2ma

We find the energy to be quantized, only certain values of energy are
permitted. This is as expected because the states of a particle which are
confined within a limited region of space are bound states and the energy

eigenvalue spectrum is discrete. This result is in sharp contrast to the result

2
in classical physics in which the energy of the particle given by E =%(p
being the momentum of the particle) can assume any value continuously
from a minimum to a maximum.

From Equation (4.69) we get

2.2
h T_@n+1) ..(4.70)

En+l _En -

2ma
Clearly, the energy levels are not equispaced.

We have

E,.—E, 2n+l 2 1

E, n* non

Clearly, in the classical limit, the above gives,



(471

meaning that the levels become so close together that they become
practically indistinguishable forming a continuum.

The lowest energy state or the ground state corresponds to n» = 1. The
ground state energy is given by,

n*r?
E = Py ..(4.72)
And the ground state wavefunction is given by,
2 (=
v (x) = \/: s1n(— x) ..(4.73)
a a

Energy given by Equation (4.72) is called the zero point energy because
there exists no state with zero energy.

The plot of some of the eigenfunctions with x are shown in Figure
(4.10). We observe from the plots that the eigenfunction y (x) has (n — 1)
nodes.

V(%)

<
i £
+
AN
N
N
7
b

N
;
7

o]

~ = G

Fig. 4.10 Plot of Engenfunctions
Discussion on Zero Point Energy

If the particle inside the well has zero energy then it will come to rest and
will be localized within the limited region defining the well. Heisenberg’s
uncertainty relation then will require the particle to acquire a finite momentum
and hence a minimum kinetic energy. Since the particle is confined in the
region 0 < x < g, it has a maximum position uncertainty Ax = a and hence

a minimum momentum uncertainty Ap ~ h which in turn corresponds to

a
(4p) _ n

a minimum kinetic energy which is in qualitative agreement
o2pr 2ma

with the exact value E =

2
2ma

.. . . ho.o.
The minimum momentum uncertainty given by Ap ~ pERE inversely
proportional to the width of the well. Smaller the width, more the particle

becomes localized, and Ap increases. This causes the particle to move faster
thereby increasing the zero point energy. If on the other hand, width of the
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well increases, the zero point energy decreases but never becomes zero. Thus
localization of a particle forces a minimum motion and hence a minimum
energy to the particle.

Symmetric Square-Well Potential of Infinite Depth
A symmetric infinite square well potential is defined as
V(x)=+co for x<-a
=0 for —a<x<a
=+c for x>a
and is represented in the Figure (4.11)

Consider the motion of a particle of mass m in the one-dimensional
potential described above.
V(X)

oo oo

-a o a
Fig. 4.11 Symmetric Infinite Square

If y(x) is the wavefunction describing the state of the particle in the
region —a <x < a then it satisfies the time-independent Schrédinger equation,

d*y(x) 2m
;ig )+h—2El|I(X):0

2
Or %+ Py(x) =0 (4.74)

Where k= \/iI—TiE ...(4.75)
The most general solution of Equation (4.74) is given by,

Y(x) = A sin (kx) + B cos (kx) ...(4.76)
Where 4 and B are constants.

Since V(x) = e for x < —a and x > a, the wavefunctions in these two
regions vanish giving,

Y—a)=0 and y(+ta)=0 ..(4.77)
Using the conditions given by Equation (4.77) in Equation (4.78) we get
A sinka+ B cos ka=0 ...(4.78)

and



—Asinka+ Bcoska=0 ...(4.79)
For the above two equations to hold simultaneously we must have

A sin ka=0 ...(4.80)
and Bcoska=0 ...(4.81)

In view of Eqations (4.80) and (4.81) we may have A =0 and B =0
but these are physically unacceptable because y(x) given by Equation (4.76)
would then vanish.

Since B #0, we have from Equation (4.81),

cos ka=0=cos nz_n n=13,5,..

or ka=ﬂ or k:ﬂ
2 2a

Using Equation (4.82) in the above we obtain the energy eigenvalues

..(4.82)

_wontn? _ o,

. %, n=1,3,5,.. ..(4.83)

" 8ma

2m a
The energy eigenfunctions corresponding to the above energy

eigenvalues are

w (x) = B cos kx = Bcos(Z—n x), n=1,3,5 .(4.84)

a

The condition given by Equation (4.80) gives
sinka=0=sinnw  (since 4 #0)
Or ka=nm or k=1% n=24,6 ..(4.85)

Using the above value of £ in Equation (4.75) we get the energy
eigenvalues

2 232 2

E=l :nh_’;’

" 2m 8ma

The corresponding energy eigenfunctions are

n=2,4,6, .. ..(4.86)

v (x)=4 sm(”zﬂ), n=24,6, .. ..(4.87)

a
The normalization conditions of the wavefunctions,

Jwi v, d=1

lead to

1 1
A=—,B=—
N N ...(4.88)
We can thus write the set of energy eigenfunctions for the particle in

the symmetric infinite square well potential as,
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IR . 20
v (x) = N sm(za x), n=2,4,.. ...(4.89)
W (x) = %cos(?—nx), n=1,3,5,.. ..(4.90)
a a
and the discrete set of energy eigenvalues as
222
E = ;‘ "R n=1,2,3, . (491
ma

Discussion

The wavefunctions corresponding to n = 1, 3, 5, ..., i.e., corresponding to
odd quantum numbers are symmetric, Y(—x) = Y(x).

e The wavefunctions correspondington=2,4, 6, ... i.e., corresponding
to even quantum numbers are antisymmetric, Y(—x) = — y(x)

e In other words, for symmetric potentials V(—x) = V(x), the
wavefunctions of bound states are either even (symmetric) or odd
(antisymmetric).

e The energy spectrum for the particle is discrete and non-degenerate.
e The ground state energy or the zero point energy is,

n*h?
2

E =

8ma
Corresponding to the eigenfunction,
(x)= 1 cos =X
i \/Z 2a
Symmetric Square-Well Potential of Finite Depth

A symmetric square well potential of finite depth is described by potential
function V(x) of the form

Nz)=V, for x<-a (Region I)
=0for —a<x<a (Region II)
=V, for x>a (Region III)
The potential function is shown in the Figure (4.12)
V(x)
A
v 3 v,
I 1l 1
-a 0 +a X

Fig. 4.12 Potential Function



Consider the motion of a particle of mass m in the potential well Scattering Theory
described above.

The Schrodinger equation in Regions I and 111 is,

NOTES
0’ dy(x)
EY Vow(x) = Ey(x)
2
or d ;"g") 22 E- ) W) = .(4.92)
In Region II the Schrodlnger equation is,
d’ v
g 0
2 h W(x)=

which can be put in the form

2
S ...(4.93)
_2m
where k= h_zE ...(4.94)
Let us consider the cases where: E<V,, and E>V,
Case E <V We may write Equation (4.92) in the form
2
AV 26y =0 .(4.95)
dx

where o= /zh—’f (Vy, —E) 1isreal positive -..(4.96)

The most general solution of Equation (4.95) is

Y(x) = Ae*™ + Be ™, A and B are constants ...(4.97)
Specific solution in Region Iy, (x) = 4 e* ...(4.98)
Specific solution in Region Il y,(x) = B e * ...(4.99)

Solution of Equation (4.93) gives the wavefunction in region II
¥, (x) = C sin (kx) + D cos (kx) ...(4.100)

v, (x) is either symmetric or antisymmetric about x = 0. The first term in
Equation (4.107) is antisymmetric because sin (kx) = —sin (—kx). The second
term is symmetric because cos (kx) = cos (—kx).

For the symmetric function in Region I, the coefficient C = 0 so that
we may write the symmetric wavefunction in Region II as

(Wz(x))symmetric =D cos (kx) (4 101)

At x = *a, we have, using the single valuedness of wavefunction

- Self - Learning
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Be * =D cos ka ...(4.103)
Similarly, using the continuity of wavefunction at x = +a gives

aAe*=+D ksin(ka) ...(4.104)

+aB e * =D k sin(ka) ...(4.105)
The above equations give

A=B ...(4.106)
and ktan ka =« ...(4.107)

Let us now consider the antisymmetric wavefunctions in Region II.
In the case D = 0 so that we may write the antisymmetric wavefunction in
Region II as

(V) isymmense = € i () .(4.108)

Using the single valuedness and continuity of wavefunction at the
boundaries at x = £a we get

A e *=—-Csin(ka) ...(4.109)
B e = Csin(ka) ...(4.110)
o4 e *=—Ckcos(ka) ..(4.111)
—0oBe* = Ck cos(ka) ..(4.112)

From the above four equations, we obtain
A=-B ...(4.113)
and
kcothka=-a ..(4.114)

The energy eigenvalues for the particle can be obtained by solving
Equations (4.107) and (4.114) graphically as explained in the following:

Let us put ka=x ..(4.115)
aa=y ...(4.116)
From the above we get
¥ +y =+ o)

Substituting for k£ and o from Equations (4.94) and (4.96), the above
becomes

2 2
xX2+yP= [h—TE+h—T(VO—E)}a2

2
2ma

2 2 —
or x‘ty = Py

v, .(4.117)



Substituting Equations (4.115) and (4.16) in Eqations (4.107) and Scattering Theory
(4.114), respectively, we obtain

xtanx=y ..(4.118)
_xcotx=y (4.119) NOTES

We plot x tan x against x, x cot x against x and x* + )* for different
values of ¥, a* (which are circles of different radii). Since both x and y can
take only positive values, the sections of the circles have been shown in the
first quadrant only in Figure (4.13).

y=o0a

Fig. 4.13 Graph
In the Figure 4.13,
Full line curves — x tan x against x plots
Dashed curves — —x cot x against x plots
Circular sections — Different values of V a*

The energy levels and the energy eigenvalues for the symmetric
wavefunction are given by the intersections of the x tan x against x curves
and the circular sections. Similarly, the energy eigenfunctions and the energy
eigenvalues when the wavefunction in the well is antisymmetric are given
by the intersections of — x cot x against x curves and the circular sections.

Ifthe intersections of x tan x against x curves and circles occur at values
of x equal to x , x,, ..., x , ... then we get

2mE
xly’:kzazz Zznaz
2
Or E=_"_ - n=13,5,..
" 2ma® "

Similarly, if the intersections of —x cot x against x curves and the circles
occur at values of x equal tox ,, x,, ... x_...., then we get

2mE ,
xi,= kKa* = n;lz” a*
72
Or E = T xy; n’=2,4,6, .
ma
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Scattering Theory The number of bound states are seen to depend upon the height 7, and
the width @ of the well through the factor ¥ a*. From the Figure (4.13) we
find the following

°h?

8m

NOTES

(i) Only one energy level of symmetric type, if 0 <V, a* <

(i1) Two energy levels of which one is of symmetric type and the other of

242 222

. . . h 4nh

antisymmetric type, if 71:8— < Voa2 <
m

8m

(iii) Three energy levels of which two are of symmetric type and one of
4m’h’ on’n’
8m

Some of the energy eigenfunctions corresponding to bound states are
shown in the Figure (4.14).

antisymmetric type, if <V,a* < and so on.

Fig. 4.14 Eigenfunctions for Bound State

Unlike in the case of infinite potential well, both the symmetric as
well as the antisymmetric eigenfunctions extend beyond the well, i.e., in the
regions x < —a and x > a which define the classical turning points. Clearly,
there exists finite probability of finding the particle outside the well. This is
a quantum mechanical effect.

Case E>V
The Schordinger equation in Regions I and III is given by,

dw(x 2m
;';E )"'h—z(E—Vo)\lf(x)ZO

. . 2 . .. .
Since E is greater than V/, h—’? (E-V,) is a real positive quantity. As

such the solution of the above equation is sinusoidal in nature. The probability
density for the particle is distributed over all space in regions I and III. It is
also distributed in Region I, i.e., within the well. Thus we do not get bound
state for the particle.
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4.11 DEPENDENCE UPON POTENTIAL

To derive expression for phase shift, we have to consider the radial part of the
Schrodinger wave equation that describes the scattering,

d’u,(r) [ZuE 2uV I(I+1)
+ —_ —_
dr* K K P

}u,(r) =0 . (4.120)

Here, u, = rR,(r) and wave is coming from the region where the potential

is zero thatis, J/ = ()

2
d—i’+[k2 - l(ltl):|ul(r) 0
dr r
2uE
And k° = ;fz ...... (4.121)
The solution of the above differential equation is
u(kry=krj,(kry L (4.122)
Asymptotic solution is,
. In
U, (kr)—5z—>sin (kr —7j ...... (4.123)
In the same way, the asymptotic solution of
d*v 20V 1(1+1
—drzl +[k2——§2 - (rz ):|V1 =0 (4.124)
Is,
. In
k) —=osin| kr——=+0,] . (4.125)

Multiplying the Equation (4.121) by and Equation (4.124) by. Then
subtracting, we get
d’u, B d*v, _ 2y
dr’

V) TU =y, (4.126)
At = the functions u,(r) and v,(r) are equalto zero. By integrating
the equation (4.108) from to we get,
du, dv,

2 [ [} ) '
Y T T _h_u-[ VG, (rydr (4.127)

Now expanding the region of 7 to co, from Equations (4.123) and (4.124)
we get

Scattering Theory

NOTES

Self - Learning
Material

161



Scattering Theory

162

NOTES

Self - Learning
Material

ksin (kr—%r+ 5,)005 (kr—%rj— ksin (k —%chos (kr —%T + 5,) = —;—lj_([V(r)u, (kryv, (kr)dr

...... (4.128)
| 27
ksin8, = _h_él-([V Y, (kv (kydr (4.129)

At very high energies for weak potential, the phase shift is very small and
we can do the following approximations
u,(kr) = v,(kr) = krj, (kr)

The relation between spherical Bessel function and the ordinary Bessel
function s,

1/2
. T
Ji(kr) = (E) Jnapry (4.130)
Hence,
2 oo
ksin, =— 2;‘5‘ [V @) /2 Gy r
0

From Equation (4.131) we get,

2

2uk r \"”
sing, =- =~ | V(V)K—rj J,+(1/2)(kr)} rdr

n oy 2k
By simplifying we get,
T 2
5, = _P;l_z Vo) rar (4.131)
0

This expression is only valid for weak potentials. The Equation (4.131)
gives the expression for phase shift for weak potentials.

4.12 SIGN OF THE PHASE SHIFT

In scattering theory the phase shift is very important. Phase shift is measured by
comparing the incoming wave and the scattered wave. When wave is scattered
from the target (potential) there will be a change in the phase, in other words the
scattered wave is delayed compared to the incident wave. At high energy for low
potential, the phase shift is very small. The sign ofthe phase shift is depends on the
potential. Let us consider equation for phase shift

5, = _% v rar (4.132)
0

This expression is also known as Born approximation for phase shift.
This expression is only valid for weak potentials. If value of potential is, it is known
as repulsive potential and in this case phase shift is negative. If value of potential is,
it is known as attractive potential and in this case phase shift is positive.



4. 1 2 . 1 BOI’n Approximation Scattering Theory

Generally in scattering theory and in particular in quantum mechanics, the Born
approximation consists of taking the incident field in place of the total field as the
driving field at each point in the scatterer. The Born approximation is named after NOTES
Max Born who proposed this approximation in early days of quantum theory
development. It is the perturbation method applied to scattering by an extended
body. It is accurate if the scattered field is small compared to the incident field on
the scatterer.

For example, the scattering of radio waves by a light styrofoam column can
be approximated by assuming that each part of the plastic is polarized by the same
electric field that would be present at that point without the column, and then
calculating the scattering as a radiation integral over that polarisation distribution.

Born Approximation to the Lippmann—Schwinger Equation

The Lippmann-Schwinger equation for the scattering state |#!,”) witha

P/

momentum p and out-going (+) or in-going (—) boundary conditions is,
%57 = 1¥3) + G° (B, £ ie)VI¥5 ),

Where G is the free particle Green’s function, € is a positive infinitesimal
quantity, and ¥ the interaction potential. | ¥y, ) is the corresponding free scattering
solution sometimes called the incident field. The factor [#};") on the right hand side
is sometimes called the driving field.

Within the Born approximation, the above equation is expressed as:

w5y = |95) + G°(E, + ie)V|¥3),
Which is, much easier to solve since the right hand side no longer depends
on the unknown state | @ri,i} ).
The obtained solution is the starting point ofthe Born series.

Born Approximation to the Scattering Amplitude

Using the outgoing free Green’s function for a particle with mass m in
coordinate space,

om etikir-—r
R 4xlr — 1’|

G (x,v) = —

One can extract the Born approximation to the scattering amplitude from
the Born approximation to the Lippmann—Schwinger equation above,

om 1 [
- hTE / Pre®TV(r)

Where ¢ is the transferred momentum.

flinrn (9) =

Self - Learning
Material 163



Scattering Theory

164

NOTES

Self - Learning
Material

The Born—Oppenheimer (B-O) approximation is the best known
mathematical approximation inmolecular dynamics. Specifically, it is the assumption
that the motion of atomic nuclei and electrons in a molecule can be treated
separately, based on the fact that the nuclei are much heavier than the electrons.
The approach is named after Max Born and J. Robert Oppenheimer who proposed
it in 1927, in the early period of quantum mechanics.

The approximation is widely used in quantum chemistry to speed up the
computation of molecular wave functions and other properties for large molecules.
There are cases where the assumption of separable motion no longer holds, which
make the approximation lose validity, it is said to ‘break down’, but is then often
used as a starting point for more refined methods.

In molecular spectroscopy, using the BO approximation means considering
molecular energy as a sum of independent terms, for example:

E =E + E + E

Total Electronic Vibrational Rotational + Nuclear Spin
These terms are of different orders of magnitude and the nuclear spin energy
is so small that it is often omitted. The electronicenergies E,, . consist ofkinetic
energies, interelectronic repulsions, internuclear repulsions, and electron—nuclear
attractions, which are the terms typically included when computing the electronic
structure of molecules.

The benzene molecule consists of 12 nuclei and 42 electrons. The
Schrodinger equation, which must be solved to obtain the energy levels and wave
function ofthis molecule, is a partial differential eigenvalue equation in the three-
dimensional coordinates of the nuclei and electrons, giving 3 x 12+ 3 x 42 =36
Nuclear + 126 Electronic = 162 Variables for the wave function. The computational
complexity, i.e., the computational power required to solve an eigenvalue equation,
increases faster than the square of the number of coordinates.

When applying the Born—Oppenheimer (B-O) approximation, the following
two consecutive steps are significant:

For a given position of the nuclei, the electronic Schrodinger equation is
solved, while treating the nuclei as stationary (not “coupled” with the dynamics of
the electrons). This corresponding eigenvalue problem then consists only of the
126 electronic coordinates. This electronic computation is then repeated for other
possible positions of the nuclei, i.e. deformations of the molecule. For benzene,
this could be done using a grid of 36 possible nuclear position coordinates. The
electronic energies on this grid are then connected to give a potential energy surface
for the nuclei. This potential is then used for a second Schrodinger equation
containing only the 36 coordinates of the nuclei.

The slope of the potential energy surface can be used to simulate molecular
dynamics, using it to express the mean force on the nuclei caused by the electrons
and thereby skipping the calculation of the nuclear Schrédinger equation.

Principally, the Born-Oppenheimer (B-O) approximation is the assumption
that the electronic motion and the nuclear motion in molecules can be separated. It
leads to a molecular wave function in terms of electron positions and nuclear
positions. Following are the assumptions:



1. The electronic wavefunction depends upon the nuclear positions but not Scattering Theory
upon their velocities, i.e., the nuclear motion is so much slower than
electron motion that they can be considered to be fixed.

2. The nuclear motion, for example rotation, vibration, observes a smeared NOTES
out potential from the speedy electrons.

If a Hamiltonian is separable into two or more terms, then the total
eigenfunctions are products of the individual eigenfunctions of the separated
Hamiltonian terms, and the total eigenvalues are sums of individual eigenvalues of
the separated Hamiltonian terms.

Consider, for example, a Hamiltonian which is separable into two terms, one
involving coordinate g and the other involving coordinate .

H = H,(q) + H»(q2,

With the overall Schrodinger equation being,

Hylq1, q2) = £ (91,92,

If we assume that the total wavefunction can be written in the form
Vg, ga) = (g )valgs), where ¥71( gy ) and 72( g2 ) are eigenfunctions
of H, and H, witheigenvalues F| and F,, then,

Hi(qr,q2) — (Hy+ Ha)dn(gi)in(gz)

Hy (g )va(ga) + Hothy (g1 )¢2(g2)

— B (q1)tn(gs) + Extn (g1 )v2(ga)

(Ey + Ez)d (qu)vn(g2)

EY(qi,q2)

Thus the eigenfunctions of / are products of the eigenfunctions
of H, and H,, and the eigenvalues are the sums of eigenvalues
of Hy and H,.

The eigenfunctions and eigenvalues of this Hamiltonian can be given by
solution of the time-independent Schrédinger equation of the form,

[Tn+T.+ Vo (r) + Van(R) + Von(o, R)| ¥(r, R) = E¥(r,R).

Using the Born-Oppenheimer approximation considering that there is a strong
separation of time scales between the electronic and nuclear motion, since the
electrons are lighter than the nuclei by three orders of magnitude. This can be broken
by assuming a quasi-separable form,

¥(x,R) = ¢.(x,R)pn(R)

Self - Learning
Material 165



Scattering Theory

166

NOTES

Self - Learning
Material

Where ¢y (R) is anuclear wave functionand ¢.(x, R.) isan electronic

wave function that depends parametrically on the nuclear positions.

Fundamentally, the Born-Oppenheimer (B-O) approximation is based on
the fact that nuclei are several thousand times heavier than electrons. The proton,
itself, is approximately 2000 times more massive than an electron. The electrons
can be regarded as particles that follow the nuclear motion adiabatically, meaning
that they are ‘dragged’ along with the nuclei without requiring a finite relaxation
time. This, certainly, is an approximation, since there could be non-adiabatic effects
that do not allow the electrons to follow in this ‘instantaneous’ method, however,
in many systems, the adiabatic separation between electrons and nuclei is an
excellent approximation. Another consequence of the mass difference between
electrons and nuclei is that the nuclear components of the wave function are spatially
more localized than the electronic component of the wave function. In the classical
limit, the nuclear are fully localized about single points representing classical point
particles.

The B-O approximation recognizes the large difference between the electron
mass and the masses of atomic nuclei, and correspondingly the time scales of their
motion. Given the same amount of kinetic energy, the nuclei move much more slowly
than the electrons. In mathematical terms, the BO approximation consists of
expressing the wavefunction of a molecule as the product of an electronic
wavefunction and a nuclear (vibrational, rotational) wavefunction. This enables a
separation of the Hamiltonian operator into electronic and nuclear terms, where
cross-terms between electrons and nuclei are neglected, so that the two smaller
and decoupled systems can be solved more efficiently.

The Born approximation is used in several different physical contexts.

In neutron scattering, the first-order Born approximation is almost always
adequate, except for neutron optical phenomena like internal total reflection in a
neutron guide, or grazing-incidence small-angle scattering. The Born approximation
has also been used to calculate conductivity in bilayer graphene and to approximate
the propagation of long-wavelength waves in elastic media. The same ideas have
also been applied to studying the movements of seismic waves through the Earth.

4.13 EFFECTIVE RANGE THEORY

We can study the energy dependence of low energy scattering by defining the
effective range. To get the scattering cross section we need phase shift J,, where

[-0,1,2,.... For a low ebergy scattering s-wave (] =()) is dominating. Let us
consider that the range of the potential is very small and only s-wave is involved in

the scattering. Let E'or k7, is very low, where 7 is the range of the potential.

We know that scattering amplitude is given by

76 :%i(zn1)exp(i6,>B<cose>sin 5 . 4.133)



For s-wave, [ =().

£ (0) = %exp(ir%)sin S (4.134)

The limiting value of energy is zero (this limiting value is derived from
differential scattering cross section foe s-wave). Thus,as £ —0 - f(0)=a ,

where is called scattering length or effective range. Thus Equation (4.116) can
be written as

. ! . .
a= Ei%[—f(e)] = —lElir(l);exp(ISO)sm o . (4.135)

The zero energy cross sectionis given by, ¢, =4ra’>  ...... (4.136)

A small range of potential means V() is weak and &, (the phase shift) will

be very small. Thus we can say exp(id,) =1 and sing, = 9,

.0
a= }5123(—?0) ...... (4.137)
a=-2
k
=8, =—ka . (4.138)

Hence, the phase shift of's-wave in zero energy limit depends on scattering
length or effective range. This concept is used in the investigation of scattering of
thermal neutrons.

4.13.1 Bethe Formula

The Bethe formula or Bethe-Bloch formula describes the mean energy loss
per distance travelled of swift charged particles (protons, alpha particles, atomic
ions) traversing matter (or alternatively the stopping power of the material). For
electrons the energy loss is slightly different due to their small mass (requiring
relativistic corrections) and their indistinguishability, and since they suffer much
larger losses by Bremsstrahlung, terms must be added to account for this. Fast
charged particles moving through matter interact with the electrons of atoms in the
material. The interaction excites or ionizes the atoms, leading to an energy loss of
the traveling particle. The non-relativistic version was found by Hans Bethe in
1930; the relativistic version is the most probable energy loss differs from the
mean energy loss and is described by the Landau-Vavilov distribution.

The Formula

For a particle with speed v, charge z (in multiples of the electron charge), and
energy E, traveling a distance x into a target of electron number density » and
mean excitation potential Z, the relativistic version of the formula reads, in SI units:

dE dr  nz? e \? 2m.c 5? 5
(&) (i) i) o (3.139)
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Where c is the speed of light and € the vacuum permittivity, g = — ¢ and
[

m _the electron charge and rest mass respectively.

NOTES Here, the electron density of the material can be calculated by

Ny-Z.p
n=—————,

A-M,

Where p is the density of the material, Z its atomic number, A its relative
atomic mass, N the Avogadro number and M the Molar mass constant.

In the Figure 4.15 to the right, the small circles are experimental results
obtained from measurements of various authors, while the red curve is Bethe’s
formula. Evidently, Bethe’s theory agrees very well with experiment at high energy.
The agreement is even better when corrections are applied.

100"

-
(=}
anul

pure Bethe
— Bethe + corrections
Experimental data

Electronic Stopping Power [MeV/mm]

-y
—

L L T L i |

10 100

o
-
-y

Energy [MeV]

Fig4.15 Stopping Power of Aluminum for Protons versus Proton Energy,
and the Bethe Formula Without (Red) and With Corrections (Blue)

For low energies, i.e., for small velocities of the particle B <<, the Bethe
formula reduces to

dE  4mnz? e? \? l 2m.v°
— —] - 1 n .
de  m.v? degy e | R (4.140)

This can be seen by first replacing fc by v in Equation (4.139) and then
neglecting p* because ofits small size.

At low energy, the energy loss according to the Bethe formula therefore
decreases approximately as v-? with increasing energy. It reaches a minimum for
approximately E = 3Mc?, where M is the mass of'the particle (for protons, this
would be about at 3000 MeV). For highly relativistic cases B ~ 1, the energy loss
increases again, logarithmically due to the transversal component of the electric
field.
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4.14 SCATTERING: A WAVE PACKET
APPROACH

|

Scattering is a process in which incident particles (or waves) are affected by
interaction with some kind of target. The interaction can affect an incident particle
inanumber of ways it may change its speed, direction of motion or state of interval
excitation. Particles can even be created, destroyed or obsorbed.

incident particls or waves

£ N
\

Srarermg particles
o Wave

Fig 4.16 The phenomenon of Scattering

Unbounded particles with
energy

E, >0canbereflected by a
finite wall.

Fig. 4.17 (a)

One dimentional problem in which an incident beam or particle is either
transmitted (allow to pass) or reflected) as a result of scattering from a target.
Moreover, that target will generally be represent by a fixed potential function,
typically a finite well or a finite barrier of the kind indicated in fig 4.17. Finite
potential energy barrier of height V canreflect a particle ofenerg E .

rier of beight V, have

Fig. 4.17 (b)
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Scattering problem needs a temporal description, namely how a wave packet
representing the incident particle as t — —oo behaves as it passes through the
region of perturbration and proceeds to t — —oo. However, when there is a steady
current of particle in the beam, we often dispense with the temporal description.

Calculate the current of particles at an infinite distance away from the target.
This is done by looking for asymptotic solutions of the time-independent
Schrodinger equation Since the region the particles are free.

Time Independent Schrodinger Equation

V2 (r) +2—§‘[E— V(rw(r)]=0 (4.141)

consider a fixed scattering center which represents the reduce mass of the particle
provided the potential energy function depends only on the magnitude ofthe distance
between the two particle V= V(| r, —r, |) Such potentials are known as spherically
potentials E represents the energy in the centre of mass systemandr=r, -1,
represents the relative co-ordinate:

Solution of the Schrodinger equation in the form of an incident plane wave
and an outgoing scattering wave

Jkr
V() ——>e™ + £(0) <

(4.142)

where k=kz 2 representing a unit vector along z axis.

Ltr V(r) =0, short range force

r—> o
The asymptotic solution of schrodinger equation will be of the form
ikr e—_jkr

+g(9)

r r

7(6) .(4.143)

Second term corresponds to an incoming wave and hence neglected in
equation (4.142). Since the potential is assumed to be spherically symmetric; the
amplitude of scattered wave. (i.e. the function f) is assured to be independent of
the azimuthal angle ¢.

Multiply the equation (4.142) by appropriate time factor (/£ it will be
seen that the first term represents a plane wave propagating along the z axis, since
| e*|*= 1, the number of particles per unit area per unit time is simply

fik
v =—
m
current density
ejkr h ejkr
J=R “(0)—V 0
e[rf()l]m (rf()ﬂ



or J=v, ——r ..(4.144)

The 1/1* dependence of J implies that the intensity of the scattered wave
falls off according to the inverse squares law. The function f(¢) describes the
angular distribution of the scattered wave and is known as the scattering
amplitude.

4.14.1 Stationary States and Scattering in One Dimension

The key idea of the stationary state approach is to avoid treating individual particles,
and to consider instead the scattering ofa steady intense beam of particles, each
particles having the same energy E . Ais not possible to predict the exact behaviour
of any particular particle but, of the incident beam is sufficient intense, the result of
the scattering will be reflected and transmitted beams with steady intensities that
are determined by the reflection and transmission coefficients.

For a one-dimentional beam, the intensity J to be the number of beam particles
that pass a given point per unit time. The linear number density n of the beam to be
the number of beam particles per unit length.

If all the particle in a beam have the same speed v, the beam intensity is
given

J=Vn ...(4.145)
J. =V ,] =V n_J =V

i inc® “ref ref “ref’ " trans trans ntrans
In stationary state approach, the reflection and transmission coefficient can
be expressed in terms of beam intensity ratio, as follow

7 and Ty

If all the incident particles are scattered, and no particles are created or
destroyed, it must be the case that
J'nc - Jref + J

1 trans
Dividing both sides by J. and rearranging gives
R+T=1
Schroding’s equation is normally used to describe individual particle, rather
than beam of particles.
For finite sgnare step (one dimentional scattering lenget) potential energy
function
V(x)=0forx<0
V(x)=V forx>0
The discontinuous change in the potential energy at x = 0 is of course
unrealistic but this is the feature that makes the finite sgnare step simple to treat

mathematically. The fact that a sgnare step means that we shall only have to consider
two region ofthe x-axis: Region 1 where x <0 and region 2 where x >0
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Flegion ] Fegion 2

I
i
{ mor |

Yy
-

X

Fig 4.18 A finite sgnare step of height V, < E,

When a finite sgnare step ofheight V_scatters a right ward moving beam in
which each particle has energy E >V each of the particles will continue moving
to the right but will be suddenly showed as it passes the point x = 0. The transmitted
particles are slowed because, in the region x > 0, each particles has an increased
potential energy and hence a reduced kinetic energy. The intensity of each beam is
the product of the linear number density and the speed of the particles in that
beam
Schrodinger equation

. oy(r,1) 1 87y(x,1)

ih———=————+V . ...(4.146
6t 2m 6)(,'2 XW(.\,I‘) ( )

V_=Finite square step potential energy function stationary state solution

iEyt/h

Vi =Ve

E, = fixed energy of each beam particle solving the time independent
schrodingei equations

n y

2m &

n dy

2m &

A simple rearrangement gives

~2 TEV, forx<0 (4.147)

~— TV, =EV,,, forx>0 ..(4.148)

52\|I 2mE,
ox? K

8y 2m(E,—V,)
52 + hoz Yy, =0forx>0

General Solutions

—2y, =0forx<0

ox %* for x <0 Region 1 ..(4.149)

Y =Ae"™ +Be

v, =Ce™* + De™™* for x>0 Region 2 ...(4.150)



where A, B, C and D are arbitrary complex constant and the wave Scattering Theory
number in Region 1 and Region 2 are respectively

J2mE J2m(E, —V
K = ';_: " and K;W (4.151)

complex exponentials rather than sines and cosines (¢ = cos X + isin x)

NOTES

Equation 4.1459 and 4.150 have interpretation in term of the incident,
reflected and transmitted beams.

~ i 8 T 8 + =+
Pxe*™ =—jn-—e™ = — jh—e** = £ he*™

ox ox

where l_’x is the momentum operator in the x direction.

It therefore follows that terms proportional to ¢** are associated with
particles moving rightward at speed 7k/m .

These directions of motion can be confirmed by writing down the
corresponding stationary state solutions, which take the form

v =Ae’ ) 4 Be /Ko v <0 .[4.152 (a)]

(x1)

v =Ce ) 4 e /e fhrx >0 ..[4.152 (b)]

(x,t)
where © = E, /1. 1dentify terms of the form &/®*-*Y as plane wave’s travelling

in the positive x-direction, while terms of the form e?®***Y are plane wave travelling
in the negative x-direction. None of the these waves can be normalised, so they
cannot describe individual particles, but describe as steady beam of particles

Y, , describe the state of a single partcle

W, t)|2 represents the probability density for that particle.

In the steady state approach to scattering however it is assumed that the
wave functiony , describes steady beams of particles with |y t)|2 interpreted as
the number of particles per unit length that is the linear number density of particles.

The wave function is not normalisable, and this corresponds to the fact that
the steady beams extend indefinitely to the left and right of the step and therefore
contain an infinite number of particles.

Each particle in the beam travels to the right with speed ¥, =ik /m and

that the linear number density of particles in the beam is

. 2 2
ninc :‘Ae](le—mt) :| A |2 es(le—wt) :| A |2

The reflected beam in region 1 (x <0). This beam travels to the left with

speed V,,, = Tik, / m and has linear number density

— 2
nref_ |B|

Equation4.152 (b), first term on the right represents the transmitted beam

= hk, /m and
has linear number density n = |CJ*. The second term on the right of equation

in Region 2 (x> 0). This beam travels to this right with speed V,

frans
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4.152(b) would represent a left word moving beam in the region x > 0. On physical
grounds, expect these to be any such beam, so its absence by setting D =0);

Using these interpretations, the beam intensities are

hk, hk,
1 | ‘/1 |2 ’ ‘];Ef‘ = 1 | Zg |2 ’ ‘];

m Toom
Expressions for the reflection and transmission coefficients

J.

inc

hk
=== |cp
m

ran

_Jw _|BP _|B[
Jinc ’A|2 A

_ Jtram‘ _ k2 ’C|2 _&gz
Jinc kl’A|2 kl A

Expression for the transmission coefficient includes the wave number k|
and k,, which are proportional to the speeds of the beams in Regions 1 and 2. The
wave numbers cancel in the expression for the reflection coefficient because the
incident and reflected beams both travel in the same region. To calculate R and T,
need to find the ratio B/A and C/A. To achieve this, eliminate unwanted arbitary
constant.

4.14.2 Resonance Tunnelling and Metastable States

Consider an arbitrary but finite length potential ‘bump’ (formally called a scatter),
localised somewhere between point x, and x,, on the Hat potential background,
sayE=0

i ] :g:
3 > ¥
—— e
: /_\‘ E,
i I' i
—t I—————dh—-—-———illx
r .

Fig 4.19 De Broglie wave amplitudes near a one dimentional scatterer

Schrodinger equation, with a certain energy E, outside the interval [, X, ] is
a set of two sinusoidal wave, travelling in the opposite directions.

Y, =Aje Kx=x) + Bj gk x-x) (...4.153)
j=1/2 (either 1 or 2)
(1)

Y O _F
2m

Linear Schrodinger equation within the scatterer range (x, <x <x,) can
provide only linear expression for the tranmitted A, and reflected B, wave amplitude
and the incident wave amplitude A (B, = 0 incident from the left)

A =S, A S, ., S, arecertain (Generally complex)

11° 721



B1 = Sll Al coefficients Scattering Theory

Alternatively, if a wave, with amplitude B, is incident on the scatterer from

the right (i.e. if A, = 0), it can induce a transmitted wave (B,) and a reflected wave

(A,) with amplitude NOTES
Bl - SIZ B2’ A2 - S2B2
where S, S are generally different from S jand S, .

Scattering matrix is linear relation

Bl _ A1 . _ S11 Slz
=S with S=
AZ BZ S21 S22

Double barrier System
]
ox—x} Wiz =)
E * s z Cuali levels of tha
— — metasiable state energies
- 3
x g

il 3
Fig 4.20 : Double Barrier System

St 1
ITh P e ™+ (1= j o) e™ |

Double layer transparency, the transparency is a t-periodic function of the product
ka, reaching its maximum (J = 1) at some point of each period.

Fig 4.21 : The system's transparency as a function of k_[Resonance tunneling through a
potential well with delta functional wall]
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Fora>>> 1, the resonance peaks of transparency are very narrow, reaching
their maximumat ka~k a=nm wheren=1,2 ..

Let us assume that the initial state of the particle coincides with one of the
stationary states of the infinite wall well of the same size

/2
. ) _ T, 2 1 L
X ausin k x with k.= g SO that X = 9 sin P withn =1,2, ...

X X X

Rectangular potential well one dimensional light function

2 1/2 -
Vo=V, X)) = (;j sin [k_(x—x,)] where &, =~ n= 1,2,3...
L (4.154)

at o — oo, this is just an eigen state of the system, and from our analysis, the
time evolution of its wave function.

2 1/2
Wiy~ W, () e = (gj sink (x—x) e 0 .(4.155)

With En 7/szr2

ithow = —=
" h  2m

We can tell us that the particle remains in the well at all times with constant

probability

W(t)= W (0) =1

If o is large but finite, the de-Broglie wave would slowly “leak out” from
the well, so that W(t) would slowly decreases. Such a state is called “metastable”
Generalize equation (4.155) as

1/2
_ZW T —jo t)
Vo= |, | S0 (k (x—x,)e

= Ae{j(knx—mnt)} + Be {~ikx+o,0} (4 156)
making the probability of finding the particle in the well equationto W < 1.

Vo function is the sum of two travelling waves, with equal magnitude of
their amplitudes and equal but opposite probability currents

W 1/2
A= |B| = (E) .. (4.157)

Ata>> 1, the delta functional wall’s transparency and equals 1/a?, so that
the wave carrying current I, incident on the right wall from the inside, induces an
outcoming wave outside of the well with the following probability current.

1 1 mh
=g, =g = LTV

o ~ o Imd ... (4.158)



I I

<_L A_:/\Vn/\ﬂﬂnn/\
UOUOUDU%%AVQ RESRAAACRVATAVAN

~Vgrt 0 +Vgrt X

Fig 4.22 Metastable state's decay in the simple model of a one dimensional potential
well formed by two low transparent walls.

Absolutely Similar
1
I, :?13 =-1, ...(4.159)

Now combine the one dimensional probability conservation law for the well
mterior.
aw

—+1,—-1.=0
dt R c
Differential equation
aw 1
- = W
7 . ... (4.160)
of'the exponextial decay; W(t) = W(0) 7,
M (4.161
o ...(4.161)
It is metalstable state’s lifetime.
_kn
Wave group vector Vgr =
 ma

General form of the equation (4.161)
t

a

T="%
J

t = attempt time is equal to a/Vgr.

4.15 INTEGRAL REPRESENTATION FOR
SCATTERING PHASE SHIFTS

Consider the radial Schrodinger equation for a spherically symmetric potential
y=Uy,U=2u(V_-E) ..(4.162)

[(1+1
2uR’

n = reduce mass of the two particles undergoing scattering

where V_ (R) =V (R) + is the effective potential
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and E > 0 is energy in the center of mass trans. Atomic units are used
throughout.

Assuming that the interaction potential V(R) vanishes faster than R™!
asymptotically, the physical solution y(R) has the well known asymptotic behaviour.

\v(R)—“”—>sin(kR—l§+8,j .. (4.163)

which yields the scattering phase shift 8, for partial wave l. K =/2uE is

the momentum for the relative motion. The phase shift is usually obtained from the
matching condition.

w(R) =Af(R) + Bg (R) (4.164)

where fand g are exact solutions of the radial equations, specified by their
asymptotic behaviour,

S(R)—=Z>sin (kR — lgj ...(4.165)
g(R)—“”—wos(kR 1 gj .(4.166)

From the equations above 6, = are tan B/A which yield the phase shift

modulo mie.,
ste[_z,ﬁ}
22

Integral representation for the full phase shift

An expression for d which does not rely on the explicit evaluation of wave functions
instead, the phase shift will be extracted from an R-dependent phase function.

Introduce the envelope function

p=f"+g" ...(4.167)

with fand g exact solutions of the radial equation (4.162) obeying the

asymptotic behaviour in (4.165) and (4.166), the phase function 0 is constructed
by integrating

_d9_k

“drR P

O(R) is defined up to an integration constant which can be chosen freely.

...(4.168)

The general solution of the radial equation (4.162) can be represented exactly
in terms of p and 0. In particular, the physical solution reads

W(R) = \/ P(R)sin[6R —6(0)] ..(4.169)

v (R) vanishes explicitly at R =0 while equation (4.165) and (4.166) ensure
a key simple asymptotic behaviour for p and 6.

p(R)—251 .(4.170)



0(R)—=“— kR + const. .(4.171)
Reduced phase
6(R)=6(R) - kR .(4.172)

use equation (4.170) and (4.171) in equation (4.169) [Milne’s
parametrization]

y(R)—22 > sin[ kR +0(0)—0(o0) ]

identical to the asymptotic behaviour of \y in equation (4.163) consequently,
obtain

, —ﬁg = 0(c0) - 6(0) (4.173)

Making use of equation (4.172), 0(0) = é(O) and equation (4.168) and in

yield 0'= ; —k . Hence equation (4.173) can be recast as an integral representation

Tc ~ ~
8,15 =8()~B(0)

- [ 1
=kj0 d{pm —1} (4.174)

T
The equation above yield the full phase shift [5, —¢ Ej

Check Your Progress

9. What do you understand by cross section at the resonance?
10. What is infinite potential well?
11. Define the phase shift in scattering theory.
12. State the Born approximation in scattering theory.
13. Mention the uses of Born approximation.

14. What is effective range?
15. What does the Bethe formula describe?

4.16 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. The ‘Scattering Theory’ is significantly used for studying and understanding
the scattering of waves and particles in mathematics and physics. Typically
the wave scattering corresponds to the collision and scattering ofa wave
with some material object, for example formation of rainbow is resultant of
sunlight scattered by rain drops.

2. The term ‘Elastic Scattering’ implies that the internal states ofthe scattering
particles do not change, and hence they emerge unchanged from the
scattering process.

3. Rayleigh scattering theory refers to the scattering of light off of the molecules
of'the air, and can be extended to scattering from particles up to about a
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10.

11.

tenth of the wavelength ofthe light. It is Rayleigh scattering offthe molecules
of the air which gives us the blue sky.

. When photons are scattered by a material, most of them are elastically

scattered (Rayleigh scattering), such that the scattered photons have the
same energy (frequency and wavelength) as the incident photons but different
direction. However, a small fraction of the scattered photons (approximately
1 in 10 million) are scattered in-elastically, with the scattered photons having
an energy different from, and usually lower than, those of the incident
photons—these are Raman scattered photons.

. When the beam of particles interact with the scattering potential, the incident

beam of particles get scattered in all the directions. After leaving the target
again they travel in a straight line. The angle is measured between incident

and the scattered lines and it is known as scattering angle 0 .

. The scattering cross section gives the idea of the nature of'target. It is not

equal to the exact spatial area of the target. Usually, cross sections are

measured in barns, where 1 barn =107* c¢m”.

. Inthe centre of mass coordinate system, the two interacting particles are

always at rest. So the coordinate systems move relative to each other and
its velocity is equal to the velocity of centre of mass in the laboratory
coordinate system. Hence the total momentum is always zero.

. Inscattering experiment the detector is far away from the target. The intensity

of scattered wave depends only on @ and ¢ inspherical coordinate, the

spherically diverging scattered wave amplitude is denoted by f(6) and it
is called as scattering amplitude. Scattering amplitude depends on. This can
be found using partial wave analysis.

The cross section will attain the maximum value. This is known as resonance.

2UE
The total cross section at the resonance depends on (where, & = :2 ).

The Breit-Wigner formula will talk about the behaviour of the cross section
near resonance.

Unlike the infinite potential well, there is a probability associated with the
particle being found outside the box. The quantum mechanical interpretation
is unlike the classical interpretation, where if the total energy of the particle
is less than the potential energy barrier of the walls it cannot be found outside
the box. In the quantum interpretation, there is a non-zero probability of the
particle being outside the box even when the energy of the particle is less
than the potential energy barrier of the walls (cf quantum tunnelling).

In scattering theory the phase shift is very important. Phase shift is measured
by comparing the incoming wave and the scattered wave. When wave is
scattered from the target (potential) there will be a change in the phase, in
other words the scattered wave is delayed compared to the incident wave.
At high energy for low potential, the phase shift is very small.

. Generally in scattering theory and in particular in quantum mechanics, the

Born approximation consists of taking the incident field in place of the total



field as the driving field at each point in the scatterer. Scattering Theory

13. Inneutron scattering, the first-order Born approximation is almost always
adequate, except for neutron optical phenomena like internal total reflection
in a neutron guide, or grazing-incidence small-angle scattering. The Born
approximation has also been used to calculate conductivity in bilayer
graphene and to approximate the propagation of long-wavelength waves in
elastic media. The same ideas have also been applied to studying the
movements of seismic waves through the Earth.

NOTES

14. The limiting value of energy is zero (this limiting value is derived from
differential scattering cross section foe s-wave). Thus, as

E — 0 - f(0) = a, where is called scattering length or effective range.

15. The Bethe formula or Bethe-Bloch formula describes the mean energy loss
per distance travelled of swift charged particles (protons, alpha particles,
atomic ions) traversing matter (or alternatively the stopping power of the
material).

4.17 SUMMARY

¢ Rayleigh scattering is one commonly known type of scattering which mainly
consists of scattering from atmospheric gases, it occurs when the particles
causing scattering are smaller in size than the radiation wavelengths in contact
with them.

e Scattering, in physics, is defined as a change in the direction of motion ofa
particle because of a collision with another particle. As defined in physics, a
collision can occur between particles that repel one another, such as two
positive (or negative) ions, and need not involve direct physical contact of
the particles.

e The physicist Ernest Rutherford passed a stream ofalpha particles through
a thin sheet of gold foil. The alpha particles were emitted by a radioactive
material and had enough energy to penetrate an atom; although most passed
right through the gold foil, some were deflected in a way that indicated that
the scattering was produced by a Coulomb force.

e When two atoms are scattered off one another, one can understand them
as being the bound state solutions of some differential equation.

e Scattering by particles similar to, or larger than, the wavelength of light is
typically treated by the Mie scattering theory, the discrete dipole
approximation and other computational techniques. Rayleigh scattering
applies to particles that are small with respect to wavelengths of light, and
that are optically ‘soft’ (i.e., with a refractive index close to 1).

e The strong wavelength dependence of the scattering (~A ) means that
shorter (blue) wavelengths are scattered more strongly than longer (red)
wavelengths.

¢ The Rayleigh scattering is mostly seen occurring in nature, and therefore it is

considered to be one of the most commonly observed optical phenomena. i;lf - _Ljﬂrning 51
ateria
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Raman scattering or the Raman effect is the inelastic scattering ofa photon
by molecules which are excited to higher energy levels. The effect was
discovered in 1928 by C. V. Raman and hence named as Raman scattering
or the Raman effect.

The energy difference between the absorbed and emitted photon
corresponds to the energy difference between two resonant states of the
material and is independent ofthe absolute energy of the photon.

Total cross section and the differential cross section have the dimension of
area. Ifthe potential is spherically symmetric, then differential cross section
is independent of.

The scattering cross section gives the idea of the nature of'target. It is not
equal to the exact spatial area of the target. Usually, cross sections are
measured in barns, where.

Experimental observations are done using laboratory coordinate system.
But centre of mass coordinate system reduces the two body problem into
one body problem. In these way degrees of freedom reduces by half.

Thus centre of mass coordinate system is more convenient for the calculation
of scattering problem.

According to the classical scattering theory, let us say particle incident on
some scattering centre (we can say target), it comes with some enrgy E and
it will get deviated. We can assume that the target is heavy and recoil of
target substance is negligible.

In quantum scattering, waves feel their way around the whole sphere. But
in case of classical scattering, the particles can see the head on cross section
or a head on surface area.

By solving the radial part of the Schrodinger equation we can explain the s-
wave scattering by an attractive square well potential. Let us consider an
equation from the scattering by an attractive square well potential.

The finite potential well (also known as the finite square well) is a concept
from quantum mechanics. It is an extension of the infinite potential well, in
which a particle is confined to a ‘Box’, but one which has finite potential
“Walls’.

If value of potential is, it is known as repulsive potential and in this case
phase shift is negative. If value of potential is, it is known as attractive potential
and in this case phase shift is positive.

The Born approximation is named after Max Born who proposed this
approximation in early days of quantum theory development. It is the
perturbation method applied to scattering by an extended body. It is accurate
ifthe scattered field is small compared to the incident field on the scatterer.

The scattering of radio waves by a light styrofoam column can be
approximated by assuming that each part of the plastic is polarized by the
same electric field that would be present at that point without the column,
and then calculating the scattering as a radiation integral over that polarisation
distribution.



e For electrons the energy loss is slightly different due to their small mass Scattering Theory
(requiring relativistic corrections) and their indistinguishability, and since they
suffer much larger losses by Bremsstrahlung, terms must be added to account
for this.

e Fast charged particles moving through matter interact with the electrons of
atoms in the material. The interaction excites or ionizes the atoms, leading
to an energy loss of the traveling particle.

NOTES

4.18 KEY TERMS

e Scattering: Scattering occurs when light or other energy waves pass through
an imperfect medium, such as air filled with particles of some sort, and are
deflected from a straight path. The light is deflected off of its straight path
and scatters in many directions.

e Inelastic scattering: In inelastic scattering, by contrast, the particles’ internal
state is changed, which may amount to exciting some of the electrons of a
scattering atom, or the complete annihilation of a scattering particle and the
creation of entirely new particles.

e Rayleigh scattering: It is the predominantly elastic scattering of light or
other electromagnetic radiation by particles much smaller than the wavelength
of'the radiation. Rayleigh scattering does not change the state of material
and is, hence, a parametric process.

e Phase shift: In scattering theory the phase shift is very important. Phase
shift is measured by comparing the incoming wave and the scattered wave.
When wave is scattered from the target (potential) there will be a change in
the phase.

¢ Bethe formula: The Bethe formula or Bethe-Bloch formula describes the
mean energy loss per distance travelled of swift charged particles (protons,
alpha particles, atomic ions) traversing matter (or alternatively the stopping
power of the material).

4.19 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions
1. What is scattering theory?
What does Rayleigh scattering cross-section mean?
Who developed Rayleigh scattering?
What do you understand by selection rules for Raman scattering?
Distinguish between stock and anti-stock lines.

State the advantages and disadvantages of Raman scattering.

A AT o

What is scattering angle? Self - Learning
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8. What do you understand by centre of mass?
9. What is the impact parameter?
10. Define the resonance scattering.

11. State the effective range theory.
Long Answer Questions

1. Discuss the significance of term scattering theory giving appropriate
examples.

2. Explain Rayleigh scattering theory and methods.

3. Describe the selection rules, advantages and disadvantages of Raman
scattering.

Elaborate on the laboratory and centre of mass system.

Describe the scattering by a central potential with help of examples.
explain the partial wave analysis and phase shift method by giving examples.
Discuss in detail relation between phase shift and logarithmic derivatives.

Explain in detail scattering by a deep square well.

R S N

Describe the sign of the phase shift and Born approximation with relevant
examples.
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5.0 INTRODUCTION

In general relativity, events are continuous and deterministic, meaning that every
cause matches up to a specific, local effect. Classical relativity tells us that motion
is relative to the observer's state of motion. However, classical relativity breaks
down at the speed of light.

In physics and mathematics, the Lorentz group is the group of all Lorentz
transformations of Minkowski spacetime, the classical and quantum setting for all
(non-gravitational) physical phenomena. The Klein-Gordon equation is a relativistic
version ofthe Schrodinger equation that describes the behavior of spin less particles.
In particle physics, the Dirac equation is a relativistic wave equation derived by
British physicist Paul Dirac in 1928. In its free form, or including electromagnetic
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interactions, it describes all spin-1/2 massive particles, such as electrons and quarks
for which parity is a symmetry. A wave function expresses that the three things
about the free particle: the energy of the particle, the momentum of'the particle,
and the probability density of finding the particle at any point.

The theory of hyperfine structure comes directly from electromagnetism,
consisting ofthe interaction of the nuclear multipole moments (excluding the electric
monopole) with internally generated fields. In relativistic quantum mechanics, the
completely filled, negative-energy electron state that makes up a vacuum. Ifa
negative-energy electron transitions to a positive-energy state, the resulting hole
has the properties of a positron. In quantum mechanics, identical particles (also
called indistinguishable or indiscernible particles) are particles that cannot be
distinguished from one another, even in principle. In quantum mechanics, the
exchange operator, also known as permutation operator, is a quantum mechanical
operator that acts on states in Fock space.

In particle physics, a bosonis a subatomic particle whose spin quantum
number has an integer value (0,1,2 ...). In quantum statistics, Bose-Einstein (B-E)
statistics describes one oftwo possible ways in which a collection of non-interacting,
indistinguishable particles may occupy a set of available discrete energy states at
thermodynamic equilibrium.

Fermions include all quarks and leptons, as well as all composite particles
made of an odd number of these, such as all baryons and many atoms and nuclei.
Fermi-Dirac statistics is a type of quantum statistics that applies to the physics of
a system consisting of many identical particles that obey the Pauli exclusion
principle.

In this unit, you will study about the Relativistic Quantum Mechanics (RQM)
and classical relativistic dynamics, Lorentz group, Klein-Gordon equation, Dirac
equation, free electron plane wave, hyperfine position theory, hole theory, identical
particle, permutation operator and algebra of permutation operator, boson and
Bose-Einstein statistics, fermions and Fermi-Dirac statistics.

5.1 OBJECTIVES

e State the Relativistic Quantum Mechanics (RQM) and classical relativistic
dynamics

e Know about the Lorentz group

¢ Understand the Klein-Gordon equation

¢ Analyse the Dirac equation

e Comprehend the free electron plane wave

e Interpret the hyperfine position theory

¢ Explain about the hole theory

e Discuss the identical particle

e Describe the permutation operator and algebra of permutation operator

¢ Elaborate on the boson and Bose-Einstein statistics

e Know about the fermions and Fermi-Dirac statistics



5.2 CLASSICAL RELATIVISTIC DYNAMICS

In physics, Relativistic Quantum Mechanics (RQM) is any Poincaré covariant
formulation of Quantum Mechanics (QM). This theory is applicable to massive
particles propagating at all velocities up to those comparable to the speed of light
¢, and can accommodate massless particles. The theory has application in high
energy physics, particle physics and accelerator physics, as well as atomic physics,
chemistry and condensed matter physics. Non-relativistic quantum mechanics
refers to the mathematical formulation of quantum mechanics applied in the context
of Galilean relativity, more specifically quantizing the equations of classical mechanics
by replacing dynamical variables by operators. Relativistic Quantum Mechanics
(RQM) is quantum mechanics applied with special relativity. Although the earlier
formulations, like the Schrédinger picture and Heisenberg picture were originally
formulated in a non-relativistic background, a few of them (For example, the Dirac
or path-integral formalism) also work with special relativity.

Key features common to all RQMs include: the prediction of antimatter,
spin magnetic moments of elementary spin 1/ 2 fermions, fine structure, and quantum
dynamics of charged particles in electromagnetic fields. The key result is the Dirac
equation, from which these predictions emerge automatically. By contrast, in
non-relativistic quantum mechanics, terms have to be introduced artificially into
the Hamiltonian operator to achieve agreement with experimental observations.

The most successful (and most widely used) RQM is relativistic Quantum
Field Theory (QFT), in which elementary particles are interpreted as field quanta.
A unique consequence of QFT that has been tested against other RQM:s is the
failure of conservation of particle number, for example in matter creation and
annihilation.

The classical relativistic dynamics is made up of two words, which are
“classical” and ‘Relativistic Dynamics’. The word classical represents the
macroscopic particles in a general sense. Here relativistic dynamics refers to the
dynamics (physics) of those particles which moves with the speed comparable to
the speed of light.

When the speed of the objects becomes comparable to the speed of light
then the mass of the object is no longer a constant and is describes by the famous
equation:

2

%
M=Mo ,/1—- -
C

The Einstein’s special theory of relativity comes into the picture.

So, at high speeds when v ~ ¢, such that v=c/2, 3¢/5, c/4, 4¢/5, ¢/3, etc. If
v=c/100, then it can be treated as non relativistic case.

The conditions for a particle to be treated as a relativistic case are as follows:

When the kinetic energy of a particle or an object is equal to or greater than
its rest mass energy:
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KEe>M ¢’
When the momentum of the object is greater than the product of the rest

mass and the speed of light:

Pe>Mc
In relativistic dynamics, the relative velocity when the two objects (let 1 and 2)

move in the same direction is given by:

V™V

i‘
S8}

V21= 1——2

The relativistic momentum equation is given by:

M,y

c
Solving this, we then get the value of the speed in terms of momentumi i.e.

___prc
V= JMo*c* + p?
The concept of rest mass energy also comes to the notice in relativistic

dynamics. An object at rest has the rest mass energy which is given by:
E=M ¢*
And the total energy of the free particle in motion is given by:

2
M c
v

E =Mc’= 1——
2
C

Here v is the speed ofthe object with respect to the observer.

The relativistic kinetic energy is given by:

K= Mc¢*-M ¢?

M’
K= /l_ﬁ ~ M
CZ

Energy momentum relation is given by:

E=\/Mo*c* + p*c* which further gives,
K= /M0204+p202 _Mocz
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Which gives a formula for: p= \/ K (K +2MoC’ )



We also deal in relativistic dynamics about the expansion of KE in terms of

momentum, as follows:

KE= \/Mo*c* + p*c® - MoC?
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