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INTRODUCTION

At the close of the 19th century Stieltjes showed that the integral is a linear functional
and hence was able to generalize Riemann’s theory to introduce Riemann-Stieltjes
integrals. However, there were many shortcomings in Riemann’s theory and it was
felt that an integration theory which could encompass a larger class of functions
was needed. This paved the way for sthe concept of measure, which was introduced
by Borel and Lebesgue at the beginning of 20th century.

Functional analysis is a branch of mathematical analysis, the core of which
is formed by the study of vector spaces endowed with some kind of limit-related
structure such as inner product, norm, topology, etc., and the linear operators acting
upon these spaces and respecting these structures in a suitable sense. It is concerned
with infinite-dimensional vector spaces and mappings between them. The historical
roots of functional analysis lie in the study of spaces of functions and the formulation
of properties of transformations of functions such as the Fourier transform as
transformations defining certain operators between function spaces. This turned
out to be particularly useful for the study of differential and integral equations. The
usage of the word functional goes back to the calculus of variations, implying a
function whose argument is a function.

In modern introductory texts to functional analysis, the subject is seen as the
study of vector spaces endowed with a topology, in particular infinite dimensional
spaces. A significant part of functional analysis is the extension of the theory
of measure, integration and probability to infinite dimensional spaces, also known
as infinite dimensional analysis.

This book, Integration Theory and Functional Analysis is divided into
five units that follow the self-instruction mode with each unit beginning with an
Introduction to the unit, followed by an outline of the Objectives. The detailed
content is then presented in a simple but structured manner interspersed with Check
Your Progress Questions to test the student’s understanding of the topic. A Summary
along with a list of Key Terms and a set of Self-Assessment Questions and Exercises
is also provided at the end of each unit for recapitulation.
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UNIT 1 SIGNED MEASURES
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1.0 INTRODUCTION

In mathematics, signed measures is a generalization of the concept of measures
that permits it to have negative values. There are two somewhat different concepts
of a signed measures which depends on the fact that one should permit or not the
infinite values. There are two types of measures, extended signed measures and
finite signed measures. For a specified or given measurable space (X, ), that is
for a set X with an algebra or sigma algebra  on it, an extended signed measures
is considered a function. A finite signed measures can be defined except that it only
takes the real values, i.e., it cannot take  or . Finite signed measures form a
vector space. The sum of two finite signed measures is a finite signed measures
because it is the product of a finite signed measures by a real number which is
considered closed under linear combination. It follows the assumption that the set
of finite signed measures on a measures space (X, ) is a real vector space. The
Hahn decomposition theorem is named after the Austrian Mathematician Hans
Hahn. The theorem states that given a measurable space (X, ) and a signed
measures   defined on the  algebra  then there exist two sets P and N in and
the pair (P, N) is termed as a Hahn decomposition of the signed measures  . In
measures theory, Lebesgue’s decomposition theorem states that for given  and 
two -finite signed measures on a measurable space ().

In this unit, you will learn about the basics of signed measures, Hahn
decomposition theorem, mutually singular measures, Radon-Nikodym theorem,
extension theorem (Caratheodory), Lebesgue-Stieltjes integral, product measures
and Fubini’s theorem.
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1.1 OBJECTIVES

After going through this unit, you will be able to:

 Explain the significance of signed measures

 State Hahn and Jordan decomposition theorems

 Discuss the meaning of mutually singular measures is

 Explain Radon-Nikodym theorem

 Elaborate on the Caratheodory extension theorem

 Describe Lebesgue decomposition

 State the significance of Lebesgue-Stieltjes integral

 Discuss the product measures  and Fubini’s theorem

1.2 BASICS OF SIGNED MEASURES

In mathematics, signed measures is referred as a simplification of the concept of
measure that allows it to have negative values. There are two different notions of
a signed measures that depends on the condition that how the infinite values are
taken. In advanced concept typically the signed measures take finite values, while
sometimes generally the infinite values are taken. Hence the former concept is
termed as ‘Finite Signed Measures’ while the later is termed as ‘Extended Signed
Measures’.

For a specified (given) measurable space (X, ), that is for a set X with a 
algebra or sigma algebra  on it, an extended signed measures is a function as
follows:

: { , }     
This implies that µ(Ã) = 0 where  is sigma additive. It satisfies the following

equality for any sequence A
1
, A

2
, ..., A

n
 of disjoint sets in .

11

( )n n
nn

A A
 



 
   
 

 

One possibility is that any extended signed measures can take the value as
 or it can take the value as . But both the values are not available.

Similarly, a finite signed measures can be defined except that it only takes
the real values, i.e., it cannot take  or . Finite signed measures form a vector
space.

The measures can be extended signed measures but may not be the general
finite signed measures. For example, consider a nonnegative measure  on the
space (X, ) and a measurable function f: X  R such that,

| ( ) | ( ) .
X

f x dv x 
Subsequently, a finite signed measures is given by,

( ) ( ) ( )
A

A f x dv x  
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This is for all A in .

This signed measures will take only finite values. To permit it to take  as a
value, substitute the assumption regarding  f  being absolutely integrable with the
more relaxed condition,

( ) ( ) ,
X

f x dv x

Here f(x) = max(f(x), 0) is the negative part of  f.

Properties

The two results follow which implies that an extended signed measures is the
difference of two nonnegative measures and a finite signed measures is the difference
of two finite nonnegative measures.

The Hahn decomposition theorem states that for a given signed measures ,
there exist two measurable sets P and N such that,

1. P N = X and P N = .

 (E)  0 for each E in  such that E  P or in other words P is a positive
set.

 (E)  0 for each E in  such that E  N that is N is a negative set.

Furthermore, this decomposition is unique for adding/subtracting null sets
from P and N.

Now consider the two nonnegative measures  and  defined by,

µ+ (E) = µ(P  E)

And

µ– (E) = –µ(N  E)

This is for all measurable sets E, that is E in .

Here both  and  are nonnegative measures. The measures take only
finite values and are termed as the positive part and negative part of , respec-
tively. Thus we have  =   . The measure || =    is termed as the
variation of  and its maximum possible value specified as |||| = ||(X) is termed
as the total variation of .

This possibility of the Hahn decomposition theorem is termed as the Jordan
decomposition. The measures , and || are independent of the option of
P and N in the Hahn decomposition theorem.

Space of Signed Measures

The sum of two finite signed measures is a finite signed measures because it is the
product of a finite signed measure by a real number which is considered closed
under linear combination. It follows the assumption that the set of finite signed
measures on a measure space (X, ) is a real vector space. This is quite opposite
to the positive measures which are only closed under conical combination and
thus form a convex cone but not a vector space. In addition, the total variation
defines a norm for which the space of finite signed measures becomes a Banach
space. As per the Riesz representation theorem, if X is a compact separable space
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then the space of finite signed Baire measures is considered the dual of the real
Banach space of all continuous real valued functions on X.

Let (X, S) be a measurable space. A function v : S  [–, ] is considered
as a signed measures if the following conditions are true:

 If v(Ã) = 0.

 If {–, } (range v) is a singleton set or empty.

 If 1{ }i iE  are a pairwise disjoint collection of measurable sets then we
have,

1 1

( ) ( )i i
i i

v E v E
Here the sum converges absolutely if 

1
( ) .iv E

For example, let 1( , , )g L X S µ  where  is a measure and defines,

( )
E E E

v E gdµ g dµ g dµ

Definition: A set E S  is a positive set for the signed measures  if ( ) 0v F

for all F S  with F E . Similarly, a negative set can also be defined.

Lemma 1: Suppose is a signed measures and E is a positive set. If F E  is

measurable then F is considered as a positive set. Additionally, if in a countable

family iE S  are all positive then 
1 iE .

Proof: The first assertion follows immediately from the definition.

Assume that 1{ }iE  are positive sets then we can write 
1 iE  as a disjoint

union of the form 
1 iF  and consequently i iF E .

In addition, if 
1 1i iB E F   then,

1

( )iB B F
Subsequently,

1

( ) ( ) 0i
i

v B v B F

Since for all i, i iB F E .

Lemma 2: Consider that (X, S) be a measurable space and  a signed measures
and assume a subset E S  and 0 ( )v E . Then there exists a positive set

P E  such that, ( ) 0v P .

Proof: For the condition, if  E is positive then take E = P. Consequently assume
that there exists a subset N E  such that, ( ) 0v N . Let  (E) = {N S : N
E, v (N) < 0}. Since E is not positive hence   is nonempty..

Let n   be the smallest natural number such that there exists 1 ( )N E

with 1
1

1
( )v N

n
  . If E \ N

1
 is positive then it follows the definition and is proved.

If it is negative then continue inductively.
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Let n
2
 be the smallest positive integer such that there exists 2 ( )N E 

such that, 2
2

1
( )v N

n
  . Reproduce to obtain N

1
,...,N

k
 such that

1
( ) , 1j

j

v N j k
n  and n

k+1
 is selected as the smallest positive integer and

there exists 1 1( \ )k
k jN E N  such that, 1

1

1
( )k

k

v N
n

.

Observe that 1k kn n  and {N
k
} is a disjoint family of sets.

Let,

1

\ k
k

P E N
We have,

1
k

k

E P N 
Therefore,

1

( ) ( ) ( )kv E v P v N

Because v(E) <  we obtain that the sum on the right converges absolutely.
Subsequently,

1 1

1
| ( ) |k

k kk

v N
n

Specifically, n
k
  since k . We have,

1

( ) 0k
k

v N  and v(E) > 0

As a result we have, v(P) > 0

Let 0   and consider that K is very large such that we have,

1

1
,

1k

k K
n 

   


We already know that,

1

\ ,
K

k
k

P E N
Subsequently by construction, P contains no measurable set F with

1

1
( ) .

1k

v F
n

Hence, P contains no subset F  S with v(F) < –. This is true for all  > 0
and hence P must be positive. Any measure is thus a signed measures and some-
times termed as a positive measure.
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Signed Measures and Complex Measures

Now we will explain a generalization of the notion of a measure where the values
are permitted to be outside [0,].

Definition: Suppose  is a algebra on a non-empty set X. A function  
is termed as a signed measures on , if it has the properties explained
below.

1. Either one of the following is true:
 µ(A) < ,  A  
 µ(A) > –,  A  

2. If µ() = 0.

3. For any pairwise disjoint sequence 1( )n nA   there is the equality,,

1 1

( ) ( )n n
n n

A A ...(1.1)

The convention that if one term on the right hand side of Equation (1.1) is
equal to then the entire sum is equal to . It is significant to use Condition (1)
because it avoids conditions when one term is  and another term is .

A complex measures simplifies the concept of measure using the complex
values or we can say that these are sets whose size (length, area and volume) is a
complex number.

A complex measure on a measurable space (X, ) is a function defined on
 which takes complex values that is sigma additive. We can write,

: 
This specifies that for any sequence (A

n
)

n
 of disjoint sets in  there is,

1 1

( ) ( )n n
n n

A A .

This is possible provided that the sum on the right hand side converges com-
pletely or diverges accurately in analogy with the real valued signed measures.

Integration with Respect to a Complex Measures

The integral of a complex valued measurable function can be defined with respect
to a complex measures by approximating a measurable function with simple
functions. The already existing integral of a real valued function can be used with
respect to a nonnegative measure. The real and imaginary parts 

1
 and 

2
 of a

complex measures  are considered finite valued signed measures. Using the Hahn-
Jordan decomposition theorem these measures can be split as follows:

1 1 1
 and  

2 2 2

Here 
1
, 

1
, 

2
, 

2
 are the unique finite valued nonnegative measures.

Subsequently, for a measurable function  f  which is real valued for the moment,
we can define:

1 1 2 2X X X X X
f d f d f d i f d f d
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This expression holds provided that the expression on the right hand side is
defined such that all four integrals exist. At the time of addition of these integrals
the indeterminate   is not encountered.

For a given complex valued measurable function, its real and imaginary com-
ponents can be integrated independently as already discussed and we can denote
this as follows:

( ) ( ) .
X X X

f d f d i f d

Variation of a Complex Measure and Polar Decomposition

For a complex measure  its variation or absolute value || can be defined using
the formula,

1

| | ( ) sup | ( ) |n
n

A A

Here A is in  and the supremum flows over all sequences of disjoint sets
(A

n
)

n
 whose union is A. Considering only the finite partitions of the set A into

measurable subsets, we can obtain an equivalent definition.
This implies that || is a nonnegative finite measure. Correspondingly since a

complex number can be represented in a polar form we can have the polar de-
composition for a complex measures. There exists a measurable function  with
real values such that,

| |id e d
This implies that,

| |i

X X
f d f e d

This holds for any absolutely integrable measurable function f, i.e., f satisfying
the condition,

| | | | .
X

f d

The Radon-Nikodym theorem can be used to prove that the variation is a
measure and the polar decomposition exists.

The Space of Complex Measures

The sum of two complex measures is also referred as a complex measures and
similarly the product of a complex measures by a complex number. To be precise,
the set of all complex measures on a measure space (X, ) forms a vector space.
Additionally, the total variation |||| is defined as follows,

|| || | | ( )X
This is considered as the norm with respect to which the space of complex

measures is termed as a Banach space.

1.2.1 Hahn Decomposition Theorem

The Hahn decomposition theorem is named after the Austrian mathematician Hans
Hahn. The theorem states that given a measurable space (X, ) and a signed



Signed Measures

NOTES

Self - Learning
10 Material

measures  defined on the  algebra  then there exist two sets P and N in  such
that,

1. P  N = X and P  N = .

2. For each E in  such that, E  P one has (E)  0, i.e., P is a positive set
for .

3. For each E in  such that, E  N one has (E)  0, i.e., N is a negative set
for .

In addition, basically this decomposition is unique because for any additional
pair (P, N) of measurable sets which fulfils the above three conditions, the
symmetric differences P P and N  N are  null sets based on the logic that
every measurable subset of them has zero measure. The pair (P, N) is termed as a
Hahn decomposition of the signed measures .

Hahn-Jordan Decomposition

A consequence of this theorem is the Jordan decomposition theorem, which states
that every signed measure  can be expressed as a difference of two positive
measures  and , of which at least one is finite. Here  and are the positive
and negative part of , respectively. These two measures can be characterized as
follows:

( ) : ( )E E P  and ( ) : ( )E E N
This holds for every E in  and both  and  can be verified as positive

measures on the space (X, ) where at least one of them is finite, since  cannot
take both  and  as values and satisfy  =   . The pair () is
termed as Jordan decomposition and also sometimes Hahn-Jordan decomposition
of .

Proof of the Hahn Decomposition Theorem

Preparation: Consider that  does not take the value  or else decompose
according to . As already explained, a negative set is a set A in  such that
(B) d  0 for every B in  which is a subset of A.

Claim: Assume that a set D in  satisfies (D)  0. Then there is a negative set
A  D such that (A)  (D).

Proof of the Claim: Define A
0
 = D. Further presume for a natural number n that

A
n
  D has been constructed. Let,

sup{ ( ) : , }n nt B B B A

This denotes the supremum of (B) for all the measurable subsets B of A
n
.

This supremum may be infinite. Since the empty set  is a feasible B in the
definition of t

n
 and () = 0 hence we obtain t

n
  0. By definition of t

n
 there

exists B
n
  A

n
 in  which satisfies that,

( ) min{1, / 2}.n nB t

Set A
n+1

 = A
n
\B

n
 concludes the induction step. Define,
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0

\ .n
n

A D B
Since the sets (B

n
)

n0
 are disjoint subsets of D hence it follows from the

sigma (additivity of the signed measures  that,

0 0

( ) ( ) ( ) ( ) min{1, / 2}.n n
n n

A D B D t

This shows that (A)  (D). Presume that A is not a negative set, i.e.,
there exists a B in  which is a subset of A and satisfies (B) > 0. Then t

n
  (B)

for every n hence the series on the right must diverge to  which signifies that
(A) = , which is not permitted. Consequently, A must be a negative set.

Construction of the Decomposition

Consider that set N
0
 = . Initiating that N

n
 is given then define s

n
 such that,

: inf{ ( ) : , \ }.n ns D D D X N

This is the infimum of (D) for all the measurable subsets D of X \ N
n
. This

infimum may be . Since the empty set is a feasible D and () = 0 hence we
have s

n
  0. Therefore there exists a D

n
 in  with D

n
  X \ N

n
 and

2
( ) max{ 1} 0.nnD S  

As per the above claim we can define that there is a negative set
A

n
  D

n
 such that, (A

n
)  (D

n
). We can define N

n+1
 = N

n
  A

n
 to conclude the

initiation step.

Define,

0

.n
n

N A
Since the sets (A

n
)

n0
 are disjoint hence we have for every B  N in  that,

0

( ) ( )n
n

B B A

This is true by the sigma or additivity of . Specifically, this proves that N
is a negative set. Define P = X \ N. If P is not a positive set then there exists D  P
in  with (D) < 0. Subsequently s

n
  (D) for all n and,

0 0

( ) ( ) max{ / 2, 1} ,n n
n n

N A s

This is not possible for  consequently P is a positive set.

Proof of the Uniqueness Statement: Consider that (N, P) is an additional
Hahn decomposition of X. Subsequently 'P N  is considered as a positive set
and also a negative set. As a result, every measurable subset of it has measure

zero. The similar applies to 1N P . Because
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( ') ( ') ( ') ( ').P P N N P N N P   
Hence the proof is complete.

Signed Measures: Hahn and Jordan Decomposition

The theoretical measure is termed as a nonnegative extended real valued function
defined on a measurable space (X, ). On the contrary, a signed measures can
also use negative values. By definition, a signed measures must satisfy the following
properties:

1. The assumes at most one of the values and .

2. ( ) 0.v Ã

3.
1 1

( )i ii i
v E v E  for any sequence iE  of the disjoint measurable

sets. Consequently, if 
1 ii

v E  is finite then the series converges

absolutely.

Property (1) is sufficient to avoid  whereas Property (2) defines that
there is at least one positive set. Property (3) is essential for the existence of a
positive set having positive measures that are included in a measurable set with
finite positive measure.

We can state that a set A is positive with respect to a signed measure  if A
is measurable and all measurable subsets of A have nonnegative measure. In the
same way, B is termed as negative if it is measurable and every measurable subset
of it has non positive measure. The set C is termed as a null set if it is both positive
and negative.

Evidently, every measurable subset of a positive set is termed positive
and a union of a countable collection of disjoint positive sets is also positive, by

Property (3). For a countable collection of positive sets iP  which may not be
necessarily disjoint, we can define that their union is also positive. If E be an
arbitrary measurable set of iP  then we can define,

 1
1\ .i

i i n nE E P P 

Here iE  is a sequence of disjoint measurable sets whose union is E and

each E
i
 is contained in positive P

i
. Consequently, v(E) = v iE  = ( ) 0iv E

as per Property (3).

Eventually it can be proved that given a signed measures space (X, B, )
there is a positive set A and a negative set B such that A and B partition X. This is
termed as the Hahn decomposition theorem. The following is an important lemma.

Lemma: Let E be a measurable set having finite positive measure. Then there is a
positive set P having positive measure contained in E.

Proof: If E is positive then the theorem holds. Assume that E is not positive then

it has a measurable subset of negative measure. Let 1n   be the smallest such
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that there is a measurable set E
1 
with 1

1
( )v E

n
. If we consider n as small then

there is no E
1 
fulfilling the form. Next we take E\E

1
.

Take v(E\E
1
) = v(E) – v(E

1
) > v(E) > 0. If  E/E

1
 is positive then we exit the

proof.

Initiating, if 1
1\ k

i iE E  is not positive then let kn   be the smallest such

that there is a measurable set E
k
 with 

1
( )k

k

v E
n . Continuing further,,

let 1\ i iP E E . Subsequently, ( ).iE P E  Here P and iE  are

disjoint. Consequently by Property (3), ( ) ( ) ( )iv E v P v E . But by definition

v(E) <  hence ( )iv E  is absolutely convergent. Therefore, lim 0i in .

Now consider that 0 , accordingly there is k such that, 
1

1kn .

Consequently, 
1

.
1kn

Here P is contained in 
1

1
\

k

ii
E E . If A contains a measurable set which is

henceforth contained in 
1

1
\

k

ii
E E



  with measure less than – and consequently

less than 
1

1kn  then n
k
 is considered no longer the smallest positive integer that

makes the existence of a measurable set having measure less than the negative of
its reciprocal.

As a result, P contains no measurable set having measure less than –.
Since  is arbitrary, hence P contains no measurable set having negative measure.
This shows that P is positive.

It is obvious that v(P) = v(E) –  v(E
i
) > v(E) > 0.

Hence proved.

Theorem 1.1 (Hahn Decomposition Theorem): Let (x, , ) be a signed
measures space. Then there is a positive set P and a negative set N such that,

X P N  and .P N  Ã .

Proof: Assume that never takes . Let supPp  is positive (P). Since Ã is

positive, consequently p  0. By the definition of sup, there exists is a sequence of

positive sets iP  such that, lim ( )i ip v P . Let iP P  then P is positive.

Therefore, p  v(P). But for any i, ( ) ( )iv A v A  ( \ ) ( ).i iv A A v A
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Hence, ( )v A p . As a consequence, 0 ( ) .v A p

Let, N = X \ P.

Here if we can assert that N is negative then no further proof required.
Presume that E is a positive subset of N. Subsequently E and P are disjoint and

E P  is positive.

Consequently, ( ) ( ) ( ) ( ) .p v E P v E v p v E p  This implies that

( ) 0v E . Therefore, N does not contain any positive subsets of positive measure.
As a result, by the contrapositive of the lemma, N does not contain any subsets of
positive measure.

Thus the theorem proves that the Hahn decomposition of a measurable
space associated with a signed measures exists. Though, it is not exceptional.
Consider that m be the Lebesgue measure on  .

Now define 1( ) ( [ 1,0])v E m E  and 2 ( ) ( [0,1])v E m E .

Let v = v
1
 – v

2
. Now consider that ( ,0)  and (0, )  is a Hahn

decomposition since for any measurable ( , 0]E   , 1( ) ( [ 1,0])v E v E 

2 1( [0,1) ( [ 1,0]) 0v E v E   and any 1 2(0, ), ( ) ( )F v F v v   Ã

( [0,1]) 0.F 

Similarly, it can be verified that [–1, 0] and ( , 1) (0, )  is an additional
Hahn decomposition. Hahn decomposition is considered unique except for null
sets.

If  is a signed measures and P and N is Hahn decomposition then we can

define v+ through ( ) ( )v E v E P  and v– through ( ) ( )v E v E N .

Consequently, v = v+ – v–. Here v+ and v– are measures that are mutually
singular because there is a binary partition {A, B} of X such that v+ (A) = v–

(B) = 0 when A = N and B = P.

A decomposition of the measure  as a difference of two mutually singular
measures v+ and v– is termed as Jordon decomposition. The Jordan
decomposition is in fact independent of the Hahn decomposition and there is only
one pair of such decomposition and is unique in nature.

Let v = v+ – v– be a Jordan decomposition. By definition, there exists a
partition A and B of X such that v+ (A) = v– (B) = 0. Here (B, A) is a Hahn
decomposition.

Now consider that E B , then ( ) ( ) 0v E v B , i.e., ( ) 0v E .

Consequently, ( ) ( ) ( ) 0.v E v E v E  This implies that B is positive.

Similarly A is negative. Subsequently we can deduce that Hahn decomposition is
up to null sets where as the Jordan decomposition is unique.
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Theorem 1.2 (Jordan Decomposition Theorem): Let v be a signed measures
on (X, S). Then there exists two measures v+ and v– on (X, S) such that, v = v+ +
v– and v+  v–.

Furthermore, if µ+ and µ– on (X, S) such that, v = µ+ – µ– and µ+  µ–.

Then  µ+ = v+ and v– = µ–.

Proof: Assume that µ+ and µ– satisfy the last two conditions. Then, there exists
measurable sets A, B such that, X A B  and A B  Ã. In addition, µ+(B) =
µ–(A) = 0.

If P, N be the corresponding sets for v+ and v– then,

 A is positive for v.

 P is positive for v.

 B is negative for v.

 N is negative for v.

Observe that, \P A P  and \P A B

Subsequently, v(P\A) = µ+ (P\A) – µ–(P\A) = 0 – µ–(P\A)  0

Consequently, we obtain that µ–(P\A) = 0 and v(P\A) = 0. In the same way
we deduce that v(A\P) = 0.

For E  S we establish that,

( )E = ( ) ( ) ( ( )) ( ( \ ))E A v E A v E P A v E P A    
= (( ) ( ) ) ( ) ( )v E P A v E A P v E A v E       

Similarly, we obtain µ–(E) = v–(E) for all E S . The following definitions
will prove the assumptions.

Definition 1: v+ and v– are termed as the positive and negative variation of v.
v+ + v– is termed as the total variation of v, |v|. This is precisely defined in the
theorem.

Note: E S  is null for a signed measures v if v(F) = 0 for all F E , F S .
This is true if and only if |v|(E) = 0.

For signed measures v
1
, v

2
 we can state that v

1
  v

2
 if and only if

|v
1
|  |v

2
|.

Definition 2: For a signed measures and a measurable function f, we state that f
is integrable with respect to v if f is integrable with respect to v+ and f is also
integrable with respect to v–. Furthermore, we can define that,

_

X X X
f dv f dv f dv

The right hand side of the above equation homogeneously obtain the
integration over X and replace it with integration over P and N, respectively.

Note: If v is a signed measures and µ is a (honest) measure on a measurable
space (X, S) then we can state that v is absolutely continuous with respect to µ if
for E S  and µ(E) = 0 we have v(E).
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We can define that v << µ when v is absolutely continuous.

Note: v << µ  |v| << µ.

Absolutely continuous and mutually singular are at times the opposite terms.
If v and µ are measures such that both are µ  v and  v << µ then
v  0. The similar condition holds for v a signed measures.

Proof: To state that v  µ means that X A B  where ,A B S , A B  Ã,
and v(B) = µ(A) = 0. Then because v << µ, we obtain v(A) = v(B) = 0 and that

( ) ( ) ( ) ( ) 0v X v A B v A v B . For signed measures, just replace v and µ
in the statement by the total variance |v| and |µ|.

Proposition: Assume that v is a finite signed measures, i.e., |v| (X) <  and µ is a
positive measure, both on the measurable space (X, S). Then, v<<µ if and only if
for all  > 0, there exists a  > 0 such that |v(E)| <  whenever µ(E) < .

Proof: We include v << µ  |v| << µ consequently without loss of generality
assume that v is a measure, i.e., v  0. The condition  –  holds, if µ(E) = 0 then
µ(E) <  for all  > 0. Specifically, we obtain v(E) <  for all  > 0. Subsequently,
v(E) = 0. Accordingly, v << µ.

Conversely, assume that the  –  condition fails. Therefore there exists
 > 0 with no . Fix such an  > 0. Hence, > 0, there exists a E S with

µ(E) <  and v(E) . Let nE S  satisfy 1
( )

2n n
E   and ( )nv E . Takeake

k nn k
F E . Then, 

1

1
( )

2k k
F    and ( )kv F . Using the continuity theorem,

we obtain,

1

( ) 0,k
k

F




 
However,

1

( ) lim ( )k k
k

k

v F v F
Hence, v is not absolutely continuous with respect to µ.

Corollary: If 1( , )f L X  where µ is a measure, then for all  > 0 there exists

a  > 0 such that, | |
E

fd  whenever µ(E) < .

Proof: Consider that ( )
E

v E fd  then v<< µ and apply the proposition.

1.2.2 Mutually Singular Measures

Two complex measures  and on a measure space X are considered mutually
singular if they are provided on different subsets. More specifically, X A B
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where A and B are two disjoint sets such that the following properties hold for any
measurable set E,

1. The sets A E  and B E  are measurable.

2. The total variation of  is supported on A and that of on B, i.e.,

|| || ( ) 0 || || ( ).B E v A E  
The relation of two measures being singular is defined as µ  v which is

evidently symmetric. However, it is sometimes stated that is singular with re-
spect to .

A discrete singular measures with respect to Lebesgue measures on the real
integrals is a measure   defined at 0. We can state that (E) = 1 iff

0 E. Generally, a measure is concentrated on a subset A if (E) = ( )E A .
In this case the measure is concentrated at 0.

Two positive or signed or complex measures  and  defined on a measur-
able space (, ) are called singular if there exist two disjoint sets A and B in 
whose union is  such that  is zero on all measurable subsets of B while  is zero
on all measurable subsets of A. This is denoted by µ  v

A polished form of Lebesgue’s decomposition theorem decomposes a sin-
gular measure into a singular continuous measure and a discrete measure.

As a special case, a measure defined on the Euclidean space Rn is called
singular if it is singular in respect to the Lebesgue measure on this space. For
example, the Dirac delta function is a singular measure.

Consider the following discrete measure function on the real line,

0, 0;def( )
1, 0;

x
H x

x

This has the Dirac delta distribution 
0
 as its distributional derivative. This is

a measure on the real line and a point mass at 0. Though, the Dirac measure 
0
 is

neither absolutely continuous with respect to Lebesgue measure  nor is  abso-
lutely continuous with respect to 

0
: ({0}) = 0.  But 

0
({0}) = 1, if U is any open

set not containing 0 then (U) > 0 but 
0
(U) = 0.

Check Your Progress

1. What are signed measures?

2. What is finite signed measures?

3. State Hahn decomposition theorem.

4. How can the space of signed measures be defined?

5. Define the integral of a complex valued measurable function.

6. What is Jordon decomposition?

7. When do complex measures become mutually singular?

8. When are the two positive or signed or complex measures called
singular?
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1.3 RADON -NIKODYM THEOREM

The theorem is named after Johann Radon, who proved the theorem for the special
case where the underlying space is RN and Otto–Nikodym who proved the general
case. The Radon-Nikodym theorem is a consequence in measure theory that
states that given a measurable space (X, ), if a -finite measure  on (X, ) is
absolutely continuous with respect to a -finite measure  on (X, ) then there is
a measurable function f on X which takes values in [0, ) such that,

( )
A

v A f d

This holds for any measurable set A.

Radon-Nikodym Derivative

The function f satisfies the above stated equality is uniquely defined up to a -null
set. If g is an additional function which satisfies the same property then f = g, -
almost everywhere (-). f is generally described as dv/d and is termed as the
Radon-Nikodym derivative. The option of notation and the name of the function
reflect the fact that the function is analogous to a derivative in calculus and describes
the rate of change of density of one measure with respect to another. A similar
theorem can be proved for signed and complex measures if  is a nonnegative
-finite measure and v is a finite valued signed or complex measures such that
|v| << µ then there is -integrable real  or complex valued function g on X such
that,

( ) ,
A

v A g d

This holds for any measurable set A.

Properties

If Y is a Banach space and the generalization of the Radon-Nikodym theorem also
holds for functions with values in Y then Y is said to contain the Radon-Nikodym
property. All Hilbert spaces have the Radon-Nikodym property. The following
properties hold for Radon-Nikodym:

 Consider that ,  and  are the -finite measures on the same measure
space. If  <<  and  << , i.e.,  and  are absolutely continuous with
respect to  then we can state that,

( )
-almost everywhere.

d v dv d

d d d
 If  <<  <<  then we can state that,

-almost everywhere.
dv dv d

d d d

 Particularly, if  <<  and  <<  then we can state that,

1

-almost everywhere.
d dv

v
dv d
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 If  <<  and g is a -integrable function then we can state that,

.
X X

d
g d g d

d

 If  is a finite signed or complex measures then we can state that,

| |
.

d v dv

d d

Divergences

If  and  are measures over X and  <<  then,

 The Kullback-Leibler divergence from  to  is stated as follows:

( || ) logKL X

d
D v d

dv

 For  > 0,  1 the Rényi divergence of order  from  to  is stated as
follows:

1
1

( || ) log log .
1 X

d
D v d

dv

         





 



The Assumption of -Finiteness

The Radon-Nikodym theorem holds the assumption that the measure  with respect
to which one computes the rate of change of  is sigma finite. When is not sigma
finite then the Radon-Nikodym theorem fails to hold.

Consider the Borel -algebra on the real line. Let the counting measure 
of a Borel set A be defined as the number of elements of A, if A is finite and 
otherwise. It can be checked that  is certainly a measure. It is not sigma finite,
because not every Borel set is atmost a countable union of finite sets. If  be the
usual Lebesgue measures on this Borel algebra then  is absolutely continuous
with respect to , since for a set A we can state (A) = 0 only if A is the empty set
and then (A) is also zero.

Assume that the Radon-Nikodym theorem holds for some measurable
function f then we can state that,

( )
A

v A f d

This holds for all Borel sets. Taking A to be a singleton set, A = {a} and
using the above equality we obtain,

0 = f(a)

This holds for all real numbers a. This implies that the function f and
consequently the Lebesgue measure  is zero, which is a contradiction.

Proof

For finite measures  and , consider functions f by f d d d. The supremum of
all such functions together with the monotone convergence theorem provides the
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Radon-Nikodym derivative. The truth that the remaining part of  is singular with
respect to  follows from a procedural fact regarding finite measures. After
establishing the result for finite measures, extending to -finite, signed and complex
measures can be obtained logically.

For Finite Measures

Assume that  and  are both finite valued nonnegative measures. Let F be the set
of those measurable functions f : X  [0, ] which satisfy the given notation as
follows:

( )
A

f d v A

This is for every A . This set is not empty contains at least the zero
function. Now consider that f

1
, f

2
  F where let A be an arbitrary measurable set,

A
1
 = {x  A | f

1
(x) > f

2
(x)} and A

2
 = {x  A | f

2
(x) e f

1
(x)}. Then we obtain

the following expression,

1 2
1 2 1 2 1 2max{ , } ( ) ( ) ( ),

A A A
f f d f d f d v A v A v A

Consequently, max {f
1
, f

2
}  F.

Now, consider that {f
n
}

n
 be a sequence of functions in F such that,

sup
lim .nX Xn

f d f df F

By substituting f
n
 with the maximum of the first n functions, it can be assumed

that the sequence {f
n
} is increasing. Let g be a function defined as,

( ) : lim ( ).n
n

g x f x

By Lebesgue’s monotone convergence theorem we obtain,

lim ( )nA An
g d f d v A

This is for each A   and consequently g  F. Moreover, by the
construction of g we obtain,

sup .
X Xf F

g d f d

Now, because g  F we have,

0 ( ) : ( )
A

v A v A g d

This defines a nonnegative measure on . Assume that ν
0
  0, then because

 is finite there is a > 0 such that, ν
0
(X) >  (X). Let (P, N) be a Hahn

decomposition for the signed measures ν
0
 –  then for every A   we have

ν
0
(A  P)   (A  P) and consequently we obtain the following expression:

0 0( ) ( )
A A

v A g d v A g d v A P
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( ) ( 1 ) .PA A
g d A P g d

In addition, (P) > 0 if (P) = 0. Then because  is absolutely continuous
in relation to , we have 

0
(P)  (P) = 0, subsequently 

0
(P) = 0 and we obtain

the expression,

0 0( ) ( ) ( )( ) 0.v X X v N

Contradicting the fact that 
0
(X) >  (X).

Subsequently, because

( )
X

gd v X    .

g +  1
P
  F and satisfies the expression of the form,

( ) sup .PX X Xf F
g d gd fd


        

This is not possible. As a result the initial assumption that 
0
  0 must be

false. Accordingly 
0
 = 0 as required.

Now, because g is -integrable, the set {x  X | g(x) = } is considered
as -null. Consequently, if a f is defined as follows,

( ) if ( )
( )

0 otherwise,

g x g x
f x

 
 


Then f contains the required properties.

For the uniqueness, consider that f, g : X  [0, ) be measurable functions
which satisfy the expression,

( )
A A

v A f d g d

This is for every measurable set A. Then, g – f is -integrable and we obtain,

( ) 0.
A

g f d

Specifically it holds for A = {x X | f(x) > g(x)} or {x  X | f(x) < g(x)}.
It follows that,

( ) 0 ( ) .
X X

g f d g f d

Subsequently we can state that (g – f)+ = 0 -almost everywhere. The
same is true for (g – f)– and hence f = g -almost everywhere, as required.

For -Finite Positive Measures

If  and  are -finite, then X can be defined as the union of a sequence {B
n
}

n
 of

disjoint sets in , each of which has finite measure for both  and ν. For each n,
there is a -measurable function f

n
 : B

n
  [0, ) such that,

( ) nA
v A f d
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This is for each -measurable subset A of B
n
. The union f of those functions

is then termed as the required function. For the uniqueness, because each of the f
n

is -almost everywhere unique then consequently is f.

For Signed and Complex Measures

If  is a -finite signed measures, then it can be termed as Hahn-Jordan
decomposed because  = + – – where one of the measures is finite. Applying
the earlier obtained result to those two measures, we can obtain two functions,
g, h : X  [0, ) which satisfy the Radon-Nikodym theorem for + and –,
respectively, where at least one is -integrable, i.e., its integral with respect to  is
finite. Then it is obvious that f = g – h satisfies the required properties including
uniqueness because both g and h are unique up to -almost everywhere equality.

If  is a complex measure, then it can be decomposed as  = 
1
 + i

2

where both 
1
 and 

2
 are considered as the finite valued signed measures. As a

result, we obtain two functions of the form g, h : X  [0, ) which satisfy the
required properties for 

1
 and 

2
, respectively. Evidently, f = g + i h is the required

function.

Theorem 1.3: Johann Radon-Otton Nikodym Marcin: Let (X, , µ) be a -
finite measure space and let v be a measure defined on  such that v << µ. Then
there is a unique nonnegative measurable function f up to sets of µ-measure zero
such that

( )
E

v E f d ,

for every E  . f is called the Radon-Nikodym derivative of v with respect to µ

and it is often denoted by 
dv

d .

Proof: Consider the following examples to prove the theorem:

Let ( , , v) be the Lebesgue measures space. Let µ be the counting measure

on . So µ is not -finite. For any E  , if µ(E) = 0, then E = 0  and hence
v(E) = 0. This defines v << µ. Suppose that f is Radon-Nikodym derivation, then

for each x  , 0 = v({x}) = 
{ } { }

( )
x x

fd f x d  ( ) ({ })f x x . Hence,

 f = 0. This means for every E  , v{E) = 0 0
E

d , which contradicts that

v is the Lebesgue measures.

If v is still the same measure as explained above but we let – to be defined

by µ( 0 ) = 0 and µ{A) =  if A  0 . Clearly, µ, is not -finite and
v << µ. The Radon-Nikodym derivative does not exist. Suppose f is one. Then

for any 
{ }

0 ({ }) ( ) ({ }) ( ) .
x

v x f d f x x f x  Thus, f = 0. Hence for

any E  , v(E) = inf
E
 0dµ = 0.

Obviously if µ(X) = 0, then the measure of every set in M. with respect to µ
and v is zero.
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Assume that (X, , µ) is a finite measure space and defines the existence
and uniqueness of the Radon-Nikodym derivative. Then the case when µ is
-finite follows by the pasting of the derivatives on each set of finite measure.

Let  = {f is measurable | v(E)  
E

f dµ , for all E  }.  is nonempty

because the zero function is in it. Let sup f X
s f d . Then there is a sequence

nh  in  such that, lim .nXn
f d s


 

Let f
1
, f

2
 , then for any E  , 1 2E

f f d
1 2

1 2{ | ( ) ( )}x E f x f x
f f d

1 2{ | ( ) ( )}x E f x f x 1 2
1 2 1{ | ( ) ( )}x E f x f x

f f d f d  
1 2{ | ( ) ( )}x E f x f x

  2 ({f d v x E

1 2| ( ) ( )})f x f x  1 2({ | ( ) ( )}) ( )v x E f x f x v E

Therefore, 1 2 .f f 

Let 1 .n
n k kf V h  Then nf  is a nonnegative increasing sequence in  and

lim
n

 .nX
f d s  Define g by g(x) = lim

n
 f

n
(x) for x X . Then by the motonone

convergence theorem, for any E , lim
E n

gd


   ( )nE
f d v E . This

shows g   and lim .
n

nX X
gd f d s



   

Therefore, the function v
0
 defined on  by v

0 
(E) = v(E) – 

E
gd  is a

measure. We can define that v
0 
= 0 and then g is the required function. Suppose v

0
 is

not zero. Since v
0
(X) > 0 and µ(X) < , there is  > 0 such that, v

0
(X) – µ(X) > 0.

Let {A, B} be a Hahn decomposition for the signed measures v
0
 – µ. Then for every

E  , V
0
(A  E) – µ(A  E)  0. Subsequently, v(E) = v

0
(E) + 

E
gdµ  v

0
(E

A) + 
E

gdµ   (A  E) + 
E

gdµ, = ( )AE
g . Therefore, Ag

is also in  . However, if µ(A) > 0, then ( )AX
g dµ

( ) ,
X X

gd A gd s  which is a contradiction. Obviously, if µ(A) = 0, since

v << µ, v(A) = 0. Therefore v
0
(A) = v(A) – 

A
gdµ   v(A) = 0. Hence V

0
(A) = 0.

Consequently, v
0
(X) –µ(X) = v

0
(B) –µ(B)  0, contradicting that v

0
(X) –µ(X)

> 0.

Accordingly, v
0 
= 0, which means v(E) = 

E
gµ for every .E 

To show uniqueness, let v(E) = 
E

fdµ = 
E
gdµ. Then 

E
(f – g)dµ  = 0. Since

E is arbitrary, 
{ 0}

0.
f g

f gdµ  This shows f = g a.e. on {x  X)| f(x)  g(x)}.

Similarly, f = g a.e. on {x  X|f(x) < g(x)}. Hence f = g a.e. on X.
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Note: If we add the condition that v is finite, then the function g in our proof is
integrable.

1.3.1 Lebesgue Decomposition

In measure theory, Lebesgue’s decomposition theorem states that for given  and
 two -finite signed measures on a measurable space (), there exist two
-finite signed measures 

0
 and 

1
 such that:

 v = v
0
 + v

1

 v
0 
<< µ, i.e., v

0
 is absolutely continuous with respect to .

 v
1
 , i.e., 

1
 and  are singular.

These two measures can be uniquely determined. The Lebesgue’s
decomposition theorem can be defined and improved in various ways. Primarily
the decomposition of the singular part can be improved as follows:

v = v
cont

 + v
sing

 + v
pp

Where,

 
cont

 is the absolutely continuous part.

 
sing

 is the singular continuous part.

 
pp

 is the pure point part or a discrete measure.

Subsequently, absolutely continuous measures can be classified using the
Radon-Nikodym theorem. Consequently, Lebesgue decomposition provides an
extremely explicit description of measures. The Lebesgue decomposition theorem
states that if (X, ) is a measurable space and  is a finite measure on X, then for
every measure v, there is a unique decomposition = v 

2
 such that,


1
 << µ and 

2 
. Generalization of Lebesgue decomposition theorem can be

defined as follows.

Assume that the space of all finite measures on (X, ) is denoted by M.
Then the above is equivalent to the statement that M = S T, where S is the
space of all measures that are absolutely continuous with respect to , while T is
the space of all measures that are singular with respect to . We can characterize
T in terms of S as follows,

T = S  = {M |m for all m S}

Consequently state that a subspace S M has property D (for
decomposition) if M = S S. Then the Lebesgue decomposition theorem defines
that {|<< } has property D for any fixed .

Theorem 1.4 (Lebesgue Decomposition): Let v be a -finite signed measures
on (X, S) and µ be a -finite positive measure on (X, S). Then there exists unique
-finite signed measures v

0
 and v

1 
on (X, S) such that v

 
= v

0
 + v

1
, vand

v
1 
<< µ.

This can be proved with the help of  Lemma 1.

Lemma 1: Assume that v and µ are positive measures on (X, S) such that they do
not take the value in {, –}. Then either v  µ or there exists a
> 0 and E  S such that µ(E) > 0 and v(F)  µ(F) for all R  S, F  E.
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Note: The conclusion is, that is a positive set for v – µ.

Proof of Lemma: For each n  , consider that (P
n
, N

n
) be the Hahn

decomposition for 
1

v µ
n

. Put 1 nP P  and 1 nN N . Here N is a negative

set for 
1

,v µ n
n

 . Therefore, 
( )

0 ( )
N

v N
n

 for all n. Consequently,,

v(N) = 0.

(a) If µ(P) = 0 then because P N X  and 0P N  we can state that µ
 v.

(b) If µ(P) > 0 then µ(P
n
) > 0 for some n  . Because P

n
 is a positive set for

1
v µ

n
, we can obtain that 

1
( ) ( )v F µ F

n
 for all nF P . Now take

nP E  and 1

n
  . Hence the lemma is proved.

Proof: Assume that µ and v are finite positive measures.

Consider that   = {f : X  [0, ] : f is measurable and

( ), }
E

fdµ v E E S .

Then 0  because 0  . If ,f g  , then we can state that h = max
f, g  

If A = {x  X : f (x) > g (x)}, then for given any E S ,

\ \E A E A E A E A
hdµ hdµ hdµ fdµ gdµ

( ) ( \ ) ( )v E A v E A v E

If sup { : }
X

a f dµ f   then we can state that ( )a v V . Select

nf   such that, nX
f dµ a . Use 1max{ ,...., }n ng f f

Then, 1n ng g  and because ng   we obtain, ,n nX X
a g dµ f dµ

Consequently, .nX
g dµ a

Now set ( ) lim ( )n nf x g x .

By the monotone convergence theorem, we obtain the following expression:

X
f dµ a

This implies that f is integrable and is finite almost everywhere.
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Set 0 ( ) ( )
E

v E v E f dµ  for E S . Here v
0 
is a positive measure

because f  .

We can state that 0µ v . If it is not, then by Lemma 1 there exists 0 

and 0E S  which is positive for 0v µ   such that, 0( ) 0µ E . Subsequently,,

0 0( ) ( )
E E

F E dµ fd µ µ E E      

0 0 0( ) ( ) ( ).
E E

f dµ v E E f dµ v E v E      
Therefore, 

0f E    .

But, it is obvious that 0 0( ) ,
X

f E dµ a µ E a       which contra-dicts

the truth that 
X

f a  is a supremum in . As a result, we have µ  v
0
.

Hence we can state that 1( )
E

v E f dµ .

Uniqueness: Assume that v = 
0 

+ 
1
, where 

i
 are signed measures as


0
  µ and 

1
 << µ. We include v = 

1 
+ 

0 
= 

0 
+ 

1
. Consequently, 

0 
– v

0

= v
1 
– 

1
.

By uniqueness of the Lebesgue decomposition theorem, 
E

v f dµ .

For the -finite case we have the following Lemma 2:

Lemma 2: Let  be a -finite positive measure on (X, S) and assume that
(X) = . Then there exists an integrable function w : X  (0, 1) such that if


w
 (E) = 

E
wd  we have the following properties:

(a) 
w 
is a finite measure.

(b) 0f  measurable and wX X
f d f wd .

(c) 
1

( ) wE
E d

w
.

(d) 0f  measurable and wX X

f
F d d

w
.

(e) E S , ( ) 0 ( ) 0wE E .

Proof: Let A
i 
be disjoint measurable sets such that 1i iA X

  and

11 ( )A .
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Set 
1

1

2 ( ) jj
i j

w A
A . Here w(x)  (0, 1) for all x X . Furthermore,

by the monotone convergence theorem we have,

1

1

2 ( ) jjX X
j j

wd A d
A

Therefore, w is integrable and 
w
 is a finite measure.

Proof of -Finite Positive Measures

Consider that v,  be -finite positive measures. To obtain measurable functions
v, w : X  (0, 1) with uv-integrable and w µ-integrable apply the lemma.

Set, ( )v E
v E vdv  and  ( ) .w E

E wdµ

Obtain unique measures 3
vv  and a

vv  such that 3
v wv µ , a

v wv µ  and

3 a
v v vv v v .

Define 
3

0

1
( ) vE

v E dv
v

 and 1

1
( ) a

vE
v E dv

v
.

Subsequently, we have 
3

0 1

1
( ) ( ) ( ) ( )a

v vE
v E v E d v v v E

v

Because 3
v wv µ  hence we have 0v µ  and because a

v wv µ  we have

1v µ .

Given that a
v wv µ  there exists an hµw -integrable such that,

( )a
v wE

v E hdµ

Define, 1

1 1 1
( ) a

v wE E E
v E dv hdµ hwdµ

v v v

To establish the theorem for a signed measures v relate the above to v+ and
v– obtain the difference v = v+ – v–.

Notation: If  v µ , we can state the ( )
E

v E f dµ . The function f is termed

as the Radon-Nikodym derivative of v with respect to µ. We denote f  by 
dv

dµ .

When  v µ  we can state that dv fdµ . This is stimulated by the truth that,

hdv h fdµ
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Proposition: Assume that µ be a -finite signed measure and , µ are positive

-finite measures such that v µ  and µ . Then the following conditions
hold:

(a) If 1( )g L v , then 
X

dv
gdv g dµ

dµ

(b) If v , then .
dv dv dµ

d dµ d

Proof: To prove (a), establish it for v+ and v– using standard methods and subtract.

To prove (b), we obtain:

( ) .
E E

dv dv dµ
v E dµ d

dµ dµ d

Consequently, v µ and subsequently

( ) .
E E

dv dv dv dµ
v E dµ d

dµ dµ dµ d

Hence proved.

1.3.2 Riesz Representation Theorem

Let  be a Hilbert space over  or , and  a bounded linear functional on  (a

bounded operator from  to the field,   or , over which  is defined), then there

exists some  such that for every   we have

𝑇(𝑓) = ⟨𝑓, 𝑔⟩ 

Moreover,   ∥ 𝑇 ∥=∥ 𝑔 ∥ (here ∥ 𝑇 ∥  (here  denotes the operator norm of ,
while   is the Hilbert space norm of .

Proof: Let us assume that  is separable and consider the case on .

Since  is separable wse can choose an orthonormal basis , for .

Let  be a bounded linear functional and set .

Choose , let , and define . Since the

 form a basis we know that  as .

𝑇(𝑓𝑛) = ∑ 𝑎𝑗
𝑛
𝑗=1 𝑐𝑗 . …(1.2)

Since  is bounded, say with norm , we have

|𝑇(𝑓) − 𝑇(𝑓𝑛)| ≤∥ 𝑇 ∥ ∥∥𝑓 − 𝑓𝑛∥∥. …(1.3)

Since  as  from (1.2) and (1.3) we can say that

𝑇(𝑓) = lim
𝑛→∞

𝑇(𝑓𝑛) = ∑ 𝑎𝑗
∞
𝑗=1 𝑐𝑗 .  …(1.4)
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Also the sequence  must itself be square-summable. To check this, first
note that since  we have

∑
∞

𝑗=1
𝑐𝑗𝑎𝑗 ≤∥ 𝑇 ∥ ∑

∞

𝑗=1
𝑐𝑗
2

1/2

. …(1.5)

The above inequality must hold for any square-summable sequence  (since
any such  corresponds to some element in  H). Fix a positive integer N and
define a sequence cj = aj for  for . Clearly such a sequence is square-
summable and equation (1.5) then gives

∑
𝑁

𝑗=1
𝑎𝑗
2 ≤∥ 𝑇 ∥ ∑

𝑁

𝑗=1
𝑎𝑗
2

1/2

 

or

∑
𝑁

𝑗=1
𝑎𝑗
2

1/2

≤∥ 𝑇 ∥. …(1.6)

Thus  is square-summable, since the sequence of partial sums is bounded
above.

Since  is square-summable the function  is well-defined as

an element of , and . Then from equation (1.6),

. But from Cauchy-Schwarz we have 

or , implying , so 

Application

The example below shows how functional analytic methods are used in ODE.
Consider the equation below:

−𝑓′′ (𝑥) + 𝑏(𝑥)𝑓(𝑥) = 𝑞(𝑥) …(1.7)

on the interval , where  for some . Assume that the
functions  and  are continuous on . Let us find a solution to equation (1.7)
with  (considering arbitrary boundary conditions). If we

multiply (1.7) by a  function  and integrate the first term,  by parts from
 to , we get

∫ (𝑓′(𝑥)𝜙′ (𝑥) + 𝑏(𝑥)𝑓(𝑥)𝜙(𝑥))
1

0
𝑑𝑥 = ∫ 𝑞

1

0
(𝑥)𝜙(𝑥)𝑑𝑥. …(1.8)

The above equation must hold for any , if  is a 

solution to equation (1.7) whsich is continuous on . Conversely, if for a given

 function  we find that (1.8) holds for all , then  must be a solution to equation
(1.7), for if we “undo” the integration by parts in (1.8) we obtain

𝜙(1)𝑓′ (1) − 𝜙(0)𝑓′(0) + 𝜙(𝑥)(−𝑓′′ (𝑥) + 𝑏(𝑥)𝑓(𝑥)) = 𝜙(𝑥)𝑞(𝑥) 

for all . A familiar PDE argument then shows that  and
equation (1.7) must hold.
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We can show that there is a unique solution to equation (1.8). Such a solution
will not necessarily be twice-differentiable as required by equation (1.7), but it will
satisfy equation (1.8). Equation (1.8) is often called the “weak” formulation of the
problem.

Define an inner product

< 𝑔, ℎ >= (𝑔′(𝑥)ℎ′(𝑥) + 𝑏(𝑥)𝑔(𝑥)ℎ(𝑥))
1

0

𝑑𝑥 

onsa the space , and let  denote the completion of the this space. (Wee

must use  to assure that  r anglerally is an inner product, so

that,  iff . The space  is a Hilbert space, and can be
interpreted (if need be) as a subspace of   𝐶([0,1]) 

Define a functional  by

𝑇(𝜙) = 𝑞
1

0

(𝑥)𝜙(𝑥)𝑑𝑥 

One can easily check that  is bounded on  using Cauchy-Schwarz
theorem. From the Riesz Representation Theorem it then follows that there must
exist some function  such that

𝑇(𝜙) = ⟨𝑓, 𝜙⟩ 

for all . This is exactly equation (1.8), the weak form of the ODE, , the
function f that satisfies equation 1.8 lies in H and F is a continuous function.

1.4 EXTENSION THEOREM
(CARATHÉODORY)

We fix a topological space . The power set of is denoted by P() and
consists of all subsets of .

Definition: A ring on is a subset R of P(), such that

1.  .

2. ,A B A B     .

3. , \A B A B    .

Definition: A -algebra on is a subset of P(), such that

1.  .

2. ( )n n n nA A     .

3. CA A   .

Since, AB = A\(A\B) it follows that any ring on is closed under finite

intersections; hence any ring is also a semi-ring. Since, n nA  = ( )C C
n A  it follows

that any -algebra is closed under arbitrary intersections. And from A\B = A Bc,
we deduce that any -algebra is also a ring.
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If ( )i i IR   is a set of rings on then it is clear that I iR  is also a ring on .
Let S be any subset of P(), then we call the intersection of all rings on containing
S the ring generated by S.

Definition: Let A be a subset of P(). A measure on A is a map

: [0, inf]  A  such that

1. ( ) 0   .

2. If nA   are disjoint and n nA A    then ( ) ( )nn
A A   .

If A is a -algebra, we do not need to assume that in addition n nA   .
By taking all but finitely many A

n
 to be the empty sets one sees that

1 1( ... ) ( ) ... ( )N nA A A A       . If A  B then ( \ )A B A B  and hence

( ) ( ) ( \ ) ( )B A B A A       .

Definition: We call an outer measure on a map : ( ) [0, ]   P  with,

1. ( ) 0   .

2. ( ) ( )A B A B     .

3. ( ) ( ), ( ) ( )n n n n nn
A A A      .

By taking all but finitely many A
n
 to be the empty set one sees that an outer

measure is subadditive; ( ) ( ) ( )A B A B      .

Let  be an outer measure on . We define  to be the set of all subsets

A such that for any X we have ( ) ( ) ( )CX X A X A       .

In other words,  consists of all subsets A that cut  in two in a

good way. Clearly   and by the very form of the definition of  , we have
CA A    .

Theorem 1.5: Let, be an outer measure on and let  be as defined

above. Then  is a -algebra on .

Proof: After the preliminary remarks preceding the Theorem, it only remains to

prove that  is closed under countable unions. We will first prove that  is

closed under finite intersections and unions.

Let, A, B   and let, X be any subset of  . We have

( )C C CX A X A B A      since ( )C CA B A  . On the other hand we have

( )C C CA B A B    and hence ( )CX A B A    ( )CX A B  

( )C CX A A X A B     . Therefore we have, ( ( ) ) (CX A B X     

( ) ) ( ( ) ( ) ( )C C C C CA B A X A B A X A X A B             
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Now adding ( )X A B    and using that ( ) ( )X A X A B     

( )CX A B    , one obtains ( ) ( ( ) ( )CX A B X A B X         . Hence

A B   .

Since ( )C C CA B A B    and \ CA B A B   we see that   is closed

under finite unions and the set-theoretic difference. Thus   is a ring on .

If A, B    are disjoint and X   then, ( ( )X A B  

( ) ( )C CX X A B     ( ) ( )+CX X A     ( )=CX A B  ( )X A   

( ) as CX B A B B  

Using induction we obtain 1 1
( ) ( )

NN
n n nn

X A X A 
      whenever A

n

are in   and pairwise disjoint. Now we fix a sequence A
n
 in   which are

pairwise disjoint and we denote the union n nA  by A. Furthermore, we fix an
arbitrary X   and an arbitrary large integer N.

Since 
1( )C N C

n nX A X A     and   is closed under finite unions, we

have 1 1( ) ( ( )) ( ( ) ) ( )C N N C
n n n n nn

X A X A X A X A             =X)

But N is arbitrary in this equation and so we can obtain,

 ( ) ( ) ( )C
n

n

X A X A X       …(1.9)

On the other hand we have ( ) ( ) ( )CX X A X A      , which again by

the definition of an outer measure is less than or equal to

( ) ( )C
nn

X A X A     . Hence again using Equation (1.9) we obtain,

( ) ( ) ( ) ( ) ( ) ( )C C
nn

X X A X A X A X A X              
From this we conclude that  is indeed closed under countable unions and

, by taking X = A that ( ) ( )nn
A A   . Therefore the restriction of to  is a

measure on  . Hence proved.

We will call  the -algebra related to .

Now we come to a critical step; we want to associate an outer measure 

to a given measure on some ring R. Of course, we want the restriction of the

outer measure   to the ring to coincide with the measure .

Let R be a ring on and let be a measure on R. If X   is any subset
we can cover X with sets from R to approximate X inside R––we call an R-

cover of X a countable subset (A
n
)

n
 of R with n nX A  . This leads to the

following definition; for any X   we define ( )X  to be the infimum of all

sums ( )nn
A  where ( )n nA   is any countable cover of X with A

n
 in R. WeWe

need to check that this is an outer measure.
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Theorem 1.6: The map : ( ) [0, ]     defined above defines an outer

measure on .

Proof: Since R , we have ( ) 0   . If X Y  are two subsets of , then

any cover of Y with sets from R also covers X and hence ( ) ( )X Y    .

Now let X
n
 be any sequence of subsets. By the definition of the infimum we

can find 0   and for each n an R-cover ,( )n m mA  of X
n
 such that,

,( ) ( )
2n m nm

A X


    . The sets ,n mA  form a countable cover of n nX X  ;

we can for example set 1 1,1 2 2,1 3 1,2 4 3,1, , ,B A B A B A B A     and so on, similar to

Cantor’s proof of the countability of . But then, ( ) ( )n nX X    

,,
( ) ( ( ) ( )

2n m n nnn m n n
A X X 


         

But  was arbitrary and hence ( ) ( )n n nn
X X    .

Theorem 1.7: The restriction of to R is .

Proof: For any A  R the set A itself forms a cover and hence ( ) ( )A A   . On

the other hand, let (A
n
) be an R-cover of A. We define 1 1B A A   and

1 ( ) \ ( )n n k n kB A A A A     . Then clearly nB R , the B
n
 are disjoint,

n nB A  and ( ) ( )n nB A   . Since  is a measure on R  we have

( ) ( )nn
A B    which is less than or equal to ( )nn

A . Since this holds for any

R-cover of A we have ( ) ( )A A   . Therefore equality holds and the Theorem

is proved.

We will call   the outer measure associated to .

So, we now have two constructions; given a ring and a measure on it we
can construct an outer measure. Given an outer measure, we can construct a -
algebra such that the restriction of the outer measure to the -algebra is a measure
on the -algebra. So it seems feasible that we can construct a measure on a -
algebra starting from a ring with a measure on it.

Lemma: Let R be a ring on and let be a measure on R. Let be
the outer measure associated to . Let be the -algebra related to . Then R 
.

Proof: Let A be an element of R and let X be any subset of . Since, is an outer
measure on we have

( ) (( ) ( )) ( ) ( )C CX X A X A X A X A           

Now let ( )n nA   be any R-cover of X. Then the nA A  form an

R-cover of X A  and the C
nA A form an R-cover of CX A . Hence we
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have that ( ) ( )CX A X A       ( ) ( ) ( )C
n n nn n n

A A A A A        ,

where the last step follows from the fact that  is a measure and hence
( ) ( ) ( )C D C D     . Since the inequality holds for any R-cover of X we

need ( ) ( ) ( )CX A X A X      . We thus need equality; for any X   we

have ( ) ( ) ( )CX X A X A       , or in other words A  and since A was
an arbitrary element of R the lemma is proved.

Note: Any ring generates a -algebra; one simply enlarges the ring with countable
unions. Or, the -algebra generated by the ring R is the intersection of all -
algebras that contain R. Therefore, the above lemma shows that the -algebra
generated by R is contained in .

Theorem 1.8 (Caratheodory): Let R be a ring on  and let  be a measure on
R. Then there exists a measure on the -algebra generated by R such that the
restriction of to R coincides with .

Proof: Let be the outer measure on  associated to . Let be the
-algebra associated to . Then by the above lemma the -algebra generated by
R is contained in . Hence, restricts to a measure on the -algebra generated
by R. By Theorem 1.7 this restriction of to R coincides with . Hence the
theorem is proved.

For example, consider to be the real line. Then the open intervals generate
a -algebra . For any open interval (a, b) with a < b we can put (a, b)
b – a. Then there exists a measure on such that (a, b)b – a. Indeed, for

countable unions of disjoint intervals we can define ( ( , )) ( )n n n n nn
a b b a    .

Hence does give rise to a measure on the ring generated by all intervals.

1.4.1 Lebesgue-Stieltjes Integral

Lebesgue-Stieltjes integrals are named after Henri Leon Lebesgue and Thomas
Joannes Stieltjes. The Lebesgue-Stieltjes integration generalizes the Riemann-
Stieltjes and Lebesgue integration. The Lebesgue-Stieltjes integral is the ordinary
Lebesgue integral with respect to a measure known as the Lebesgue-Stieltjes
measure which can be combined to any function of bounded variation on the real
line. The Lebesgue-Stieltjes measure is a regular Borel measure and conversely
we can state that every regular Borel measure on the real line is of this type.

The Lebesgue-Stieltjes integral is,

( ) ( )
b

a
f x dg x

This is defined as ƒ : [a, b]  R which is Borel measurable and bounded,
and g : [a, b]  R which is of bounded variation in [a, b] and right continuous or
when ƒ is nonnegative and g is monotone and right continuous. To establish,
presume that ƒ is nonnegative and g is monotone non-decreasing and right
continuous. Describe w((s, t]) := g(t) – g(s) and w({a}) := 0. There is a unique
Borel measure 

g
 on [a, b] which agrees with w on every interval I. The measure


g
 occurs from an outer measure given by,
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( ) inf ( ) |g g i i
ii

µ E µ I E I
The infimum is taken over all E by countably several semi-open intervals.

This measure is termed as the Lebesgue-Stieltjes measure associated with g.

We can define the Lebesgue-Stieltjes integral as the Lebesgue integral of ƒ
with respect to the measure μ

g
 in the standard method. If g is non-increasing, then

define,

( ) ( ) : ( ) ( )( ),
b b

a a
f x dg x f x d g x

If g is of bounded variation and ƒ is bounded, then we can write as follows:

g(x) = g
1
(x) – g

2
(x)

Here g
1
(x) : = Vx

a
g is the total variation of g in the interval [a,x] and

g
2
(x) = g

1
(x)– g(x). Both g

1
 and g

2
 are monotone non-decreasing. Now the

Lebesgue-Stieltjes integral with respect to g is defined as follows,

1 2( ) ( ) ( ) ( ) ( ) ( ),
b b b

a a a
f x dg x f x dg x f x dg x

Integration by Parts

A function f is said to be regular at a point a if the right and left hand limits f(a + )
and f(a – ) exist and the function takes the average value at the limiting point as
follows,

1
( ) ( ( ) ( )),

2
f a f a f a

Given two functions U and V of finite variation, if at each point either U or
V is continuous or if both U and V are regular then there is an integration by parts
for the Lebesgue-Stieltjes integral. It can be expressed as follows:

( ) ( ) ( ) ( ),
b b

a a
U dV V dU U b V b U a V a       

Here b > a.

When g(x) = x for all real x, then μ
g
 is the Lebesgue measure and the

Lebesgue-Stieltjes integral of f with respect to g is equivalent to the Lebesgue
integral of f.

1.4.2 Product Measures and Fubini’s Theorem

Given two measurable spaces and measures on them we can obtain the product
measurable space and the product measure on that specific space. Theoretically,
this can be defined using the Cartesian product of sets. Consider that (X

1
, 

1
) and

(X
2
, 

2
) be two measurable spaces, i.e., 

1
 and 

2
 are sigma algebras on X

1
 and

X
2
, respectively. Now let 

1
 and 

2
 be measures on these spaces. We can denote
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this by 
1 
× 

2
 the sigma algebra on the Cartesian product X

1 
× X

2
 produced by

subsets of the form B
1
 × B

2
, where B

1
 

1
 and B

2
 

2
.

The product measure µ
1 
× 

2
 is defined to be the unique measure on the

measurable space (X
1 
× X

2
, × 

1 
× 

2
) satisfying the property,

(µ
1
 × µ

2
)(B

1
 × B

2
) = µ

1
(B

1
) µ

2
(B

2
)

This holds for all B
1
 

1
, B

2
 

2
.

Actually, when the spaces are -finite then for every measurable set E we
can define,

2 1
1 2 1 2 2 1( )( ) ( ) ( ) ( ) ( )y

xX X
E E d y E d x

Here E
x
 = {yX

2
|(x,y)E} and Ey = {xX

1
|(x,y)E}, which are both

measurable sets.

The uniqueness of product measure is guaranteed only in the case that both
(X

1
,

1
,

1
) and (X

2
, 

2
, 

2
) are -finite. The Borel measure on the Euclidean

space Rn can be obtained as the product of n of the Borel measure on the real line
R.

Let (E
1
, 

1
, µ

1
) and (E

2
, 

2
, µ

2
) be finite measure spaces. Then the set,

 = {A
1 
× A

2 
: A

1 


1
, A

2 


2
} is a -system of subsets of E = E

1
  E

2
.

Define the product -algebra 
1


2 
= (). Set =

1 


2
.

Lemma 1: Let :f E   be -measurable. Then for all 1 1x E  the function

2 1 2 2( , ) :x f x x E   is 
2
-measurable.

Proof: The set of -measurable functions can be denoted by v to evaluate the
result and for which the condition holds. Subsequently v is considered as a vector

space which contains the indicator function of every set A  . Further if nf v

for all n and if is bounded with 0 nf f   subsequently f v  also. Thus,

according to monotone class theorem v contains all bounded -measurable
functions.

Lemma 2: For all bounded -measurable functions the function is of the form,

2
1 1 1 1 2 2 2 1( ) ( , ) ( ) :

E
x f x f x x dx E 

This function is considered bounded and 
1
-measurable. This lemma can

be easily solved by using the monotone class theorem as we have done in
Lemma 1. For this 

1
 and 

2 
must be finite.

Theorem 1.9 (Product Measure): There exists a unique measure µ = µ
1
  µ

2

on such that, µ(A
1
 × A

2
) = µ

1
(A

1
)µ

2
(A

2
). This holds for all A

1
 

1
 and

A
2
 

2
.

Proof: Uniqueness holds since  is a -system generating . Using the already
defined lemmas we can define the existence as follows,

1 2
1 2 2 2 1 1( ) 1 ( , ) ( ) ( )AE E

A x x dx dx
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Use monotone convergence to define that is countably additive.

Proposition: Let 2
ˆ and 2

ˆ . For a function on E
1
 × E

2
 we

can define f̂  for the function on E
2
 × E

1 
specified by f̂ (x

2
, x

1
) = f(x

1
, x

2
). If is

-measurable then f̂  is ˆ -measurable. Further if  is non-negative then

ˆˆ ( ) ( )f f .

Fubini’s Theorem

Fubini’s theorem is named after Guido Fubini. It is a consequence which provides
conditions for which it is possible to compute a double integral using iterated integrals.
As a consequence it also permits the order of integration to be changed in iterated
integrals.

Fubini’s theorem is also sometimes termed as Tonelli’s theorem. It is used
to establish a connection between a multiple integral and a repeated one. If  f(x, y)
is continuous on the rectangular region R : a  x  b, c  y  d, then the equality of

the form ( , ) ( , )
R

f x y d x y   ( , )
b d

a c
f x y dy dx   holds.

Theorem Statement

Let A and B are complete measure spaces. Assume that f(x,y) is A × B measurable
if,

| ( , ) | ( , ) ,
A B

f x y d x y

Here the integral is taken with respect to a product measure on the space
over A × B. Subsequently,

( , ) ( , ) ( , ) ( , ),
A B B A A B

f x y dy dx f x y dx dy f x y d x y

Here the first two integrals are considered as the iterated integrals with
respect to two measures and the third integral is with respect to a product of these
two measures. If the integral of the absolute value is not finite then the two iterated
integrals may essentially have different values.

Corollary: If  f(x,y) = g(x)h(y) for some functions g and h, then we can state that:

( ) ( ) ( , ) ( , ),
A B A B

g x dx h y dy f x y d x y

Here the integral on the right side is defined with respect to a product
measure.

Another alternate statement of Fubini’s theorem states that if A and B are -
finite measure spaces and not essentially absolute, and if either

 | ( , ) |
A B

f x y dy dx     or | ( , ) |
B A

f x y dx dy  holds then

| ( , ) | ( , )
A B

f x y d x y


  .
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And, ( , ) ( , ) ( , ) ( , )
A B B A A B

f x y dy dx f x y dx dy f x y d x y .

For this the essential condition is that the measures must be -finite.

Check Your Progress

9. Define Radon-Nikodym theorem.

10. State the Caratheodory extension theorem.

11. What does Lebesgue’s decomposition theorem state?

12. What is Lebesgue-Stieltjes integral?

13. Define Fubini’s theorem.

1.5 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Signed measures is referred as a simplification of the concept of measures
that allows it to have negative values. There are two different notions of a
signed measures that depends on the condition that how the infinite values
are taken.

2. A finite signed measures can be defined except that it only takes the real
values, i.e., it cannot take  or . Finite signed measures form a vector
space.

3. Hahn decomposition theorem states that for a given signed measures ,
there exist two measurable sets P and N. This decomposition is unique for
adding/subtracting null sets from P and N.

4. The sum of two finite signed measures is a finite signed measures because it
is the product of a finite signed measures by a real number which is
considered closed under linear combination. It follows the assumption that
the set of finite signed measures on a measures space (X, ) is a real vector
space. The total variation defines a norm for which the space of finite signed
measures becomes a Banach space. As per the Riesz representation theorem,
if X is a compact separable space then the space of finite signed Baire
measures is considered the dual of the real Banach space of all continuous
real valued functions on X.

5. The integral of a complex valued measurable function can be defined with
respect to a complex measures by approximating a measurable function
with simple functions. The already existing integral of a real valued function
can be used with respect to a nonnegative measure. The real and imaginary
parts 

1
 and 

2
 of a complex measures  are considered finite valued signed

measures.

6. A decomposition of the measures  as a difference of two mutually singular
measures v+ and v– is termed as Jordon decomposition.

7. Two complex measures  and on a measures space X are considered
mutually singular if they are provided on different subsets.
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8. Two positive or signed or complex measures  and  defined on a measurable
space (, ) are called singular if there exist two disjoint sets A and B in 
whose union is  such that  is zero on all measurable subsets of B while 
is zero on all measurable subsets of A.

9. The Radon-Nikodym theorem is a consequence in measure theory that
states that given a measurable space (X, ), if a -finite measure  on (X,
) is absolutely continuous with respect to a -finite measure  on (X, )
then there is a measurable function f on X which takes values in [0, ) such
that,

( )
A

v A f d

This holds for any measurable set A.

10. Let R be a ring on  and let  be a measures on R. Then there exists a
measures on the -algebra generated by R such that the restriction of 
to R coincides with .

11. In measures theory, Lebesgue’s decomposition theorem states that for given
 and  two -finite signed measures on a measurable space (), there
exist two -finite signed measures 0 and 1.

12. The Lebesgue-Stieltjes integral is the ordinary Lebesgue integral with respect
to a measures known as the Lebesgue-Stieltjes measures which can be
combined to any function of bounded variation on the real line.

13. Fubini’s theorem is also sometimes termed as Tonelli’s theorem. It is used
to establish a connection between a multiple integral and a repeated one. If
f(x, y) is continuous on the rectangular region R : a £ x £ b, c £ y £ d, then

the equality of the form ( , ) ( , )
R

f x y d x y   ( , )
b d

a c
f x y dy dx   holds.

1.6 SUMMARY

 Signed measures is referred as a simplification of the concept of measures
that allows it to have negative values. There are two different notions of a
signed measures that depends on the condition that how the infinite values
are taken.

 A finite signed measures can be defined except that it only takes the real
values, i.e., it cannot take  or . Finite signed measures form a vector
space.

 An extended signed measures is the difference of two nonnegative measures
and a finite signed measures is the difference of two finite nonnegative
measures.

 Hahn decomposition theorem states that for a given signed measures ,
there exist two measurable sets P and N. This decomposition is unique for
adding/subtracting null sets from P and N.

 The sum of two finite signed measures is a finite signed measures because it
is the product of a finite signed measures by a real number which is
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considered closed under linear combination. It follows the assumption that
the set of finite signed measures on a measures space (X, ) is a real vector
space.

 The total variation defines a norm for which the space of finite signed
measures becomes a Banach space. As per the Riesz representation theorem,
if X is a compact separable space then the space of finite signed Baire
measures is considered the dual of the real Banach space of all continuous
real valued functions on X.

 A complex measures on a measurable space (X, ) is a function defined
on  which takes complex values that is sigma additive.

 The integral of a complex valued measurable function can be defined with
respect to a complex measures by approximating a measurable function
with simple functions.

 The already existing integral of a real valued function can be used with
respect to a nonnegative measure. The real and imaginary parts 

1
 and 

2
of a complex measures  are considered finite valued signed measures.

 The sum of two complex measures is also referred as a complex measures
and similarly the product of a complex measures by a complex number.

 The pair (P, N) is termed as a Hahn decomposition of the signed measures
.

 Jordan decomposition theorem states that every signed measures  can be
expressed as a difference of two positive measures  and , of which at
least one is finite.

 Every measurable subset of a positive set is termed positive and a union of
a countable collection of disjoint positive sets is also positive.

 Given a signed Measures  space (X, B, ) there is a positive set A and a
negative set B such that A and B partition X.

 A decomposition of the measures  as a difference of two mutually singular
measures v+ and v– is termed as Jordon decomposition.

 For a signed measures and a measurable function f, we state that f is
integrable with respect to v if f is integrable with respect to v+ and f is also
integrable with respect to v–.

 If v is a signed measures  and µ is a (honest) measures  on a measurable
space (X, S) then we can state that v is absolutely continuous with respect
to µ if for  and µ(E) = 0 we have v(E).

 Two complex measures  and on a measures space X are considered
mutually singular if they are provided on different subsets.

 A discrete singular measures with respect to Lebesgue measures on the
real integrals is a measures  defined at 0.

 Two positive or signed or complex measures  and  defined on a
measurable space (, ) are called singular if there exist two disjoint sets A
and B in  whose union is  such that  is zero on all measurable subsets
of B while  is zero on all measurable subsets of A.
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 Let R be a ring on  and let  be a measures on R. Then there exists a
measures on the -algebra generated by R such that the restriction of 
to R coincides with .

 A polished form of Lebesgue’s decomposition theorem decomposes a
singular measures into a singular continuous measures and a discrete measure.

 As a special case, a measures defined on the Euclidean space Rn is called
singular if it is singular in respect to the Lebesgue measures on this space.
For example, the Dirac delta function is a singular measure.

 The Radon-Nikodym theorem is a consequence in measures theory that
states that given a measurable space (X, ), if a -finite measures  on (X,
) is absolutely continuous with respect to a -finite measures  on (X, )
then there is a measurable function f on X which takes values in (0, ).

 The function f satisfies the above stated equality is uniquely defined up to a
-null set. If g is an additional function which satisfies the same property
then f = g -almost everywhere (-ae). f is generally described as dv/d
and is termed as the Radon-Nikodym derivative.

 In measures theory, Lebesgue’s decomposition theorem states that for given
 and  two -finite signed measures on a measurable space (), there
exist two -finite signed measures 

0
 and 

1
.

 The Lebesgue-Stieltjes integral is the ordinary Lebesgue integral with respect
to a measures known as the Lebesgue-Stieltjes measures which can be
combined to any function of bounded variation on the real line.

 Given two measurable spaces and measures on them we can obtain the
product measurable space and the product measures on that specific space.

 Fubini’s theorem is also sometimes termed as Tonelli’s theorem. It is used
to establish a connection between a multiple integral and a repeated one. If
f(x, y) is continuous on the rectangular region R : a  x  b, c  y  d, then

the equality of the form ( , ) ( , )
R

f x y d x y   ( , )
b d

a c
f x y dy dx   holds.

1.7 KEY TERMS

 Signed measure: Signed measure is referred to simplification of the
concept of measures that allows it to have negative values. There are two
different notions of a signed measures that depends on the condition that
how the infinite values are taken.

 Hahn decomposition theorem: Hahn decomposition theorem states that
for a given signed measures , there exist two measurable sets P and N.
This decomposition is unique for adding/subtracting null sets from P and
N.

 Jordan decomposition theorem: Jordan decomposition theorem states
that every signed measures  can be expressed as a difference of two
positive measures  and  of which at least one is finite.
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 Jordon decomposition: A decomposition of the measures  as a difference
of two mutually singular measures v+ and v– is termed as Jordon
decomposition.

 Mutually singular: Two complex measures  and on a measures
space X are considered mutually singular if they are provided on different
subsets.

 Fubini’s theorem: Fubini’s theorem is named after Guido Fubini. It is a
consequence which provides conditions for which it is possible to compute
a double integral using iterated integrals. As a consequence it also permits
the order of integration to be changed in iterated integrals.

1.8 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What is signed measure?

2. Why are Hahn and Jordan decomposition theorems used?

3. What is mutually singular measure?

4. Define Radon-Nikodym theorem.

5. State the drawbacks of Caratheodory extension theorem?

6. What is the significance of Lebesgue decomposition?

7. Define Lebesgue-Stieltjes integrals.

8. Specify the term product measure.

9. What does Fubini’s theorem state?

Long-Answer Questions

1. Explain in detail the signed measures with the help of examples.

2. Discuss Hahn and Jordan decomposition theorems with the help of proof
and examples.

3. Explain mutually singular measures with the help of appropriate examples.

4. Discuss Radon-Nikodym theorem with the help of proof.

5. Explain Lebesgue decomposition and its importance with reference to signed
measures and decomposition.

6. Describe Riesz representation theorem with application.

7. Explain Lebesgue-Stieltjes integral with the help of examples.

8. Discuss product measures and Fubini’s theorem with reference to signed
measures and decomposition.

9. Brief a note on the importance of Caratheodary extension theorem with
examples.
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2.9 Further Reading

2.0 INTRODUCTION

In mathematics, Baire set describes the specific relations between measure theory
and topology. Particularly, Baire sets help to evaluate measures on non-metrizable
topological spaces. The Baire sets form a subclass of the Borel sets. A subset of a
compact Hausdorff topological space is termed as a Baire set if it is a member of
the smallest –algebra which contains all compact G sets.

Functions with compact support in X are those with support that is a compact
subset of X. For example, if X is the real line, they are functions of bounded
support and therefore vanish at infinity and negative infinity. Real valued compactly
supported smooth functions on a Euclidean space are termed as bump functions.

The Riesz–Markov–Kakutani representation theorem relates linear
functionals on spaces of continuous functions on a locally compact space to
measures in measure theory. The theorem is named for Frigyes Riesz (1909) who
introduced it for continuous functions on the unit interval, Andrey Markov (1938)
who extended the result to some non-compact spaces, and Shizuo Kakutani (1941)
who extended the result to compact Hausdorff spaces. There are many closely
related variations of the theorem, as the linear functionals can be complex, real, or
positive, the space they are defined on may be the unit interval or a compact space
or a locally compact space, the continuous functions may be vanishing at infinity or
have compact support, and the measures can be Baire measures or regular Borel
measures or Radon measures or signed measures or complex measures.

In this unit, you will learn about the Baire sets and Baire measure, continuous
functions with compact support, regularity of measures on locally compact spaces
and Riesz-Markov theorem.



Baire Sets and
Baire Measure

NOTES

Self - Learning
46 Material

2.1 OBJECTIVES

After going through this unit, you will be able to:

  Explain Baire sets and Baire measure
  Describe continuous functions with compact support
  State the regularity of measures on locally compact spaces
  Discuss Riesz-Markov theorem

2.2 INTRODUCTION TO BAIRE SETS AND
BAIRE MEASURE

The Baire set describes the specific relations between measure theory and topology.
Particularly, Baire sets help to evaluate measures on non-metrizable topological
spaces. The Baire sets form a subclass of the Borel sets. A subset of a compact
Hausdorff topological space is termed as a Baire set if it is a member of the
smallest –algebra which contains all compact G sets.

As per Dudley, a subset of a topological space X is termed as a Baire set if
it belongs to the smallest –algebra for which all continuous functions defined on
X into the real line are measurable. A discrete topological space is locally compact
and Hausdorff. Therefore any function defined on a discrete space is continuous
and as per Dudley all subsets of a discrete space are Baire.

Properties

The following properties hold for Baire sets:

 Baire sets correspond with Borel sets in every metric or metrizable space.
Specifically they correspond in Euclidean spaces and all their subsets
considered as topological spaces.

 For every compact Hausdorff space, every finite Baire measure, i.e., a
measure on the -algebra of all Baire sets is regular.

 For every compact Hausdorff space, every finite Baire measure has a unique
extension to a regular Borel measure.

In the descriptive set theory, a set of reals or subset of the Baire space or
Cantor space is termed as universally Baire if it has a definite strong regularity
property. Universally Baire sets are used in  -logic. A subset A of the Baire
space is universally Baire if it has one of the following equivalent properties:

1. For every notion of forcing, there are trees T and U such that A is the
projection of the set of all branches through T and it is forced that the
projections of the branches through T and the branches through U
are complements of each other.

2. For every compact Hausdorff space  and every continuous function
f from  to the Baire space, the preimage of A under f has the property
of Baire in .

3. For every cardinal  and every continuous function f from  to the
Baire space, the preimage of A under f has the property of Baire.
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Baire Measures

A Baire measure is a measure on the -algebra of Baire sets of a topological
space. In spaces that are not metric spaces, the Borel sets and the Baire sets may
differ. Baire measures can be used because they connect to the properties of
continuous functions directly.

Definition: A measure on (,) is a Baire measure (on ), if  (E) < 
whenever E is a bounded (Borel) set.

Assume that is a finite Baire measure. Then, define

F(x) : =  ((–, x])

F is termed as the cumulative distribution function of . Now examine:

µ(a, b] = µ (–, b] – µ(–, a] = F(b) – F(a)

Furthermore,

1

1
( , ] ( , , ]a b a b

n



 

Consequently,

µ(a, b] = F(b) – F(a) = 
1 1

lim ( , ] lim ( ) ( )
n n

a b F b F a
n n 

    

Accordingly,
1

( ) lim ( )
n

F b F b
n

 

Hence, and we can conclude that F is right continuous.

1
( ) ( ) ( )b F b F

n
    

{b} = F(b) = F(a)

As a result, F is continuous at b if and only if (b) = 0.

Proposition: Let be a finite Baire measure and let F be its cumulative
distribution function. Then F is monotone increasing, bounded, right continuous

and 
 
lim
x 

F(x) = 0.

For a given cumulative distribution function that is increasing and right
continuous we can construct a Baire measure. The following is the notation for
this:

F(–) = lim ( )
x

F x


F() = lim ( )
x

F x


Theorem 2.1: If F is a monotone increasing function which is right continuous,
then there exists a unique Baire measure such that (a, b] = F(b) – F(a).

Corollary: Every such F which is also bounded is the cumulative distribution
function of a finite Baire measure, provided that F(–) = 0. The Lebesgue-Stiltjes
integral with respect to F can be defined with the appropriate measure as follows:

dF d    
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Let be the counting measure on ; the associated -algebra is () and
all functions are measurable.

If  f :    is non-negative then how the following will be evaluated,

1

( )
N

n

fd f n




 
A function f :    is integrable if and only if is,

1

| ( ) |
n

f n




 
By the discrete cosine transform, if a sum converges absolutely in n then we

have the expression,

, ,
1 1

lim limm n m n
n n

m m

x x
 

 
 

 

Check Your Progress

1. What is Baire set?

2. Give the properties of Baire set.

3. Define Baire measure.

2.3 CONTINUOUS FUNCTIONS WITH
COMPACT SUPPORT

Functions with compact support in X are those with support that is a compact
subset of X. For example, if X is the real line, they are functions of bounded
support and therefore vanish at infinity and negative infinity. Real valued compactly
supported smooth functions on a Euclidean space are termed as bump functions.
The specific functions with compact support are considered dense in the space of
functions that vanish at infinity. For more complex examples and in limits, for any
 > 0, any function f on the real line R that vanishes at infinity can be approximated
by selecting an appropriate compact subset C of R such that,

| f(x)– I
C
(x)f(x) | < 

This holds for all x  X, where I
C
 is termed as the indicator function of C.

Every continuous function on a compact topological space has compact support
since every closed subset of a compact space is indeed compact.

Let X be a separable and locally compact metric space, then for each
compact set K X there is a continuous function with compact support and such
that f |K = 1.

Definitely, 
1

n
n

X U , where {U
n
} is a increasing sequence of open and

pre-compact subset of X (this follows from the Lindelöf theorem). Consequently

there is an m  , such that K Um
.
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2.3.1 Regularity of Measures on Locally Compact
Spaces

Definition: A Borel measure on (a, b] is defined as the -additive measure
defined on the Borel algebra of (a, b] and is the smallest -algebra containing all
the open subsets of (a, b].

Theorem 2.2: Let be a finite Borel measure,  ((a, t]), less than . Then, F(t)=

 ((a, t]) is an increasing function such that, )()(lim tFsF
ts




.

On the other hand a Borel measure on (a, b] is uniquely determined by
every such function.

Proof: Let  be a finite Borel measure. By -continuity we have,

lim ( ( , ) ( , )nn
n

a b s a b


    for every decreasing sequence (s
n
) = 0. For the reverse

we will use the extension procedure. Let F be as defined above. Consider the
algebra A generated by the intervals (s, t]. For such an interval define,

( , ) ( ) ( )F s t F t F s  

Now, we need to prove that,

( , ) ( )j
j

F s t B  

whenever B
j 
A and ],( tsB jj   is a disjoint union. As every B

j
 is a finite

union of intervals, assume as disjoint partition

( , ) ( , )j j js t s t
Let, > 0. For fixed j we can choose j > 0, such that

( ) ( ) ( ) ( ) 2 j
j j j j jF t F s F t F s       

Let, > 0. Then,

[ , ] ( , )j j j
j

s t s t    
By compactness we can find n

0
, such that

1

[ , ] ( , )
n

j j j
j

s t s t


    

Now, reorganize the intervals such that 1 1 1s s t       and

2 1 1 2 2s t t      , etc., so that m mt t   . This gives,

1

( ) ( ) ( ( ) ( )) (( , ]) 2
m

j
i i i j j

i j

F t F s F t F s F s t 



           

(( , ])j j
j

F s t   
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Since > 0 is arbitrary, we have

( ) ( ) (( , ])j j
j

F t F s F s t    

Using 0lim ( ) ( )F s F s    , we deduce

( ) ( ) (( , ])j j
j

F t F s F s t  

Find a -additive measure  F, by applying the Caratheodory extension
procedure which satisfies,

(( , ]) ( ) ( )F s t F t F s  

Here, the sets of meausre 0 are defined by the outer measure *
F  which is

uniquely determined by the values  F((s, t]). Since the measure is finite, for every
measurable set E  (a, b] we can find B  A such that,

* ( )F E B   

This gives,

( ) ( ) ( )FF FB E B        

Hence, the extension is uniquely determined from its values on intervals
(s, t].

In the following equations we suppose that :[ , ]F a b   is a monotone
increasing function, continuous from the right. Here, we need the following four
derivatives:

D+ F(x) = 
0

( ) ( )
limsup

h

F x h F x

h

 

D– F(x) = 
0

( ) ( )
limsup

h

F x F x h

h

 

D
+

 F(x) = 
0

( ) ( )
liminf

h

F x h F x

h

 

D
–

 F(x) = 
0

( ) ( )
liminf

h

F x F x h

h

 

Note that

( ) ( )D F x D F x
  and ( ) ( )D F x D F x



We know that F is differentiable at x if all the values coincide and are finite.

Theorem 2.3: Let F be a monotone increasing function. Then F is differentiable
almost everywhere. Furthermore,

'( ) ( ) ( )
b

a
F x dx F b F a 

Proof: Here, define F(x) = F(b) for x  b. For example, consider
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, { : ( ) ( )}u vE x D F x u v D F x
   

for rational u, v. We have to prove that ( ) 0* uvm E  . Then we can conclude that,

( ) ( ) ( ) ( )D F x D F x D F x D F x 
     almost everywhere. In the same

way, ( )D F x D F
  and so, F is differentiable almost everywhere.

Now, we consider *( )uvs m E  and > 0. We can find an open set O such

that ,u vE O  and ( )m O s   . For each point uvx E  there is a small

interval[ , ]x h x O   such that,

( ) ( )F x F x h vh  

Now, we can find a finite disjoint collection I
1
, …, I

N
 of such intervals such

that,

1

( Interior( ))
N

n
n

m I s


  
Now, [ , ]n n n nI x h x  . So, from disjointness

1

( ( ) ( )) ( ) ( )
N

n n n n
n n

F x F x h v h vm O v s


       

Now define ,1
Interior( )

N

n u vn
A I E


  . We know that every y A  is a left

endpoint of an interval (y, y + k) contained on some I
n
 such that,

( ) ( )F y k F k uk  

By applying the covering theorem, we obtain disjoint intervals J
1
, …, J

M

such that ii
J  contains a subset of A of measure greater than 2s   . Then,

1

[ ( ) ( )] ( 2 )
M

k i i i
i i

F y k F k u k u s


      
Note here that, every J

i
 is contained in some I

n
. Hence, by monotonicity

and disjointness we get,

[ ( ) ( )] ( ) ( )
i n

k i i n n n
J I

F y k F k F x F x h


    

Thus we have,

1 1

( 2 ) [ ( ) ( )] ( ( ) ( )) ( )
M N

k i i n n n
i n

u s F y k F k F x F x h v x
 

           

Passing to the limit 0   we get us vs. Since u > v we must have
s = 0. In the following we may assume that,

0

( ) ( )
( ) lim '( )

h

F x h F x
g x F x

h
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exists almost everywhere. We define,

1
( ) ( ) ( )nf x n F x F x

n
    
 

Since, F is increasing we know that ( ) 0nf x  . Since lim ( ) '( )n nf x F x
almost everywhere, we know that F is measurable. By Fatou’s lemma we find,

1
liminf [ ( ) ( )]

b b

a an
f n F x F x dx

n
   

1 1

liminf
b a

n n

b bn
n F n F

  
  

 
 

1

liminf ( )
a

n

bn
F b n F

 
  

 


1

( ) lim ( ) ( )
a

n

bn
F b n F F b F a


   

Corollary 1: A function of bounded variation is differentiable almost everywhere.

Corollary 2: Let be a finite Borel measure on (a, b]. Then there exists an
absolute continuous measure 

n 
and singular measure 

s
 such that,

= 
n 
+ 

s
.

Proof: Consider F(x) = ((a, x]). Then, F is differentiable almost everywhere
and we may define the absolute continuous measure

(( , ]) '( )
x

n a
a x F x dm  

Then, ( ) ( ) '( )
x

a
G x F x F x dm    is again an increasing function. The singular

measure is determined by,

(( , ]) ( )g a x G x 

Obviously, ' 0G   almost everywhere.

2.3.2 Measure and Outer Measure

Definition: An outer measure is an extended real valued set function defined
on all subsets of a space X having the following properties:

(a) 

(b) Monotonicity

(c) E  









11

*μ*μ
i

i
i

i EEE Subadditivity

The outer measure is said to be finite if X 
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By correspondence with the case of Lebesgue measure we say that a set E
is measurable with respect to if for every set A we have,

* *( ) *( )CA A E A E     

Since, is subadditive, in order to show that E is measurable, we only
need to prove that,

* *( ) *( )CA A E A E     

for every A.

When A this inequality holds trivially. So, we only have to prove it
for sets A with A finite.

Theorem 2.4: The class of -measurable sets are a -algebra. If μ  is restricted

to then μ  is a complete measure on 

Proof: It is clear that the empty set is measurable. From the symmetry of the
definition of measurability in E and Ec, we have that Ec is measurable whenever E
is measurable. Now, let E

1
 and E

2
 be measurable sets. From the measurability of

E
2
,

2 2* *( ) * ( )CA A E A E     

and by the measurability of E
1
,

2 2 1 2 2* *( ) *( ) *( )C C CA A E A E E A E E         

Now, since

1 2 2 1 2[ ] [ ] [ ]CA E E A E A E E      

we have,

1 2 2 2 1*( [ ]) *( ) *( )CA E E A E A E E        

by subadditivity, and so

1 2 2 2* *( [ ]) *( )C CA A E E A E E       

This implies that E
1 
 E

1
 is measurable. So we get that the union of two

measurable sets is measurable. But by induction, the union of any finite number of
measurable sets is measurable. Hence,  is an algebra of sets. Suppose, E E

i
,

where <E
i
> is a disjoint sequence of measurable sets, and fix

G
n 
 i

n

i
E

1


Then G
n
 is measurable, and

* *( ) *( )C
n nA A G A G     

 *( ) *( )C
nA G A E    

because Ec G
n

c.
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Now, G
n 
 E

n 
 E

n
 and G

n
 E

n
c G

n1
, and by the measurability of E

n
,

we have

1* ( ) *( ) *( )n n nA G A E A G        

By induction as above, 1 1 2*( ) * ( ) * ( )n n nA G A E A E           and
so on

1

*( ) *( )
n

n i
i

A G A E


    
and so,

1

* *( ) * ( )C
i

i

A A E A E




      

 *( ) *( )CA E A E    

Since,  i
i

EAEA 


1


Thus, E is measurable.

Since, the union of any sequence of sets in an algebra can be replaced by a
disjoint union of sets in an algebra, it follows that B is a -algebra.

Let us now prove that μ  is finitely additive. Let E
1
 and E

2
 be disjoint

measurable sets.

Then, the measurability of E
2
 implies that,

1 2 1 2( ) *( )E E E E    

 
1 2 2 1 2 2*([ ] *([ ] )CE E E E E E       

2 1* *E E   

Finite additivity now follows by induction.

If E is the disjoint union of the measurable sets E
i
, then

i

n

i
i

n

i
i EEE 











11
μμμ 

and so,

1
i

i

E E




  
But,

1
i

i

E E




    by the subadditivity of Hence,μ  is countably additive.

So μ is a measure since it is non negative and μ 
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2.3.3 Extension of a Measure

A measure on an algebra is a non negative extended real valued set function 
defined on an algebra A of sets such that,

(a) 

(b) If <A
i
> is a disjoint sequence of sets in A whose union is also in A, then

i
i

i
i

AA 
















11
μμ 

Thus, a measure on an algebra A is a measure iffA is a -algebra.

We construct an outer measure and show that the measure μ is an

extension of measure defined on an algebraDefine, E  i
i

A


1

μinf where

<A
i
> ranges over all sequence from A such that

E i
i

A





1


Lemma 1: If A A and if <A
i
> is any sequence of sets in A such that A i

i
A






1
 ,

then A i
i

A





1

μ .

Proof: Fix, 1 ...C C
n n n iB A A A A     . Then B

n 
A and B

n 
A

n
. But since A

is the disjoint union of the sequence <B
n
>, by countable additivity

1 1
n n

n n

A B A
 

 

     

Corollary: If A A, A A.

Actually, from above, we have

1

*n
n

A A A




      

or,

*A A    

Now, as since is arbitrary, we have

*A A  

Also, by definition

* A A  

Therefore,

A A
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Lemma 2: The set function is an outer measure.

Proof: We know that from the definition, is a monotone non negative set
function defined for all sets and O. Now it is only remained to prove that it

is countably subadditive. Let E  i
i

E


1
 If E

i 
for any i, then we have E

E
i 
If E

i 
, then given there exists for each i a sequence

1ij jA 
   of sets in A such that E

i ij
j

A





1
 and

1

*
2ij i i

j

A E





   

Then,

, 1

* *ij i
i j i

E A E




       

Since is an arbitrary positive number, we have

1

* * i
i

E E




  

which proves that is subadditive.

Lemma 3: If A A, then A is measurable with respect to 

Proof: Suppose E be an arbitrary set of finite outer measure and be a positive
number. Then there is a sequence <A

i
> from A such that E A

i
 and

*iA E    .

By the additivity of on A, we have

( ) ( ) ( )C
i i iA A A A A     

Hence,

1 1

* ( ) ( )C
i i

i i

E A A A A
 

 

         

*( ) *( )CE A E A    

because

( )iE A A A   

and

( )C C
iE A A A  

Since is an arbitrary positive number, we have

* *( ) *( )CE A E A     

and thus A is -measurable.
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Note: The outer measure which we have defined above is known as the outer
measure induced by 

Notation: For a given algebra A of sets we use Ato denote those sets which are
countable unions of sets of A and use Ato denote those sets which are countable
intersection of sets in A

Theorem 2.5: Let be a measure on an algebra A, be the outer measure
induced by and E be any set. Then for there exists a set A  Awith E
A and * *A E     .

There is also a set B  Awith E B and E B.

Proof: From the definition of there is a sequence <A
i
> from A such that

E A
i
 and

1

*i
i

A E




     … (2.1)

Fix A A
i

Then, * * iA A  

iA   …(2.2)

because andagree on members of A by the above mentioned corollary.

Hence, Equations (2.1) and (2.2) imply

* *A E    

which proves the first part.

To prove the second statement, we note that for each positive integer n
there is a set A

n
 in A, such that, E A

n
 and

1
* *nA E

n
     (From first part proved above)

Let B A
n
. Then, B  Aand E B. Since B A

n
,

1
* * *nB A E

n
     

Since n is arbitrary, by monotonicity,B E. Hence B E.

2.3.4 Riesz-Markov Theorem

Consider that X denotes a locally compact Hausdorff space. Let f be a real valued
continuous function on X. The support of f is the subset of the form,

Supp (f) : = Closure of {x  X : f (x)  0}

Here f has compact support if the support of f is a compact subset on X. f
is zero outside a compact set. A linear functional or linear form, also termed as a
one-form or covector, is a linear map from a vector space to its field of scalars. In
Rn, if vectors are represented as column vectors then linear functionals are
represented as row vectors and their action on vectors is specified by the dot
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product or the matrix product with the row vector on the left and the column
vector on the right. Generally, if V is a vector space over a field k then a linear
functional ƒ is a function from V to k, which is linear,

( ) ( ) ( )f v w f v f w
   

 for all ,v w V
 

( ) ( )f av af v
 

 for all , .v V a k


The set of all linear functionals from V to k, Hom
k
(V,k), is itself a vector

space over k.  This space is called the dual space of V or sometimes the algebraic
dual space. It is written as V* or V' when the field k is implicit. Every non-degenerate
bilinear form on a finite dimensional vector space V gives an isomorphism from V
to V*. Specifically, the bilinear form on V is denoted by <, > and there is a natural

isomorphism * *:V V v v  given by the following expression:

*( ) : , .v w v w

The inverse isomorphism is given by * *:V V f f  where ƒ* is the

unique element of V for which for all w  V. The vector is then,

* , ( ).f w f w

The above defined vector v*  V* is said to be the dual vector of v  V.

In an infinite dimensional Hilbert space, equivalent results hold by the Riesz
representation theorem.  There is a mapping V  V* into the continuous dual
space V*. 

Riesz Representation Theorem for Linear Functionals on C
c
(X)

The following theorem represents positive linear functionals on C
c
(X), i.e., the

space of continuous compactly supported complex valued functions on a locally
compact Hausdorff space X. The Borel sets in the given statement refer to the -
algebra produced by the open sets.

A non-negative countably additive Borel measure  on a locally compact
Hausdorff space X is regular if and only if,

 µ(K) <for every compact K.

 For every Borel set E, µ(E) = inf {µ(U) : E  U, U open}

 The relation µ(E) = sup (µ(K) : K  E, K compact) holds whenever E is
open or when E is Borel and µ(E) < .

Theorem 2.6: Let X be a locally compact Hausdorff space. For any positive
linear functional  on C

c
(X), there is a unique Borel regular measure  on X such

that,

( ) ( ) ( )
X

f f x dµ x

This holds for all f in C
c
(X).

One method to measure theory is to initiate with a Radon measure defined
as a positive linear functional on C(X). In its original form by F. Riesz (1909) the
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theorem states that every continuous linear functional A[f] over the space C[0,1]
of continuous functions in the interval [0,1] can be represented in the form,

1

0
( ) ( ) ( ).A f f x d x

Here (x) is a function of bounded variation on the interval [0,1] and the
integral is a Riemann-Stieltjes integral. Since there is a one-to-one association
between Borel regular measures in the interval and functions of bounded variation
consequently the above stated theorem generalizes the original statement of F.
Riesz. He assigns to each function of bounded variation the consequent Lebesgue-
Stieltjes measure and the integral with respect to the Lebesgue-Stieltjes measure
agrees with the Riemann-Stieltjes integral for continuous functions.

Riesz-Markov Representation Theorem for the Dual of C
0
(X)

The Riesz-Markov theorem gives a concrete realization of the dual space of C
0
(X),

i.e., the set of continuous functions on X which vanish at infinity. The Borel sets in
the statement of the theorem also refer to the -algebra generated by the open
sets.

If  is a complex valued countably additive Borel measure, then  is regular
iff the non-negative countably additive measure | | is regular as defined above.

Theorem 2.7: Let X be a locally compact Hausdorff space. For any continuous
linear functional  on C

0
(X), then there is a unique regular countably additive

complex Borel measure  on X such that,

( ) ( ) ( )
X

f f x dµ x

This holds for all f in C
0
(X). The norm of  as a linear functional is the total

variation of is given as follows,

|| || | | ( ).µ X

To conclude,  is positive iff the measure  is non-negative.

2.4 Integration of Continuous Functions with
Compact Support

Let  be a -form on . We define the support of  to be the closure of the set

{𝑥 ∈ ℝ𝑛, 𝜈𝑥 ≠ 0} 

and we say that  is compactly supported if  is compact. We will denote by

 the set of all -forms which are compactly supported, and if  is an
open subset of , we will denote by  the set of all compactly supported

-forms whose support is contained in .

Let  be a compactly supported n-form with .

We will define the integral of   over  :

𝜔
ℝ𝑛
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to be the usual integral of  over 

𝑓
ℝ𝑛

𝑑𝑥. 

(Since  is  and compactly supported this integral is well-defined.) Now
let  be the rectangle

[𝑎1, 𝑏1] × ⋯× [𝑎𝑛 , 𝑏𝑛]. 

Theorem 2.8

Let  be a compactly supported n-form, with supp  Int Q. Then the following
assertions are equivalent:

1. .

2. There exists a compactly supported (  )-form, , with  Int 
satisfying .

We will first prove that (2.4)  (2.3). Let

𝜇 = 𝑓𝑖

𝑛

𝑖=1

𝑑𝑥1 ∧ …∧ 𝑑𝑥𝑖ˆ ∧ …∧ 𝑑𝑥𝑛  

(the “hat” over the  meaning that  has to be omitted from the wedge product).
Then

𝑑𝜇 = (

𝑛

𝑖=1

− 1)𝑖−1
𝜕𝑓𝑖
𝜕𝑥𝑖

𝑑𝑥1 ∧ …∧ 𝑑𝑥𝑛 , 

and to show that the integral of d is zero it suffices to show that each of the
integrals

∫
𝜕𝑓

𝜕𝑥𝑖ℝ𝑛 𝑑𝑥 ...(2.3)

is zero. By Fubini we can compute (2.3) by first integrating with respect to the
variable, x

i
 , and then with respect to the remaining variables. But

∫
𝜕𝑓

𝜕𝑥𝑖
𝑑𝑥𝑖 = 𝑓(𝑥)|𝑥𝑖=𝑎𝑖

𝑥𝑖=𝑏𝑖 = 0 

since f
i
 is supported on U.

We will prove that (2.3)  (2.4) by proving a somewhat stronger result.
Let U be an open subset of . We’ll say that U has property p if every form,

 whose integral is zero in .

Theorem 2.9

Let U be an opsen subset of  and  an open interval. Then if  has
property  does as well.
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Remark

It is simple to see that the open interval A itself has property p. Hence it follows by
induction from Theorem 2.8 that

Int𝑄 = 𝐴1 ×⋯× 𝐴𝑛 , 𝐴𝑖 = (𝑎𝑖 , 𝑏𝑖) 

has property p, and this proves “ ”.

To prove Theorem 2.9 let  be product coordinates

on . Given  we can express  as a wedge product, 

with  and . Let  be the
form

𝜃 = ∫
𝐴
𝑓(𝑥, 𝑡)𝑑𝑡 𝑑𝑥1 ∧ ⋯ ...(2.4)

Then

𝜃
ℝ𝑛−1

= 𝑓
ℝ𝑛

(𝑥, 𝑡)𝑑𝑥𝑑𝑡 = 𝜔
ℝ𝑛

 

so if the integral of  is zero, the integral of  is zero. Hence since U has property
 for some . Let  be a bump function which is

supported on A and whose integral over  is one. Setting

we have

and hence

where

by (2.3). Thus

Let a and b be the end points of A and let

…(2.5)

By (2.4) , so  is in  and by (2.5),

. Hence if we let   be the form, , we have:

and

Since  and k are both in  this proves that is in

 and hence that U × A  has property P.
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Check Your Progress

4. What are continuous functions with compact support?

5. What is Borel measure?

6. State a condition for an outer measure to be finite.

7. Why is Riesz-Markov theorem used?

8. What does Riesz-Markov representation theorem for the dual of C
0
(X)

state?

2.5 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. The Baire sets form a subclass of the Borel sets. A subset of a compact
Hausdorff topological space is termed as a Baire set if it is a member of the
smallest –algebra which contains all compact G sets.

2. Baire sets correspond with Borel sets in every metric or metrizable space.
Specifically they correspond in Euclidean spaces and all their subsets
considered as topological spaces. For every compact Hausdorff space,
every finite Baire measure, i.e., a measure on the -algebra of all Baire sets
is regular.

3. A measure on (,) is a Baire measure (on ), if  (E) < whenever
E is a bounded (Borel) set.

4. Functions with compact support in X are those with support that is a compact
subset of X. For example, if X is the real line, they are functions of bounded
support and therefore vanish at infinity and negative infinity. Real valued
compactly supported smooth functions on a Euclidean space are termed as
bump functions.

5.  A Borel measure on (a, b] is defined as the -additive measure defined
on the Borel algebra of (a, b] and is the smallest -algebra containing all
the open subsets of (a, b].

6.  The outer measure is said to be finite if X 

7.  The Riesz-Markov theorem gives a concrete realization of the dual space
of C

0
(X), i.e., the set of continuous functions on X which vanish at infinity.

The Borel sets in the statement of the theorem also refer to the -algebra
generated by the open sets.

8. The Riesz-Markov theorem gives a concrete realization of the dual space
of C

0
(X), i.e., the set of continuous functions on X which vanish at infinity.

The Borel sets in the statement of the theorem also refer to the -algebra
generated by the open sets.
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2.6 SUMMARY

 The Baire set describes the specific relations between measure theory and
topology. Particularly, Baire sets help to evaluate measures on non-metrizable
topological spaces.

 The Baire sets form a subclass of the Borel sets. A subset of a compact
Hausdorff topological space is termed as a Baire set if it is a member of the
smallest –algebra which contains all compact G sets.

 Baire sets correspond with Borel sets in every metric or metrizable space.
Specifically they correspond in Euclidean spaces and all their subsets
considered as topological spaces.

 For every compact Hausdorff space, every finite Baire measure, i.e., a
measure on the -algebra of all Baire sets is regular.

 For every compact Hausdorff space, every finite Baire measure has a unique
extension to a regular Borel measure.

 A measure on (,) is a Baire measure (on ), if  (E) < whenever
E is a bounded (Borel) set.

 Let be a finite Baire measure and let F be its cumulative distribution
function. Then F is monotone increasing, bounded, right continuous and

 
lim
x 

F(x) = 0.

 If F is a monotone increasing function which is right continuous, then there
exists a unique Baire measure such that (a, b] = F(b) – F(a).

 Functions with compact support in X are those with support that is a compact
subset of X. For example, if X is the real line, they are functions of bounded
support and therefore vanish at infinity and negative infinity. Real valued
compactly supported smooth functions on a Euclidean space are termed as
bump functions.

 A Borel measure on (a, b] is defined as the -additive measure defined
on the Borel algebra of (a, b] and is the smallest -algebra containing all the
open subsets of (a, b].

 The class of -measurable sets are a -algebra. If μ  is restricted to 

then μ  is a complete measure on 

 In Rn, if vectors are represented as column vectors then linear functionals
are represented as row vectors and their action on vectors is specified by
the dot product or the matrix product with the row vector on the left and the
column vector on the right.

 The Riesz-Markov theorem gives a concrete realization of the dual space
of C

0
(X), i.e., the set of continuous functions on X which vanish at infinity.

The Borel sets in the statement of the theorem also refer to the -algebra
generated by the open sets.
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2.7 KEY TERMS

 Baire set: The Baire sets form a subclass of the Borel sets. A subset of a
compact Hausdorff topological space is termed as a Baire set if it is a
member of the smallest –algebra which contains all compact G sets.

 Borel measure: A Borel measure on a, b is defined as the -additive
measure defined on the Borel algebra of (a, b) and is the smallest -algebra
containing all the open subsets of a, b

 Riesz representation theorem: The following theorem represents positive
linear functionals on C

c
(X), i.e., the space of continuous compactly supported

complex valued functions on a locally compact Hausdorff space X. The
Borel sets in the given statement refer to the -algebra produced by the
open sets.

2.8 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Define the terms Baire sets and Baire measures.

2. What do you mean by continuous functions with compact support?

3. Define regularity of measures on locally compact spaces.

4. How will you define the regularity of measure on locally compact spaces?

5. What is the difference between measure and outer measure?

6. State extension of a measure.

7. What does Riesz-Markov theorem state?

Long-Answer Questions

1. Explain the importance and applications of Baire sets and Baire measure in
signed measures and decomposition.

2. Describe and prove the uniqueness of continuous functions and compact
support.

3. Describe the concept of regularity of measure on locally compact spaces.

4. Discuss the differences among measure, outer measure, extension of a
measure and measure space.

5. Discuss Riesz-Markov theorem in signed measures and decomposition.

6. Illustrate the applications of signed measures and decomposition.
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UNIT 3 NORMED LINEAR SPACES

Structure

3.0 Introduction
3.1 Objectives
3.2 Normed Linear Spaces

3.2.1 Linear Transformation
3.2.2 Metric on Normed Linear Spaces
3.2.3 Linear Transformation and Dual Spaces

3.3 Banach Spaces
3.3.1 Conjugate Spaces
3.3.2 Natural Embedding of a Normed Linear Space in its Second Dual
3.3.3 Embedding Lemma and Tychonoff Embedding
3.3.4 Urysohn’s Metrization Theorem

3.4 Uniform Boundedness Principle and its Consequences
3.5 Quotient Space of Normed Linear Space and its Completeness

3.5.1 Bounded Linear Transformation
3.5.2 Normed Linear Space of Bounded Linear Transformations

3.6 Answers to ‘Check Your Progress’
3.7 Summary
3.8 Key Terms
3.9 Self-Assessment Questions and Exercises

3.10 Further Reading

3.0 INTRODUCTION

In mathematics, a linear space is a basic structure in incidence geometry. It consists
of a family of subsets of a set such that the intersection of two subsets contains at
most one element of the set. The elements of the set are called points and the subsets
are called lines. Linear spaces can be seen as a generalization of projective and
affine planes. The term linear space was coined by Libois in 1964. Linear
transformations are the transformations that can be represented by matrices. Vector
spaces stem from affine geometry, through the introduction of coordinates in the
plane or three-dimensional space. The foundation of the definition of vectors was
Bellavitis notion of the bipoint, an oriented segment one of whose ends is the origin
and the other one a target. Vectors are elements in R2, R4, etc., and are used in
systems of linear equations. An important development of vector spaces is due to
the construction of function spaces by Lebesgue. This was later formalized by Banach
and Hilbert, around 1920 and was used for evaluating algebra and the field of functional
analysis. The 2- or 3-dimensional vectors are defined through real valued entries and
the ‘Length’ of a vector can easily be extended to any real vector space Rn.

The Hahn-Banach theorem is an essential tool in functional analysis. It permits
the extension of bounded linear functionals defined on a subspace of some vector
space to the complete space and also illustrates that there are ‘Enough’ continuous
linear functionals defined on every normed vector space for studying the dual
space. It is named for Hans Hahn and Stefan Banach who proved this theorem
independently and a general extension theorem from which the Hahn-Banach
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theorem can be derived, which was proved in 1923 by Marcel Riesz. A Banach
space is a complete normed vector space or a Banach space is a vector space
which is equipped with a norm and which is complete with respect to that norm.
Two common types of Banach spaces are real Banach spaces and complex Banach
spaces, which are Banach spaces whose underlying vector spaces are defined
over the field of real numbers or complex numbers, respectively. Various infinite
dimensional function spaces evaluated in analysis are Banach spaces, including
spaces of continuous functions (continuous functions on a compact Hausdorff
space), spaces of Lebesgue integrable functions known as Lp spaces and spaces
of holomorphic functions known as Hardy spaces. These are the most commonly
used topological vector spaces and their topology is based on a norm.

In this unit, you will learn about the normed linear spaces, Banach spaces,
conjugate spaces, nature imbedding of a normal linear space in its second dual
and uniform boundedness principle and its consequences.

3.1 OBJECTIVES

After going through this unit, you will be able to:

 Explain the meaning of normed linear spaces
 Discuss the significance of linear transformation
 Describe linear transformation and dual spaces
 Explain quotient spaces
 Elaborate on the Banach spaces and completeness of lp, Lp, Rn, Cn and C

[a, b]
 Discuss about the conjugate spaces
 Know about the natural imbedding of a normed linear space in its second

dual

 State uniform boundedness principle, open mapping theorem and closed
graph theorem

3.2 NORMED LINEAR SPACES

A normed linear space is a vector space X and a non-negative valued mapping ||.||
on X termed as the norm, which satisfies the following properties:

1. ||x|| = 0 if and only if x = 0.

2. ||a x|| = |a| ||x||, for all scalars a.

3. ||x+y||   ||x|| + ||y||

Here ||x|| is considered as the length of x or the distance from x to 0. For a
given vector x, if y is defined as (1/||x||) x, then y has unit length and is called the
normalized vector for x.

The 2- or 3-dimensional vectors are defined through real valued entries and
the ‘Length’ of a vector can easily be extended to any real vector space Rn. The
following properties of vector length are essential:
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1. The zero vector ‘0’ has zero length whereas every other vector has a
positive length.

|| x || > 0 if x  0

2. Multiplying a vector by a positive number changes its length without
changing its direction. Moreover,

|| x || = ||  || x ||  for any scalar .

3. The triangle inequality holds, i.e., taking norms as distances, the distance
from point A through B to C is never shorter than going directly from
A to C or the shortest distance between any two points is a straight
line.

|| x + y ||  || x || + || y || for any vectors x and y. ( By triangle inequality)

The generalization of these three properties shows the ways to the notion of
norm. A vector space on which a norm is defined is then called a normed vector
space. Normed vector spaces are essential to study linear algebra and functional
analysis.

A seminormed vector space is a pair (V, p) where V is a vector space and
p a seminorm on V.

A normed vector space is a pair (V,  ·   ) where V is a vector space and  ·   a
norm on V.

A vector norm can be taken as any real valued function that satisfies all the
three properties. Properties 1 and 2 together imply that,

|| x || = 0  if and only if x = 0.

A functional variation of the triangle inequality is given as,

|| x – y ||  | || x || – || y || for any vectors x and y.

This also illustrates that a vector norm is a continuous function.

3.2.1 Linear Transformation

By a Linear Transformation (L.T.) we mean a map T : V  W, such that or such
that, T(x + y) = T(x) + T(y) where x, y  V, , F and V, W are vector
spaces over the field F. Also, we will be dealing with vector spaces that are finite
dimensional, unless mentioned otherwise.

Theorem 3.1: A L.T.  T : V  V is one-one iff T is onto.

Proof: Let T : V  V be one-one. Let dim V = n.

Let {v1, v2, ....., vn} be a basis of V, then {T(v1), ....., T(vn)} will also be a
basis of V as

1T(v1) + 2T(v2) + ..... + nT(vn) = 0

 T(1v1 + ..... + nvn) = T(0) (T a L.T.)

 1v1 + ..... + nvn = 0 (T is 1-1)

 i = 0 for all i
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thus T(v1), ..... T(vn) are L.I. and as dim V = n the result follows.

Let now v V be any element

then v = a1T(v1) + a2T(v2) + ..... + anT(vn) ai  F

= T(a1v1 + ..... + anvn)

= T(v) for some v

Hence T is onto.

Conversely, let T be onto.

Here again we show that if {v1, v2, ..... vn} is a basis of V then so also is
{T(v1), T(v2), ....., T(vn)}

For any v  V, since T is onto,  some v  V such that,

T(v) = v

Again vV means v = i iv i  F

 v = T(v) = T( i iv ) = i T(vi)

 T(v1), T(v2), ..., T(vn) span V

and as dim V = n, {T(v1), ..., T(vn)} forms a basis of V.

Now if v  Ker T be any element

then T(v) = 0

 T( ivi) = 0

  iT(vi) = 0

 i = 0 for all i  as T(v1), ..., T(vn) are L.I.

 v = ivi = 0

 Ker T = {0}  T is 1-1.

Theorem 3.2: Let V and W be two vector spaces over F. Let {v1, v2, ..., vn}
be a basis of V and w1, w2, ..., wn be any vectors in W (not essentially distinct).
Then there exists a unique L.T

T : V  W such that, T(vi) = wi  i = 1, 2, ..., n.

Proof: Let v  V be any element, then v = 
1

n

i i
i

v

 , i  F

as {v1, v2, ..., vn} is a basis of V.

Define T : V  W s.t.,

T(v) =  iwi

Then T is a linear transformation (verify!).

Clearly here, T(vi) = T(ov1 + ... + 1 . vi + ... + ovn) = 1wi for all i

To show uniqueness let T  be any other L.T. from V  W such that,

 T (vi) = wi

Let v  V be any element, then v =  ivi

T (v) = T ( ivi) =  iT (vi) =  iwi = T(v)
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Hence T  = T.

Thus we notice that a linear transformation is completely determined by its
values on the elements of a basis.

Definition: Let T : V  W be a L.T.

then we define Rank of T = dim Range T = r(T)

Nullity of T = dim Ker T = v(T).

Theorem 3.3: (Sylvester’s Law) : Let T : V  W be a L.T., then

Rank T + Nullity T = dim V.

Proof: Let {x1, x2, ..., xm} be a basis of Ker T then {x1, x2, ..., xm} being L.I.
in Ker T will be L.I. in V. Thus it can be extended to form a basis of V.

Let {x1, x2, ..., xm, v1, v2, ..., vn} be the extended basis of V.

Then dim Ker T = nullity of T = m

dim V = m + n

we show {T(v1), T(v2), ..., T(vn)} is a basis of Range T

Now 1T(v1) + 2 T(v2) + ... + nT(vn) = 0

 T(1v1 + ... + nvn) = 0

 1v1 + 2v2 ... + nvn  Ker T

 1v1 + ... + nvn = 1x1 + ... + mxm

or 1v1 + ... + nvn + (–1)x1 + ... + (–m)xm = 0

 1 = 2 = ... = 1 = ... = m = 0

 i = 0 for all i

i.e., {T(v1), T(v2), ..., T(vn)} is L.I.

Now if T(v) Range T be any element then as v V

v = a1x1 + ... + amxm + b1v1 + ... + bnvn ai, bj  F

 T(v) = a1T(x1) + ... + amT(xm) + b1T(v1) + ... + bnT(vn)

= 0 + ... + 0 + b1T(v1) + ... + bnT(vn) [as xi  Ker T]

or that T(v) is a linear combination of T(v1), ..., T(vn)

which, therefore, form a basis of Range T.

  dim Range T = n = rank T

which proves the theorem.

Theorem 3.4: If T : V  V be a L.T. Show that the following statements are
equivalent.

(i) Range T  Ker T = {0}

(ii) If T(T(v)) = 0 then T(v) = 0, v  V

Proof: (i)  (ii)

T(T(v)) = 0  T(v)  Ker T

Also T(v) Range T (by definition)

 T(v) = 0
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(ii)  (i)

Let x  Range T  Ker T

 x  Range T and x  Ker T

 x = T(v) for some v  V

and T(x) = 0

x = T(v)  T(x) = T(T(v))

 0 = T(T(v))

 T(v) = 0 (given condition)

 v = 0.

Algebra of Linear Transformations

Let V and W be two vector spaces over the same field F. Let T : V  W and
S : V  W be two linear transformations. We define T + S, the sum of T and S
by

T + S : V  W, such that,

(T + S)v = T(v) + S(v), v  V

Then T + S is also a L.T. from V  W as

(T + S) (x + y) = T(x + y) + S(x + y)

= T(x) + T(y) + S(x) + S(y)

= (T + S)x + (T + S)y

Again for  F, we define the product of a L.T. T : V  W with , by
(T) : V  W such that, (T)v = (T(v)).

It is easy to see that T is a also a L.T. from V  W. Let Hom (V, W) be
the set of all linear transformations from V  W. Then we show Hom (V, W)
forms a vector space over F under the addition and scalar multiplication as defined
above.

We have already seen that when T, S Hom (V, W),   F then T + S,
T  Hom (V, W), thus closure holds for these operations. We verify some of
the other conditions in the definition.

          (T + S)v= T(v) + S(v) = S(v) + T(v) = (S + T)v for all v  V

 T + S = S + T for all S, T  Hom (V, W)

The map O : V  W, such that, O(v) = 0 is a L.T. and

(T + O)v = T(v) + O(v) = T(v) = (O + T)v for all v

thus O is zero of Hom (V, W)

For any T  Hom (V, W), the map (–T) : V  W, such that,

(–T)v = –T(v)

will be additive inverse of T.

Again, [(T + S)]v = [(T + S)v] = [T(v) + S(v)] = T(v) + S(v)

= (T)v + (S)v = (T + S)v for all v  V

 (T + S) = T + S
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[()T]v = ()T(v) = [T(v)] = [(T)]v for all v

 ()T = (T)

(1T)v = 1 . T(v) = T(v) for all v

 1 . T = T

Hence one notices that Hom (V, W) forms a vector space over F.

Note: The notation L(V, W) is also used for denoting Hom (V, W).

Definition: Product (composition) of two linear transformations

Let V, W, Z be three vector spaces over a field F

Let T : V  W,  S : W  Z  be L.T.

We define ST : V  Z, such that,

(ST)v = S(T(v))

then ST is a linear transformation (verify!), called product of S and T.

Note: TS may not be defined and even if it is defined it may not equal ST.

Definition: A L.T. T : V  V is called a linear operator on V, whereas a
L.T. T : V  F is called a linear functional. We use notation T2 for T.T and
Tn = T n–1T, etc.

Theorem 3.5: Let T, T1, T2 be linear operators on V, and let I : V  V be the
identity map I(v) = v for all v (which is clearly a L.T.) then

(i) IT = TI = T

(ii) T(T1 + T2) = TT1 + TT2

(T1 + T2)T = T1T + T2T

(iii) (T1T2) = (T1)T2 = T1(T2)   F

(iv) T1(T2T3) = (T1T2)T3.

Proof: (i) Obvious.

(ii) [T(T1 + T2)]x = T[(T1 + T2)x] = T[T1(x) + T2(x)]

= T(T1(x)) + T(T2(x)) = TT1(x) + TT2(x)

= (TT1 + TT2)x

 T(T1 + T2) = TT1 + TT2

Other result follows similarly.

(iii) [(T1T2)]x = [(T1T2)x] = [T1(T2(x))]

[(T1)T2]x = (T1) [T2(x)] = [T1(T2(x)]

[T1(T2)]x = T1(T2)x = T1(T2(x)) = T1(T2(x))]

Hence the result follows.

(iv) Follows easily by definition.

Refer exercises for the generalised version of above theorem.

Theorem 3.6: Let V and W be two vector spaces (over F) of dim m and n
respectively. Then Hom (V, W) has dim mn.



Normed Linear Spaces

NOTES

Self - Learning
74 Material

Proof: Let {v1, v2, ..., vm} and {w1, w2, ..., wn} be basis of V and W respectively.

Define mappings Tij : V  W, such that,

     Tij(v) = iwj 1  i  m

1  j  n

where v  V is any element and therefore,

v = 1v1 + 2v2 + ... mvm for some i  F

Note also thatTij(vk) = 0 if k  i

= wj if k = i

We show Tij are L.T.

Let  x, y  V then x = 
1

,
m

i iv   y = 
1

m

i iv i, i  F

Now Tij(x + y) = Tij[(1v1 + ... + mvm) + (1v1 + ... + mvm)]

= Tij[(1 + 1)v1 + ... + (m + m)vm]

= Tij(1v1 + ... + mvm)

= iwj

= (i + i)wj = iwj + iwj = Tij(x) + Tij(y)

Also, Tij(x) = Tij((1v1 + ... + mvm))

= Tij(1v1 + ... + mvm)

= (i)wj = (i wj) = Tij (ivi)

= Tij(x)

Hence Tij  Hom (V, W). We claim S = {Tij | 1  i  m, 1  j  n} forms
a basis of Hom (V, W)

Suppose,

11T11 + 12T12 + ... + 1nT1n + 21T21 + 22T22 + ... + 2nT2n + ...
+ m1Tm1 + m2Tm2 + ... + mnTmn = 0, ij  F

[where 0 is, of course, zero of Hom (V, W)]

By operating on v1, we get

11T11(v1) + 12T12(v1) + ... + 1nT1n(v1) + 21T21(v1) + ... = 0

 11w1 + 12w2 + ... + 1nwn + 0 + ... + 0 + ... = 0

But w1, w2 ..., wn are L.I.

 11 = 12 = ...1n = 0

Similarly, by operating on v2 we’ll get 21 = 22 = ... 2n = 0

Thus by operating on v3, v4 ... we find that all the coefficients are zero and
hence S is L.I.. So, o(S) = mn.

Let Now T  Hom (V, W) be any element, then

T : V  W is a L.T.

We show T is a linear combination of Tij
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Consider v1, then T(v1)  W and thus is a linear combination of w1, w2,...
wn

Let T(v1) = 11w1 + 12w2 + ... + 1nwn

Put T0 = 11T11 + 12T12 + ... + 1nT1n + 21T21 + 22T22 + ... +
amnTmn

(where 11, 12 ... are, of course, the same as before)

Then T0(v1) = 11T11(v1) + 12T12(v1) + ...

= 11w1 + 12w2 + 2nwn + 0 + 0 + ... + 0

 T0(v1) = T(v1)

Similarly proceeding with v2, v3, ... vm we get

T0(v2) = T(v2)

...........

T0(vm) = T(vm)

Thus T0 and T agree on all elements of the basis of V.

 T0 and T agree on all elements of V  T0 = T

But T0 is a linear combination of members of S

 T is a linear combination of members of S

 S spans Hom (V, W)

or that S forms a basis of Hom (V, W)

Hence dim  Hom (V, W) = mn.

Corollary : Obviously dim Hom (V, V) = m2 where dim V = m and

dim Hom (V, F) = m .1 = m as dim F(F) = 1 as F is generated by 1 and
thus {1} is a basis of F(F).

Example 3.1: Find the range, Rank, Ker and nullity of the linear transformation

T : R3  R3, such that,

T(x, y, z) = (x + z, x + y + 2z, 2x + y + 3z)

Solution: Let (x, y, z)  Ker T be any element, then

T(x, y, z) = (0, 0, 0)

 (x + z,  x + y + 2z,  2x + y + 3z) = (0, 0, 0)

 x + 0 + z = 0

x + y + 2z = 0

2x + y + 3z = 0

Giving  x = –z,  –z + y + 2z = 0 i.e.,  y = –z

Thus Ker T consists of all elements of the type (x, x, –x) = x(1, 1, –1)
where x is any real number, i.e., Ker T is spanned by (1, 1, –1) which is L.I. Note
(1, 1, –1)  Ker T

Hence dim (Ker T) = 1 = nullity of T
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Again, from definition of T, we notice elements of the types (x + z,  x +
y + 2z,  2x + y + 3z) are in Range T

Now (x + z,  x + y + 2z,  2x + y + 3z) = (x + 0 + z,  x + y + 2z,  2x
+ y + 3z)

 = (x, x, 2x) + (0, y, y) + (z, 2z, 3z)

 = x(1, 1, 2) + y(0, 1, 1) + z(1, 2, 3)

Thus Range T is spanned by {(1, 1, 2), (0, 1, 1), (1, 2, 3)}

Since (1, 1, 2) + (0, 1, 1) = (1, 2, 3) we find these vectors are L.D.
So dim Range T  2

Again as (1, 1, 2) and (0, 1, 1) are L.I. we find

dim Range T = 2 = Rank T.

Example 3.2: Find the range, rank, Ker and nullity of the following linear
transformations

(a) T : R2  R3 such that, T(x1, x2) = (x1, x1 + x2, x2)

(b) T : R4  R3 such that, T(x1, x2, x3, x4) = (x1 – x4, x2 + x3, x3 – x4)

Solution: (a) From definition of T, we notice elements of the type (x1, x1
+ x2, x2) will have pre images in R2, i.e., elements of this type are in Range T.

Now, (x1, x1 + x2, x2) = (x1 + 0, x1 + x2, 0 + x2)

= (x1, x1, 0) + (0, x2, x2)

= x1(1, 1, 0) + x2(0, 1, 1)

or that Range T is spanned by {(1, 1, 0), (0, 1, 1)} and since

1(1, 1, 0) + 2(0, 1, 1) = (0, 0, 0)

1 = 2 = 0

these are L.I. and thus form a basis of Range T

  Rank T = dim Range T = 2.

Again, (x1, x2)  Ker T  T(x1, x2) = (0, 0, 0)

 (x1, x1 + x2, x2) = (0, 0, 0)

 x1 = 0, x1 + x2 = 0, x2 = 0

 x1 = x2 = 0

 Ker T = {(0, 0)}

Also then nullity T = dim Ker T = 0.

(b) From defintion of T, we find elements of the type (x1 – x4, x2 + x3,
x3 – x4) have pre image in R4.

Now,

(x1 – x4,  x2 + x3,  x3 – x4) = (x1 + 0 + 0 – x4,  0 + x2 + x3 + 0,  0 +
0 + x3 –x4)

 = x1(1, 0, 0) + x2(0, 1, 0) + x3(0, 1, 1) + x4(–1, 0, – 1)

or that Range T is spanned by

{(1, 0, 0), (0, 1, 0), (0, 1, 1), (–1, 0, –1)}
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Since Range T is a subspace of R3 which has dim 3 these four elements
cannot form basis of Range T.

In fact these are L.D., elements as

(–1, 0, –1) + (1, 0, 0) + (0, 1, 0) + (0, 1, 1) = (0, 0, 0)

If we consider three members

(1, 0, 0), (0, 1, 0), (0, 1, 1)

we notice 1(1, 0, 0) + 2(0, 1, 0) + 3(0, 1, 1) = (0, 0, 0)

 i= 0 for all i

or that (1, 0, 0), (0, 1, 0) (0, 1, 1) are L.I. and hence form basis of
Range T

 dim Range T = 3 = rank of T

one might notice here that as

(–1, 0, –1) = –1(1, 0, 0) –1(0, 1, 0) –1(0, 1, 1)

the elements (1, 0, 0), (0, 1, 0), (0, 1, 1) span Range T

Also then Range T = R3

Again (x1,  x2,  x3,  x4)  Ker T T(x1,  x2,  x3,  x4) = (0, 0, 0)

 x1 – x4 = 0

x2 + x3 = 0

x3 – x4 = 0

if we fix x4, we get x1 = x4,  x2 = –x3 = –x4,  x3 = x4

or that elements of the type (x4,  – x4,  x4,  x4) are in the Ker T

i.e., Ker T is spanned by (1, –1, 1, 1) (Note (1, – 1, 1, 1)  Ker T)

this being L.I. forms basis of Ker T

 dim Ker T = 1

 nullity of T = 1.

Example 3.3: Let F be a subfield of complex numbers and T a function from
F3  F3 defined by

T(x1,  x2,  x3) = (x1 – x2 + 2x3,  2x1 + x2,  – x1 – 2x2 + 2x3)

(i) Show that T is a L.T.

(ii) What are the conditions on a, b, c such that (a, b, c) be in the null space
of T? Find nullity of T.

Solution: T [(x1, x2, x3) + (y1,  y2, y3)] = T(x1 + y1,  x2 + y2,  x3 + y3)

= (x1 + y1 – x2 – y2 + 2x3 + 2y3,  2x1 + 2y1 + x2 + y2,

– x1 – y1 – 2x2 – y2 + 2x3 + 2y3)

Also T(x1,  x2,  x3) + T(y1,  y2,  y3) = (x1 – x2 + 2x3,  2x1 + x2,  – x1 – 2x2 +
2x3)

+ (y1 – y2 + 2y3, 2y1 + y2, – y1 – 2y2 + 2y3)

= (x1 – x2 + 2x3 + y1 – y2 + 2y3,  2x1 + x2 + 2y1 + y2
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– x1 – 2 x2 + 2x3 – y1 – 2y2 + 2y3)

= (x1 + y1 – x2 – y2 + 2x3 + 2y3, 2x1 + 2y1 + x2 + y2,

– x1 – y1 – 2x2 – y2 + 2y3 + 2y3)

Thus T ((x1,  x2,  x3) + (y1,  y2,  y3)) = T(x1,  x2,  x3) + T(y1,  y2,  y3)

It is easy to see that for any 

T((x1,  x2,  x3)) = (x1,  x2,  x3)

Thus T is a L.T.

Now if (a,  b,  c)  Ker T then T(a, b, c) = (0, 0, 0)

 (a – b + 2c,  2a + b,  – a – 2b + 2c) = (0, 0, 0)

 a – b + 2c = 0

2a + b = 0

– a – 2b + 2c = 0

Since
1 1 2

2 1 0

1 2 2



 
 = 0

The above equations have a non zero solution.

Solving the equiations, we find

1 1 2

2 1 0

1 2 2

a

b

c

   
  
  
      

 = 
0

0

0

 
 
 
  

R2  R2 – 2R1, R3  R3 + R1

1 1 2

0 3 4

0 3 4

a

b

c

   
     
     

 = 
0

0

0

 
 
 
  

R3  R3 + R2

1 1 2

0 3 4

0 0 0

a

b

c

   
     
     

 = 
0

0

0

 
 
 
  

 a – b + 2c = 0

3b – 4c = 0

Since rank of coeficient matrix is 2, the number of L.I. solutions is
3 – 2 = 1.

If we take c = k,  we get a = 2

3

k
 ,  b = 4

3

k ,  c = k as solution of the given

equations. In other words a, b, c should satisfy the relation 
2

a


 = 

4

b  = 
4

c  for

(a, b, c) to be in Ker T.

Now (– 2, 4, 3) is one member of Ker T and all other members would
be multiples of this, i.e., {(– 2, 4, 3)} generates ker T. Since (– 2, 4, 3) being
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non zero is L.I. {(– 2, 4, 3)} forms a basis of Ker T or that dim Ker T = nullity
T = 1.

In fact, the result dim V = dim Range T + dim Ker T will then give us
dim Range  T = Rank T = 2 as dim V = dim F3 = 3.

Example 3.4: If T1, T2  Hom (V, W) then show that

(i) r(T1) = r(T1) for all   F,   0

(ii) | r(T1) – r(T2) |  r(T1 + T2)  r(T1) + r(T2)

where r(T) means rank of T.

Solution: (i) T1 : V  W

thus T1(V) = range T1, is a subspace of W

Now, (T1)v = (T1(v))  T1(V) for all v  V

 (T1)V  T1 (V) ...(1)

Again as   0, –1 exists and thus,

(–1T1) V  T1(V)

(–1T1)V  T1(V)

 T1(V) T1(V)  T1(V) = T1(V) by Equation (1)

 dim T1(V) = dim T1(V)

or r(T1) = r(T1).

(ii) Since, (T1 + T2)x = T1(x) + T2(x) for all x  V

(T1 + T2)V  T1(V) + T2(V)

  dim [(T1 + T2)V]  dim [T1(V) + T2(V)]

  dim T1(V) + dim T2(V)

 r(T1 + T2)  r(T1) + r(T2)

Again, T1 = (T1 + T2) – T2 = (T1 + T2) + (– T2)

 r(T1) = r[(T1 + T2) + (–T2)]

 r(T1 + T2) + r(– T2) = r(T1 + T2) + r(T2)

(using Equation (1)  = – 1)

 r(T1) – r(T2)  r(T1 + T2)

Similarly,   r(T2) – r(T1)  r(T1 + T2)

   | r(T1) – r(T2) |  r(T1 + T2)  r(T1) + r(T2).

Example 3.5: Let T be a linear operator on V. If T 2 = 0, what can you say about
the relation of the range of T to the null space of T? Give an example of linear
operator T of R2 such that T 2 = 0, but T  0.

Solution: T 2 = 0  T 2 (v) = 0 for all v  V

 T(T(V)) = 0

 T(v)  Ker T for all v  V

 range T  Ker T.



Normed Linear Spaces

NOTES

Self - Learning
80 Material

Define T : R2  R2, such that

T(x1, x2) = (x2, 0)

then T is a linear operator (Verify!)

Since T(2, 2) = (2, 0)  (0, 0)

T  0

But T 2(x1, x2) = T(T(x1, x2)) = T(x2, 0) = (0, 0)

 T 2 = 0.

Example 3.6: Let T be a linear operator on V and let Rank T 2 = Rank T then
show that Range T  Ker T = {0}.

Solution: T : V  V, T 2 : V  V

Rank T 2 = dim V – dim Ker T 2

 dim Ker T = dim Ker T 2

We claim Ker T = Ker T 2

x  Ker T  T(x) = 0  T 2(x) = T(0) = 0

 x Ker T 2  Ker T  Ker T 2

 Ker T = Ker T 2 (as they have same dim)

Now, x  Range T  Ker T  x  Range T and x  Ker T

 T(x) = 0, x = T(y) for some y  V

 T(T(y)) = 0

 T 2(y) = 0

 y  Ker T 2 = Ker T

 T(y) = 0  x = 0

 Ker T  Range T = {0}.

Invertible Linear Transformations

We recall that a map T : V  W is invertible iff it is 1-1 onto, and inverse of T
is the map T–1: W  V such that

T–1(y) = x  T(x) = y

We show that inverse of a (1–1 onto) L.T. is also a L.T. Let T : V  W
be a 1-1 onto L.T. and T–1: W  V be its inverse.

We have to prove

T–1(w1 + w2) = T–1(w1) + T–1(w2) F, w1, w2  W

Since T is onto, for w1, w2  W,  v1, v2  V

such that, T(v1) = w1, T(v2) = w2

 v1= T–1(w1), v2 = T–1(w2)

Now, T–1(w1 + w2) = T–1(T(v1) + T(v2))

= T–1(T(v1) + T(v2))

= T–1(T(v1 + v2))
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= v1 + v2

= T–1(w1) + T–1(w2).

Definition: A L.T. T : V  W is called non-singular if Ker T = {0}, i.e., if
T is 1-1.

Theorem 3.7: A linear transformation T : V  W is non singular iff T carries each
L.I. subset of V onto a L.I. subset of W.

Proof: Let T be non-singular and {v1, v2 ..., vn} be a L.I. subset of V. we show
{T(v1), T(v2) ..., T(vn)} is L.I. subset of W.

Now    1T(v1) + 2T(v2) + ... + nT(vn) = 0 i  F

  T(1v1 +...+ nvn) = 0

1v1 +...nvn  Ker T = {0}

1v1 +... nvn = 0

i = 0 for all i as v1, v2..., vn are L.I.

Conversely, let v  Ker T be any element

Then,   T(v) = 0

 {T(v)} is not L.I. in W

 v is not L.I. in V. (by hypothesis)

 v = 0  Ker T = {0}

 T is non singular.

Theorem 3.8: Let T : V  W be a L.T. where V and W are two F.D.V.S. with
same dimension. Then the following are equivalent

(i) T is invertible

(ii) T is non singular (i.e., T is 1-1)

(iii) T is onto (i.e., Range T = W)

(iv) If {v1, v2,..., vn} is a basis of V then

{T(v1), T(v2),..., T(vn)} is a basis of W.

Proof: (i)  (ii) F follows by definition.

(ii)  (iii) T is non-singular

 Ker T = {0}

 dim Ker T = 0

Since      dim Range T + dim Ker T = dim V, we get

    dim Range T = dim V

 dim Range T = dim W (given condition)

But Range T being a subspace of W, we find

Range  T = W

(iii)  (i) T onto means Range T = W

 dim Range T = dim W = dim V

and as  dim Range T + dim Ker T = dim V, we get
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dim Ker T = 0

 Ker T = {0}

or that T is 1-1 and as it is onto T will be invertible.

(i)  (iv) T is invertible  T is 1-1 onto

i.e., T is an isomorphism.

(iv)  (i)

Let {T(v1),..., T(vn)} be basis of W where {v1,...vn} is basis of V. Any
w  W can be put as

w = 1T(v1) +...+ nT(vn)

= T(1v1 +...+ nvn) = T(v) for some v  V

 T is onto. Thus (iii) holds.

Hence (i) holds.

Example 3.7: Let T be a linear operator on R3, defined by

T(x1, x2, x3) = (3x1, x1 – x2,  2x1 + x2 + x3)

show that T is invertible and find the rule by which T–1 is defined.

Solution: T : R3  R3

Let   (x1, x2, x3)  Ker T be any element

Then T(x1, x2, x3) = (0, 0, 0)

 (3x1,  x1 – x2,  2x1 + x2 + x3) = (0, 0, 0)

 3x1 = 0,  x1 – x2 = 0,  2x1 + x2 + x3 = 0

 x1 = x2 = x3 = 0 or that Ker T = {(0, 0, 0)}

 T is non singular and thus invertible (Refer Theorem 3.8)

Now if (z1, z2, z3) be any element of R3, then (x1, x2, x3) will be its image
under T if,

T(x1, x2, x3) = (z1, z2, z3)

 2x1 = z1

x1 – x2 = z2

2x1 + x2 + x3 = z3

which give x1 = 1

3

z
,  x2 = 1

3

z
– z2,  z3 = z3 – z1 + z2

Hence T–1 : R3  R3 is defined by

T–1 (z1, z2, z3) = 1 1
2 3 1 2, ,

3 3

z z
z z z z

    
 

Example 3.8: If T : V  V is a L.T., such that T is not  onto, then show that
there exists some 0  v in V such that, T(v) = 0.

Solution: Since T is not onto, it is not 1-1 (theorem done)

Suppose  no 0  v  V s.t. T(v) = 0
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Then T(v) = 0 only when v = 0

 Ker T = {0}  T is 1-1, a contradiction.

Theorem 3.9: Let T : V  W and S : W  U be two linear transformations.
Then

(i) If S and T are one-one onto then ST is one-one onto and (ST)–1 = T–1

S–1.

(ii) If ST is one-one then T is one-one

(iii) If ST is onto then S is onto.

Proof: (i) Since S and T are 1-1 onto, S–1 and T–1 exist.

Let   ST(x) = ST(y)

Then S(T(x)) = S(T(y))

 T(x) = T(y) as S is 1-1

 x = y as T is 1-1

 ST is 1-1.

Again ST : V  U, let u  U be any element then as S in onto,  w  W
such that,  S(w) = u and as T : V  W is onto  v  V such that, T(v) = w 

Now T(v) = w  S(T(v)) = S(w)  ST(v) = u

or that ST is onto.

Also (ST)(T–1S–1) = S(T(T–1S–1)) = S(TT–1)S–1 = S(IS–1) = SS–1 = I

Similarly (T–1S–1)(ST) = T–1(S–1(ST)) = T–1(S–1S)T = T–1(IT) = T–1T = I

Showing that, (ST)–1 = T–1S–1.

(ii) Let v  Ker T be any element

Then T(v) = 0

 S(T(v)) = S(0)

 ST(v) = 0

 v  Ker ST  and  Ker ST = (0) as ST is 1-1

 v = 0  Ker T = (0)  T is 1-1.

(iii) Let u  U be any element. Since ST : V  U is onto,  some v 
V such that, ST(v) = u

i.e., S(T(v)) = u

Let T(v) = w and w  W such that,

S(w) = u

Then, S is onto.

Example 3.9: In the above theorem show that if ST is 1-1 onto then T is 1-1 and
S is onto. Again, if V, W, U are of same dimension and ST is one-one onto then
so are S and T.

Solution: First part of the problem follows by (ii) and (iii) of Theorem 3.9.

Let now dim V = dim W = dim U
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The result then follows by using Theorem 3.8 we proved earlier that if T
: V  W is a L.T. where dim V = dim W then T is 1-1 iff T is onto.

Example 3.10: Let T be a linear operator on F.D.V.S. Suppose there is
a linear operator U on V such that TU = I. Show that T is invertible and
T –1 = U.

Solution: We have T : VV, U : VV such that, TU = I we claim U is 1-1.

Let U(x) = U(y)

Then T(U(x)) = T(U(y))

 I(x) = I(y) (TU = I)

 x = y

or that U is 1-1 and, therefore, onto also.

Hence U is invertible.

Now U –1 : V  V such that, UU –1 = 1

Thus UT = (UT)I = UT(UU –1) = U(TU)U –1 = UU –1 = I

 UT = I = TU

 T is invertible and T –1 = U.

Example 3.11: Show that the conclusion of the previous problem fails if V is not
finite dimensional.

Solution: Let V be the vector space of all polynomials in x over a filed F.

Let T = Differential operator on V.

i.e., T : V  V, such that,

T(f (x)) = 
d

dx
f (x)

Notice this T is a linear transformation.

Let U : V  V such that,

U(f ) = 
0

( )
x

f t dt
Then U is a linear transformation.

Again TU(f ) = T
0

( )
x

f t dt  = f = I(f )

 TU = I

Now T(2x) = 2, T(2x + 3) = 2

and as 2x  2x + 3, T is not 1-1 and hence T is not invertible.

Thus UT  I.

Example 3.12: Let V1 and V2 be vector spaces over F. Show that V1 × V2 is
F.D.V.S. if and only if V1 and V2 are F.D.V.S.

Solution: Let V1 = {(v1, 0) | v1  V1}

V2 = {(0, v2) | v2  V2}

then V1 and V2 are subspaces of V1 × V2
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Define 1 : V1  V1 such that,

1(v1) = (v1, 0)

Then 1 is an isomorphism (Prove!)

Similarly 2 : V2  V2 such that,

2(v2) = (0, v2)

will be an isomorphism.

So V1  V1,  V2  V2

Suppose V1 × V2 is F.D.V.S., then V1 and V2 are F.D.V.S. (being subspaces
of V1 × V2)

 V1 and V2 are F.D.V.S.

Conversely, if V1 and V2 are F.D.V.S. then V1 × V2 is F.D.V.S. and dim
(V1 × V2) = dim V1 + dim V2. (Note: If {e1,  e2, ..., em} and {f1,  f2, ..., fn} are
basis of V1 and V2 respectively, then {(e1,  0), ..., (em, 0), (0,  f1), ..., (0,  fn)}
is a basis of V1 × V2.)

Example 3.13: Let W1 and W2 be subspaces of V such that 
1

V

W
 and 

2

V

W
 are

F.D.V.S. Show that 
1 2

V

W W
  is also a F.D.V.S.

Solution: Define  : V  
1 2

V V

W W
  such that,

(v) = (W1 + v, W2 + v)

It is easy to see that  is a linear transformation where Ker  = W1  W2.

Hence  
Ker

V


  (V)

Again, since 
1

V

W
 and 

2

V

W
 are F.D.V.S., so will be 

1 2

V V

W W
 . In fact

dim
1 2

V V

W W

 
 

 
 = dim 

1

V

W
 + dim 

2

V

W
.

Also (V) is a subspace of 
1 2

V V

W W
  and is therefore, finite dimensional.

Hence 
1 2

V

W W
 is F.D.V.S.

3.2.2 Metric on Normed Linear Spaces

Let U(F), V(F) be vector spaces of dimension n and m respectively. Let  =
{u1, ..., un},  = {v1, ..., vm} be their ordered basis respectively. Suppose
T : U  V is a linear transformation. Since T(u1), ..., T(un)  V and {v1, ..., vm}
spans V, each T(ui) is a linear combination of vectors v1, ..., vm.

Let T(u1) = 11v1 + ... m1vm

T(u2) = 12v1 + ... + m2vm
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........

T(un) = 1nv1 + ... + mnvm

where each ij  F. Then the m × n matrix

A = 

11 12 1

1 2

... ...

: : ... ... :

: : ... ... :

: : ... ... :

... ...

n

m m mn

   
 
 
 
 
 
    

is called matrix of T with repsect to ordered basis , respectively. A is uniquely
determined by T as each ij  F is uniquely determined. We write

A = [T], 

The word ordered basis is very significant, for as the order of basis is
changed, the entries ij will change their positions and so the corresponding
matrix will be different.

In particular if U = V,  = , then instead of writing [T], , we write [T].

Let Mm×n(F) denote the vector space of all m × n matrices over F. Let
Hom (U, V) denote the vector space of all linear transformations from U(F) into
V(F). We prove

Theorem 3.10: Hom (U, V)  Mm×n(F).

Proof:  Define  : Hom (U, V)  Mm×n(F), such that,

(T) = [T], 

Where  = {u1, ... un},  = {v1, ... vm} are ordered basis of U, V respectively.
 is well defined as [T],  is uniquely determined by T.

It is not difficult to verify that  is a linear transformation.

Let (S) = (T), S, T  Hom (U, V)

Then, [S],  = [T], 

 (aij) = (bij)

 aij = bij for all i, j

 S(uj) = 
1

m

ij i
i

a v

  = 

1

m

ij i
i

b v

  = T(uj)  for all j = 1, ... n

 S = T   is 1-1.

Let A = (aij)m×n  Mm×n(F). Then  a linear transformation T  Hom (U, V)
such that,

T(uj) = 
1

m

ij i
i

a v

 for j = 1, ..., n

 A = [T],  = (T)  is onto.

Hence is an isomorphism and so Hom (U, V) Mm×n(F).
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Corollary : dim Hom (U, V) = mn.

Proof:  S = set of all m × n matrices with only one entry 1 and all other entries
zero, is a basis of Mm×n(F).

Clearly,  o(S) = mn   dim Mm×n(F) = mn

  dim Hom (U, V) = mn.

Theorem 3.11: Let S, T be two linear transformations from V(F) into V(F). Let
 be an ordered basis of V. Then

[ST] = [S][T]
Proof: Let  = {v1, ... vn}

Let S(v1) = a11v1 + ... an1v1

   ........

S(vn) = a1nv1 + ... + annvn

where aij  F

In general, S(vj) = 
1

n

ij i
i

a v

 for all j = 1, ..., n

   [S] = (aij)

Similarly,

T(v1) = b11v1 + ... + bn1vn

........

T(vn) = b1nv1 + ... + bnnvn where bij  F

In general, T(vk) = ,
1

n

jk j
j

b v

 for all k = 1, ..., n

 [T] = (bjk)

 ST(vk) = S
1

n

jk j
j

b v


 
 
 
 
  = 

1

( )
n

jk j
j

b S v



= 
1 1

n n

ij jk i
i j

a b v
 

 
 
 
 

 

[ST] = (cik), where cik = 
1

n

ij jk
j

a b



Also, (i, k)th entry in [S] [T]

= 
1

n

ij jk
j

a b

  = cik = (i, k)th entry in [ST]

 [ST] = [S] [T]
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Corollary : If S is an invertible linear transformation from V(F) into V(F), then
so is [S] with respect to any basis of V and conversely.

Proof: Since S is invertible,  T : V  V such that, ST = I = TS. Let be an
ordered basis of V. Then by above theorem,

[ST]= [I] = I, where T = S–1

 [S][T] = I

 [S][S
–1] = I

 [S–1] = [S]–1
 for any basis  of V

Conversely, let [S] be invertible. Then  a matrix A = (aij) over F such that,
[S] A = I

Let T : V  V be a linear transformation such that,

T(vj) = 
1

n

ij i
i

a v

 for all j = 1, ... n

 [T] = A

 [S] [T] = I

 [ST] = I

 (ST)(vj) = vj for all j = 1, ..., n

 (ST)(x)= (ST)(1v1 + ... + nvn)

= 1v1 + ... + nvn

= x for all x  V

 ST = I S is invertible.

We now give a relation between matrices of a linear transformation with respect
to two different basis of a vector space.

Theorem 3.12: Let T : V(F)  V(F) be a linear transformation. Let  = {u1,
..., un},  = {v1, ..., vn} be two ordered basis of V. Then  a non singular matrix
P over F such that

[T] = P–1[T]P.

Proof: Let S : V  V be a linear transformation such that S(ui) = vi for all i =
1, ... n.

Now  x  Ker S  S(x) = 0, x = 1u1 + ... + nun, i F

 S(1u1 + ... + nun) = 0

 1S(u1) + ... + nS(un) = 0

 1v1 + ... + nvn = 0

 i = 0 for all i

 x = 0

 Ker S = {0}

 S is 1-1 and so onto.

 S is an isomorphism. Let [T] = (aij)
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Then T(uj) = 
1

n

ij i
i

a u



 (STS–1)(vj) = ST(uj)

= S
1

n

ij i
i

a u


 
  
 
  = 

1

n

ij i
i

a v



 [STS–1] = (aij) = [T]
 [S][T][S

–1] = [T]
 [S][T][S]

–1 = [T]
 [T] = [S]

–1 [T][S]
= P–1[T] P, where P = [S].

Example 3.14: Let T be a linear operator on C2 defined by T(x1, x2) = (x1, 0)
Let  = {1 = (1, 0), 2 = (0, 1)},  = {1 = (1, i), 2 = (–i, 2)} be ordered
basis for C2. What is the matrix of T relative to the pair , ?
Solution: Now T(1) = T(1, 0)

= (1, 0)

= a(1, i) + b(–i, 2)

 a – bi = 1 where a, b  C

ai + 2b = 0

 a = 2, b = –i

 T(1) = 21 – i2

Also T(2) = T(0, 1) = (0, 0) = 01 + 02

 [T]  = 
2 0

0i

 
  

.

Example 3.15: Let T be the linear operator on R2 defined by T(x1, x2) =
(–x2, x1)

(i) Prove that for all real numbers c, the operator (T – cI) is invertible.

(ii) Prove that if  is any ordered basis for R2 and [T] = A, then a12a21 
0, where A = (aij).

Solution: (i) Let  = {1 = (1, 0), 2 = (0, 1)} be an ordered basis for R2.

Then, T(1) = T(1, 0) = (0, 1) = 01 + 12

T(2) = T(0, 1) = (–1, 0) = –11 + 02

 [T] = 
0 1

1 0

 
 
 

, [cI] = 
0

0

c

c

 
 
 

 [T – cI] = 
1

1

c

c

  
  

det [T – cI] = c2 + 1  0 for all real numbers c
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 [T – cI] is invertible.

 T – cI is invertible for all real numbers c.

(ii) Let be any ordered basis for R2 such that,

[T] = 
11 12

21 22

a a

a a

 
 
 

 = A,  aij  R

By (i) T – a11I is Invertible

 [T – a11I] is invertible

 12

21 22 11

0 a

a a a

 
  

 is invertible

 –a12a21  0 as det of abve matrix  0

 a12a21  0.

Example 3.16: Let T be the linear operator on R3 defined by

T(x1, x2, x3) = (3x1 + x3, –2x1 + x2, –x1 + 2x2 + 4x3)

Show that T is invertible.

Solution: Let  = {1 = (1, 0, 0), 2 = (0, 1, 0), 3 = (0, 0, 1)} be  an ordered

basis of R3. Then [T] = 
3 0 1

2 1 0

1 2 4

  = A.

det A = 3(4) + 1 (– 4 + 1) = 12 – 3 = 9  0

So,  A is invertible

 T is invertible.

Example 3.17: Let A be an n × n matrix over F. Show that A is invertible if and
only if columns of A are linearly independent over F.

Solution: Let V(F) be a vector space of dimension n. Let  = {v1,..., vn} be
an ordered basis of V. Let A = (aij). Then  a linear transformation T : V  V
such that,

T(vj) = 
1

n

ij i
i

a v

 [T] = A.

Let Mn(F) denote the vector space of all n × n matrices over F.

Let A  Mn (F) be invertible. Then T is also invertible (by Corollary to Theorem
3.11) and so T is 1-1, onto.

Let,
11 1

1

1

: ... α :
n

n

n nn

a a

a a

   
        
      

= 0, i  F
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1 11 1

1 1

n n

n n nn

a a

a a

  
 
 
    


  


= 0

 1a11 + ... + na1n = 0

... ...

1an1 + ... + nann = 0

 1a11 v1 + ... + na1n v1 = 0

... ...

1an1 vn + ... + nann vn = 0

1(a11v1 + ... + an1vn) + ... + n(a1nv1 + ... + nnvn) = 0

 1T(v1) + ... + nT(vn) = 0

 T(1v1 + ... + nvn) = 0

 1v1 + ... + nvn = 0 as T is 1-1

 i = 0 for all i

 Columns of A are linearly independent.

Conversely, let columns of A be linearly independent over F.

Now, x  Ker T

 T(x) = 0, x  V

 T(1v1 + ... + nvn , = 0

 1T(v1) + ... + nT(vn) = 0


1

( )
n

j j
j

T v

  = 0    

1 1

n n

j ij i
j i

a v
 

 
 
 
 

   = 0


1 1

( )
n n

j ij i
i j

a v
 

 
 
 
 

   = 0


1

n

j ij
j

a

  = 0 for all i = 1, ..., n


11 1

1

1

: ... :
n

n

n nn

a a

a a

   
         
      

 = 0

 each i = 0 as columns are linearly independent.

 x = 0  Ker T = {0}

 T is 1-1 and so onto.

 T is invertible.
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Example 3.18: Let T be the linear operator on R2 defined by T(x1, x2) =
(– x2, x1).

Let  = {1 = (1, 0), 2 = (0, 1)}

 = {1 = (1, 2), 2 = (1, – 1)}

be ordered basis for R2. Find a matrix P such that,

[T] = P–1[T] P.

Proof: T = T(1, 0) = (0, 1) = 01 + 12

T = T(0, 1) = (– 1, 0) = – 11 + 02

 [T] = 
0 1

1 0

Define   S : R2  R2 such that,

S(i) = i i = 1, 2

Now, 1 = (1, 2) = 11 + 22

2= (1, – 1) = 11 + (– 1)2

 S(1) = 11 + 22

S(2) = 11 + (– 1)2

 [S] = 
1 1

2 1

 P = 
1 1

2 1
 and P–1 = 

1 1

3 3
2 1

3 3

 P–1 [T] P = 

1 1
0 1 1 13 3

2 1 1 0 2 1

3 3

 
     
            

= 

1 1
1 13 3

1 2 2 1

3 3

= 

1 2

3 3
5 1

3 3

= [T]
Example 3.19: Let T be linear operator on R3, the matrix of which in the standard
ordered basis is

A = 
1 2 1

0 1 1

1 3 4

Find a basis for the range of T and a basis for the null space of T.
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Solution: Det A = 1(4 – 3) – 2 (1) + 1(1)

= 1 – 2 + 1 = 0

 A is not invertible and so T is not invertible.

Let {1 = (1, 0, 0), 2 = (0, 1, 0), 3 = (0, 0, 1)}

be standard ordered basis of R3.

Let (x1, x2, x3)  Ker T

Then, T(x1, x2, x3) = 0

 T(x1(1, 0, 0) + x2(0, 1, 0) + x3(0, 0, 1)) = 0

 T(x1 1 + x22 + x33) = 0

 x1T(1) + x2T(2) + x3T(3) = 0

 x1(1, 0, – 1) + x2(2, 1, 3) + x3(1, 1, 4) = 0

 (x1 + 2x2 + x3, x2 + x3, – x1 + 3x2 + 4x3) = 0

 x1 + 2x2 + x3 = 0, x2 + x3 = 0, – x1 + 3x2 + 4x3 = 0

 x1 + x2 = 0, x2 + x3 = 0

 (x1, x2, x3) = (– x2, x2, – x3)

= x2(– 1, 1, – 1)

 Every element in Ker T is multiple of (– 1, 1, – 1)

 Ker T is spanned by (– 1, 1, – 1)

Since (– 1, 1, – 1)  0, {(– 1, 1, – 1)} is a basis of Ker T.

 dim Ker T = 1  dim Range T = 2

Since T1 = (1, 0, – 1)

T2 = (2, 1, 3)

belong to Range T and aT1 + bT2 = 0

we find a(1, 0, – 1) + b(2, 1, 3) = 0

 b = 0, a = 0

 {T1, T2} is a linearly independent set in Range T. As dim Range T = 2,
{(1, 0 , – 1), (2, 1, 3)} is a basis of Range T.

Example 3.20: Let T be a linear operator on F n and let A be the matrix of T
in the standard ordered basis for F n. Let W be the subspace of F n spanned by
the column vectors of A. Find a relation between W and T.

Solution: T : F n  F n

Let  = {e1 = (1, 0, 0, ... 0), ..., en = (0, 0, ..., 1)} be the standard ordered
basis of F n and let

A = 

11 12 1

21 22 2

1 2

: :

n

n

n n nn

a a a

a a a

a a a
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thus, T(e1) = a11e1 + a21e2 + ... + an1en

T(e2) = a12e1 + a22e2 + ... + an2e2

... ... ...

T(en) = a1ne1 + a2ne2 + ... + annen

and also W is spanned by

{(a11, a21, ..., an1), (a12, a22, ..., an2), ..., (a1n, a2n, ..., ann)}

We claim T : F n  W is onto L.T.

For any x  F n, x = 1e1 + 2e2 + ... + nen

 T(x) = 1T(e1) + 2T(e2) + ... + nT(en)

 T(x)  W as T(e1), T(e2), ...., T(en)  W

Again, for any w  W, w = 1T(e1) + 2T(e2) + ... + nT(en)

= T(1e1 + 2e2 + ... + nen)

showing that T is onto.

 Range T = W  dim Range T = dim W

or that rank of T = dim W

which is the required relation between T and W.

3.2.3 Linear Transformation and Dual Spaces

The set of all linear transformations from vector space V over F into vector space
W over F, is also a vector space over F. Further, if dim V = m,  dim W = n, then
dim How (V, W) = mn. In particular, if W = F, then,

Hom (V, F) is called dual space of V over F. It is denoted by V

 and read

as V dual. In this section we study these dual spaces.

First we will construct a basis of V

 , from a given basis of V.

Theorem 3.13: Let {v
1
, ..., v

n
} be a basis of V.

Define v


i : V  F such that,

v


i (1v1 + ... + nvn) = i i = 1, 2, ..., n

Then v


i  is a linear transformation for all i  = 1, ..., n and {v


1, ..., v


n} is
a basis of V


. Hence dim V = dim  V


.

Proof: Let v, v  V

Suppose v = 1v1 + ... + nvn

v = 1v1 + ... + nvn, i, i  F

If v = v, then j = j for all j = 1, ..., n

 v


i(v) = i = v


i (v)
 v



i is well defined for all i = 1, ..., n

Also v


i(v + v) = 1 1 1ˆ ( ... )i n n nv v v       

= i + i

= v


i(v) + v


i(v)
and v



i(v) = v


i(1v1 + ... + nvn)
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= i = v


i(v)

 v


i  is a L.T. for all i = 1, ..., n

By definition, v


i(vj) = (0v1 + ... + 1vj + ... + 0vn) = 0 if j  i

= 1 if j = i

 v


i(vj) = ij for all i, j = 1, ..., n

Let 1v


1+ ... + n v


n = 0 i  F

Then, (1v


1+  ... + nv


n) (vj) = 0(vj) = 0

 jv


j(vj) = 0

  j = 0 for all j = 1, ..., n

 {v


1, ..., v


n} is L.I. over F.

Let f  V

. Let f (vi) = i i = 1, ..., n

Then (1v


1 + ... + nv


n) (vi)

= iv


i(vi)

= i i = 1, ..., n

 f and 1v


1 + ... + nv


n agree on all bases elements of V.

So,   f = 1v


1 + ... + nv


n

 {v


1, ..., v


n} spans V

.

Hence, {v


1, ..., v


n} is a basis of V

, called dual basis of {v1, ..., vn} such

that, v


i (vj) = ij.

Corollary : Let V be a finite dimensional vector space over F. Let 0  v
 V. Then  f V


 such that, f (v)  0.

Proof: Since v  0, {v} is L.I. set. So, it can be extended to form a basis
of V.

Let {v = v1, v2, ..., vn} be a basis of V.

Let {v


1, ..., v


n} be corresponding dual basis. Then v


i(vj) = ij

 v


1(v1) = 1

Let f = v


1 V


Then  f (v) = f (v1) = v


1(v1) = 1  0.

Theorem 3.14: Let V be a finite dimensional vector space over F.

Define  : V  V

such that,

(v) = Tv for all v  V

where Tv : V

 F such that,

Tv(f ) = f (v) for all f  V


Then  is an isomorphism from V ontoV

. (Here V


= dual of V


 , called

double dual of V).

Proof: Let f, g  V


Then Tv(f + g) = (f + g) (v)

= f (v) + g(v)
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= Tv(f ) + Tv(g)

Let   F

Then Tv(f ) = (f ) (v)

= f(v)

= Tv( f )

 Tv  V


 is well defined as v = v’  Tv( f ) = f (v)

= f (v) = Tv ( f ) for all f  V

  Tv = Tv

 is a L.T. as

(v + v) = Tv + v = Tv + Tv = (v) + (v)
as Tv + v(f ) = f (v + v)

= f (v) + f (v’)

= Tv( f ) + Tv( f )

= (Tv + Tv) ( f ) for all f  V


Tv + v = Tv + Tv

Also (v) = Tv = Tv = (v)

as Tv( f ) = f (v)

=  f(v)

= Tv( f ) for all f  V


 Tv = Tv

Let 0  v  Ker   (v) = 0  Tv = 0

By Corollary to Theorem 3.13  f  V

  such that, f (v)  0

 Tv(f )  0

a contradiction as Tv = 0  Tv(f) = 0

 Ker  = {0}   is 1-1

 V  (V)  V


 dim (V) = dim V = dim V

  = dim V


 (by Theorem 3.13)

 (V) = V


 as (V) is a subspace of V


  is onto from V to V

 .

Thus  is an isomorphism.

Corollary 1: Let V be a finite dimensional vector space over F. If L is a linear
functional on V


, then  a unique v  V such that, L( f ) = f (v) for all f V


.

Proof: L is a linear functional on V


 L  V


  unique v  V such that,

 (v) = L as  is 1-1 onto

 Tv = L

 L(f ) = Tv( f ) = f (v) for all f  V

 .
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Corollary 2: Let V be a finite dimensional vector space over the field F. Then
each basis for  V


  is the dual of some basis for V.

Proof: Let {f1, ..., fn} be a basis for V

 .

By Theorem 3.13,  a basis {L1, ..., Ln} for V


 s.t., Li(fj) = ij. As in
Corollary 1  unique vi  V for each i,

s.t.,  Li= Tvi
 = (vi)

Since {L1, L2, ..., Ln} is a basis for V


, {–1 L1, ..., 
–1 Ln} = {v1, ..., vn}

is basis for V as  is an isomorphism.

Also ij = Li(fj) = Tvi
(fj) = fj(vi)

{f1, ..., fn} is dual of basis {v1, ..., vn} for V.

Example 3.21: Let V be the vector space of all polynomial functions from R to
R which have degree less than or equal to 2, Let t1, t2, t3 be three distinct real
numbers and let Li : V  F be such that, Li(p(x)) = p(ti), i = 1, 2, 3. Show that
{L1, L2, L3} is a basis of V


. Determine a basis for V such that, {L1, L2, L3} is

its dual.

Solution: Li (p(x) + q(x))

= Li(r(x)),  r(x) = p(x) + q(x)

= r(ti) = p(ti) + q(ti)

= Li(p(x)) + Li(q(x))

Also Li(p(x)),   F

= Li(q(x)), q(x) = p(x)

= q(ti)

= p(ti) = Li(p(x)) for all i = 1, 2, 3

Li  V

 for all i = 1, 2, 3

Let 1L1 + 2L2 + 3L3 = 0

Apply it on polynomials 1, x, x2 to get

1 + 2 + 3 = 0

1t1 + 2t2+ 3t3 = 0

a1t2
1
 + 2t

2
2
 + 3t2

3
 = 0

1

1 2 3 2

2 2 2
31 2 3

1 1 1

t t t

t t t

 = 
0

0

0

1

2

3

A = 0, A = 1 2 3

2 2 2
1 2 3

1 1 1

t t t

t t t

det A = (t1 – t2) (t2 – t3) (t3 – t1)

 0 as t1, t2, t3 are distinct
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Thus A–1 exists.

 
1

2

3

 = 0  1 = 2 = 3 = 0

Hence, {L1, L2, L3} is a L.I. set.

Since dim V = 3, {L1, L2, L3} is a basis of V

 .

Let {p1(x), p2(x), p3(x)} be a basis of V such that, {L1, L2, L3} is its dual
basis.

Then, L1(p1) = 1, L2(p1) = 0, L3(p1) = 0

L2(p1) = 0  p1(t2) = 0

t2 is a root of p1(x)

L3(p1) = 0  p1(t3) = 0

 t3 is a root of p1(x)

Since, deg p1(x)  2,

p1(x) = (x – t2) (x – t3),  = Constant

L1 (p1) = 1  p1(t1) = 1

 (t1 – t2) (t1 – t3) = 1

  = 
1 2 1 3

1

( ) ( )t t t t

 p1(x) = 2 3

1 2 1 3

( ) ( )

( ) ( )

x t x t

t t t t

Similarly, p2(x) = 1 3

2 1 2 3

( ) ( )

( ) ( )

x t x t

t t t t
, p3(x) = 1 2

3 1 3 2

( ) ( )

( ) ( )

x t x t

t t t t
.

Example 3.22: Let V be the vector space of all polynomial functions p from R
into R which have degree 2 or less. Define three linear functionals on V by

f1(p) = 
1

20
( ) , ( )p x dx f p  = 

1

0
( ) ,p x dx

f3(p) = 
1

0
( )p x dx

Show that { f1, f2, f3} is basis of V

. Determine a basis for V such that,

{f1, f2, f3} is its dual basis.

Solution: It can be easily seen that f1, f2, f3  V

.

Let 1f1 + 2 f2 + 3 f3 = 0, i  R

Apply it on 1, x, x2 to get

1 + 22 – 3 = 0

31
2

4

2 2 2
 = 0
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31
2

8

3 3 3
 = 0

Let, A = 
1 2 1

1 4 1

1 8 1

Then,
1

2

3

A  = 0, det A  0


1

1
2

3

A A  = 0  1 = 2 = 3 = 0

 {f1, f2, f3} is a L.I. set.

Since dim V = 3, {f1, f2, f3} is a basis of V

.

Let {p1(x), p2(x), p3(x)}, be a basis of V such that, {f1, f2, f3} is its dual
basis.

 f1(p1) = 1, f2(p1) = 0, f3(p1) = 0

Let p1(x) = co + c1x + c2x
2

f2(p1) = 0  

2
2 3

1 2

0

2 3o
x x

c x c c  = 0

 2 31 2

2 3o
c c

c x x x  = 0 when x = 2

f3(p1) = 0  

1
2 3

1 2

0

2 3o
x x

c x c c



  = 0

 2 31 2

2 3o
c c

c x x x   = 0 when x = – 1

 2 31 2

2 3o
c c

c x x x  = x(x – 2) (x + 1)

f1(p1) = 1  2 31 2

2 3o
c c

c x x x  = 1 when x = 1

 . 1 (– 1) (2) = 1   = 1

2

2 31 2

2 3o
c c

c x x x = 1
( 2) ( 1)

2
x x x

= 3 21 1

2 2
x x x
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 2

3

c
 = 11

,
2 2

c
  = 1

2
,  co = 1

 co = 1, c1 = 1, c2 = 3

2

 p1(x) = 23
1

2
x x

Similarly, we can find p2(x), p3(x).

Definition: Let W be a sub-set of V.

Define A(W) = { f  V

  | f (w) = 0 for all w  W}

Then A(W) is a sub-space of V

  as ,   F,

f, g  A(W) f (w) = 0 = g(w) for all w  W

  f (w) + g(w) = 0 for all w  W

 ( f + g) (w) = 0 for all w  W

  f + g  A(W)

A(W) is called annihilator of W.

Example 3.23: Let U, W be sub-sets of V. If U  W, show that A(U)  A(W).

Solution: Let f  A(W) then,  f (w) = 0 for all w  W

 f (u) = 0 for all u  U as U  W

 f  A(U).

Theorem 3.15: Let V be a finite dimensional vector space and W, a subspace
of V. Then dim A(W) = dim V – dim W.

Proof: Let {w1, ..., wm} be a basis of W.

It can be extended to form a basis of V.

Let {w1, ..., wm, vm + 1, ..., vn} be a basis of V.

Let {f1, ..., fm, fm + 1, ..., fn} be corresponding dual basis.

Then fi(wj) = 0 i = m + 1, ..., n

 j = 1, ..., m

 fi  A(W) for all i = m + 1, ..., n

We show {fm + 1, ..., fn} is a basis of A(W).

Let m + 1 fm + 1+ ... + n fn = 0

 (m + 1 fm + 1 + ... + n fn) (vk) = 0 for all k = m + 1,.., n

 k fk (vk) = 0

 k = 0 for all k = m + 1, ..., n

So, {fm + 1, ..., fn} is a L.I. set.

Let f  A(W) then f (w) = 0 for all w  W, f  V


f  V

 f = 1 f1 + ... + m fm + ... + n fn
 0 = f (wj) = j fj(wj) = j for all j = 1, ..., m

 f = m + 1 fm + 1 ... + n fn
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 { fm + 1, ..., fn} spans A(W)

{ fm + 1, ..., fn} is a basis of A(W).

Hence dim A(W) = n – m = dim V – dim W.

Corollary 1: 
^

ˆ
( )

V
W

A W


Proof: Since dim
^

( )

V

A W
= dim V


 – dim A(W)

= dim V – dim V + dim W

= dim W = dim Ŵ

Hence,
ˆ

( )

V

A W
 Ŵ .

Corollary 2: If V is a finite dimensional vector space and W, a subspace of V,
then

A(A(W))  W.

Proof: Define  : W  A(A(W)) such that,

(w) = Tw

where Tw : W

 F such that,

Tw(f )  f (w)

Tw  A(A(W)) as Tw(f ) = f (w) = 0 for all f  A (W)

Then as in Theorem 3.14,  is well defined 1-1 linear transformation.

 W  (W)  A(A(W))

Since dim A(A(W)) = dim V

  – dim A(W)

= dim V – dim A(W)

= dim W

(by Theorem 3.15)

and dim (W) = dim W

A(A(W)) = (W)

  is onto from W to A(A(W))

Hence W  A (A(W)).

For sake of convenience, we shall write A(A(W)) = W.

Consider for example, V = R2, W = {(x, 0) | x  R}

Then A(W) is a subspace of V

  spanned by f

where f (x1, x2) = x2

In fact, { f } is a basis of A(W) as dim W = 1.

Also, A(A(W)) is spanned by Tw where w = (1, 0)

Since dim A(A(W)) = 1, {Tw} is a basis of A(A(W))
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Then  : W  A(A(W)) such that,

(w) = Tw

is an isomorphism as basis of W is mapped to basis of A(A(W)).

Example 3.24: Let W1, W2 be subspaces of finite dimensional vector space V.
Determine A(W1 + W2).

Solution: f  A (W1 + W2)

 f (x) = 0  for all x  W1 + W2

 f (w1) = 0 = f (w2)  for all w1  W1, w2  W2

 f  A(W1)  A(W2)

 A(W1 + W2) = A(W1)  A(W2).

Example 3.25: Let f1, f2, f3 be three linear functionals on R4 defined as follows:

f1(x1, x2, x3, x4) = x1 + 2x2 + 2x3 + x4

f2(x1, x2, x3, x4) = 2x2 + x4

f3(x1, x2, x3, x4) = – 2x1 – 4x3 + 3x4

Determine the subspace W of R4 such that,

fi(w) = 0, w  W i = 1, 2, 3.

Solution: Let (x1, x2, x3, x4)  W

Then fi(x1, x2, x3, x4) = 0 i = 1, 2, 3

 x1 + 2x2 + 2x3 + x4 = 0

2x2 = x4 = 0

– 2x1 – 4x3 + 3x4 = 0



1

2

3

4

1 2 2 1

0 2 0 1

2 0 4 3

x

x

x

x

 = 0

By elementary row transformations, we get

1

2

3

4

1 0 2 0

0 1 0 0

0 0 0 1

x

x

x

x

 = 0

 x1 + 2x3 = 0, x2 = 0, x4 = 0

 (x1, x2, x3, x4) = (– 2x3, 0, x3, 0) = x3(– 2, 0, 1, 0)

 W is spanned by (– 2, 0, 1, 0).

Example 3.26: Let W be the subspace of R5 spanned by the vectors

1 = (2, – 2, 3, 4, – 1), 3 = (0, 0, – 1, – 2, 3)

2 = (– 1, 1, 2, 5, 2), 4 = (1, – 1, 2, 3, 0)

Describe A(W).

Solution: Let f  A(W)

Then f (w) = 0 for all w  W
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 f (i) = 0 for all i = 1, 2, 3, 4

Let f (x1, x2, x3, x4, x5) = c1x1 + c2x2 + c3x3 + c4x4 + c5x5

(Note v1 = (1, 0, 0, 0, 0), v2 = (0, 1, 0, 0, 0), v3 = (0, 0, 1, 0, 0), v4 =
(0, 0, 0, 1, 0), v5 = (0, 0, 0, 0, 1) form a basis of R5).

Let {v


1, v


2, v


3, v


4, v


5} be its dual basis.

Then f = c1v


1 + c2v


2 + c3v


3 + c4v


4 + c5v


5

 f (x1, x2, x3, x4, x5) = 
5

1

ˆi ic v (x1, x2, x3, x4, x5)

= 
5

1

ˆi ic v (x1v1 + x2v2 + x3v3 + x4v4 + x5v5)

= c1x1 + c2x2 + c3x3 + c4x4 + c5x5

as v


i (vj) = ij

 f (i) = 0 for all i = 1, 2, 3, 4



1

2

3

4

5

2 2 3 4 1

1 1 2 5 2

0 0 1 2 3

1 1 2 3 0

c

c

c

c

c

 = 0

By elementary row transformations, we get

1

2

3

4

5

1 1 0 1 0

0 0 1 2 0

0 0 0 0 1

0 0 0 0 0

c

c

c

c

c

 = 0

 c1 – c2 – c4 = 0, c3 + 2c4 = 0, c5 = 0

 2c1 – 2c2 + c3 = 0, c5 = 0, c3 = – 2c4

Let c2 = a, c4 = b

Then c3 = – 2b

2c1 – 2a – 2b = 0  c1 = a + b

 f (x1, x2, x3, x4, x5) = (a + b) x1 + ax2 – 2bx3 + bx4

Take a = 1, b = 0

Then f1(x1, x2, x3, x4, x5) = x1 + x2

Take a = 0, b = 1

Then f2(x1, x2, x3, x4, x5) = x1 – 2x3 + x4

 f = a f1 + b f2
 { f1, f2} spans A(W)
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Let f1 +  f2 = 0. Apply it on v1, v2 respectively. We get  +  = 0,
 = 0   = 0.

 {f1, f2} is L.I. So, { f1, f2} is a basis of A(W)

Hence dim A(W) = 2.

Example 3.27: Let V be a finite dimensional vector space. Suppose V = W1 
W2, where W1, W2 are subspaces of V. Show that V


  = A(W1)  A(W2).

Solution: dim V = dim (W1  W2)

= dim W1 + dim W2

Also dim (A(W1)  A(W2))

= dim A(W1) + dim A(W2)

= dim V – dim W1 + dim V – dim W2

= 2 dim V – (dim W1 + dim W2)

= 2 dim V – dim V = dim V = dim V


Since A(W1)  A(W2) is a subspace of V


and dim V

  = dim (A(W1)  A(W2)),

V

  = A(W1)  A(W2).

Example 3.28: If f and g are in V

 such that, f (v) = 0 implies g(v) = 0, prove

that g = cf for some c  F.

Solution: If f = 0, then g = 0 = cf where c = 0  F.

Let f  0 then  v  0 in V such that, f (v)  0

Let c = ( )

( )

g v

f v

h = g – cf and x  V

and  = ( )

( )

f x

f v
.

Then f (x – v) = f (x) – f (v) = 0

 x – v  Ker f

 x – v = y  Ker f

 x = y + v

 h(x)= g(x) – cf (x)

= g(y) + g(v) – cf (y) – cf (v)

= g(v) – cf (v) as y  Ker f  y  Ker g

= g(v) – g(v) = 0 for all x  V

 h = 0  g = cf

Hence the result follows.

Definition: Consider the system of m equations

a11x1 + ... + a1nxn = 0

... ... ...
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am1x1 + ... + amnxn = 0, where aij  F

in n unknowns.

Let U be the subspace of F(n) generated by m vectors

u1 = (a11, ..., a1n), ..., um = (am1, ..., amn)

If dim U = r, we say the system of equations has rank r.

We determine the number of linearly independent solutions to the system
of equations in F(n). Consider

Theorem 3.16: If the system of homogeneous linear equations

a11x1 + ... + a1nxn = 0

...  .. ...

am1x1 + ... + amnxn = 0,

where aij  F is of rank r, then there are n – r linearly independent solutions
in F(n).

Proof: Let S be the set of solutions of the given system of equations

S = {(1, 2, ..., n)  F n  | ij ja = 0, i = 1, 2, .., m}

Then S is a subspace of F n = V

Let {v1, v2, ..., vn} be the standard basis of V

and {f1, f2, ..., fn} be its dual basis

Let U be the subspace of V as described above

Define  : S  A(U), such that,

          ((1, 2, ..., n)) = 1 f1 + 2 f2 + ... + n fn
Let         f = 1 f1 + 2 f2 + ... + n fn
Then f(u1) = (1 f1 + ... + n fn) (a11v1 + ... + a1nvn)

= 1a11 + ... na1n

= 0  as (1, ..., n)  S

Similarly f (u2) = ... = f (um) = 0

So  f  A(U)

It can be easily shown that  is a linear transformation.

If (1, 2, ..., n)  Ker  then 
1

n

i if  = 0

i = 0  i

 Ker  = {0} or that  is 1–1.

Let now f  A(U)  V


and suppose f = 1 f1 + 2 f2 + ... + n fn
Then, 0 = f (u1) = 1a11 + ... + na1n

... ... ...

0 = f (um) = 1am1 + ... + namn
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 (1, 2, ..., n)  S

and ((1, 2, ..., n)) = 1f1 + ... + n fn = f

or that  is onto.

Hence S  A(U)

 dim S = dim A(U) = dim V – dim U

= n – r

Hence there are n – r linearly independent solutions of the given system of
equations.

Corollary : If n > m, that is, if the number of unknowns exceed the number of
equations, then the system of equations has a non zero solution.

Proof: Since U is generated by m vectors, r = dim U  m < n  n – r > 0 
system of equations has a linearly independent solution, which is non zero (as zero
vector is not linearly independent).

Example 3.29: Let m and n be positive integers. Let f1, ..., fm be linear functionals
on F(n). For  in F(n) define T() = (f1 (), ..., fm()).

Show that T is a linear transformation from F(n) into F(m). Then show that
every linear transformation from F(n) into F(m) is of the above form, for some
f1, ..., fm.

Solution: Since f1, ..., fm are linear transformations, so is T. Let {e1, ..., en} be
the standard basis of F(n).

Then T(ei)  F(m)  i = 1, ..., n.

So, T(ei) = (i1, ..., im)  i = 1, ..., n.

 T() = T(1e1 + ... + nen),  = 1e1 + ... + nen

= 1T(e1) + ... + nT (en)

= 1(11, ..., 1m) + ... + n(n1, ..., nm)

= (111 + ... + nn1, ..., 11m + ... + nnm)

For each i(1  i  m),  a linear transformation

fi : F
(n)  F such that,

fi(e1) = 1i, ..., fi(en) = ni

 f1() = f1(1e1 + ... + nen)

= 111 + ... + nn1

.....................

fm() = fm (1e1 + ... + nen)

= 11m + ... + nnm

So, T() = ( f1(), ..., fm()).

Example 3.30: Let V be the vector space of all 2 × 2 matrices over the field of
real numbers and let

B = 
2 2

1 1
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Let W be the subspace of V consisting of all A such that AB = 0. Let f be
a linear functional on V which is in the annihilator of W. Suppose that f (I) = 0 and
f (C) = 3, where I is the 2 × 2 identity matrix and

C = 
0 0

0 1

Find f (B).

Solution: Now W = {A | AB = 0}

Let A = 11 12

21 22

a a

a a

 
 
 

 V

Then A = 11 12 21 22
1 0 0 1 0 0 0 0

0 0 0 0 1 0 0 1
a a a a

 f(A) = 11 12 21 22
1 0 0 1 0 0 0 0

0 0 0 0 1 0 0 1
a f a f a f a f

= a11 + a12 + a21 + a22 (say).

 0 = f (I) =  + 
3 = f (C) = 

So,  = – 3,  = 3

Let D = 
1 2

0 0
. Then DB = 0

So, D  W

f (D) = 0 as f  A(W).

 0 =  + 2   = 3

2

Also, let E = 
0 0

1 2
.

Then EB = 0.

So, E  W.

 f (E) = 0 as f  A(W)

  + 2 = 0   = – 6

So, f (B) = 2 × (– 3) + (– 2) 3

2
 + (– 1) (– 6) + (3) (1)

= – 6 – 3 + 6 + 3 = 0.

Example 3.31: Let F be a subfield of complex numbers. We define n linear
functionals on F(n) (n  2) by

fk (x1, ..., xn) = 
1

( ) ,
n

j
j

k j x


 1  k  m.
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What is the dimension of the subspace annihilated by f1, ..., fn?

Solution: Now  f1(x1, ..., xn) = ox1 – x2 – 2x3 ... – (n – 1) xn

f2(x1, ..., xn)= x1 + ox2 – x3 ... – (n – 2) xn

f3(x1, ..., xn)= 2x1 + x2 + ox3 ... – (n – 3) xn

.....................................................................

fn(x1, ..., xn) = (n – 1) x1 + (n – 2) x2 + (n – 3) x3 + ... + 1 xn – 1 + oxn

Let W be the subspace of F(n) annihilated by f1, ..., fn.

Then (x1, ..., xn)  W

 fk(x1, ..., xn) = 0   k = 1, 2, ..., n.

1

2

3

0 1 2 ... ... ( 1)

1 0 1 ... ... ( 2)

2 1 0 ... ... ( 3)

... ... ... ... ... ...

1 2 3 ... ... 0 n

xn

xn

xn

xn n n

      
       
   
  
  
       


 = 0

i.e., AX = 0, where A is the matrix on the left and X = 
1

n

x

x

 .

It can be easily seen that Rank A = 2.

 number of linear independent solutions in W is n – 2.

 dim W = n – 2.

Transpose of a Linear Transformation

Let V, W be vector spaces over F.

Let T be a linear transformation from V into W.

Define T t : W

  V


 such that,

T t(g) = gT

Then T t is a linear transformation called the transpose of T.

It can be easily shown that

(i) (T1 + T2)
t = T1

t + T2
t, where T1, T2 are linear transformations from

V into W.

(ii) (T1T2)
t = T2

t
 T1

t, where T1 : W  V and T2 : V  W are linear
transformations

(iii) (T) t = T t,  F, T : V  W is a linear trasnsformation

(iv) I t = I, I : V  V is the identity map.

Theorem 3.17: Let T : V  W be a linear transformation. Then

(a) The null space of T t = the annihilator of range of T.

(b) If V, W are finite dimensional, then

(i) Rank of T = rank of T t

(ii) Range of T t = annihilator of the null space of T.
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Proof: (a) Now g  Null space of T t

 T t (g) = 0

 gT = 0  gTV = 0  g(Range T) = 0

 g  A(RT)

Where A(RT) denotes the annihilator of range T.

(b)  Let dim V = n, dim W = m,

Let r = rank of T = dim RT = dim T(V)

where RT denotes the range of T.

Now dimA(RT) = dim A(TV)

= dim W – dim T(V) = m – r

Nullity of T t = dimension of the null space of T t

= dim A(RT) = m – r

But nullity of T t = dim W – rank T t

 dim W – rank T t

 m – r= m – rank T t

 rank T t = r =  rank T

This proves (i).

Let N denote the null space of T.

Then A(N) = {f  V

 | f(n) = 0  n  N} = Annihilator of the null space

of T.

Now f  Range T t

 f = T tg, g  W

= gT

 f(n) = gT(n) = g(0) = 0  n  N

 f  A(N)

 RangeT t  A(N)

So, dim A(N) = dim V – dim N

= dim V – nullity T = rank T

= rank T t = dim Range T t

Therefore, A(N) = Range T t

This proves (ii).

Lemma: Let T : V  W be a linear transformation. Let  = {v1, ..., vn},  = {w1,

..., wm} be ordered basis of V, W respectively. Let ˆ  = { f1, ..., fn} be the dual basis

of V such that fi(vj) = ij. Let F  V̂ .

Then

f = 
1

( )
n

i if v f
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Proof: Suppose f = 
1

,
n

i ic f  ci  F

Then f (vj) = ( )i i jc f v  = i ijc  = cj

So, f = 
1

( ) .
n

i if v f

Theorem 3.18: Let T : V  W be a linear transformation. Let  = {v1, ..., vn},
 = {w1, ..., wm} be ordered basis of V, W respectively. Let 


  = {f1, ..., fn},

ˆ  = {g1, .., gm} be the dual basis of V, W respectively..

Let A = (aij) be the matrix of T with respec to   and B = (bij) be the matrix

of  T t with respecy to, 
  


.

Then aij = bji   i, j.

This shows that the matrix of T t is the transpose of the matrix of T. For this
reason T t is called the transpose of T.

Proof: Now T t : W

  V


 such that,

T t(gj) = gjT = f (say)

Then f(vi) = (T tgj) (vi)

= (gjT) (vi)

= (gjT) (vi) = 
1

m

j ki kg a w

= ( )ki j ka g w  = ki jka  = aji

By above lemma,

f = 
1

( )
n

j if v f  = 
1

n

ji ia f

But f = T tgj = 
1

n

ij ib f

So,
1

n

ij ib f  = 
1

n

ji ia f

  
1

n

ij ji ib a f = 0

 bij = aji  i, j. This proves the theorem.

Let A = (aij) be the m × n matrix over F. Then row rank of A is
defined as the dimension of the subspace of F(n) spanned by (a11, ..., a1n), ...,
(am1, ..., amn).

Similarly, column rank of A is defined as the  dimension of the subspace
of F(m) spanned by (a11, a21, ..., am1), ..., (a1n, ..., amn).
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Theorem 3.19: Let A be an m × n matrix over F. Then

Row rank of A = column rank of A.

Proof: Define  T : F(n)  F(m) such that,

T ((x1, ..., xn)) = (y1, ..., ym)

where yi = 
1

n

ij j
j

a x



Then T is a linear transformation.

Range  T = {T(x1, ..., xn) | xi  F}

= {T(x1 (1, ..., 0) + ... + xn(0, – 0, 1)) | xi  F}

= {x1T(e1) + ... + xn T(en) | xi  F}

ei = nth-tuple with ith co-ordinate 1 and zero elesewhere

= {linear combination of columns of A}

subspace generated by columns of A and vice-versa

Thus, Range T  = subspace of F(n) generated by columns of A

So, Rank T = column rank of A

Also, Rank T t = column rank of At

= Dimension of subspace of F(m) generated by columns
of A t

= Dmension of subspace generated by rows of A

= Row rank of A

Thus, column rank of A

= Row rank of A (as Rank T t = Rank T)

= Rank T.

Example 3.32: Let V be a finite dimensional vector space over F. Let T be a
linear operator on V. Let c  F. Suppose  0  v  V such that T(v) = cv. Prove
that there is a non zero linear functional f on V such that, T t f = cf.

Solution: Now (T – cI )v = 0, v  0

 v  Ker (T – cI)

 Ker (T – cI)  {0}

 dim Ker (T – cI)  1

 nullity of (T – cI)  1

 rank of (T – cI) < n

 rank of (T – cI)t < n

 nulity of (T – cI)t  1

  f  V
 

such that f  0 and (T – cI)t f = 0

 T t f = cf, f  0.

Example 3.33: Let A be m × n matrix with real entries. Prove that A = 0
 Trace (AtA) = 0.
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Solution: Let A t = B = (bij)n × m

A = (ajk)m × n

AtA = BA = C = (cik), cik = 
1

m

ij jk
j

b a



Trace  (AtA) = 0


1

n

iic  = 0

 c11 + ... + cnn = 0

 
1 1

...
m m

ij ji nj jnb a b a  = 0

 2 2( ) ... ( )ji jna a  = 0

 aji = 0  i, j

A = 0.

Converse is obvious.

Quotient Spaces

If W be a subspace of a vector space V(F) then since < W, + > forms an abelian

group of < V, + >, we can talk of cosets of W in V. Let V

W
 be the set of all cosets

W + v, v  V, then we show that V

W
 also forms a vector space over F, under

the operations defined by

(W + x) + (W + y) = W + (x + y) x, y  V

(W + x) = W + x   F

Addition is well defined, since,

W + x = W + x

W + y = W + y

 x – x  W, y – y  W

 (x – x) + (y – y)  W

 (x + y) – (x + y)  W

 W + (x + y) = W + (x + y)

Again, W + x = W + x

 x – x  W,

 (x – x)  W   F
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 x – x  W

 W + x = W + x

 (W + x) = (W + x)

Thus, scalar multiplication is also well defined. It should now be a routine
exercise to check that all conditions in the definition of a vector space are satisfied.

W + 0 will be zero of V

W

W – x will be inverse of W + x

Also

((W + x) + (W + y)) = (W + (x + y)) = W + (x + y) = W + (x + y)

 = (W + x) + (W + y) = (W + x) + (W + y) etc.

Hence, V/W forms a vector space over F, called the quotient space of V
by W.

Check Your Progress

1. What is normed linear space?

2. How are 2- or 3-dimensional vectors defined through real valued
entries?

3. Define the terms seminormed and normed vector spaces.

4. What is linear transformation?

5. Explain about the dim mn?

6. When is a linear transformation T: V  W non singular?

3.3 BANACH SPACES

The Hahn-Banach theorem is an essential tool in functional analysis. It permits the
extension of bounded linear functionals defined on a subspace of some vector
space to the complete space and also illustrates that there are ‘Enough’ continuous
linear functionals defined on every normed vector space for studying the dual
space. It is named for Hans Hahn and Stefan Banach who proved this theorem
independently and a general extension theorem from which the Hahn-Banach
theorem can be derived was proved in 1923 by Marcel Riesz.

The most general formulation of the theorem can be given for a vector
space V over the field R of real numbers where a function ƒ : V  R is called
sublinear if,

f(x) = f (x)  for any R+and any x  V (Positive homogeneity).

f(x + y)  (x) + f(y) for any x, y  V (Subadditivity).

Every seminorm on V (specifically, every norm on V) is sublinear. The
Hahn-Banach theorem states that if : V  R is a sublinear function and : U
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  is a linear functional on a linear subspace U  V which is dominated by 
on U,

(x)  (x) x  U

Then there exists a linear extension : V R of  to the whole space V,
i.e., there exists a linear functional  such that,

( ) ( )x x x U

and

( ) ( )x x x V .

Another description of Hahn-Banach theorem states that if V is a vector
space over the scalar field K (either the real numbers R or the complex numbers

C), if :V   is a seminorm and :U   is a K-linear functional on a
K-linear subspace U of V which is dominated by on U in absolute value,

( ) ( )x x x U

Then there exists a linear extension : V   of  to the whole space V,
i.e., there exists a K-linear functional  such that,

(x) = (x) x U

and

|(x)|  (x) x V .

Banach Spaces

A Banach space is a complete normed vector space or a Banach space is a vector
space which is equipped with a norm and which is complete with respect to that
norm. Two common types of Banach spaces are real Banach spaces and complex
Banach spaces, which are Banach spaces whose underlying vector spaces are
defined over the field of real numbers or complex numbers, respectively.

Various infinite dimensional function spaces evaluated in analysis are Banach
spaces, including spaces of continuous functions (continuous functions on a compact
Hausdorff space), spaces of Lebesgue integrable functions known as Lp spaces
and spaces of holomorphic functions known as Hardy spaces. These are the most
commonly used topological vector spaces and their topology is based on a norm.

A metric space X is considered as complete if every Cauchy sequence in X
converges to a point in X. Normed spaces whose induced metric spaces are
complete are specified with a special name. A Banach space is a normed space
whose induced metric space is complete.

The following normed spaces are all Banach spaces:

l
p
, Lp, Rn, Cn and C [a, b]

A closed vector space of a Banach space is itself a Banach Space.

Let K stand for one of the fields R or C. The known Euclidean spaces Kn,
where the Euclidean norm of x = (x

1
, …, x

n
) is given by ||x|| = (x

1
2+…+ x

n
2)1/2

are termed as Banach spaces. Hence every finite dimensional K vector space
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becomes a Banach space being endowed with an arbitrary norm because all norms
are equivalent on a finite dimensional K vector space.

Consider the space of all continuous functions ƒ : [a, b]  K defined on a
closed interval [a, b]. This space becomes a Banach space if an appropriate norm
||ƒ|| is defined in it. Such a norm may be defined as ||ƒ|| = sup {|ƒ(x)| : x. [a, b]}
known as the supremum norm. This is a well defined norm because continuous
functions defined on a closed interval are bounded.

Since ƒ is a continuous function on a closed interval then it is bounded and
the supremum in the above definition is obtained using the Weierstrass extreme
value theorem. Hence, we can replace the supremum by the maximum. In this
case, the norm is also called the maximum norm.

The space is complete under this norm and the resulting Banach space is
denoted by C[a, b]. This example can be generalized to the space C(X) of all
continuous functions X  K, where X is a compact space, or to the space of all
bounded continuous functions X  K, where X is any topological space or indeed
to the space B(X) of all bounded functions X  K, where X is any set.

For any open set  C, the set A() of all bounded, analytic functions u : 
 C is a complex Banach space with respect to the supremum norm.

If p  0 is a real number, we can consider the space of all infinite sequences
(x

1
, x

2
, x

3
, …) of elements in K such that the infinite series 

i
 |x

i
|p is finite. The

p-th root of this series’ value is then defined to be the p-norm of the sequence. The
space, together with this norm, is a Banach space; it is denoted by  p. The Banach
space  consists of all bounded sequences of elements in K; the norm of such a
sequence is defined to be the supremum of the absolute values of the sequence’s
members.

Again, if p  1 is a real number, we can consider all functions ƒ : [a, b]  K
such that |ƒ|p is Lebesgue integrable. The p-th root of this integral is then defined to
be the norm of ƒ. By itself, this space is not a Banach space because there are
non-zero functions whose norm is zero. We define an equivalence relation as follows:
ƒ and g are equivalent if and only if the norm of ƒ–g is zero. The set of equivalence
classes then forms a Banach space; it is denoted by Lp([a, b]). It is crucial to use
the Lebesgue integral and not the Riemann integral here, because the Riemann
integral would not yield a complete space. These examples can be generalized;
see Lp spaces for details.

If X and Y are two Banach spaces, then we can form their direct sum X . Y,
which has a natural topological vector space structure but no canonical norm.
However, it is again a Banach space for several equivalent norms, for example

1
, 1

pp px y x y p

This construction can be generalized to define p -direct sums of arbitrarily
many Banach spaces. When there is an infinite number of non-zero summands,
the space obtained in this way depends upon p.

If M is a closed linear subspace of the Banach space X, then the quotient
space X/M is again a Banach space.
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The Lp spaces are function spaces defined using a natural generalization of
the p-norm for finite-dimensional vector spaces. They are sometimes called
Lebesgue spaces, named after Henri Lebesgue. The length of a vector x = (x

1
,

x
2
, …, x

n
) in the n-dimensional real vector space Rn is usually given by the

Euclidean norm:

1 22 2 2
1 22 nx x x x .

The Euclidean distance between two points x and y is the length –x y
2
 of

the straight line between the two points. In many situations, the Euclidean distance
is insufficient for capturing the actual distances in a given space.

For a real number p  1, the p-norm or Lp-norm of x is defined by,

1

1 2

ppp p
npx x x x .

The L-norm or maximum norm (or uniform norm) is the limit of the
Lp-norms for p . It turns out that this limit is equivalent to the following definition:

1 2max , , , nx x x x .

For all p  1, the p-norms and maximum norm as defined above indeed
satisfy the properties of a ‘Length Function’ or norm, which specify that:

Only the zero vector has zero length.

The length of the vector is positive homogeneous with respect to
multiplication by a scalar.

The length of the sum of two vectors is no larger than the sum of lengths of
the vectors (By triangle inequality).

Abstractly speaking, this means that Rn together with the p-norm is a Banach
space. This Banach space is the Lp-space over Rn.

For example,

For , we define the -norm on  (or  ) by

For , we define the , or maximum, norm by

Then  equipped with the p-norm is a finite-dimensional Banach space
for  

For example,

The space  of continuous, real-valued (or complex-valued) functions on

 with the sup-norm is a Banach space. In general, the space  of
continuous functions on a compact metric space K equipped with the sup-norm is
a Banach space.
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For example,

The space  of k-times continuously differentiable functions on  is
not a Banach space with respect to the sup-norm  for , since the uniform
limit of continuously differentiable functions need not be differentiable. We define

the -norm by

Then  is a Banach space with respect to the -norm.
Convergence with respect to the -norm is uniform convergence of functions and
their first  derivatives.

For example,

For , the sequence space  consists of all infinite sequences

 such that

with the p-norm,

For , the sequence space  consists of all bounded sequences,
with

Then  is an infinite-dimensional Banach space for . The
sequence space  of bi-infinite sequences  is defined in an
analogous way.

3.3.1 Conjugate Spaces

The complex conjugate of a complex vector space V is the complex vector space

V consisting of all formal complex conjugates of elements of V, i.e., V  is a vector

space whose elements are in one-to-one correspondence with the elements of V:

{ | },V v v V

It implies the following rules for addition and scalar multiplication:

and .v w v w v v

Here v and w are vectors in V,  is a complex number and  denotes the

complex conjugate of . In the case where V is a linear subspace of n , the

formal complex conjugate V  is obviously isomorphic to the real complex conjugate

subspace of V in n .
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Conjugate Linear Maps

Any linear map f : V  W induces a conjugate linear map :f V W defined by

the formula,

( ) ( ).f v f v

The conjugate linear map f  is linear. Furthermore, the identity map on

induces the identity map V  and the following expression:

f g f g

This holds for any two linear maps f and g. Therefore, the rules V V
and f f  define a category of complex vector spaces to itself.

If V and W are finite dimensional and the map f is described by the complex

matrix A with respect to the bases  of  V and   of  W then the map f  is

described by the complex conjugate of A with respect to the bases   of V  and

  of W .

Structure of the Conjugate

The vector spaces V and V  have the same dimension over the complex numbers

and are therefore isomorphic as complex vector spaces. Though there is no standard

isomorphism from V to V . This implies that the map C is not an isomorphism,

because it is antilinear.

The double conjugate V  is naturally isomorphic to V with the isomorphism

V V  defined by,,

.vv 

Typically the double conjugate of V is simply identified with V.

Conjugate of a Hilbert Space

Given a Hilbert space (either finite or infinite dimensional), its complex conjugate

  is the same vector space as its continuous dual space '. There is one-to-one

antilinear association between continuous linear functionals and vectors.
Alternatively, any continuous linear functional on  is an inner multiplication to

some fixed vector and vice versa.

3.3.2 Natural Embedding of a Normed Linear Space
in its Second Dual

Determining if two given spaces are homeomorphic is one of the fundamental
problems in topology.
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Definition: A one-one and onto (bijection) continuous map f : X Y is a
homeomorphism if its inverse is continuous.

A bijection f : X Y induces a bijection between subsets of X and subsets
of Y and it is a homeomorphism iff this bijection restricts to a bijection,

1

( )
{Open (or closed) subsets of } {Open (or closed) subsets of }

( )

U f U
X Y

f V V




between open (or closed) subsets of X and open (or closed) subsets of Y.

Definition: Suppose X is a set, Y a topological space and f : X Y an injective
map. The embedding topology on X (for the map f) is the collection,

f –1(
Y
) = { f –1(V)|VY  open} of subsets of X.

The subspace topology for A X is the embedding topology for the inclusion
map A X.

Theorem 3.20 (Characterization of the Embedding Topology): Let X has the
embedding topology for the map f : X Y. Then,

1. X Y is continuous.

2. For any map A X into X,

A X is continuous iff A X 
f

 Y is continuous.

The embedding topology is the only topology on X with these two properties.
The embedding topology is the most common topology on X such that f : X Y
is continuous.

Proof: The reason is that  A 
g

X is continuous.

g–1(
X
) 

A 
g–1(f –1

Y
) 

A
 (fg)–1 (

Y
) 

A
  A

g

X
f

Y

is continuous by definition of the embedding topology. The identity map of X is a
homeomorphism whenever X is equipped with a topology with these two properties.

Definition: An injective continuous map f : X Y is an embedding if the topology
on X is the embedding topology for  f, i.e., 

X
 = f –1

Y
.

Any injective map f : X Y induces a bijection between subsets of X and
subsets of f (X) and it is an embedding iff this bijection restricts to a bijection,

1

( )
{Open (or closed) subsets of } {Open (or closed) subsets of ( )}

( )

U f U
X f X

f V V




between open (or closed) subsets of X and open (or closed) subsets of f (X).

Alternatively, the injective map f : X Y is an embedding iff the bijective
corestriction f (X)| f : X f (X) is a homeomorphism. An embedding is a
homeomorphism followed by an inclusion. The inclusion A X of a subspace is
an embedding. Any open (or closed) continuous injective map is an embedding.
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For example, the map f (x) = 3x + 1 is a homeomorphism from R R.

Lemma: If f : X Y is a homeomorphism (embedding) then the corestriction of
the restriction f (A)| f \ A: A f (A) (B| f \ A: A B) is a homeomorphism
(embedding) for any subset A of X (and any subset B of Y containing f (A)). If the
maps f

j 
: X

j
 Y

j
 are homeomorphisms (embeddings) then the product map

   jjj YXf : is a homeomorphism (embedding).

Proof: In case of homeomorphisms employ that there is a continuous inverse in
both cases. In case of embeddings, employ that an embedding is a homeomorphism
followed by an inclusion map.

Lemma (Composition of Embeddings): Let X 
f

 Y 
g

 Z be continuous maps.
Then  f  and g are embeddings implies that g  f is an embedding which in turn
implies thatf  is an embedding.

Proof: For proving the second implication, first note that f  is an injective continuous
map. Let U  X be open. Since g  f is an embedding, U =
(g f )–1 W for some open W Z. But (g f )–1 = f –1g–1W where g–1W is open
in Y since g is contimuous. This shows that f  is an embedding.

Theorem 3.21 (Characterization of the Product Topology): Given the product

topology jY . Then,

1. The projections   jjj YY:π are continuous, and

2. For any map f : X
Jj

jY into the product space we have,

X 
f


Jj

jY is continuous  j J: X 
f


Jj

jY jπ

 Y
j
 is continuous.

The product topology is the only topology on the product set with these
two properties.

Proof: Let T
X
 be the topology on X and T

j
 the topology on Y

j
. Then

 Jj jjS



  )(π 1  is a subbasis for the product topology on 

Jj
jY . Therefore,

f : X 
Jj

jY is continuous f –1( Jj jj
 )(π 1  ) 

X

( ))((π 11 Jj jjf


  ) T
X

 jJ: Xjj f   )()οπ( 1

 jJ: fjοπ  is continuous by definition of continuity
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Now, we have to show that the product topology is the unique topology

with these properties. Take two copies of the product set 
Jj

jX . Provide one

copy with the product topology and the other copy with some topology that has
the two properties of the above theorem. Then the identity map between these
two copies is a homeomorphism.

Theorem 3.22: Let (X
j
)

jJ 
be an indexed family of topological spaces with

subspaces A
j
 X

j
. Then 

Jj
jA is a subspace of 

Jj
jX .

1.   jj AA

2.    jj AA )( and equality holds if A
j
 = X

j
 for all but finitely many

j J.

Proof: (1) Let (x
j
) be a point of  jX . Since  Jj jjS




  )(π 1  is a subbasis

for the product topology on  jX , we have

(x
j
)  jA  k J:  )(π 1

kk U φ jA for all neighbourhoods U
k

of x
k
.

 k J: U
k
 A

k
 for all neighbourhoods U

k
 of x

k

 k J: x
k
 kA

x
j
 jA

(2)    jj AA )(  because 
j
is an open map so that 

j
 (  )( jA ) 


jA  for all j  J. If A

j
 = X

j
 for all but finitely many j  J then  

jA 

 )( jA because  
jA is open and contained in  jA .

It follows that a product of closed sets is closed.

Note:  A product of open sets need not be open in the product topology.

3.3.3 Embedding Lemma and Tychonoff Embedding

Theorem 3.23 (Embedding Lemma): Let   be a family of mappings where
each member f  maps X Y

f
. Then,

1. The evaluation mapping e: X  f fY defined by 
f 
e(x) = f (x), for

all x X, is continuous.

2. The mapping e is an open mapping onto e(X) if  distinguishes points and
closed sets.
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3. The mapping e is one-to-one if and only if  distinguishes points.

4. The mappping e is an embedding if  distinguished points F distinguishes
points and closed sets.

Proof: (1) Let 
g
: f fY  Y

g 
be the projection map to the space Y

g
. Then


g
e = g so that 

g
e is continuous. Therefore e must be continuous as g is

continuous.

(2) Suppose that U is open in X and x  U. Choose f  such that f(x)

)\( UXf . The set B = {z  e(X)| 
f 
(z) )\( UXf } is a

neighbourhood of e(x) as the set is open (it is defined for components not

being in the closed set )\( UXf  and clearly e(x) B. Moreover


f 
(B) f(U) by construction. It is now claimed that f(U) 

f 
(B). This

follows trivially from the definition of a family of functions distinguishing
points and closed sets. Therefore f (U) = 

f 
(B) and subsequently f (U) is

an open subset of 
g
e(X). Therefore the evaluation map is an open

mapping.

(3) The definition of distinguishing points implies injectivity.

(4) Combining a, b and c, we see that X  e(X) as e is a continuous, open,
injective, surjective (as a continuous map is always surjective onto its image)
map.

Definition: If X is a space and A, a set then by the power XA we mean the
product space X, where X 

=X, for each   A. Any power of [0, 1] is called
a cube. A map e: X Y is an embedding iff the map e: X  e(X) is a
homeomorphism. If there is an embedding e: X Y then we say that X can be
embedded in Y.

Theorem 3.24 (Tychonoff’s Embedding Theorem): A space is Tychonoff iff it
can be embedded in a cube.

Proof:  Let X be a Tychonoff space and let A = {f : X  [0, 1] / f is continuous}.
Define e: X  [0, 1]A by e(x)(f) = f (x).

(i) e is injective: If x, y X with  x y, then there is f A so that f(x) = 0 and
f(y) = 1. Then e(x)(f) e(y)(f), so e(x) e(y).

(ii) e is continuous: This is immediate since 
f 
e = f.

(iii) e: X e(X) carries open sets of X to open subsets of e(X): For let U be
open in X and let x U. Then there is f A so that f(x) = 0 and f(X – U)

= 1. Let V = 1π
f ([0, 1)), an open subset of [0, 1]A. Then e(x) V and if y

X is such that e(y) V, then e(y)(f)   [0, 1), so f(y) < 1 and y U. Thus
e(x) V e(X) e(U).

(i), (ii) and (iii) together imply that e is an embedding.
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: [0, 1] is clearly so [0, 1]A is Tychonoff for any A. Any subspace of a
Tychonoff space is Tychonoff. Thus if X can be embedded in a cube, then X is
homeomorphic to a Tychonoff space and so is itself Tychonoff.

Theorem 3.25: Let (T, ) be the 3-point topological space defined by
T = {0, 1, 2} and   = {, {0}, T}. Let (X, ) be any topogical space and
suppose that   X= Then there is an embedding e: X    X.

Proof: For each U  , define f
U
: X T by f

U
(y) = 0 if y U and f

U
(y)=1 if y

U. Then f
U
 is continuous. For each x X, define f

x
: X T by f

x
(y) = 2 if y =

x and f
x
(y) = 1 if y x. Then f

x
 is also continuous.

Define e by e
i
(y)=f

i
(y) for each i    X. Then

(i) e is injective, for if x, y  X with x  y then e
x
(y) = 1 but e

x
(x) = 2, so e

x
(x)

e
x
(y) and hence e(x) e(y).

(ii) e is continuous because each f
i
 is continuous.

(iii) e is open into e(X), for if U   and x U then V = 1π
U (0) is open in T

 X. Furthermore, so 
U
e(x)=0, so e(x) V while if y X is such that e(y)

V then 
U
e(y)= 0 and hence y U. Thus V e(X) e().

3.3.4 Urysohn’s Metrization Theorem

Theorem 3.26 (Urysohn’s Metrization Theorem): Suppose (X, ) is a regular
topological space with a countable basis , then X is metrizable.

Proof: Let (X, ) be a regular metrizable space with countable basis . For this
proof, we will first create a countable collection of functions {f

n
}

nN
, where f

m
:X

 R for all m  N, such that given any x X and any open neighbourhood U of
x there is an index N such that f

N
(x) > 0 and zero outside of U. We will then use

these functions to imbed X in Rw.

Let x X and let U be any open neighbourhood of x. There exists B
m
 

such that x B
m
. Now, since X has a countable basis and is regular, we know that

X is normal. Next, as B
m
 is open, there exists some B

n
  such that nB  B

m
.

Thus we now have two closed sets nB and X \ B
m
, and so we can apply Urysohn’ss

lemma to give us a continuous function g
n,m

: X R such that g
n,m

( nB ) = {1} and

g
n,m

(X \ B
m
) = {0}. Notice here that this function satisfies requisite: g

n,m
(y) = 0 for

y X \ B
m
 and g

n,m
(x) > 0. Here, g was indexed purposely, as it shows us that

{g
n,m

} is indexed by NN, which is countable (since the cross product of two
countable sets is countable). Considering this, relable the functions {g

n,m
}

n,mN
 as

{f
n
}

nN
.

We now imbed X in the metrizable space Rw. Let F: X  Rw where F(x) =
(f

1
(x), f

2
(x), f

3
(x), …), where f

n
 are the functions constructed above. We claim

that F is an imbedding of X into Rw.
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For F to be an imbedding it is required of F to be homeomorphic onto its
image. First, this needs that F should be a continuous bijection onto its image. We
know that F is continuous as each of its component functions f

N
 are continuous by

construction. Now we show that F is an injection.

Let x, y  X  be distinct. From the Hausdorff condition there exist open
sets U

x
 and U

y
 such that x  U

x
, y  U

y
 with U

x
 U

y
=. By the construction of

our maps f  there exists an index N  N such that f
N
(U

x
) > 0 and F

N
(X \ U

x
) = 0.

It follows that f
N
(x)  f

N
(y) and so F(x)  F(y). Hence, F is injective.

Now, as it is clear that F is surjective onto its image F(X), all that is left to
show is that F is an embedding. We will show that for any open set U X, F(U)
is open in Rw. Let U X be open and let x U. Pick an index N such that f

N
(x)

> 0 and f
N 
(X \U) = 0. Let F(x) = z F(U). Let V = 1π

N ((0, )), i.e., all elements

of Rw with a positive Nth coordinate. Now let W = F(X)  V. We claim that z W
F(U) showing that F(U) can be written as a union of open sets, hence making
it open.

First we show that W is open in F(X). We know that V is an open set in Rw.
W = F(X)  V, and W is open by the definition of the subspace topology.

Thereafter, we will first show that f(x) = z  W and then W  F(U). To
prove our first claim, F(x) = z  (F(x)) = f

N
(x) > 0  –

 N
(z) =

 N
(F(x)) =

f
N
(x) > 0  

 N
(z) > 0 which means that z  1π

N (V) and also z F(X)  z 

F(X)V = W. Now we show that W F(U). Let y W. This means y F(X)
V = W.

Now we show that W F(U). Let y W. This means y F(X) V. This
means there exists some w X such that F(w) = y. But, since y V we have that:


 N

(y) =
 N

(F(w)) = f
N
(w) > 0 since y  V, but f

N
(w) = 0 for all w  X \U

and so y  F(U).

In conclusion, as we have shown that F: X  Rw is a map that preserves
open sets in both directions and bijective onto its image, we have shown that F is
an embedding of the space X into the metrizable space Rw and X is therefore
metrizable, the metric being given by the induced metric from Rw.

Theorem 3.27: The topology generated by the dictionary ordering on R2 is
metrizable.

Proof: From previous Theorem 3.26, all we have to do for showing that R2 is
metrizable in the dictionary ordering is to prove that this space is regular with a
countable basis.

Now, since the set {(a, b), (c, d)| a c, b < d; a, b, c, d R} is a basis for
the dictionary ordering on R2 and the set of intervals with rational end-points are a
basis for the usual topology on R, it follows that the set {(a, b), (c, d)|a c, b <
d; a, b, c, d Q } is a countable basis for the dictionary ordering.
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Now we will show that the dictionary ordering is regular. Let a R2 and B
R2 such that B is closed in the dictionary ordering and a B. Let = inf {d(a,
b)| b B}. We know that is greater than 0, for otherwise a would be an
accumulation point of B, which is a contradiction. It follows that the open sets ((a,

a–/2), (a, a+/2)) and  Bb ((b, b–/2), (b, b+/2)) are disjoint open sets

containing a and B, respectively. Hence, the dictionary ordering over R2 is
metrizable, since it is regular and has a countable basis.

Note: In this proof we have shown that a sequence of functions {f
n
}

nN
 with the property

that for each x X and each neighbourhood U of x there is some n N such that f
n
(x) > 0 and

f
n
(y) > 0 for all y X \U, gives us an imbedding F: X Rw. Notice that we have the very similar

result if we have a sequence of functions {f
j
}

jJ
 with same properties as above: given any x

X and any neighbourhood U of x there exists jJ such that f
j
(x) > 0 and f

j
(y) = 0 for all y X

\U, then we have an imbedding from X  Rj given by F(x) = (f
j
(x))

jJ
. This is known as the

imbedding theorem and is a generalization of Urysohn’s metrization theorem.

3.4 UNIFORM BOUNDEDNESS PRINCIPLE
AND ITS CONSEQUENCES

Theorem 3.28 (Baire): Suppose X is a complete metric space and (X
n
)

n1
 is a

sequence of closed subsets in X. Also suppose that,

Int 0 1nX n

Then

1

Int 0n
n

X
Proof: Fix c

n nO X  so that O
n
 is open and dense in 1X n . We will show

that 1n nG O  is dense in X. Let  be a nonempty open set in X. We shall

prove that 0G . As usual set,

B(x, r) = {y  X; d(y, x) < r }

Choose any x
0 
 and r

0
 > 0 such that,

0 0( , )B x r

Now select 1 0 0 1( , )x B x r O  and r
1
 > 0 such that,

1 1 0 0 1

0
1

( , ) ( , )

0
2

B x r B x r O

r
r



This is true as O
1
 is open and dense. Construct two sequences (x

n
) and (r

n
)

by induction such that,
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1 1 1

1

( , ) ( , ) , 0

0 .
2

n n n n n

n
n

B x r B x r O n

r
r



Clearly, (x
n
) is a Cauchy sequence. Suppose nx  . Now as

( , )n p n nx B x r  for every n  0 and for every p  0, as p 

( , ), 0n nB x r n

or .G 
The Uniform Boundedness Principle

Consider two vector spaces E and F. Let (E, F) denote the space of continuous
linear operators from E into F set with the norm,

( , )

|| || 1

|| || sup || ||E F
x E
x

T Tx





For (E, E) we can write (E).

Theorem 3.29 (Banach-Steinhaus Uniform Boundedness Principle):
Consider two Banach spaces E and F be and let (T

i
)iI be a family of continuous

linear operators from E into F. Let,

sup || ||i
i I

T x x E (3.1)

Then

( , )sup || ||i E F
i I

T


  (3.2)

Or

There exists a constant c such that

|| || || || ,iT x c x x E i I

Proof: Let,

{ ; , || || } 1n iX x E i I T x n n

so that X
n
 is closed. From Equation (3.1) we have,

1
n

n

X E
From the Baire category theorem, 0Int( ) 0nX  for some n

0
  1. Let us

choose x
0
  E and r > 0 such that 0 0( , ) nB x r X . We have,

0 0|| ( ) || , (0,1)iT x rz n i I z B
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 ( , ) 0 0|| || || ||i E F ir T n T x

 ( , )sup || ||i E F
i I

T


 

Corollary 1: Consider two Banach spaces E and F. Let (T
n
) be a sequence of

continuous linear operators from E into F such that x E  as n , T
n
x

converges  to a limit denoted by Tx. Then we have,

1. ( , )sup || ||n n E FT  

2. T  (E, F)

3. ( , ) ( , )|| || lim inf || ||E F n n E FT T 

Proof:

1. It follows straightforwardly from Theorem 3.20 and hence there exists a
constant c such that

|| || || || ,nT x c x n x E

At the limit we find

|| || || ||Tx c x x E

2. It follows since T is linear.

3. Lastly we have ( , )|| || || || || ||n n E FT x T x x E    which implies (3).

Corollary 2: Let G be a Banach space and let B be a subset of G. If for every f

 G* the set f(B) = , ;f x x B  is bounded in          (3.3)

then

B is bounded (3.4)

Proof: Apply Theorem 3.28 with *,E G F   and I = B. For every

b B , set

( ) , , *bT f f b f E G

From Equation (3.3) this gives,

sup | ( ) |b
b B

T f f E

From Theorem (3.28) there exists a constant c such that,

| , | || || *f b c f f G b B

Therefore,

|| ||b c b B

Corollary 3: Consider a Banach space G and a subset B* of G*. Suppose, for

every x G  the set *, , ; *B x f x f B  is bounded in              (3.5)
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Then

B* is bounded (3.6)

Proof: Apply Theorem 3.28 with E = G, F =   and *I B . For every *b B
fix,

( ) , ( )bT X b x x G E

We get that there exists a constant c such that,

| , | || || *,b x c x b B x G    

From the definition of dual norm,

|| || *b c b B

Theorem 3.30 (Open Mapping Theorem): Consider two Banach spaces E
and F and let T be a continuous and onto linear operator from E into F. Then
there exists a constant c > 0 such that,

( (0,1)) (0, )E FT B B c (3.7)

Equation (3.7) means that the image under T of any open set in E is an open
set in F. Suppose U is open in E. We will show that T(U) is open. Fix any point
y

0
 Usuch that y

0
  = Tx

0
 for some x

0
 U. Let r > 0 be such that

B (x
0
, r)  U, i.e.,  x

0
 + B (0, r)  U.  Then y

0
 + T (B (0, r))  T(U)

From Equation (3.7) we get that,

T (B (0, r))  B (0, rc)

and hence,

B (y
0
, rc)  T(U)

Corollary 4: Consider two Banach spaces E and F and let T be a continuous
linear operator from E into F that is bijective. Then T–1 is also continuous.

Proof: From Equation (3.7) and the assumption that T is one-to-one we get that
if x E is chosen so that || Tx || < c, then || x || < 1. By homogeneity, we get

1
  || x || ||Tx || x E

c

Corollary 5:  Consider a vector space E provided with two norms, || ||
1
  and || ||

2
.

Let E be a Banach space for both norms and let there exists a constant
C  0 such that,

2 1  || x || C || x || x E

Then, there is a constant c > 0 such that,

1 2  || x || C || x || x E

i.e., the two norms are equivalent

Proof: We get the result by applying Corollary 4 with  E = (E, || ||
1
),  F = (E, || ||

2
)

and T = I.
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Proof of Theorem 3.29

Case 1: If T is a linear onto operator from E onto F, then there exists a constant
c > 0 such that,

( (0,1)) (0, 2 )T B B c (3.8)

Proof: Fix ( (0,1))nX nT B . As T is onto, we have 1 .
  n nX F  By the Baire

category theorem there exists some n
0
 such that Int( ) 0 

0nX . This implies,

Int[ ( (0 1))] 0T B ,   .

Choose c > 0 and y
0
  F such that,

0( , 4 ) ( (0,1))B y c T B (3.9)

Particularly, 0 ( (0,1))y T B  and by symmetry

0– ( (0,1))y T B (3.10)

Summing Equations (3.9) and (3.10) we get,

(0, 4 ) ( (0,1)) ( (0,1)) B c T B T B

Alternatively, since ( (0,1))T B  is convex we have

( (0,1)) ( (0,1)) 2 ( (0,1)) T B T B T B

and Case 1 follows.

Case 2: Assume T is a continuous linear operator from E into F that satisfies
Equation (3.8). Then we have,

T(B(0, 1))  B(0, c) (3.11)

Proof: Choose any y  F with ||y|| < c. We have to get some x  E such that,

||x|| < 1  and Tx = y.

Equation (3.8) implies that,

1
0 with || || and || – ||

2
z z y Tz       (3.12)

Picking  = c/2, we find some z
1
  E such that,

1 1

1
|| || and || – ||

2 2
 

c
z y Tz

Applying the similar construction to y – Tz
1
 with  = c/4 we get some

z
2
  E such that,

2 1 2

1
|| || and || ( – ) – ||

4 4

c
z y Tz Tz 

Proceeding likewise, by induction we obtain a sequence (z
n
) such that,
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1 2

1
|| || and || ( – ( ... ||

2 2n n nn n

c
z y T z z z    

Clearly the sequence 1 2 ...   n nx z z z  is a Cauchy sequence. Let

nx x   with ||x|| < 1 and y = Tx since T is continuous.

Theorem 3.31 (Closed Graph Theorem): Consider two Banach spaces E and
F. Let T be a linear operator from E into F. Let the graph of T, G(T) be closed in
E × F. Then T is continuous.

Proof: Let,

1|| || || || || || E Fx x Tx  and 2|| || || || Ex x

be the two norms on E.

Note: The norm || ||
1
 is termed as the graph norm.

Since G(T) is closed, E is a Banach space for the norm || ||
1
. Alternatively,

E is also a Banach space for the norm || ||
2
 and || ||

2 
.  From Corollary 5, the

two norms are equivalent and hence there exists a constant c > 0 such that ||x||
1 


cx.  Hence we can infer that || || || ||F ETx c x .

3.5 QUOTIENT SPACE OF NORMED LINEAR
SPACE AND ITS COMPLETENESS

Definition

Let  M be a subspace of a linear space L and let the coset of an element x in L be
defined by

Then the distinct cosets form a partition of  and if addition and scalar
multiplication are respectively defined by

and

then these cosets form a linear space denoted by L/M and called the quotient
space of L with respect to M. The origin in L/M is the coset 0 + M = M and the
negative of

Theorem 3.32

Let M be a closed linear subspace of a normed linear spaceN. If the norm of a
coset x + M in the quotient space N/M is defined by

...(3.13)

then N/M is a normed linear space. Further if  N is a Banach space, then so is
N/M.
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Proof: We first check that (3.13) defines a norm in the required manner. It is clear
that . since  is a non-negative real number and every set
of non-negative real numbers is bounded below, hence inf ;  }
is non negative, i.e.,

Also  there exists a sequence  in M such that

 x is in M
 x + M = M= The zero element of N/M

Now

∥ (x + M) +(y + M) =∥ (x + y) + M ∥
= Inf{∥ x + y + m ∥; m ∈ M}

= Inf{∥∥x + y + m + m′ ∥∥; m and m′ ∈ M}

= Inf{∥∥(x + m) + (y + m′ )∥∥; m, m′ ∈ M}

 

≤ Inf{∥ x + m ∥; m ∈ M} + Inf{∥∥y + m′ ∥∥ ⋅ m′ ∈ M}

=∥ x + M ∥ +∥ y + M ∥
∥ 𝛼(x + M) ∥= Inf{∥ 𝛼(x + m) ∥; m ∈ M}

= Inf{|𝛼| ∥ x + m ∥; m ∈ M}

= |𝛼|Inf{∥ x + m ∥; m ∈ M}

= |𝛼| ∥ x + M ∥

 

Let us assume that N is complete and we will show that N/M is also complete.
If we start with a Cauchy sequence in N/M, then it is sufficient to show that this
sequence has a convergent subsequence. It is clearly possible to find a subsequence
{x_n+M} of the original Cauchy sequence such that

∥∥(x1 + M) − (x2 + M)∥∥ <
1

2

∥∥(x2 + M) − (x3 + M)∥∥ <
1

4

 

and in general

∥∥(xn + M) − (xn+1 + M)∥∥ <
1

2n
 

We will show that this sequence is convergent in N/M. Let us choose any

vector 𝑦1 in 𝑥1 + 𝑀  and we select y
2
 in x

2
 + M such that ∥∥𝑦1 − 𝑦2∥∥ <

1

2
.  We now

choose a vector y
3
 in x

3
 + M such that  ∥∥y2 − y3∥∥ <

1

4
.  Continuing in this way we

obtain a sequence {y
n
} in N such that ∥∥𝑦𝑛 − 𝑦𝑛+1∥∥ <

1

2𝑛 . If 𝑚 < 𝑛, then

∥∥ym − yn∥∥ =∥ ym − ym+1) + (ym+1 − ym+2) + ⋯ + (yn−1 − yn) ∥

≤ ∥∥ym − ym+1∥∥ + ∥∥ym+1 − ym+2∥∥ + ⋯ + ∥∥yn−1 − yn ∥∥

<
1

2m
+

1

2m+1
+ ⋯ +

1

2n−1

<
1

2m
+

1

2m+1
+ ⋯ +

 

=
(1/2)m

1 −
1
2

=
1

2m+1 

So {𝑦𝑛 } is a Cauchy sequence in 𝑁. Since 𝑁 is complete, there exists a vector y in N such that 
yn → y. Finally 
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∥ (xn + M) −(y + M) ∥=∥ xn − y + M ∥

≤ Inf{∥∥xn − y + m∥∥; m ∈ M}

≤ ∥∥xn + m − y∥∥ for all m ∈ M

 

But 𝑦𝑛 = 𝑥𝑛 + 𝑚𝑛  for some 𝑚𝑛 ∈ 𝑀 

≤ ∥∥yn − y∥∥ → 0 since yn → y. 

Hence Hence 𝑥𝑛 + 𝑀 → 𝑦 + 𝑀 ∈ 𝑁/𝑀 

 N/M is complete.

Definition

A series  is said to be convergent to , where X is a normed

linear space if the sequence of partial sums  where  converges

to x i.e. for every , there exists  such that  for .

A series  is said to be absolutely convergent if  is convergent.

Since every normed linear space is a metric space, hence every convergent
sequence in it is Cauchy but not conversely.

Theorem 3.33

A normed linear space is complete if and only if every absolutely convergent series
in X is convergent.

3.5.1 Bounded Linear Transformation

Definition

A linear transformation T is said to be bounded if  a non negative real number K
such that

∥ T(x) ∥≤ K ∥ x ∥ ∀x 

where K is called bound for T.

Definition

Let T be a continuous linear transformation, then

∥ T ∥= sup{∥ T(x) ∥; ∥ x ∥≤ 1} 

is called the norm of T.

Clearly norm of T is the smallest M for which  holds for every

Theorem 3.34: Let N and N be normed linear spaces and let T be a linear
transformation of  into . Then the inverse T–1 exists and is continuous on its domain
of definition iff   exists a constant m > 0 s, that

m ∥ x ∥≤∥ T(x) ∥ ∀x ∈ N. ...(3.14)
Proof: Let (3.13) hold. To show that T–1 exists and is continuous. Now  exists iff
T is one - one. Let . Then
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∥≤∥ T(x1 − x2) ∥= 0  T(x1) = T(x2) ⇒ T(x1) − T(x2) = 0  m ∥ x1 − x2

⇒ ∥∥x1 − x2∥∥ = 0 ⇒ T(x1 − x2) = 0

⇒ x1 − x2 = 0  by (3.13)

⇒ x1 = x2

Hence T is one one and so T–1 exists. Therefore, to each y in the domain of
T–1  x in N such that

T(x) = y ⇒ x = T−1(y) 

Hence (3.13) is equivalent to

m∥∥T−1y∥∥ ≤∥ y ∥⇒ ∥∥T−1(y)∥∥ ≤
1

 m
∥ y ∥

⇒ T−1 is bounded 
⇒ T−1 is continuous (by the above theorem)

Conversely let T–1 exists and be continuous on its domain Y[N]. Let 
Since T–1 exists, there is an . That

T−1(y) = x ⇔ T(x) = y 

Again sinceT–1 is continuous, it is bounded so that  constant Ks.
That

∥∥T−1y∥∥ ≤ K ∥ y ∥⇒∥ x ∥≤ K ∥ T(x) ∥  

⇒ m ∥ x ∥≤∥ T(x) ∥  where m =
1

 K
> 0

 

Theorem 3.35

Let N and N be normed linear spaces and let T be a bounded linear transformation
of N into N: Put

a = sup{∥ T(x) ∥; x ∈ N, ∥ x ∥= 1}

b = sup{∥ T(x) ∥/∥ x ∥; x ∈ N; x ≠ 0}

c = Inf{K; K ≥ 0, ∥  T(x) ∥≤ K ∥ x ∥ ∀x ∈ N}

 

Then
∥ T ∥= a = b = c 

and

∥ T(x) ∥≤∥ T ∥∥ x ∥   ∀x ∈ N 

Proof: By definition of norm

∥ T ∥= sup{∥ T(x) ∥; x ∈ N, ∥ x ∥≤ 1} 

By definition of 

and if , then 

and so 

i.e.

∥ T ∥≤ C. 

Also by definition of b and c, it is clear that . A gain
if ,

Then

∥ T(x) ∥/∥ x ∥= ∥∥
∥T

x

∥ x ∥ ∥∥
∥ 
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and  has norm 1. Hence we conclude from the definitions of b and a that  . But

it is evident that

a = sup{∥ T(x) ∥; x ∈ N; ∥ x ∥= 1} ≤ sup{∥ T(x) ∥; x ∈ N; ∥ x ∥≤ 1}
⇒ a ≤∥ T ∥.

 

Thus we have shown that
∥ T ∥≤ c ≤ b ≤ a ≤∥ T ∥
⇒∥ T ∥= a = b = c.

 

Finally definition of b shows that

∥ T(x) ∥

∥ x ∥
≤ sup

∥ T(x) ∥

∥ x ∥
; x ∈ N, x ≠ 0

= b =∥ T ∥
⇒∥ T(x) ∥≤∥ T ∥∥ x ∥

 

Remark : Now we shall denote the set of all continuous (or bounded) linear
transformation of N into N by B(N, N) [ where letter B stands for bounded ].

3.5.2 Normed Linear Space of Bounded Linear
Transformations

Definition

Let V, W  be normed vector spaces (both over  or over  ). A linear transformation
or linear operator  is bounded if there is a constant C such that

∥ 𝑇𝑥 ∥𝑊≤ 𝐶 ∥ 𝑥 ∥𝑉  for all 𝑥 ∈ 𝑉. ...(3.15)

Remark

We use the linearity of T and the homogeneity of the norm in W to see that

∥
∥
∥

𝑇
𝑥

∥ 𝑥 ∥𝑉 ∥
∥
∥

𝑊

=
∥
∥
∥ 𝑇(𝑥)

∥ 𝑥 ∥𝑉∥
∥
∥

𝑊

=
∥ 𝑇(𝑥) ∥𝑊

∥ 𝑥 ∥𝑉
 

Here T is bounded and satisfies (3.15), if and only if

sup
∥𝑥∥𝑉 =1

∥ 𝑇(𝑥) ∥𝑊≤ 𝐶. 

Theorem 3.36

Let V,W be normed vector spaces and let  be a linear transformation.
Then the following statements are equivalent:

1. T is a bounded linear transformation.

2.  T is continuous everywhere in .

3.  T is continuous at 0 in.

Proof: (1.)  (2.): Let C be the constant as defined in the definition of bounded
linear transformation. By linearity of T we have

∥ 𝑇(𝑣) − 𝑇(𝑣) ∥𝑊=∥ 𝑇(𝑣 − 𝑣) ∥𝑊≤ 𝐶 ∥ 𝑣 − 𝑣 ∥𝑉

which implies (2.).

(2.)  (3.) is trivial.
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(3.)   (1.): It  is continuous at 0, then there exists  > 0  such that for all  

with  we have  ∥ 𝑇𝑣 ∥< 1 . Now let  and . Then

∥
∥
∥

𝛿
𝑥

2 ∥ 𝑥 ∥𝑉∥
∥
∥

𝑉

= 𝛿/2 and thus 
∥
∥
∥

𝑇 𝛿
𝑥

∥ 𝑥 ∥𝑉 ∥
∥
∥

𝑊

< 1. 

But by the linearity of T and the homogeneity of the norm we get

1 ≥
∥
∥
∥

𝑇 𝛿
𝑥

∥ 𝑥 ∥𝑉 ∥
∥
∥

𝑊

=
∥
∥
∥

𝛿
𝑇(𝑥)

2 ∥ 𝑥 ∥𝑉∥
∥
∥

𝑊

=
𝛿

2 ∥ 𝑥 ∥𝑉
∥ 𝑇𝑥 ∥𝑊  

and therefore  with .

Notation: If  is linear one often writes  for .

Definition

We denote the set of all bounded linear transformations  by .

 forms a vector space.  is the transformation with (S + T)

 and  is the operator . On  we define
the operator norm (depending on the norms on V and W ) by

We can see  as the best constant for which (3.15) holds. Also
note

Using the homogeneity of the -norm cab also be written as

We use the  notation if the choice of V, W and the norms are clear
from the context.

Lemma

Let V and W be normed spaces. If V is finite dimensional then all linear
transformations from V to W are bounded.

Proof: Let  be a basis of V. Then for  we have

The expression  defines a norm on V . Since all the norms

on V are equivalent, there is a constant C
1
 such that

for all choices of . Thus we get  for all ,

where the constant C  is given by .
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Lemma

On  use the Euclidean norms , .

Let A be an m × n  matrix and consider the linear operator  defined

by T(x) Ax. Let

Then

Proof:

By the Cauchy-Schwarz inequality,

and therefore

for all .

Thus .

Check Your Progress

7. Define vector spaces and their ordered basis with the help of an
example.

8. Give the general formulation Hahn-Banach theorem.

9.  What is Banach space?

10. When is metric space X considered as complete?

11. Define the term embedding.

12. What is embedding lemma?

13. Give the statement of Urysohn’s metrization theorem.

14. State closed graph theorem.

3.6 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. A normed linear space is a vector space X and a non-negative valued mapping
||.|| on X termed as the norm, which satisfies the following properties:

(i) ||x|| = 0 if and only if x = 0.

(ii) ||a x|| = |a| ||x||, for all scalars a.

(iii) ||x + y||  ||x|| + ||y||
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Here ||x|| is considered as the length of x or the distance from x to 0. For a
given vector x, if y is defined as (1/||x||) x, then y has unit length and is called
the normalized vector for x.

2. The 2- or 3-dimensional vectors are defined through real valued entries
and the ‘Length’ of a vector can easily be extended to any real vector space
Rn.

3. A seminormed vector space is a pair (V,p) where V is a vector space and p
a seminorm on V. A normed vector space is a pair (V,  ·) where V is a vector
space and  ·   a norm on V.

4. A linear transformation means a map T: V  W, such that T(x + y) =
T(x) + T(y) where x, y  V, , F and V, W are vector spaces over
the field F.

5. If V and W be two vector spaces (over F) of dim m and n respectively.
Then Hom (V, W) has dim mn.

6. A linear transformation T: V  W is non singular iff T carries each L.I.
subset of V onto a L.I. subset of W.

7. If U(F), V(F) be vector spaces of dimension n and m respectively then 
= {u1, ..., un},  = {v1, ..., vm} be their ordered basis respectively.

8. The most general formulation Hahn-Banach theorem can be given for a
vector space V over the field R of real numbers where a function ƒ : V  R
is called sublinear.

9. A Banach space is a complete normed vector space or a Banach space is a
vector space which is equipped with a norm and which is complete with
respect to that norm.

10. A metric space X is considered as complete if every Cauchy sequence in X
converges to a point in X. Normed spaces whose induced metric spaces
are complete are specified with a special name. A Banach space is a normed
space whose induced metric space is complete.

11. Suppose X is a set, Y a topological space and f : X Y an injective map.
The embedding topology on X (for the map f) is the collection,

f 
–1

(TY) = { f 
–1

(V)|V Y  open} of subsets of X.

12. Let  be a family of mappings where each member f  maps X Yf.
Then,

 The evaluation mapping e: X defined by f e(x) = f (x), for all x 
X, is continuous.

 The mapping e is an open mapping onto e(X) if  distinguishes points
and closed sets.

 The mapping e is one-to-one if and only if  distinguishes points.

 The mappping e is an embedding if F distinguished points F distinguishes
points and closed sets.

13. Suppose (X, ) is a regular topological space with a countable basis ,
then X is metrizable.
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14. Consider two Banach spaces E and F. Let T be a linear operator from E
into F. Let the graph of T, G(T) be closed in E × F. Then T is continuous.

3.7 SUMMARY

 A normed linear space is a vector space X and a non-negative valued mapping
||.|| on termed as the norm.

 The 2- or 3-dimensional vectors are defined through real valued entries and
the ‘Length’ of a vector can easily be extended to any real vector space Rn.

 The zero vector ‘0’ has zero length whereas every other vector has a positive
length.

 Multiplying a vector by a positive number changes its length without changing
its direction.

 The triangle inequality holds, i.e., taking norms as distances, the distance
from point A through B to C is never shorter than going directly from A to C
or the shortest distance between any two points is a straight line.

 A vector space on which a norm is defined is then called a normed vector
space.

 A seminormed vector space is a pair (V,p) where V is a vector space and p
a seminorm on V.

 A normed vector space is a pair (V,  ·) where V is a vector space and  ·   a
norm on V.

 A Linear Transformation (L.T.) means a map T: V  W, such that T(x +
y) = T(x) + T(y) where x, y  V, , F and V, W are vector
spaces over the field F.

 The notation L(V, W) is also used for denoting Hom (V, W).

 If V and W be two vector spaces (over F) of dim m and n respectively.
Then Hom (V, W) has dim mn.

 A linear transformation T: V  W is non singular iff T carries each L.I.
subset of V onto a L.I. subset of W.

 A function f: R  R is continuous on R iff for every open set G in R,  f–1

(G) is open in R.

 A function f: R  R is continuous on R iff for every closed set A in R f–1

(A) is closed in R.

 If function g is continuous at a and f is continuous at g(a) then the composite
function f o g is continuous at a.

 The function f defined by f(x) = ax and a > 0 is one-one strictly monotonic
(a  1) and continuous on the domain R with range (0, ). Therefore, the
inverse function f–1 exists and is continuous strictly monotonic as ax on the
domain (0, ) with R as range.

 The most general formulation Hahn-Banach theorem can be given for a
vector space V over the field R of real numbers where a function ƒ: V  R
is called sublinear.



Normed Linear Spaces

NOTES

Self - Learning
Material 139

 A Banach space is a complete normed vector space or a Banach space is a
vector space which is equipped with a norm and which is complete with
respect to that norm.

 A metric space X is considered as complete if every Cauchy sequence in X
converges to a point in X. Normed spaces whose induced metric spaces
are complete are specified with a special name. A Banach space is a normed
space whose induced metric space is complete.

 The Lp spaces are function spaces defined using a natural generalization of
the p-norm for finite-dimensional vector spaces. They are sometimes called
Lebesgue spaces, named after Henri Lebesgue.

 Let X be a normed space and X** = (X*)*denote the second dual space
of X. The canonical mapdefined by gives an isometric linear isomorphism
(embedding) from X into X**.

 Suppose X is a set, Y a topological space and f : X Y an injective map.
The embedding topology on X (for the map f) is the collection, f –1(Y) =
{ f –1(V)|VY  open} of subsets of X.

 A space is Tychonoff iff it can be embedded in a cube.

 Suppose (X, ) is a regular topological space with a countable basis ,
then X is metrizable.

 Consider two Banach spaces E and F be and let (Ti)iI be a family of
continuous linear operators from E into F.

 Consider two Banach spaces E and F and let T be a continuous and onto
linear operator from E into F. Then such that, there exists a constant c > 0.

 Consider two Banach spaces E and F. Let T be a linear operator from E
into F. Let the graph of T, G(T) be closed in E × F. Then T is continuous.

3.8 KEY TERMS

 Norm: A normed linear space is a vector space X and a non-negative
valued mapping ||.|| on X termed as the norm.

 Normed vector space: A vector space on which a norm is defined is then
called a normed vector space.

 Seminormed vector space: Seminormed vector space is a pair (V, p)
where V is a vector space and p a seminorm on V.

 Linear transformation: A linear transformation means a map T : V  W,
such that T(x + y) = T(x) + T(y) where x, y  V, , F and V,
Ware vector spaces over the field F.

 Banach space: A Banach space is a complete normed vector space or a
Banach space is a vector space which is equipped with a norm and which
is complete with respect to that norm.

  Lp spaces: The Lp spaces are function spaces defined using a natural
generalization of the p-norm for finite-dimensional vector spaces. They are
sometimes called Lebesgue spaces, named after Henri Lebesgue.
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3.9 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What is the importance of normed linear spaces?

2. Why is linear transformation used?

3. How will you define metric on normed linear spaces?

4. What are dual spaces in linear transformation?

5. What is bounded linear transformation?

6. Define Banach spaces.

7. Specify the term completeness.

8. What is the importance of conjugate spaces?

9. What is embedding?

10. State the embedding lemma.

11. Where is Urysohn’s metrization theorem applied?

12. State Baire category theorem.

Long-Answer Questions

1. Show that image of a L.I. set by a L.T., need not be L.I. (consider zero
L.T).

2. Let dim V = n, T: V  V be a L.T. such that Range T = Ker T. Show that
n is even. Prove that T: R2  R2, such that, T(x1, x2) = (x2, 0) is such a
L.T.

3. Show that f: R4  R4, such that, f (x, y, z, t) = (2x, 3y, 0, 0) is a L.T. Find
its rank and nullity.

4. Find the L.T. from R3  R3 which has its range the subspace spanned by
(1, 0, –1), (1, 2, 2).

5. Let G be the set of all invertible linear transformations from V  V then
show that G forms a group under product of linear transformations.

6. Let T: R3  R2, S: R2  R2 be linear transformations. Show that ST is
not invertible.

7. Show that it is possible to find two linear operators T, U on R2 such that
TU = 0 but UT  0. (Consider (x1, x2)  (x1, 0) and (x1, x2)  (0,
x1)).

8. A linear transformation T: V  V is called idempotent or a projection if
T2 = T. Show that if S, T are idempotent and ST = TS then ST and S + T –
ST are idempotent and if ST + TS = 0 then S + T is idempotent.

9. If the L.T. T: R7  R3 has a four dimensional Kernel, show that range of T
has dimension three.

10. Prove the characterization of the embedding topology.
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11. Give the proof of Urysohn’s metrization theorem.

12. State and prove Baire category theorem.

13. What do you mean by bounded linear transformation? Explain.
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UNIT 4 FINITE DIMENSIONAL
NORMED SPACES AND
SUBSPACES

Structure
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4.3 Finite Dimensional Normed Linear Spaces and Compactness

4.3.1 Linear Transformation in Vector Spaces
4.4 Riesz’s Lemma
4.5 Adjoint Operators

4.5.1 Reflexive Spaces
4.6 Finite Dimensional Normed Spaces and Subspaces
4.7 Hahn-Banach Theorem for Normed Linear Spaces

4.7.1 Hahn-Banach Theorem for Real Linear Space
4.7.2 Hahn-Banach Theorem for Complex Linear Space

4.8 Weak Convergence
4.9 Answers to ‘Check Your Progress’

4.10 Summary
4.11 Key Terms
4.12 Self-Assessment Questions and Exercises
4.13 Further Reading

4.0 INTRODUCTION

In mathematics, a norm is a function that assigns a strictly positive length or size to
all vectors in a vector space other than the zero vector while a seminorm is allowed
to assign zero length to some non-zero vectors. A normed vector space or normed
space is a vector space over the real or complex numbers, on which a norm is
defined. A norm is the formalization and the generalization to real vector spaces of
the intuitive notion of ‘Length’ in the real world. Riesz’s lemma (after Frigyes Riesz)
is a lemma in functional analysis. It specifies (often easy to check) conditions that
guarantee that a subspace in a normed vector space is dense. The lemma may also
be called the Riesz lemma or Riesz inequality. It can be seen as a substitute for
orthogonality when one is not in an inner product space.

In functional analysis, each bounded linear operator on a complex Hilbert
space has a corresponding Hermitian adjoint (or adjoint operator). Adjoints of
operators generalize conjugate transposes of square matrices to (possibly) infinite-
dimensional situations. If one thinks of operators on a complex Hilbert space as
generalized complex numbers, then the adjoint of an operator plays the role of the
complex conjugate of a complex number. In a similar sense, one can define an
adjoint operator for linear (and possibly unbounded) operators between Banach
spaces. The adjoint of an operator A may also be called the Hermitian conjugate,
Hermitian or Hermitian transpose (after Charles Hermite) of A and is denoted by
A” or A† (the latter especially when used in conjunction with the bracket notation).
Confusingly, A” may also be used to represent the conjugate of A.
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A reflexive space is a locally convex Topological Vector Space (TVS)
such that the canonical evaluation map from X into its bidual (which is the strong
dual of the strong dual of X) is an isomorphism of TVSs. Since a normable TVS is
reflexive if and only if it is semi-reflexive, every normed space (and so in particular,
every Banach space) X is reflexive if and only if the canonical evaluation map from
X into its bidual is surjective; in this case the normed space is necessarily also a
Banach space. In 1951, R. C. James discovered a Banach space, now known as
James’ space that is not reflexive but is nevertheless isometrically isomorphic to its
bidual (any such isomorphism is thus necessarily not the canonical evaluation map).

In this unit, you will learn about the equivalent norms, finite dimension normed
linear spaces and compactness, Riesz lemma, adjoint operators and reflexive
spaces.

4.1 OBJECTIVES

After going through this unit, you will be able to:

 Explain the concept of equivalent norms

 Describe finite dimensional normed spaces and compactness

 Explain Riesz lemma

 Discuss adjoint operators and reflexive spaces

 State reflexive spaces

4.2 EQUIVALENT NORMS

A norm is a function that assigns a strictly positive length or size to all vectors in a
vector space other than the zero vector while a seminorm is allowed to assign zero
length to some non-zero vectors.

A simple example is the 2-dimensional Euclidean space R2 equipped with
the Euclidean norm. Elements in this vector space, example are usually drawn
as arrows in a 2-dimensional Cartesian coordinate system starting at the origin
(0, 0). The Euclidean norm assigns to each vector the length of its arrow. Because
of this, the Euclidean norm is often known as the magnitude. A vector space
with a norm is called a normed vector space. Similarly, a vector space with a
seminorm is called a seminormed vector space.

Given a vector space V over a subfield F of the complex numbers, a norm
on V is a function p: V  F with the following properties:

For all a  F and all u, v  V,

1. p(av) = |a| p(v), (positive homogeneity or positive scalability).

2. p(u + v)  p(u) + p(v) (triangle inequality or subadditivity).

3. If p(v) = 0 then v is the zero vector (separates points).

A simple consequence of the first two axioms, positive homogeneity and
the triangle inequality, is p(0) = 0 and thus,

p(v)  0 (positivity).

A seminorm is a norm with the 3rd property (separating points) removed.
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Although every vector space is considered seminormed. Every vector space
V with seminorm p(v) induces a normed space V/W, called the quotient space,
where W is the subspace of V consisting of all vectors v in V with p(v) = 0. The
induced norm on V/W is clearly well-defined and is given by,

p(W + v) = p(v).

A topological vector space is called normable (seminormable) if the topology
of the space can be induced by a norm (seminorm). The norm of a vector v is
usually denoted ||v|| and sometimes |v|. The latter notation is generally not used
because it is also used to denote the absolute value of scalars and the determinant
of matrices. The following are some example of norms:

 All norms are seminorms.

 The trivial seminorm, with p(x) = 0 for all x in V.

 The absolute value is a norm on the real numbers.

 Every linear form f on a vector space defines a seminorm by
x  |f(x)|.

Euclidean Norm

On an n-dimensional Euclidean space Rn, the perceptive notion of length of the
vector x = (x

1
, x

2
, ..., x

n
) is illustrated by the formula,

2 2
1: .nx x x

The Euclidean norm is the most commonly used norm on Rn.

On an n-dimensional complex space Cn the most common norm has the
form,

22
1 1 1: .n n nz z z z z z z 

In both the cases we can express the norm as the square root of the inner
product of the vector and itself as follows:

||x|| : * ,x x

Here x is represented as a column vector ([x
1
; x

2
; ...; x

n
]), and x* denotes

its conjugate transpose.

This formula is applicable for any inner product space, including Euclidean
and complex spaces. For Euclidean spaces, the inner product is equivalent to the
dot product. Hence, in this specific case the formula can also be written with the
following notation:

||x|| : .x x

The Euclidean norm is also called the Euclidean length, L2 distance, 2
distance, L2 norm or 2   norm. The set of vectors in Rn+1 whose Euclidean norm
is a given positive constant forms an n-sphere.
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The Euclidean norm of a complex number is the absolute value (also called
the modulus) of it, if the complex plane is identified with the Euclidean plane R2.
This identification of the complex number x + iy as a vector in the Euclidean plane

makes the quantity 2 2x y (first suggested by Euler) the Euclidean norm

associated with the complex number.

Taxicab Norm or Manhattan Norm or L
1
 Norm

1
1

|| || : | | .
n

i
i

x x

The name relates to the distance a taxi has to drive in a rectangular street
grid to get from the origin to the point x.

The set of vectors whose 1-norm is a given constant forms the surface of a
cross polytope of dimension equivalent to that of the norm minus 1. The Taxicab
norm is also called the L

1
 norm. The distance derived from this norm is called the

Manhattan distance or L
1
 distance.

p-Norm

Let p  1 be a real number.

1/

1

|| || : | |

pn
p

p i
i

x x .

Note that for p = 1 we get the taxicab norm, for p = 2 we get the Euclidean
norm and as p approaches  the p-norm approaches the infinity norm or maximum
norm.

The Lp class is a vector space and it is also true that the function,

 | ( ) – ( ) |p
X

f x g x d

(without p-th root) defines a distance that makes Lp(X) into a complete
metric topological vector space.

Other Norms

Other norms on Rn can be constructed as follows:

2 2
1 2 3 4|| || : 2 || || 3 | | max(| |, 2 | |)x x x x x

This is a norm on R4.

For any norm and any injective linear transformation A we can define a new
norm of x equal to ||Ax||.

Weak and Strong Convergence

Definition: A sequence  (x
n
) in a normed space X is said to be strongly convergent

if there is an  x  X such that,
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lim || – || 0n
n

x x

This is written as,

lim n
n

x x

Or as,

nx x

x is called the strong limit of (x
n
) and we say that  (x

n
) converges strongly

to x.

Definition: A sequence (x
n
) in a normed space X is said to be weakly convergent

if there is an x  X such that for every f  X,

lim ( ) ( )n
n

f x f x

This is written as,

w
nx x

Or as,

           x
n
   x

The element x is called the weak limit of (x
n
) and we say that (x

n
) converges

weakly to x.

Check Your Progress

1. Define a normed vector space.

2. When is a topological space said to be completely normal?

3. What is Euclidean norm?

4. Define weak convergence.

4.3 FINITE DIMENSIONAL NORMED LINEAR
SPACES AND COMPACTNESS

The motivating factor in rings was set of integers and in groups the set of all
permutations of a set. A vector space originates from the notion of a vector that
we are familiar with in mechanics or geometry. You would recall that a vector is
defined as a directed line segment, which in algebraic terms is defined as an ordered
pair (a, b) being coordinates of the terminal point relative to a fixed coordinate
system. Addition of vectors is given by the rule:

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2)

You can easily verify that set of vectors under this forms an abelian group. Also,
scalar multiplication is defined by the rule  (a, b) = (a, b) which satisfies
certain properties. This concept is extended similarly to three dimensions. You can
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generalize the whole idea through the definition of a vector space and vary the
scalars not only in the set of reals but in any field F. A vector space thus differs
from groups and rings in as much as it also involves elements from outside itself.

Definition: Let < V, + > be an abelian group and < F, +,  > be a field. Define
a function × (called scalar multiplication) from F × V  V, such that, for all 
 F, v  V,  v  V. Then V is said to form a vector space over F if for all
x, y  V, ,   F, the following hold

(i) ( + ) x = x + x
(ii)  (x + y) = x + y
(iii) () x =  (x)
(iv) 1 . x = x, 1 being unity of F.
Also then, members of F are called scalars and those of V are called vectors.

Note: You can use the same symbol + for the two different binary compositions
of V and F, for convenience. Similarly, the same symbol, is used for scalar
multiplication and product of the field F.

Since < V, + > is a group, its identity element is denoted by 0. Similarly, the
field F would also have zero element which will also be represented by 0. In case
of doubt, you can use different symbols like 0v and 0F, etc.

Since you generally work with a fixed field, you would only be writing V as a
vector space (or sometimes V (F) or VF). It would always be understood that
it is a vector space over F (unless stated otherwise).

You have defined the scalar multiplication from F × V  V. You can also define
it from V × F  V and have a similar definition. The first one is called a left vector
space and the second a right vector space. It is easy to show that if V as a left
vector space over F, then it is a right vector space over F and conversely. In view
of this result, it becomes redundant to talk about left or right vector spaces. We
will consider about only vector spaces over F.

You can also talk about the above system when the scalars are allowed to take
values in a ring instead of a field, which leads to the definition of modules.

Theorem 4.1: In any vector space V(F), the following results hold:
(i) 0.x = 0
(ii) .0 = 0
(iii) (–)x = – (x) = (– x)
(iv) ( – )x = x – x, ,   F, x  V

Proof: (i)  0.x = (0 + 0).x = 0.x + 0.x
 0 + 0.x = 0.x + 0.x

 0 = 0.x (cancellation in V)

(ii) .0 = .(0 + 0) = .0 + .0  .0 = 0

(iii) (–)x + x = [(–) + ]x = 0 . x = 0
 (–x) = – x

(iv) follows from above.
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The following examples illustrate Theorem 4.1

(i) If < F, +, . > be a field, then F is a vector space over F as < F, + > =
< V, + > is an additive abelian group. Scalar multiplication can be taken
as the product of F. All properties are seen to hold. Thus F(F) is a vector
space.

(ii) Let < F, +, . > be a field

Let V = {(1, 2) | 1, 2  F}

Define + and . (scalar multiplication) by

(1, 2) + (1, 2) = (1 + 1, 2 + 2)

 (1, 2) = (1, 2)

You can check that all conditions in the definition are satisfied. Here
V = F × F = F2

One can extend this to F3 and so on. In general we can take n–tuples
(1, 2, ..., n), i F and define Fn or F(n) = {(1, 2, ..., n) | i
 F} as a vector space over F.

(iii) If F  K be two fields then K(F) will form a vector space, where addition
of K(F) is + of K and for any F, x  K, . x is taken as product
of  and x in K.
Thus C(R), C(C), R(Q) would be some examples of vector spaces, where
C = complex nos., R = reals and Q = rationals.

(iv) Let V = set of all real valued continuous functions defined on [0, 1]. Then
V forms a vector space over the field R of reals under addition and scalar
multiplication defined by:

( f + g)x = f (x) + g(x) f, g  V

  ( f )x =  f (x)  R for all x  [0, 1]

It may be recalled here that sum of two continuous functions is continuous
and scalar multiple of a continuous function is continuous.

(v) The set F [x] of all polynomials over a field F in an indeterminate x forms
a vector space over F with respect to, the usual addition of polynomials
and the scalar multiplication defined by:

For f (x) = a0 + a1x + ... + anx
n  F [x],  F

.( f (x)) = a0 + a1x + ... + anx
n.

(vi) Mm × n (F), the set of all m × n matrices with entries from a field F forms
a vector space under addition and scalar multiplication of matrices.
We use the notation Mn (F) for Mn × n (F).

(vii) Let F be a field and X a non-empty set.
Let F X = {f | f : X  F}, the set of all mappings from X to F. Then F X

forms a vector space over F under addition and scalar multiplication defined
as follows:

For f, g  FX,   F

Define f + g : X  F,  F : X  F such that,
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( f + g)(x) = f (x) + g(x)

( f )(x) =  f (x)  x  X

(viii) Let V be the set of all vectors in three dimensional space. Addition in V is
taken as the usual addition of vectors in geometry and scalar multiplication
is defined as:
 R, 


v   V   

v  is a vector in V with magnitude |  | times that of
V. Then V forms a vector space over R.

Subspaces
Definition: A non-empty subset W of a vector space V(F) is said to form a
subspace of V if W forms a vector space under the operations of V.

Theorem 4.2: A necessary and sufficient condition for a non-empty subset W  of
a vector space V(F) to be a subspace is that W is closed under addition and scalar
multiplication.

Proof: If W is a subspace, the result follows by definition.
Conversely, let W be closed under addition and scalar multiplication.

Let x, y, W since 1F, –1  F

 – 1. y  W  – y  W

x, – y  W  x – y  W

 < W, + > forms a subgroup of < V, + >.

Rest of the conditions in the definition follow trivially.

Theorem 4.3: A non-empty subset W of a vector space V(F) is a subspace of
V iff x + y  W  for ,   F, x, y  W.

Proof: If W is a subspace, result follows by definition.
Conversely, let given condition hold in W.
Let x, y  W be any elements. Since 1  F

1 . x + 1 . y = x + y  W

 W is closed under addition.
Again, x  W,   F then

x = x + 0.y  for any y  W, 0  F

which is in W. (Note here 0 may not be in W)
Hence W is closed under scalar multiplication.
The result thus follows by previous theorem.

Remark: V and {0} will be trivial subspaces of any vector space V(F).

For example, consider the vector space R2(R)

then W1 = {(a, 0 ) | a  R}

W2 = {(0, b) |  b  R}

are subspaces of   R2

As for any ,   R,  (a1, 0), (a2, 0)  W1, you find

 (a1, 0) +  (a2, 0)= (a1, 0) + (a2, 0)
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 = (a1 + a2, 0)  W1

Hence W1 is a subspace. Similarly, you can show W2 is a subspace of R2.

Example 4.1: Show that union of two subspaces may not be a subspace.

Solution: Consider the given under Theorem 4.3.
W1  W2 will be the set containing all pairs of the type (a, 0), (0, b)

In particular (1, 0), (0, 1)  W1  W2

But (1, 0) + (0, 1) = (1, 1)  W1  W2.

Hence W1  W2 is not a subspace.

You are referred to exercises for more results pertaining to intersection and
union of subspaces.

A few more examples of subspaces are as follows:
(i) Let V = R[x] and suppose W = {f (x)  V | f (x) = f (1– x)}

Then W is a subspace of V as
W   since 0  W as f (x) = 0 = f (1 – x)

Again, if f (x), g(x)  W, then f (x) = f (1 – x), g(x) = g(1 – x)

Let f (x) + g(x) = h(x)

Then h(1 – x) = f (1 – x) + g(1 – x)

= f (x) + g(x) = h(x)

 h(x) W or that f (x) + g(x)  W

Again, for   R, let f (x) = r(x)

Then r(1 – x) =  f (1 – x) =  f (x) = r(x)

    r(x)  W   f (x)  W

Hence W is a subspace.

(ii) Let V = FX (Refer example (vii) of Theorem 4.1) and suppose Y  X

Then W = {f  V | f (y) = 0  y Y} is a subspace of V

Clearly 0  W and for f, g  W,

f (y) = 0 = g(y)  y  Y

So (f + g)(y) = f (y) + g(y) = 0  y  Y

  f + g  W

Again, if   F, then

( f )y =  ( f (y)) = 0    y  Y

   f   W.

(iii) If V = Rn, then
W = {(x1, x2, ..., xn) | x1 + x2 + ... + xn = 1} will not be a subspace
of V.

Notice, (1, 0, 0, ..., 0) + (0, 1, 0, ..., 0) = (1, 1, 0, ..., 0)  W.

(iv) Let V  = M2 × 1 (F). Let A be a 2 × 2 matrix over F.

Then W = 1 1

2 2
0

x x
V A

x x
 forms a subspace of V
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Hence W is a subspace of V.

(v) Let V = 2
2F , where F2 = {0, 1} mod 2.

 If W1 = {(0, 0), (1, 0)}

W2 = {(0, 0), (0, 1)}

W3 = {(0, 0), (1, 1)}

Then W1  W2  W3 = {(0, 0), (1, 0), (0, 1), (1, 1)} = V

   Thus we notice that here V is union of finite number of proper subspaces.
  This result may, however, not hold if V happens to be a vector space over

an infinite field.

Example 4.2: Let V be a vector space over a finite field F. Suppose
V = W1W2 ... Wk , Wi being subspaces of V  i. If o(F)  k then, show that
V = Wi for some i.

Solution: Suppose V  Wi for any i

Now Wk  W1  W2 ... Wk–1

and W1  W2 ... Wk–1  Wk

  x  Wk such that, x  W1  W2 ... Wk–1

and  y  W1 ... Wk–1 such that, y  Wk

Let S = {ax + y | a  F}

Then no element of S can belong to Wk, as

ax + y  Wk  ax + y – ax = y  Wk, a contradiction

So ax + y Wk  a  F

 ax + y  W1  W2 ...... Wk–1  a  F

So  ,   F,   such that

x + y  Wj, x + y  Wj for some j, 1  j  k – 1

 (x + y) – (x + y)  Wj

 ( – )x  Wj
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 x  Wj  x  W1  .....  Wk–1, a contradiction

 V = Wi for some i

(You may notice here that example (v) of subspaces o(F) = 2 and you could
write V = W1  W2  W3, V  Wi for any i)

Sum and Direct Sum of Subspaces
If W1 and W2 be two subspaces of a vector space V(F), then we define

W1 + W2 = {w1 + w2 | w1  W1, w2  W2}

W1 + W2   as 0 = 0 + 0  W1 + W2

Again, x, y  W1 + W2, ,  F implies

x = w1 + w2

y = w'1 + w'2 w1, w'1  W1, w2, w'2  W2

x + y =  (w1 + w2) + (w'1 + w'2)

= (w1 + w'1) + (w2 + w'2)  W1 + W2

Showing thereby that sum of two subspaces is a subspace.
You can extend the definition, similarly, to the sum of n subspaces W1, W2, ...,

Wn, which would also be a subspace and we write W1 + W2 + ... + Wn = 



1

n

i
i

W

Definition: Let W1, W2,..., Wn be subspaces of V then W1 + W2 + ... + Wn is
called the direct sum if each x  W1 + W2 + ... + Wn can be expressed uniquely
as x = w1 + w2 + ... + wn, wi  Wi and in that case we write

W1 + W2 + ... + Wn = W1  W2  ...  Wn

We say, a vector space V is the direct sum of its subspaces W1, W2, ..., Wn
if  V = W1  W2  ...  Wn, i.e., if

V = W1 + W2 + ... + Wn

and each v  V can be expressed uniquely as v = w1 + w2 + ... + wn, wi  Wi.

Theorem 4.4: V = W1  W2  V = W1 + W2, W1  W2 = (0).

Proof: Let V = W1  W2

We need to prove W1  W2 = (0)

Let  x  W1  W2, then x  W1 and x  W2

 x = 0 + x  W1 + W2 = V

 x = x + 0  W1 + W2 = V

Since x has been expressed as x = x + 0 and 0 + x and the representation has
to be unique, we get x = 0

 W1  W2 = (0).

Conversely, let v  V be any element and suppose

v = w1 + w2

v = w'1 + w'2 are two representations of v

then w1 + w2 = w'1 + w'2 (= v)

 w1 – w'1 = w'2 – w2
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Now L.H.S. is in W1 and R.H.S. belongs to W2

i.e., each belongs to W1  W2 = (0)

 w1 – w'1 = w'2 – w2 = 0

 w1 = w'1, w2 = w'2.

Hence the result.

Note: The above theorem can also be stated as

W1 + W2 = W1  W2  W1  W2 = {0}.

Consider the Following Example: Consider the space V(F) = F2(F) where F
is a field

Let W1 = {(a, 0) | a  F}

W2 = {(0, b) | b  F}
then V is direct sum of W1 and W2

v  V  v = (a, b) = (a, 0) + (0, b)  W1 + W2

thus V  W1 + W2

or that V = W1 + W2

Again if (x, y)  W1  W2 be any element then

(x, y)  W1  and  (x, y)  W2

 y = 0  and  x = 0

 (x, y) = (0, 0)

 W1  W2 = (0)

Hence V = W1  W2.

Example 4.3: Let V be the vector space of all functions from R  R. Let
Ve = {f  V | f is even}, V0 = {f  V | f is odd}. Then Ve and V0 are subspaces
of V and V = Ve  V0.

Solution: Addition and scalar multiplication in V are given by the rule

(f + g) x = f (x) + g(x); ( f ) x =  f (x)

Now Ve  as 0(x) = 0  0(x) = 0(– x)

 0  Ve

Again for ,  R, f, g  Ve, we have

( f + g) (– x) = ( f ) (– x) + (g) (– x)

= ( f (– x)) + (g (– x))

=  f (x) + g(x)

= ( f + g)x
  f + g  Ve

 Ve is a subspace of V

Similarly, V0 is a subspace of V.

Thus, Ve + V0 is a subspace of V. We show V  Ve + V0

Let f  V be any member
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Let g : R  R be such that g(x) = f (– x), then g  V

Also then f = 1 1 1 1

2 2 2 2
f g f g

        
   

Since 
1 1 1 1 1 1

( ) ( ) ( ) ( ) ( )
2 2 2 2 2 2

f g x f x g x g x f x

= 
1 1

2 2
f g x

  
 

we find
1 1

2 2
f g  Ve

Similarly, 1 1

2 2
f  g  V0

 f  Ve + V0  V  Ve + V0

or that V = Ve + V0

Finally,  f  Ve  V0  f  Ve, f  V0

 f (– x) = f (x) and f (– x) = – f (x)

 f (x) = – f (x)

 f (x) + f (x) = 0 = 0(x)

 2f (x) = 0 (x) for all x

 2f = 0  f = 0  Ve  V0 = (0).
Hence the result.

Example 4.4: If L, M, N are three subspaces of a vector space V, such that
M  L then show that L  (M + N) = (L  M) + (L  N) = M + (L  N).

Also give an example, where the result fails to hold when M  L.

Solution: We leave the first part for you to try. Recall a similar result was proved
for ideals in rings. The equality is called modular equality.

Consider now the vector space V = R2

Let L = {(a, a) | a  R}

M = {(a, 0) | a  R}

N = {(0, b) | b  R}

It is a routine matter to cheek that L, M, N are subspaces of V. Indeed

(a, a) + (a, a) = (a, a) + (a, a)
= (a + a, a + a)  L, etc.

Now (x, y)  L  M  (x, y)  L and (x, y)  M

 y = x and y = 0

 x = 0 = y  (x, y) = (0, 0)

Similarly, L  N = {(0, 0)}

 L  M + L  N = {(0, 0)}

Again, M + N = {(a, b) | a, b  R} and as (1, 1)  M + N

(1, 1)  L
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We find (1, 1)  L  (M + N), but (1, 1)  L  M + L  N

Hence L  (M + N)  (L  M) + (L  N), when M  L.

Example 4.5: Let V = RX (Refer example of Theorem 4.1) and fix x0  X.
Define

W = {f  V | f (x0) = 0}

W = {g  V | g(x) = 0  x  X – {x0}}

then show that W, W are subspaces of V and V = W  W.

Solution: We leave it for the reader to show that W, W' are subspaces.
Let  f  W  W ' then f  W and f  W 

 f (x0) = 0, f (x) = 0  x  X, x  x0

 f (x) = 0,  x  X,

 f = 0 and thus W  W = {0}.

Let  f  V and let f (x0) = r

Then ( f – r x0)  W,  r x0  W
and f = ( f – r x0) + r x0  W + W 
 V = W + W 
i.e., V = W  W 
Notice here x0 denotes the Kronecker delta, i.e., x0 (x0) = 1, x0

(x) = 0  x  x0.

Quotient Spaces
If W be a subspace of a vector space V(F) then since < W, + > forms an abelian

group of < V, + >, we can talk of cosets of W in V. Let V

W
 be the set of all cosets

W + v, v  V, then we show that V

W
 also forms a vector space over F, under

the operations defined by:

(W + x) + (W + y) = W + (x + y) x, y  V

(W + x) = W + x   F

Addition is well defined, since,

W + x = W + x
W + y = W + y

 x – x  W, y – y  W

 (x – x) + (y – y)  W

 (x + y) – (x + y)  W

 W + (x + y) = W + (x + y)
Again, W + x = W + x

 x – x  W,

 (x – x)  W        F

 x – x  W

 W + x = W + x
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 (W + x) = (W + x)
Thus, scalar multiplication is also well defined. It should now be a routine exercise

to check that all conditions in the definition of a vector space are satisfied.

W + 0 will be zero of V

W
W – x will be inverse of W + x
Also ((W + x) + (W + y)) = (W + (x + y))

= W + (x + y)
= W + (x + y)
= (W + x) + (W + y)
= (W + x) + (W + y) etc.

Hence, V/W forms a vector space over F, called the quotient space of V by
W.

4.3.1 Linear Transformation in Vector Spaces
In this section, you will learn about the concept of a homomorphism in case of
vector spaces.
Definition: Let V and U be two vector spaces over the same field F, then a
mapping T : V  U is called a homomorphism or a linear transformation if

T(x + y) = T(x) + T(y) for all x, y  V

T(x) = T(x)  F

You can combine the two conditions to get a single condition

T(x + y) = T(x) + T(y) x, y  V; ,  F

It is easy to see that both are equivalent. If a homomorphism happens to be
one-one onto also we call it an isomorphism, and say the two spaces are
isomorphic. (Notation V  U).

This  concept is illustrated with the help of the following examples:
(i) Identity map I : V  V, such that,

I(v) = v

and the zero map O : V  V, such that,

O(v) = 0

are clearly linear transformations.

(ii) For a field F, consider the vector spaces F2 and F3. Define a map
T : F3  F2, by

T(, , ) = (, )

then T is a linear transformation as

for any x, y  F3, if x = (1, 1, 1)

y = (2, 2, 2)

then T(x + y) = T(1 + 2, 1 + 2,  1 + 2)

= (1 + 2, 1 + 2)

= (1, 1) + (2, 2) = T(x) + T(y)

and T(x) = T( (1, 1, 1)) = T(1, 1, 1)
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= (1, 1) = (1, 1) = T(x)

(iii) Let V be the vector space of all polynomials in x over a field F. Define
T : V  V, such that,

T(f (x)) = d

dx
f (x)

then T(f + g) = d

dx
(f + g) = d d

f
dx dx

 g = T( f ) + T(g)

T(f ) = d

dx
(f ) =  d

dx
f = T(f )

shows that T is a linear transformation.

In fact, if  : V  V be defined such that

(f ) = 
0

( )
x

f t  dt

then  will also be a linear transformation.

(iv) Consider the mapping

T : R3  R, such that,

T(x1, x2, x3) = 2 2 2
1 2 3x x x 

then T is not a linear transformation.
Consider, for instance,

T((1, 0, 0) + (1, 0, 0)) = T(2, 0, 0) = 4

T(1, 0, 0) + T(1, 0, 0) = 1 + 1 = 2.
Theorem 4.5: Under a homomorphism T : V  U,

(i) T(0) = 0 (ii) T(– x) = – T(x).

Proof: T(0) = T(0 + 0) = T(0) + T(0)

 T(0) = 0

Again T(– x) + T(x) = T(– x + x) = T(0) = 0

 – T(x) = T( – x).

Definition: Let T : V  U be a homomorphism, then kernel of T is defined by
Ker T = {x  V | T(x) = 0}

It is also called the null space of T.

Theorem 4.6: Let T : V  U be a homomorphism, then Ker T is a subspace
of V.

Proof: Ker T   as 0  Ker T

Let ,   F, x, y  Ker T be any elements

then T(x + y) = T(x) + T(y)
= . 0 + . 0 = 0 + 0 = 0

 x + y  Ker T.

Theorem 4.7: Let T : V  U be a homomorphism, then
Ker T = {0} iff T is one-one.

Proof: Let Ker T = {0}. If T(x) = T(y)



Finite Dimensional Normed
Spaces and Subspaces

NOTES

Self - Learning
Material 159

then T(x) – T(y) = 0

 T(x – y) = 0

 (x – y)  Ker T = {0}

 x – y = 0

 x = y  T is 1–1.

Conversely, let T be one-one
if x  Ker T be any element, then T(x) = 0

 T(x) = T(0)

 x = 0

 Ker T = {0}.

Definition: Let T : V  U be a linear transformation then range of T is defined
to be

T(V) = {T(x) | x  V} = Range T = RT

= {u  U | u = T(v), v  V}

Theorem 4.8: Let T : V  U be a linear transformation (linear transformation)
then range of T is subspace of U.

Proof: Since T(0) = 0, 0  V

 T(0)  Range T

i.e., Range T  
Let ,   F, T(x), T(y)  T(V) be any elements

then x, y  V

Now T(x) + T(y) = T(x + y)  T(V)

as x + y  V

Hence the result.
Note: T(V) = U iff T is onto.

Theorem 4.9: Let T : V  U be a linear transformation then

V

Ker T
  Range T = T(V).

Proof: Let T : V  U and put Ker T = K, then K being a subspace of V, we
can talk of V/K.

Define a mapping : V/K  T(V), such that,

 (K + x) = T(x),  x  V
Then  is well defined, one-one map as

K + x = K + y

 x – y  K = Ker T

 T(x – y) = 0

 T(x) = T(y)

 (K + x) = (K + y)

If T(x)  T(V) be any element, then x  V and (K + x) = T(x), showing that
 is onto.
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Finally,((K + x) + (K + y))= (K + (x + y))

= T(x + y)

= T(x) + T(y)

= (K + x) +  (K + y)

and  ((K + x)) = (K + x) = T(x) = T(x) = (K + x)

shows  is a linear transformation and hence an isomorphism.

Note: The above is called the fundamental theorem of homomorphism for vector
spaces.

If the map T is also onto, then we have proved 
Ker

V

T
  U.

Theorem 4.10: If A and B be two subspaces of a vector space V(F), then

A B B

A A B





.

Proof: A being a subspace of A + B and A  B being a subspace of B, we can

talk of A B

A

  and 
B

A B
.

Define a map  : B  A B

A

  such that,

(b) = A + b,  b  B

Since b1 = b2  A + b1 = A + b2, we find  is well defined.

Again, as (b1 + b2) = A + (b1 + b2)

= (A + b1) + (A + b2)

= (A + b1) + (A + b2) = (b1) + (b2)

 is a linear transformation

For any A + x  A B

A

 , we find x  A + B

 x = a + b,  a  A, b  B

A + x = A + (a + b)

= (A + a) + (A + b)

= A + (A + b) = A + b = (b).

Showing that b is the required pre image of A + x under  and thus  is onto.
Hence by Fundamental theorem

A B

A

  
Ker

B
.

We claim Ker  = A  B

Indeed x  Ker   (x) = A

 A + x = A

 x  A, also x  Ker  B

 x  A  B

Hence A B

A

  
B

A B
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Note: By interchanging A and B, we get B A

B

   
A

B A

i.e., A B

A

  
B

A B
.

Corollary: If A + B is the direct sum then as A  B = {0}

we get
(0)

A  A B

B



But 
(0)

A
  A (Refer Note of  Theorem 4.10) gives us A  A B

B

 .

Theorem 4.11: Let W be a subspace of V, then  an onto linear transformation

 : V  V

W
 such that, Ker  = W..

Proof: Define  :V V

W
 such that,

(x) = W + x

then  is clearly well defined.

Also (x + y) = W + (x + y)

= (W + x) + (W + y)

= (W + x) + (W + y) = (x) + (y)
Shows  is a linear transformation
 is clearly onto.
Again, x  Ker   (x) = W

 W + x = W

 x  W
Hence Ker  = W.
 is called the natural homomorphism or the quotient map.

Note: In case W = (0) in the above, we find  will be 1–1 also as

(a) = (b)

 W + a = W + b

 a – b  W = (0)

 a – b = 0

 a = b.

Hence in that case or
(0)

V V
V V

W
.

Note W = (0)   Ker  = (0)  is one-one.

Example 4.6: Let W and U be subspaces of V(F) such that W  U  V.
Let f : V  V/W be the quotient map. Show that f (U) is a proper subspace of
V/W.

Solution: Since f is a linear transformation, f (U) is a subspace of V/W.

If f (U) = 0 then f (x) = 0 for all x  U

 W + x = W  for all x  U
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 x  W for all x  U

 U  W, a contradiction

Again since U  V,  v0  V such that, v0  U.

If f (v)  f (U) then f (v0) = f (x) for some x  U

 f (v0 – x) = 0

 W + (v0 – x) = W

 v0 – x  W

 v0 = x + w  for some w  W

 v0  U, a contradiction

Hence f (v0)  f (U)  f (U)  V

W

or that f (U) is a proper subspace of V

W
.

Linear Span and Finite Dimensional Vector Space (FDVS)

Definition: Let V(F) be a vector space, vi  V, i  F be elements of V and

F respectively. Then elements of the type 
1

n

i i
i

v  are called linear combinations

of v1, v2, ..., vn over F.
Let S be a non-empty subset of V, then the set

L(S) = 
1

| , , finite
n

i i i i
i

v F v S n

i.e., the set of all linear combinations of finite sets of elements of S is called linear
span of S. It is also denoted by < S >. If S = , define L(S) = {0}.

Theorem 4.12: L(S) is the smallest subspace of V, containing S.

Proof: L(S)  as v  S  v = 1 . v, 1  F
 v  L(S)

thus, in fact, S  L(S).
Let      x, y  L(S), ,   F be any elements
then    x = 1v1 + 2v2 + ... + nvn

   y = 1v1 + 2v2 +...+ mvm vi, vj S, i, j  F

Thus x + y = 1v1 + 2v2 + ... + nvn + 1v1 + ... + mvm .

R.H.S. being a linear combination belongs to L(S).
Hence L(S) is a subspace of V, containing S.
Let now W be any subspace of V, containing S
We show L(S)  W

x  L(S)  x = ivi vi  S, i  F
vi  S  W for all i and W is a subspace

 ivi  W  x  W

 L(S)  W
Hence the result follows.
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Theorem 4.13: If S1 and S2 are subsets of V, then

(i) S1  S2  L(S1)  L(S2)

(ii) L(S1  S2) = L(S1) + L(S2)

(iii) L(L(S1)) = L(S1).

Proof: (i) x  L(S1)  x = ivi   vi  S1, i  F

thus vi  S1  S2 for all i
 ivi  S2  x  L(S2)
 L(S1)  L(S2).

(ii) S1  S1  S2  L(S1)  L(S1  S2)

S2  S1  S2  L(S2)  L(S1  S2)

 L(S1) + L(S2)  L(S1  S2)

Again, S1 L(S1)  L(S1) + L(S2)

S2  L(S2)  L(S1) + L(S2)

 S1  S2  L(S1) + L(S2).

Hence L(S1  S2)  L(S1) + L(S2)

as L(S1  S2) is the smallest subspace containing S1  S2 and L(S1) + L(S2)
is a subspace, being sum of two subspaces (and contains S1  S2).

Thus L(S1  S2) = L(S1) + L(S2).

(iii)    Let L(S1) = K then we show L(K) = L(S1)

Now K  L(K)  L(S1)  L(L(S1))

Again x  L(L(S1))  x is linear combination of members of L(S1) which are
linear combinations of members of S1.

So x is a linear combination of members of S1

 x  L(S1)

Thus L(L(S1))  L(S1)

Hence L(L(S1)) = L(S1).

Theorem 4.14: If W is a subspace of V, then L(W) = W and conversely.

Proof: W  L(W) by definition and since L(W) is the smallest subspace of V
containing W and W is itself a subspace.

L(W)  W

Hence L(W) = W.

Conversely, let L(W) = W

Let x, y  W, ,   F

Then x, y  L(W)

 x, y are linear combinations of members of W.

 x + y is a linear combination of members of W

 x + y  L(W)

 x + y  W

 W is a subspace.
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Definition: If V = L(S), we say S spans (or generates) V. The vector space V
is said to be finite-dimensional (over F) if there exists a finite subset S of V such
that are
V = L(S). We use notation FDVS for a finite dimensional vector space.

From the results, it is proved that

If S1 and S2 are two subspaces of V, then S1 + S2 is the subspace spanned
by S1  S2

Indeed, L(S1  S2) = L(S1) + L(S2) = S1 + S2.

Example 4.7: Let S = {(1, 4), (0, 3)} be a subset of R2(R). Show that (2, 3)
belongs to L(S).

Solution: (2, 3)  L(S) if it can be put as a linear combination of (1, 4) and
(0, 3).

Now (2, 3) = (1, 4) + (0, 3)

 (2, 3) = ( + 0, 4 + 3)

 2 = , 4 + 3 = 3

  = 2,  = – 5

3

Hence (2, 3) = 2 (1, 4) – 5

3
 (0, 3)

Showing that (2, 3)  L(S).

Example 4.8: Let V = R4(R) and let S = {(2, 0, 0, 1), (– 1, 0, 1, 0)}. Find
L(S).

Solution: Any element (1, 2, 3, 4)  L(S) is a linear combination of members
of S.

Let (1, 2, 3, 4) = (2, 0, 0 1) + (– 1, 0, 1, 0), ,  R

then (1, 2, 3, 4) = (2 – , 0, , )

i.e., L(S) = {(2 – , 0, , ) | ,   R}

Example 4.9: Show that the vector space F[x] is not finite dimensional.

Solution: Let V = F[x] and suppose it is finite dimensional.

Then  S  V, such that, V = L(S) and S is finite.

Suppose S = {p1, p2,..., pk}. We can assume pi  0 i

Let deg pi= ri and let t  = Max {r1, r2,..., rk}

Now x t+1 V and since V = L(S),

x t+1 = 1p1 + 2p2 + ... + kpk, i  F

So 0 = (– 1) xt+1 + 1p1 + ... + kpk

Since xt+1 does not appear in p1, p2,..., pk

We get – 1 = 0, a contradiction. Hence V is not FDVS over F.

Note if   S = {1, x,..., xn,...} then V = L(S).
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Linear Dependence and Independence: Basic Properties
Let V(F) be a vector space. Elements v1, v2, ..., vn in V are said to be linearly
dependent (over F) if  scalars 1, 2,... n  F, (not all zero) such that,

1v1 + 2v2 + ... nvn = 0

(v1, v2, ..., vn are finite in number, not essentially distinct).

Thus for linear dependence ivi = 0 and at least one i  0.

If v1, v2...vn are not linearly dependent (LD), these are called linearly
independent (LI)

In other words, v1, v2,.., vn are LI if

ivi = 0  i = 0 for all i

A finite set X = {x1, x2..., xn} is said to be LD or LI according as its n members
are LD or LI

In general any subset Y of V(F) is called LI if every finite non-empty subset of
Y is LI, otherwise it is called LD

So, if some subsets are LI and some are LD then Y is called LD

Observations: (i) A non-zero vector is always LI as v  0, v = 0 would mean
 = 0.

(ii) Zero vector is always LD
1 . 0 = 0 1  0, 1  F

Thus, any collection of vectors to which zero belongs is always LD
In other words, if v1, v2,..., vn are LI then none of these can be zero. (But not

conversely, Refer example ahead).
(iii) v is LI iff v  0.
(iv) Any subset of a LI set is LI
(v) Any super set of a LD set is LD
(vi) Empty set  is LI since it has no non-empty finite subset and consequently

it satisfies the condition for linear independence. In other words, whenever ivi
= 0 in  then as there is no i for which i  0, set  is LI We sometimes express
it by saying that empty set is LI vacuously.

(vii) A set of vector is LI if and only if every finite subset of it is LI

Some examples of linear dependence and independence are given as follows:

(i) Consider R2(R), R = reals.
v1 = (1, 0), v2 = (0, 1)  R2 are LI

 as 1v1 + 2v2 = 0  for 1, 2  R
 1(1, 0) + 2(0, 1) = (0, 0)
 (1, 2) = (0, 0)  1 = 2 = 0.

(ii) Consider the subset

S = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (2, 3, 4)} in the vector space
R3(R).

Since 2(1, 0, 0) + 3(0, 1, 0) + 4(0, 0, 1) – 1(2, 3, 4) = (0, 0, 0)

we find S is LD
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(iii) In the vector space F[x] of polynomials the vectors f (x) = 1 – x,
g(x) = x – x2, h(x) = 1 – x2 are LD since f (x) + g(x) – h(x) = 0.

Example 4.10: Show that the vectors v1 = (0, 1, – 2), v2 = (1, – 1, 1), v3 =
(1, 2, 1) are LI in R3(R).

Solution: Let ivi = 0 for i  R

Then 1(0, 1, – 2) + 2 (1, – 1, 1) + 3 (1, 2, 1) = (0, 0, 0)

 (0, 1, – 21) + (2, – 2, 2) + (3, 23, 3) = (0, 0, 0)

 0 + 2 + 3 = 0

1 – 2 + 23 = 0

– 21 + 2 + 3 = 0

Since the coefficient determinant 
0 1 1

1 1 2

2 1 1

 is – 6  0 the above equations

have only the zero common solution
 1 = 2 = 3 = 0  v1, v2, v3 are LI

Example 4.11: Show that {f (x), g(x), h(x)} is LI in F[x], whenever. deg f (x),
deg g(x), deg h(x) are distinct.

Solution: Let f (x) = a0 + a1x + ... + amxm, am  0

g(x) = b0 + b1x + ... + bnx
n, bn  0

h(x) = c0 + c1x + ... + ctx
t, ct  0

Let f (x) + g(x) + h(x)  = 0, , ,   F

Let m < n < t (without any loss of generality)

then  ct = 0   = 0 as ct  0

  f (x) + g(x) = 0

and so bn = 0   = 0 as bn  0

  f (x) = 0   am = 0   = 0 as am  0

Hence {f (x), g(x), h(x)} is LI in F [x] over F.

Example 4.12: Show that the vectors
v1 = (1, 1, 2, 4), v2 = (2, – 1, – 5, 2), v3 = (1, – 1, – 4, 0) and v4 =  (2, 1, 1,
6) are LD in R4(R).

Solution: Suppose av1 + bv2 + cv3 + dv4 = 0,  a, b, c, d  R

then  a (1, 1, 2, 4) + b(2, – 1, – 5, 2) + c (1, –1, –4, 0)

+ d(2, 1, 1, 6) = (0, 0, 0, 0)

or   (a, a, 2a, 4a) + (2b, – b, – 5b, 2b) + (c, – c, – 4c, 0)

+ (2d, d, d, 6d) = (0, 0, 0, 0)

 a + 2b + c + 2d = 0

a – b – c + d = 0

2a – 5b – 4c + d = 0

4a + 2b + 0c + 6d = 0
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1 2 1 2

1 1 1 1

2 5 4 1

4 2 0 6

a

b

c

d

   
       
    
   
   

= 

0

0

0

0

 
 
 
 
 
 

R2  R2 – R1, R3  R3 – 2R1, R4  R4 – 4R1

1 2 1 2

0 3 2 1

0 3 2 1

0 3 2 1

a

b

c

d

   
        
     
        

= 

0

0

0

0

 
 
 
 
 
 

R4  1

2
R4, R3  1

3
R3

1 2 1 2

0 3 2 1

0 1 2/3 1/3

0 3/4 1 1/2

a

b

c

d

= 

0

0

0

0

 
 
 
 
 
 

R4  R4 – R2, R3  R3 – R2

1 2 1 2

0 3 2 1

0 0 0 0

0 0 0 0

a

b

c

d

   
        
   
   
   

= 

0

0

0

0

 
 
 
 
 
 

 a + 2b + c + 2d = 0

– 3b – 2c + d = 0

3b + 2c + d = 0

a = – 1, b = – 1, c = 1, d = 1 satisfy the equations.
Since coefficients are non-zero, the given vectors are LD

Example 4.13: Show that

(i) {1, 2 } is LI in R over Q.

(ii) {1, 2 , 3 } is LI in R over Q.

(iii) {1, 2 , 3 , 6 } is LI in R over Q.

Solution: (i) Suppose 2a b  = 0,  a, b  Q

Suppose b  0, then 2  = – a

b
  Q, a contradiction

Hence b = 0 and so a = 0. Thus {1, 2 } is LI in R over Q.

(ii) Let     2 3a b c   = 0, a, b, c  Q

Let c  0, then

3 = – a b

c c
  2  = 2   , ,   Q

 3 = 2 + 22 + 2 2

  2  Q   = 0
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Let  = 0 then  = 3

2
, a contradiction

So, c = 0 giving 2a b  = 0  a = b = 0 by (i)

Hence the result follows.

(iii) Let 2 3 6a b c d  = 0, a, b, c, d  Q

Then ( 2a b ) + 3 ( 2c d ) = 0

Let 2c d  0

Then 3 = 
( 2)

( 2)

a b

c d

 


 = 
2 2

( 2) ( 2)

2

a b c d

c d

  



= 2   , ,   Q

   2 ( 1) 3     = 0

 – 1 = 0 by (ii), a contradiction

 2c d = 0  c = d = 0  2a b  = 0

 a = b = 0
Hence the result follows.

Theorem 4.15: If S = {v1, v2,.... vn} is a basis of V, then every element of V
can be expressed uniquely as a linear combination of v1, v2,..., vn.

Proof: Since, by definition of basis, V = L(S), each element v  V can be
expressed as linear combination of v1, v2,..., vn.

Suppose v = 1v1 + 2v2 + ... + nvn, i  F

v = 1v1 + 2v2 + ... + nvn, i  F

then 1v1 + 2v2 + ... + nvn = 1v2 + 2v2 + ... + nvn

 (1 – 1) v1 + (2 – 2) v2 + ... + (n – n) vn = 0

 i – i = 0 for all i (v1, v2,... vn are LI)

 i = i for all i.

4.4 RIESZ’S LEMMA

Riesz’s lemma, named after Frigyes Riesz, is a functional analysis lemma. It
defines the circumstances under which a dense subspace in a normed vector space
is guaranteed. The lemma may also be called the Riesz lemma or Riesz inequality
the Riesz rearrangement inequality (also called Riesz-Sobolev inequality) states

that for any three non-negative functions : , :n nh g    and

: nh    satisfies the inequality..

* * *( ) ( ) ( ) ( ) ( ) ( ) ,n n n nf x g x y h y dxdy f x g x y h y dxdy   

It can be seen as a substitute for orthogonality when one is not in an inner
product space.
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Riesz’s Lemma: Let X be a normed space, Y be a closed proper subspace of X
and α be a real number with 0 < α < 1. Then there exists an x in X with |x| = 1 such
that |x – y|  α for all y in Y.

1. For the finite-dimensional case, equality can be achieved, or there exists x
of unit norm such that d(x, Y) = 1. When dimension of X is finite, the unit
ball B  X is compact. Also, the distance function d(· , Y) is continuous.
Therefore its image on the unit ball B must be a compact subset of the real
line, proving the claim.

2. The space ℓ∞  of all bounded sequences shows that the lemma does not
hold for α = 1.

Consequences of Riesz’s Lemma

Compact operators working on a Banach space have spectral features similar to
matrices. Riesz’s lemma is crucial in proving this point.

Riesz’s lemma proved that any infinite-dimensional normed space contains
a sequence of unit vectors {x

n
} with |x

n
-x

m
|   for 0    1. This is useful in

showing the non-existence of certain measures on infinite-dimensional Banach
spaces. Riesz’s lemma also shows that the identity operator on a Banach space X
is compact if and only if X is finite-dimensional.

This lemma may also be used to define finite dimensional normed spaces: If
X is a normed vector space, then X is finite dimensional if and only if X closed unit
ball is compact.

Finite Dimensional Characterization

Riesz’s lemma can be applied directly to show that the unit ball of an infinite-
dimensional normed space X is never compact: Take an element x

1 
from the unit

sphere. Pick x
n
 from the unit sphere such that d(x

n
, Y

n–1
) >  for a constant 0 < α

< 1, where Y
n”1

 is the linear span of {x
1
 ... x

n”1
} and ( , ) inf | | .n n

y Y
d x Y x y

Clearly {x
n
} contains no convergent subsequence and the noncompactness

of the unit ball follows.

In general, a topological vector space X is finite dimensional if it is locally
compact. This also holds true in reverse. A topological vector space is locally
compact if it has a limited dimension. Therefore local compactness characterizes
finite-dimensionality. This classical result is also attributed to Riesz. A short proof
can be sketched as follows: Let C be a compact neighbourhood of 0  X. By
compactness, there are c

1
, ..., c

n
  C such that,

1

1
.

2

n

i
i

C c C

We assert that the finite-dimensional subspace Y traversed by {c
i
} is dense in X,

or that it is closed by X. Since X is the union of scalar multiples of C, it is sufficient
to show that C  Y. Now, by induction,

1

2mC Y C

for every m. But compact sets are bounded, so C lies in the closure of Y. This
proves the result.
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4.5 ADJOINT OPERATORS

Definition: Consider two Hilbert spaces H
1 
and H

2
.
 
 Let T : H

1 
H

2 
be a

bounded linear operator. Then the Hilbert-adjoint operator T* of T is operator
T* : H

2 


 
H

1  
such that for all x  H

1 
and y H

2 
,

, , *Tx y x T y …(4.1)

Theorem 4.16: The Hilbert-adjoint operator T* of T exists, is unique and is a
bounded linear oeprator with norm given by,

 || T*|| = || T*|| …(4.2)

Proof: Let h (y, x) = y, Tx …(4.3)

We will show that h is sesquilinear. Now h is linear in the first argument and
conjugate linear in the second argument since,

h(y, x
1
 + x

2
)  = y, T  (x

1
 + x

2
)

= y, Tx
1
 + Tx

2

= y, Tx
1

+ y, Tx
2

= h(y, x
1
) + h(y, x

2
).

Hence sicne the inner product is sesquilinear, we infer that h is sesquilinear.
By the Cauchy-Schwarz inequality,

|h(y, x) | = | y, Tx | || y || || TTx ||  || T || ||x|| || y||

Implying 
| ( , )

|| ||
|| || || ||

h y x

x y
T

We have,

||h||  || T|| …(4.4)

Also,

0 0
0 0

| , | | , |
|| || sup sup || ||

|| || || || || || || ||x x
y x

y x x x
h

y x x x
T

T T T
T

T
…(4.5)

Combining Equations (4.4) and (4.5) gives ||h|| = ||T||. From Riesz
representation theorem, substituting T* for S, we have

h(y, x) = T* y, x …(4.6)

where T* : H
2 


 
H

1 
is a uniquely determined bounded linear operator with

norm,

||T*|| = ||h||
 
=||T|| …(4.7)

Combining Equations (4.3) and (4.6), we get

y, TTx = T* y, x

Taking the conjugate gives Equation (4.1).
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Lemma 1: Let X and Y be inner product spaces and T* : X
 


 
Y

 
a bounded linear

operator. Then,

1. T = 0 if and only if Tx, y = 0 for all x X and y  Y.

2. For X, a complex vector space, if T : X
 
X and Tx, x = 0 for all

x X, then T = 0.

Proof: (1) If T = 0, then for all x X, Tx = 0 and for any u X we have,

Tx, y = 0 0, y  = 0 u, y = 0

Now let,

Tx, y = 0 for all x X,  y  Y

Then Tx = 0 for all x X and  T = 0.

(2) If Tx, x = 0 for all x X, then for w = x + y  x we have,

Tw, w = T(x + y), x + y

= ||2 Tx, x  + Ty, y +  Tx, y  +  Ty, x

…(4.8)

Now if we pick  = 1, then Equation (4.8) becomes

Tw, w  = Tx, x + Ty, y  + Tx, y  + Ty, x …(4.9)

Now Tx, x and Ty, y  are equal to 0 by our assumption. Hence
Equation (4.9) becomes,

Tx, y + Ty, x = 0 …(4.10)

Adding Equations (4.9) and (4.10) we obtain Tx, y = 0, and T = 0
follows from (1).

Theorem 4.17: Consider two Hilbert spaces H
1 
and H

2
.
 
 Let S : H

1 
H

2 
and  T

: H
1 
H

2 
be bounded linear operators and  any scalar. Then,

1. T*y, x = y, Tx for any x H
1
, y H

2
 ,

2. (S + T)* = S* + T*,

3. (T)* =  T*,

4. (T*)* =  T,

5. ||T*T|| = ||TT*||
 
=||T||2,

6. T*T = 0 if and only if T =0,

7. (ST)* = T*S* (if H
2
 = H

1
).

Proof:

1. From the definition of Hilbert-adjoint  operator, we have

* *, , , ,y x x y x y y xT T T T …(4.11)
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2. By the definition of the Hilbert-adjoint operator, for all x and y,

x, (ST)* y = (ST)x, y

= Sx, y  + Tx, y

= x, S*y + x, T*y

= x, (S* + T*)y .

Thus it follows from the equality of the inner product spaces that (ST)*

y = (S* + T*) y for all y H
2
 so that (S + T)* = S* + T*.

3. By the definition of the Hilbert-adjoint operator,

(T)* y, x = y, (T) x

= y,  (Tx)

= y, Tx

= T*y, x

= T*y, x .

Hence by Lemma 1, (T)* y = T*y for all y H
2
, which implies that

(T)* = T* .

4. By the definition of the Hilbert-adjoint operator, and from (1) we have,

(T*)* x, y = x, T*y  = Tx, y  so that ((T*)* – T)x, y  and by
Lemma 1, we have (T*)* = T.

5. We know that T*T : H
1
  H

1
 and TT* : H

2 
 H

2
. By the Cauchy-Schwarz

inequality and by the definition of the Hilbert-adjoint operator in the definition
of the Hilbert-adjoint operator we have,

||Tx||2 = Tx, Tx = T*Tx, x   ||T*Tx|| ||x|| ||T*T|| ||x||2

Taking the supremum over all x of norm 1 we obtain ||T||2  || T*T||. Now
by Theorem 4.16, (Refer Unit 5) we have ||T*T||  ||T* ||||T = ||T||2. Hence
||T*T||= ||T||2. Substituting T* for T we get ||T**T*|| = || T*||2 = ||T||2. But by
(4) we have (T*)* = T sot that ||TT*|| = ||T||2.

6. From (5), if T*T = 0, then T = 0 and conversely if T = 0 then T*T = 0.

7. By the definition of the Hilbert-adjoint operator,

x, (ST)*y  = (ST)x, y = Tx, S*y = x, T*S*y . Hence by
equality of inner product spaces we obtain (ST)*y = T*S* y for all y  H

2

giving (ST)* = T*S*.

4.5.1 Reflexive Spaces

Let X be a normed space and X** = (X*)*denote the second dual space of X. The

canonical map ˆx x  defined by *ˆ( ) ( ),x f f x f X  gives an isometric linear

isomorphism (embedding) from X into X**. The space is called reflexive if this
map is surjective. This concept was introduced by Hahn in 1927.
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For example, finite dimensional (normed) spaces and Hilbert spaces are
reflexive. The space of absolutely summable complex sequences is not reflexive.
James constructed a non-reflexive Banach space that is isometrically isomorphic
to its second conjugate space.

4.6 FINITE DIMENSIONAL NORMED SPACES
AND SUBSPACES

Definition

A norm on a linear space  is a function  satisfying

1.  and  if and only if  for 

2.

3.

We observe that a semi-norm becomes a norm if it satisfies one additional condition
i.e.

Further,  is called norm of . The non-negative real number  is
taken as the length of the vector . A normed linear space is an ordered pair 

where  is a norm on .

Theorem 4.18

Every finite dimensional subspace  of a normed space  is complete. Particularly,,

every finite dimensional normed space is complete. To prove the theorem, we
prove a Lemma.

Lemma

Let  be a linearly independent set of vectors in a normed
space  (of any dimension). Then there is a number  such that for every choice
of scalars , we have

 …(4.12)

Proof: We write

If , all  are zero, so that (4.12) holds for any . Let , then
(4.12) is equivalent to the inequality which we obtain from (4.12) by dividing by 
and writing  that is

…(4.13)
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Hence it is sufficient to prove the existence of a  such that (4.13) holds

for every -tuple of scalars  with

Suppose that this is false. Then there exists a sequence  of vectors

such that

Since , we have . Hence for each fixed ,

the sequence

is bounded. Consequently, by the Bolzano - Weierstrass theorem,

 has a convergent subsequence. Let  denote the limit of that

subsequence and let <  denote the corresponding subsequence of .
By the same argument ,  has a subsequence  for which the

corresponding subsequence of scalars  converges , let  denote the limit-
continuing in this way, after  steps we obtain a subsequence

whose terms are of the form

with scalars  satisfying  as .

Hence as ,

where  so that not all  can be zero. Since  is a
linearly independent set, we thus have . On the other hand,  implies

 by the continuity of the norm. Since  by assumption and

 is a subsequence of , we must have  . Hence

, so that . But this contradicts that , and the lemma is proved.
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Proof of the theorem

We consider an arbitrary Cauchy sequence  in  and show that it is convergent

in , the limit will be denoted by y. Let   and  any basis

for . Then each  has a unique representation of the form

Since  is a Cauchy sequence, for every , there is an  such

that   when . From this and the above Lemma, we have
for some ,

where . Division by  gives

This shows that each of the  sequences

is Cauchy in  or . Hence it converges let  denote the limit. Using these
 limits, , we define

Clearly . Further

On the right . Hence , that is . This

shows that  is convergent in . Since  was an arbitrary Cauchy
sequence in , This proves that  is complete.

Remark

From the above theorem and the result “A subspace  of a complete metric space

 is complete if and only if the set  is closed in  ”, we get the following :

Theorem 4.19

Every finite dimensional subspace Y of a normed space X is closed in X.
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Remark

Infinite dimensional subspaces need not be closed e.g. Let , 1] and

 where  so that Y is the set of polynomials. Y is

not closed in X.

4.7 HAHN-BANACH THEOREM FOR NORMED
LINEAR SPACES

Let X be a real or complex normed linear space, let  be a linear subspace,

and let  be a bounded linear functional on M. Then there exists a linear

functional  that extends  (i.e.  ) and satisfies 

The proof of the Hahn-Banach theorem has two parts: First, we show that
l can be extended (without increasing its norm) from M to a subspace one dimension

larger: that is, to any subspace  spanned by M
and a vector . Secondly, we show that these one-dimensional
extensions can be combined to provide an extension from M to all of X.

Section 4.7.1 is the first step.

4.7.1 Hahn-Banach Theorem for Real Linear Space

Let X be a real normed linear space, let  be a linear subspace, and let

 be a bounded linear functional on M. Then, for any vector ,

there exists a linear functional  on  that extends  (i.e.

 ) and satisfies .

Proof: If  the result is trivial, so we can assume without loss of generality
that  (why?) (this assumption is made only to simplify the formulae). Now
every  can be uniquely represented in the form  with 

and . To define  as an extension of , it suffices to choose the value of
, call it  : we then have

…(4.14)

We want to choose  so that  for all , i.e.

…(4.15)

for all  and . This holds for  by hypothesis on , and for

 it can be rewritten as

…(4.16)

for all  and  (you should check that this is correct both for 
and for  ), or equivalently
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…(4.17)

for all . But for  we have

…(4.18)

by  and the triangle inequality, so that

…(4.19)

for all . It follows that

…(4.20)

are finite and satisfy so we can choose any .

Definition

Let S be a set. Then a partial order on S is a binary relation  on S that satisfies

1.  (reflexivity);

2.  and  imply  (antisymmetry); and

3.  and  imply  (transitivity)

for all . The pair  is called a partially ordered set (or poset).
We sometimes also refer to S alone as a partially ordered set if the relation  is
understood from the context.

Now let  be a partially ordered set. A subset  is called totally

ordered (with respect to  ) if for every pair  we have either  or

. A totally ordered subset is also called a chain. An element  is said to

be an upper bound for a subset  if  for all . (Note that the upper
bound u need not belong to T itself.) Finally, a maximal element of S is an element

 such that  implies . (A maximal element need not exist; and
if one exists, it need not be unique.)

Examples

1. The usual order  on  is a total order. There is no maximal element.

2. The usual order  on  is also a total order. Now there

is a unique maximal element .

3. The usual partial order  on  is defined by  if and only if 

for . For  it is not a total order. There is no maximal element.

4. Consider the usual partial order  on  restricted to the three-element

subset  . Then  and  are maximal elements.
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5. The lexicographic order on  is defined by  if and only if either

 or else  and . (Think of the ordering of words in a
dictionary) This is a total order (why?). There is no maximal element.

6. Let  be an arbitrary set, and let  be the set of all subsets of . Then

the relation  of set inclusion is a partial order on . (It is not a total
order except in two degenerate cases - can you see what they are?) There
is a unique maximal element .

Let  be a vector space, and let  be the set of all linear subspaces of .
Then the relation  of set inclusion is a partial order on . (It is not a total
order except in two degenerate cases - can you see what they are?) There is a
unique maximal element .

We then have Zorn’s lemma.

Zorn’s Lemma

Let  be a partially ordered set in which every totally ordered subset has an
upper bound. Then  contains at least one maximal element.

Zorn’s lemma is a result of set theory that can be proven using the axiom of
choice. More precisely, Zorn’s lemma is equivalent to the axiom of choice in
Zermelo-Fraenkel (ZF) set theory. Other important statements of set theory that
are equivalent to the axiom of choice in ZF set theory are the well-ordering theorem
and the Hausdorff maximal principle. We shall not enter into the details of these
statements or the proof of their equivalence, which belong to a course in set theory
or mathematical logic; rather, we shall simply take Zorn’s lemma as a set-theoretic
result that we can use without worry

We are now ready to prove the Hahn-Banach theorem.

Proof of the Hahn-Banach for Real Linear Space

Let  denotes the set of all extensions of  to linear subspaces of X (not
necessarily to all of X ) that satisfy the properties claimed in the Hahn-Banach
theorem. More precisely,  consists of all pairs  such that

1.  is a linear subspace of  that contains ;

2.  is a bounded linear functional on ;

3. ; and

4. .

Now equip  with a partial order  by declaring that

…(4.21)

In other words,  iff f is an extension of f. (It is easy to
check that  is indeed a partial order; you should do this.)
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Now suppose that  is a totally ordered subset of . I claim that  has an
upper bound in  (in fact a least upper bound, though we do not need this fact),
defined as follows: First let

…(4.22)

You should verify, using the fact that  is totally ordered, that  is a linear
subspace of ; it is, in fact, the smallest linear subspace containing all the subspaces

 where . Next define on  a linear functional  as the union of all the
linear functionals  with , i.e.

…(4.23)

You should verify, using again the total ordering of , that  is well-defined

in the sense that  whenever  and  with

 and ; and you should verify, using once again the total ordering of

, that  is indeed linear. Finally, you should check that . It

follows that  and that  for all . Hence
 is an upper bound for  (in fact the least upper bound, though we do not

need this fact).

So all the hypotheses of Zorn’s lemma are satisfied. We can therefore

conclude that  has a maximal element .

4.7.2 Hahn-Banach Theorem for Complex Linear Space

Let V be a normed linear space over C Let W be a subspace of V and let g:
W  C be a continuous linear functional on W. Then there exists a continuous
linear extension  of g such that 

Hahn-Banach Theorem for Normed Linear Space)

Let Y be a subspace of a normed linear space X and f be a continuous linear
functional on Y; i.e., . Then there exists a continuous linear functional

 on , i.e., an element of , such that

1.  is an extension of .

2. .

Proof: If  is defined on  by , then  is a seminorm on . It

is obvious that,

for all . By the seminorm version of the Hahn-Banach Theorem, there
exists a linear functional  on , which is an extension of , such that

, for all , and this implies that  is continuous,

and . Clearly  since  is an extension of .
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4.8 WEAK CONVERGENCE

Definition

Let  be a normed linear space, and let .

1. We say that  converges strongly, or converges in norm to , and write

, if

2. We say that  converges weakly to , and write , if

Definition

Let  be a normed linear space, and suppose that . Then we say that

 converges weak*  to , and write , if

Note that weak* convergence is just “pointwise convergence” of the
operators  !

Remark

Weak* convergence only makes sense for a sequence that lies in a dual space .

However, if we have a sequence  in , then we can consider three types

of convergence of  to : strong, weak, and weak*. By definition, these are:

Lemma

1. Weak* limits are unique.

2. Weak limits are unique.

Proof:

1. Suppose that  is a normed linear space, and that we had both  and

 in . Then, by definition,

so .
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2. Suppose that we have both  and  in . Then, by definition,

Hence, by Hahn-Banach,

so .

Lemma

If  is a finite-dimensional vector space, then strong convergence is equivalent to
weak convergence.

Check Your Progress

5. What are vector space and subspaces?

6. What is linear transformation in vector spaces?

7. State linear span and finite dimensional vector space.

8. Define reflexive space.

4.9 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. A vector space with a norm is called a normed vector space.

2. A topological space is said to be topologically regular if every point has an
open neighbourhood that is regular.

3. On an n-dimensional Euclidean space Rn, the perceptive notion of length of
the vector x = (x

1
, x

2
, ..., x

n
) is illustrated by the formula,

2 2
1: .nx x x

The Euclidean norm is the most commonly used norm on Rn.

4. A sequence (xn) in a normed space X is said to be weakly convergent if
there is an x  X such that for every f  X.

5. 5. Let < V, + > be an abelian group and < F, +,  > be a field. Define a
function × (called scalar multiplication) from F × V  V, such that, for all 
 F, v  V,  v  V.

6. Let V and U be two vector spaces over the same field F, then a mapping T
: V  U is called a homomorphism or a linear transformation if

T(x + y) = T(x) + T(y) for all x, y  V

T(x) = T(x)  F

7. Let V(F) be a vector space, vi  V, i  F be elements of V and F

respectively. Then elements of the type 
1

n

i i
i

v  are called linear

combinations of v1, v2, ..., vn over F.
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Let S be a non-empty subset of V, then the set

L(S) = 
1

| , , finite
n

i i i i
i

v F v S n

i.e., the set of all linear combinations of finite sets of elements of S is called
linear span of S. It is also denoted by < S >. If S = , define L(S) = {0}.

8. Let X be a normed space and X** = (X*)*denote the second dual space
of X. The canonical map defined by gives an isometric linear isomorphism
(embedding) from X into X**. This space is called reflexive if this map is
surjective.

4.10 SUMMARY

 A norm is a function that assigns a strictly positive length or size to all vectors
in a vector space other than the zero vector while a seminorm is allowed to
assign zero length to some non-zero vectors.

 A topological vector space is called normable (seminormable) if the topology
of the space can be induced by a norm (seminorm). The norm of a vector v
is usually denoted ||v|| and sometimes |v|.

 On an n-dimensional Euclidean space Rn, the perceptive notion of length of
the vector x = (x

1
, x

2
, ..., x

n
) is illustrated by the formula,

2 2
1: .nx x x

The Euclidean norm is the most commonly used norm on Rn.

 The Euclidean norm of a complex number is the absolute value (also called
the modulus) of it, if the complex plane is identified with the Euclidean
plane R2.

 A sequence  (x
n
) in a normed space X is said to be strongly convergent if

there is an  x  X such that,

lim || – || 0n
n

x x

 A sequence (x
n
) in a normed space X is said to be weakly convergent if

there is an x  X such that for every f  X,

lim ( ) ( )n
n

f x f x

 Let < V, + > be an abelian group and < F, +,  > be a field. Define a function
× (called scalar multiplication) from F × V  V, such that, for all   F,
v  V,  v  V.

 A non-empty subset W of a vector space V(F) is said to form a subspace
of V if W forms a vector space under the operations of V.
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 A necessary and sufficient condition for a non-empty subset W  of a vector
space V(F) to be a subspace is that W is closed under addition and scalar
multiplication.

 Let V and U be two vector spaces over the same field F, then a mapping
T : V  U is called a homomorphism or a linear transformation if

T(x + y) = T(x) + T(y) for all x, y  V

T(x) = T(x)  F

 Let V(F) be a vector space, vi  V, i  F be elements of V and F

respectively. Then elements of the type 
1

n

i i
i

v  are called linear

combinations of v1, v2, ..., vn over F.

4.11 KEY TERMS

 Euclidean norm: On an n-dimensional Euclidean space Rn, the perceptive
notion of length of the vector x = (x

1
, x

2
, ..., x

n
) is illustrated by the formula,

2 2
1: .nx x x

The Euclidean norm is the most commonly used norm on Rn.

 Taxicab norm: 1
1

|| || : | | .
n

i
i

x x The name relates to the distance a taxi

has to drive in a rectangular street grid to get from the origin to the point x.

 Subspaces: A non-empty subset W of a vector space V(F) is said to form
a subspace of V if W forms a vector space under the operations of V.

4.12 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Define strong convergence.

2. What is a perfectly normal space?

3. State the importance of Urysohn’s lemma.

4. Define adjoint operators.

5. What is reflexive space?

Long-Answer Questions

1. Illustrate the concept of equivalent norms.

2. Describe weak and strong convergence with the help of examples.

3. Explain the concept of regular and normal spaces.

4. State and prove Urysohn’s lemma.

5. Prove the characterization of the adjoint operators.

6. Explain Hahn Banach theorem for real linear space, complex linear space
and normed linear space.
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UNIT 5 INNER PRODUCT SPACE
AND HILBERT SPACE

Structure

5.0 Introduction
5.1 Objectives
5.2 Inner Product Space
5.3 Hilbert Space

5.3.1 Orthogonal Complements
5.3.2 Conjugate Space H*
5.3.3 Reflexivity of Hilbert Space

5.4 Self-Adjoint Operators on Hilbert Space
5.4.1 Projections on Hilbert Spaces
5.4.2 Positive, Normal, and Unitary Operators

5.5 Complete Orthogonal Sets
5.5.1 Parseval’s Identity

5.6 Answers to ‘Check Your Progress’
5.7 Summary
5.8 Key Terms
5.9 Self-assessment Questions and Exercises

5.10 Further Reading

5.0 INTRODUCTION

In mathematics, an inner product space is a type of space in mathematics. A field
of mathematics known as functional analysis, is a vector space with an additional
structure called an inner product. This additional structure associates each pair of
vectors in the space with a scalar quantity known as the inner product of the
vectors. An inner product naturally induces an associated norm, thus an inner
product space is also a normed vector space. A complete space with an inner
product is called a Hilbert space. An incomplete space with an inner product is
called a pre-Hilbert space, since its completion with respect to the norm, induced
by the inner product, becomes a Hilbert space. Inner product spaces over the
field of complex numbers are sometimes referred to as unitary spaces.

The mathematical concept of a Hilbert space, named after David Hilbert,
generalizes the notion of Euclidean space. It extends the methods of vector algebra
and calculus from the two-dimensional Euclidean plane and three-dimensional
space to spaces with any finite or infinite number of dimensions. Hilbert spaces
have inner products and so notions of orthogonality and orthogonal projection are
available. Many of the applications of Hilbert spaces exploit the fact that Hilbert
spaces support generalizations of simple geometric concepts like projection from
their usual finite dimensional setting. In particular, the spectral theory of continuous
self-adjoint linear operators on a Hilbert space generalizes the usual spectral
decomposition of a matrix, and this often plays a major role in applications of the
theory to other areas of mathematics and physics.
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In this unit, you will learn about the inner product space, Hilbert spaces,
orthogonal complements, conjugate space H*, self-adjoint operators on Hilbert
spaces, projections on Hilbert spaces and positive, normal and unitary operators.

5.1 OBJECTIVES

After going through this unit, you will be able to:

 Describe inner product spaces and Schwarz’s inequality
 Discuss Hilbert spaces and convex set in Hilbert spaces
 Explain the self-adjoint operators on Hilbert spaces
 Define orthogonal sets
 Describe the conjugate space
 Discuss reflexivity and projections on Hilbert spaces
 State normal and unitary operators

5.2 INNER PRODUCT SPACE

In general a vector space is defined over an arbitrary field F. In this section we
restrict F to the field of real or complex numbers. In the first case, the vector
space is called real vector space and in the second case it is called a complex
vector space. We have dot or scalar product of two vectors which among other
things satisfies the following:

(i) . 0v v
 

 and ( . )v v
 

 = 0  v


 = 0

(ii) .v w
 

 = .w v
 

(iii) . ( )u v w
  

 = ( . )u v
 

 + ( . )u w
 

where , ,u v w
  

 are vectors and ,  real numbers.

We wish to extend the concept of dot product to complex vector spaces also.
We define a map on V × V to F (where V = vector space over F) with same
property as dot product, called inner product and study the concept of length and
orthogonality.

Definition: Let V be a vector space over field F (where F = field of real or
complex numbers). Suppose for any two vectors u, v  V  an element (u, v)
 F such that,  [(u, v) here is just an element of F and should not be confused
with the ordered pair.]

(i) (u, v) = ( , )v u  (i.e., complex conjugate of (v, u))

(ii) (u, u)  0 and (u, u) = 0  u = 0

(iii) (u + v, w) = (u, w) + (v, w)

for any u, v, w  V and ,   F.

Then V is called an inner product space and the function satisfying (i), (ii) and
(iii) is called an inner product.

Thus inner product space is a vector space over the field of real or complex
numbers with an inner product function.
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Notes:

1. Property (ii) in the definition of inner product space makes sense in as

much as (u, u) = ( , )u u  by (i)  (u, u) = real.

2. Property (iii) can also be described by saying that inner product is a linear
map in 1st variable.

3. Can we say that inner product is linear in 2nd variable?

Let’s evaluate

(u, v + w) = ( , )v w u    by (i)

= ( , ) ( , )v u w u  

=  (u, v) +  (u, w)

So, it need not be linear in 2nd variable.

4. If F = field of real numbers, then the function inner product satisfies same
properties as dot product seen earlier.

5. Inner product space over real field is called Euclidean space and over
complex field is called Unitary space.

6. In the vector space of all vectors in 3-dimensional space over reals, the
inner product will be the usual dot product of two vectors, i.e.,

< ,u v
 

> = | | | |u v
 

 cos .

Example 5.1: Let V = F(n), F = field of complex numbers.

Solution: u = (1, 2,..., n)

v = (1, 2,..., n) in F(n)

Define (u, v) = 1 1  + ... + n n

It can be easily shown that (u, v) defines an inner product, called standard inner
product.

Example 5.2: Let V = R(2), u = (1, 2), v = (1, 2)

Define (u, v) = 11 – 21 – 12 + 4 22

Then

Solution: (i) (u, v) = (v, u) = ( , )v u

(ii) (u, u) = (1 – 2)
2 + 2

23   0

(u, u) = 0 1 = 2, 2 = 0

 1 = 0 = 2

 u = (1, 2) = (0, 0) = 0

(iii) (u + u, w) = (u, w) + (v, w)

can be easily verified.

Thus (u, v) defines an inner product.

Example 5.3: One may construct a new inner product from a given one. Let V,
W be vector spaces over F and T, a one–one linear transformation from
V into W.



Inner Product Space
and Hilbert Space

NOTES

Self - Learning
188 Material

Suppose ( , ) is an inner product on W. Then,

Solution: < u, v > = (T(u), T(v))

defines an inner product on V as

(i) < ,v u > = ( ( ), ( ))T v T u

= (T(u), T(v))

= < u, v >

(ii) < u, v > = (T(u), T(u))  0

and < u, u > = 0  (T(u), T(u)) = 0

 T(u) = 0  u = 0 as T is 1–1

(iii) < u + v, w > = (T(u + v), T(w))

= (T(u) + T(v), T(w))

= (T(u), T(w)) + (T(v), T(w))

=  < u, w > +  < v, w >

Example 5.4: Let V = Mm×n (C). Then < A, B > = Trace (AB*) where B* = B ,
defines an inner product on V as

(i) < ,B A > = Trace *BA

Let A = (aij), B = (bij), AB* = C = (cij)

Solution (i): B* = (dij), where dij = jib

 cik = ij jka d  = kjija b

 cii = ij kja b

 Trace AB* = iic  = ( )ijija b

Let A* = (eij), where eij = jia

Let BA* = F = (fij), then

fik = ij kjb a

 Trace BA* = iif  = ( )ij ijb a

 Trace *BA = ijija b  = Trace AB*

 < ,B A >  =  < A, B >

(ii) < A, B > = Trace AB* = ( )ijija b

Solution (ii):  < A, A > = ij ija a  = 2| | 0ija 
and < A, A > = 0  | aij | = 0  i, j

 aij = 0  i, j

 A = 0

Similarly axiom (iii) can be verified.
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Example 5.5: Let V be an inner product space. Show that

(i) (0, v) = 0 for all v  V

(ii) (u, v) = 0 for all v  V  u = 0

Solution: (i) (0, v)= (0, 0, v)

= 0 (0, v) = 0

(ii) (u, v) = 0 for all v  V

 (u, u) = 0  u = 0.

Example 5.6: Let W1, W2 be two subspaces of a vector space V. If W1, W2 are
inner product spaces, show that W1 + W2 is also an inner product space.

Solution: Let    x, y  W1 + W2.

Then x = u1 + u2

y = v1 + v2 u1, v1  W1; u2, v2  W2

Define < x, y > = (u1, v1) + (u2, v2)

Then

(i) ,y x  = 1 1 2 2( , ) ( , )v u v u

= 1 1 2 2( , ) ( , )v u v u

= (u1, v1) + (u2, v2)

= < x, y >

(ii) < x, x > = (u1, u1) + (u2, u2)  0

and < x, x > = 0  (u1, u1) = 0 = (u2, u2)

 u1 = 0 = u2

 x = 0

(iii) < x + y, z > =  < x, z > +  < y, z >

can be easily verified.

 < x, y > defines an inner product on W1 + W2

So, W1 + W2 is an inner product space.

Norm of a Vector

Let V be an inner product space. Let v  V. Then norm of v (or length of v) is
defined as ( , )v v  and is denoted by || v ||.

In the vector space of all vectors in 3-dimensional space,

|| ||u


 = ,u u
   = | |u


 = length of u


.

For this reason, norm of vector in general is also called length of vector.

Example 5.7: || v || = |  | || v || for all   F, v  V

Solution: || v ||2 = (v, v)

=   (v, v)

= |  |2 || v ||2
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 || v || = |  | || v ||

We now prove an important inequality known as Cauchy-Schwarz inequality.

Theorem 5.1: Let V be an inner product space.

Then | (u, v) |  || u || || v ||  for all u, v  V.

Proof: If u = 0, then (u, v) = (0, v) = 0

and || u || = ( , )u u  = (0,0)  = 0

 L.H.S. = R.H.S.

Let u  0. Then || u ||  0

(as || u || = 0  (0,0)  = 0

 (u, u) = 0  u = 0)

Let w = v – 
2

( , )

|| ||

v u
u

u

Then (w, w) = 
2 2

( , ) ( , )
,

|| || || ||

v u v u
v u v u

u u

 
   

 

= (v, v) – 
2

( , )

|| ||

v u

u
 (u, v)

= || v||2 – 
2

( , ) ( , )

|| ||

u v u v

u
 = || v ||2 – 

2

2

| ( , ) |

|| ||

u v

u

=
2 2 2

2

|| || || || | ( , ) |

|| ||

u v u v

u



Since (w, w)  0,

| (u, v) |2  || u ||2 || v ||2

 | (u, v) |  || u || || v ||.

Notes:

(i) The above inequality will be an equality if and only if u, v are linearly
dependent.

Proof: Suppose | (u, v) | = || u || || v ||

If u = 0, then u = 0.v  u, v are linearly dependent.

Let u  0. Then from above
(w, w) = 0  w = 0


2

( , )

|| ||

v u
v u

u
  = 0

 v = 
2

( , )

|| ||

v u
v u

u
   u, v are linearly dependent.

Conversely, let u = v,  F

Then | (u, v) | = |  (v, v) | = |  | || v ||2

|| u || || v || = |  | || v || || v || = |  | || v ||2

| (u, v) | = || u || || v ||.
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(ii) In the vector space of all vectors in 3-dimensional space, since

| , |u v 
 

= | | | | | cos |u v
 

 || || || ||u v
 

as | cos  |  1

we find that Cauchy-Schwarz inequality holds.

Theorem 5.2: Let V be an inner product space.

Then (i) || x + y ||  || x || + || y ||  for all x, y  V

(Triangle inequality)

(ii) || x + y ||2 + || x – y ||2 = 2 (|| x ||2 + || y ||2)

(Parallelogram Law)

Proof: (i) || x + y ||2 = (x + y, x + y)

= (x, x) + (y, x) + (x, y) + (y, y)

= || x ||2 + ( , )x y  + (x, y) + || y ||2

= || x ||2 + 2Re (x, y) + || y ||2

 || x ||2 + 2 | (x, y) | + || y ||2

 || x ||2 + 2 || x || || y || + || y ||2

= ( || x || + || y || )2

Hence, || x + y ||  || x || + || y ||

This is called triangle inequality as

|| x || + || y || = sum of the lengths of two sides of a triangle

|| x + y || = length of the third side of the triangle showing that sum of two side
of a triangle is less than its third side.

(ii) || x + y ||2 + || x – y ||2

= (x + y, x + y) + (x – y, x – y)

= || x ||2 + || y ||2 + (x, y) + (y, x) + || x ||2 + || y ||2 – (x, y) – (y, x)

= 2 (|| x ||2 + || y ||2).

Note: || x + y ||2 + || x – y ||2 = sum of squares of lengths of diagonals of a
parallelogram

2 (|| x ||2 + || y ||2) = sum of squares of sides of a parallelogram.

 sum of squares of lengths of diagonals of a parallelogram is equal to sum of
squares of lengths of its sides. For this reason (ii) is called parallelogram law.

Example 5.8: Using Cauchy-Schwarz inequality, prove that cosine of an angle
is of absolute value at most 1.

Solution: Let F = Field of real numbers and V = F(3)

Consider standard inner product on V.

Let u = (x1, y1, z1), v = (x2, y2, z2)  V

Let O = (0, 0, 0)

Let  be an angle between OU and OV.
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Then cos  = 1 2 1 2 1 2

2 2 2 2 2 2
1 1 1 2 2 2

x x y y z z

x y z x y z

 

   
 = 

( , )

|| || || ||

u v

u v

 | cos  | = 
| ( , ) | || || || ||

|| || || || || || || ||

u v u v

u v u v
  = 1

5.3 HILBERT SPACE

Theorem 5.3: Suppose E is an inner product space and M a complete convex
subset of E. Let x  E, then the following will be equivalent:

1. y  M satisfies ||x – y|| = (min
zM

) ||x – z||.

2.  y  M satisfies Re(y – x, y – z)  0  z  M.

Additionally, there is unique y  M satisfying (1) and (2).

Proof: (1)  (2): For z  M  and 0 < 1, let

f() = ||x – {(1 – ) y + z}||2 = || x – y +  (y – z)||2
   = ||x – y||2 + 2 ||y – z||2 +2 Re(x – y, y – z).

Since f() = f(0) = || x – y||2 for 0  <  1, we have

θ 0

( ) (0)
lim 2 Re( , ) 0

f f
x y y z



 
   



(2)  (1): For z  M we have,

Re (y – x, y – z)  = –Re(x – y, y – x + x – z)

= ||x – y||2 – Re(x –y, x – z)  0
Hence

||x – y||2  Re(x –y, x – z)  ||x – y|| . ||x – z||

and therefore

 ||x – y||  ||x – z||

for all z  M .

It follows from (2) that there exists at most one such y, as if both y
1
 and y

2

satisfy (2) for all z  M then,

0  ||y
1
 – y

2
||2 = (y

1
 – y

2
, y

1
 – y

2
) = (y

1
 – x, y

1
 – y

2
) + (y

2
 – x, y

2
 – y

1
)

 = Re(y
1
 – x, y

1
 – y

2
) + Re(y

2
 – x, y

2
 – y

1
)  0,

so y
1
 = y

2
.

To prove that there exists y satisfying (1), consider

inf || ||
z M

x z


  

Now consider a sequence {z
n
} M that satisfies,
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2 2 2 1
|| ||nx z

n
     

Claiming that {z
n
} is a Cauchy sequence, we have

||z
n
 – z

m
||2 = ||(z

n
 – x) – (z

m
 – x)||2

= ||(z
n
 – x)||2 + (z

m
 – x)||2 – 2 Re (z

n
 – x, z

m
 – x)

2

4 –
2

n mz z
x


= ||(z

n
 – x)||2 + (z

m
 – x)||2 – 2 Re (z

n
 – x, z

m
 – x)

Consequently

||(z
n
 – z

m
)||2 = 2||z

n
 – x)||2 + 2 ||(z

m
 – x)||2 – 4 

2

–
2

n mz z
x




2 2 21 1 1 1

2 2 4 2
n m n m

                  
     

which shows that {z
n
} is a Cauchy sequence. Now as M is complete, there

exists y  M with limn ny z . Noticeably, ||x – y|| = limn  ||x – z
n
|| = .

This completes the proof.

The map t : E   M defined by tx = y, where y is the unique element in M
and satisfies (1) and (2) of Theorem 5.3 is called the projection from E onto M.

Corollary 1: Suppose M is a closed convex subset of a Hilbert space E then
t = t

M
 has the following properties:

1. t2 = t, i.e., t is idempotent

2. ||tx – ty||  ||x – y||, i.e., t is contractive

3. Re(tx – ty, x – y)  0, i.e., t is monotone

Proof: (1) is evident.

(2) From Re(tx – x, tx – ty)  0 and Re (ty – y, ty – tx)  0
we get Re(x – y – (tx – ty), tx – ty)  0.

Hence ||tx – ty||2  Re(x – y, tx – ty)  ||x – y|| . ||tx – ty|| from which
||tx – ty||  ||x – y|| follows.

(3) Again from Re(x – y – (tx – ty), tx – ty)  0 we get

0 ||tx – ty||2  Re(x – y, tx –ty)

Linear Transformation

Consider a linear transformation T from a normed vector space X into a normed
vector space Y over the same field   or  . T is continuous on X if and only if it
is continuous at one point.
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Theorem 5.4: T is continuous if and only if there is C  0 such that,

||Tx||  C||x|| ..(5.1)

for all x  X.

Proof:  If there is C  0 such that Equation (1) holds for all x  X then T is
clearly continuous at x = 0 and hence it is continuous on X.

 Conversely, let T is continuous on X and is hence continuous at x = 0.
Then there exists  > 0, such that if ||x|| , then ||Tx||  1. Let now x  X and

x  0. This implies 
|| ||

x
x


   and so 1

|| ||
T x

x

 
 

 
. Thus 

1
|| || || ||Tx x


.

If we choose 
1

C 


 then Equation (5.1) holds for x  0. But when x = 0, Equation

5.1 holds always. This completes the proof.

From this theorem we get that if T is a continuous linear transformation from
X into Y, then

0

|| ||
|| ||: sup

|| ||x X x

Tx
T

x     ...(5.2)

and is the smallest C for which Equation (5.2) holds. ||T|| is called the norm of T.
||T|| can be defined for any linear transformation T from X into Y and T is continuous
iff ||T|| < + . Hence a continuous linear transformation is also known as a bounded
linear transformation.

Theorem 5.5: ||T|| = ,|| || 1sup || ||x X x Tx  .

Theorem 5.6: Consider  L(X, Y)  to be the space of all bounded linear
transformations from X into Y. Then it is a normed vector space with norm given
by Theorem 5.5.

Theorem 5.7: If Y is a Banach space then so is L(X, Y).

Proof: Here we will show that L(X, Y) is complete. Let {T
n
} be a Cauchy

sequence in L(X, Y). Now, as
||T

n
x – T

m
x|| = ||T

n
 – T

m
)x ||  ||T

n
 – T

m
|| . ||x||

{T
n
x} is a Cauchy sequence in Y for each x  X. Set Tx = lim .n nT x T

is evidently a linear transformation from X into Y. Claim now that T  L(X, Y).
Since {T

n
} is Cauchy, ||T

n
||  C  for some C > 0 and for all n. Now,

|| || lim || || lim inf || || . || ||n n
n n

Tx T x T x
 

 

sup || || || || || ||n
n

T x C x   
 

  x  X. Therefore T is a bounded linear transformation. Now

we will show, lim || || 0n
n

T T


  . Given  > 0 there exists n
0
 such that

||T
n
 – T

m
|| <   if n, m  n

0
. Let n  n

0
 . Then we have,
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,|| || 1

,|| || 1

,|| || 1

,|| || 1

|| || sup || ||

sup lim || ||

sup liminf || || . || ||

sup || || ,

n n
x X x

n mmx X x

n mmx X x

x X x

T T T x Tx

T x T x

T T x

x

 

 

 

 

  



 

   

This shows that lim || – || 0n
n

T T


  or lim n
n

T T


 . Thus the sequence {T
n
}

has a limit in L(X, Y). This completes the proof.

L(X, ) or L (X, ) depending on whether X is a complex or a real vector
space, is known as the topological dual of X and is denoted by X . X  is a Banach
space.

Theorem 5.8 (Riesz Representation Theorem): Let X be a Hilbert space and

   X, then there is y
0
  X such that,

 (x) = (x, y
0
) for x  X

Furthermore, the mapping 0y   is conjugate linear and 0|| || || ||y .

Proof: Let 0  and let M = ker  . Then M  is one-dimensional. For x  X, x

can be uniquely expressed as 0x x   , where x
0
 is a fixed nonzero element of

,M M  , and  is a scalar. We have then,

0 0( ) ( ) ( ) ( )x x x        

and

2
0 0 0 0( , ) ( , ) || ||x x x x x    

Hence if we let y
0
 = 0

02
0

( )

|| ||

x
x

x


, then (x, y

0
) =   (x

0
) =  (x). Rest of the

assertions are obvious. This completes the proof.

Let (, , ) be a measure space and f be a -measurable function on .

If fd


  has a meaning, then the set function  defined by,,

( ) ,
A

A fd A   
is called the indefinite integral of f. Then  ()= 0 and  is -additive, i.e.,

if {A
n
}  is a disjointed sequence, then

  ( )n n
n n

A A  

Also (A) = 0 whenever A  and (A) = 0. This provides the definition
of absolute continuity of a measure with respect to another measure. Let (, , )
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and  (, , ) be measure spaces. Then  is said to be absolutely continuous with
respect to   if  (A) = 0 whenever A   and (A) = 0.

Theorem 5.9 (Lebesgue-Nikodym Theorem): Let (, , ) and (, , ) be
measure spaces with (  and ( < +  where  is absolutely continuous
with respect to . Then there exists a unique h  L1 (, , ) such that,

( ) ,
A

A hd A   
Moreover, h  0  almost everywhere.

Proof: Let =  + . Then  is a finite measure on . Consider the real Hilbert
space L2 (, , ) and consider the linear functional   on L2 (, , ) defined
by,

( )f fd 

As

   1/2 1/2 1/2
2 1/2 2| ( ) | | | 1 ( ) | |f f d d f d          

= 1/2 2( ) || || ( )f L  

  is a bounded linear functional on L2 (, , ). By Riesz representation
theorem there is a unique g  L2 (, , ) such that,

fd fgd fgd fgd         
for all f  L2 (, , ), or

(1 )f g d fgd    
...(5.3)

for all f  L2 (, , ).

Claim 1:  0  g(x) < 1for  almost everywhere x on .

Let 1 { : ( ) 0}A x g x    and 2 { : ( ) 1}A x g x   . If we let

1f A   in Equation (5.1), then 
1 1

10 ( ) (1 )
A A

A g dv gd        which implies

(A
1
) = 0 and hence (A

1
) = 0. Thus  (A

1
) = 0. Now in Equation (5.1) choosing

2f A  , we have 
2 2

20 (1 ) ( )
A A

g dv gd A       . This implies (A
2
) = 0

and hence (A
2
) = 0. Consequently,(A

2
) = 0. This proves Claim 1.

Claim 2: Equation (5.1) holds for all -measurable and  almost everywhere
nonnegative functions  f. For each positive integer n, let f

n
 = f  n. Since

1 –  g > 0 and g  0  almost everywhere, 0 (1 ) (1 )nf g f g    and

0 nf g fg  . Then from Monotone convergence theorem and Equation (5.1)

we get,
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(1 ) lim (1 ) limn n
n n

f g d f g d f gd fgd
 

           
which establishes the claim.

For a -measurable and  almost everywhere greater than or equal to 0

function z choose f = 
1

z

g
 in Equation (5.1). Then,

1

g
zd z d zhd

g
    

    ...(5.4)

where 
1

g
h

g



. If for A   we take z = A in Equation (5.2), then

( ) A A
A I hd hd     

Since ( )    , we know that hd    and hence 1( , , )h L    .

The uniqueness of h is obvious. That h  0  almost everywhere is also obvious.
This completes the proof.

A measure space ( , , )    is said to be -finite if there are A
1
, A

2
, ... in 

such that and ( )<+ ,  = 1, 2, ...n nA A n    .

Theorem 5.10: Lebesgue-Nikodym theorem holds if both ( , , )    and ( , , )  
are -finite. But in this case h may not be -integrable.

Let X be a Hilbert space. For definiteness, let X be a complex Hilbert
space.

(.,.) :B X X  is called sesquilinear if for x, x
1
, x

2
 in X and 

1
, 

2

   the following equalities hold:

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )

B x x x B x x B x x

B x x x B x x B x x

      

      

B is said to be bounded if there is r > 0, such that |B(x, y)  r||x|| . ||y|| for all
x and y in X and B is said to be positive definite if there exists  > 0 such that  |B(x,
x)  ||x||2 for all x in X.

Theorem 5.11: Suppose that B is a bounded, positive definite and sesquilinear

function on X × X and that ( , ) ( , )B x y B y x  for all x and y in X. Let ((.,.)). Then

(X, ((.,.)))  is a Hilbert space which is equivalent to (X, (.,.)) as Banach space.

Theorem 5.12 (Lax-Milgram Theorem): Let X be a Hilbert space and B a
bounded, positive definite and sesquilinear functional on X × X. Then there is a
unique bounded linear operator :S X X such that (x, y) = B(Sx, y) for all x, y
– X and ||S|| –1. Besides S–1 exists and is bounded with ||S–1|| r.
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Proof: Let D = {y  X :  y*  X . such that (x, y) = B(x, y*) x  X}. D ***
as 0  D. Also y* is uniquely determined by y as if

* *
1 2( , ) ( , ) ( , )B x y B x y x y x X    then * *

1 2( , ) 0 ,B x y y x X     and

hence 0 = * * * * * * 2
1 2 1 2 1 2( , ) || ||B y y y y y y      implying * *

1 2|| || 0y y   or

* *
1 2y y .

For y  D, let Sy = y*. As B is sesquilinear, D is a vector subspace of X and

S is linear on D. Furthermore, from 2|| || ( , )Sy B Sy Sy   ( , )Sy y 

|| || . || ||,y Sy  we get that –1|| || | || || for .Sy y y D    Thus S is bounded on D

with –1|| ||S   . We will now show that D = X. For this we first show that D is

closed. Let 1{ }n ny D
  lim n

n
y y


  with  for some y X .

Then, ( , ) lim( , ) lim ( , )n n
n n

x y x y B x Sy
 

   for all x   X. Since S is bounded

on D, Sy
n
  is Cauchy in X and hence has a limit z  X. This and the boundedness

of B implies that, (x, y) = lim ( , ) ( , )n
n

B x Sy B x z


 for all x  X. Hence y  D and

z  Sy. So D is closed. Now if D  X, there is 0 0, 0y D y  . Consider the

linear functional   defined on X by,,

0( ) ( , ),x B x y x X 

As B is bounded,  is a bounded linear functional on X, and hence by Riesz
representation theorem there is x

0
  X such that,

0 0( , ) ( , )B x y x x x X 

Thus x
0
  D and 

2
0 0 0 0 0|| || ( , ) ( , ) 0y B y y x y    . Hence ||y

0
|| = 0. This

contradicts the fact that y
0
  0. Therefore D = X. Thus S is a bounded linear

operator on X and ||S|| –1.

As Sy = 0 implies ( , ) ( , ) 0x y B x Sy x X    and hence y = 0, S is a
one-to-one map. Applying Riesz representation theorem again, for each y* in X

there exists y  X such that, ( , ) ( , *)x y B x y x X   , i.e., y* = Sy. Thus S is an

onto map. Hence S–1 exists. But from –1 2 –1 –1|| || | ( , ) |S y S y S y   –1| | , |B S y y
–1|| ( || . || ||r S y y , it follows that –1|| ||S r .

5.3.1 Orthogonal Complements

Let V be an inner product space. Two vectors u, v  V are said to be orthogonal
if (u, v) = 0  (v, u) = 0. So, u is orthogonal to v iff v is orthogonal to u. Since
(0, v) = 0 for all v  V, 0 is orthogonal to every vector in V.

Conversely, if u  V is orthogonal to every vector in V, then (u, u) = 0 
u = 0.

Let W be a subspace of V.
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Define W = {v  V | (v, w) = 0 for all w  W} (W is read as W
perpendicular). Then W is a subspace of V as 0  W  W   and v1, v2
 W, ,   F

 (v1 + v2, w) = (v1, w) + (v2, w) = 0 for all w  W

 v1 + v2  W.

W is called orthogonal complement of W.

Example 5.9: Let V be an inner product space. Let x, y  V such that, x  y

Then show that || x + y ||2 = || x ||2 + || y ||2. (This is  Pythagoras Theorem
when F = R as in triangle ABC with AB  BC, AB2 = || x ||2, BC2 = || y ||2, AC2

= || x + y ||2)

Solution: || x + y ||2 = (x + y, x + y)

= (x, x) + (y, y) + (x, y) + (y, x)

= || x ||2 + || y ||2  as (x, y) = 0 = (y, x).

Orthonormal Set

A set {ui}i of vectors in an inner product space V is said to be orthogonal if
(ui, uj) = 0 for i  j. If further (ui, ui) = 1 for all i, then the set {ui} is called an
orthonormal set.

Example 5.10: Let V be the real vector space of real polynomials of degree less
than or equal to n. Define an inner product on V by

0 1

,
n n

i j
i j

i j

a x b x  = 
1

n

i ia b

Then {1, x,..., xn} is an orthonormal subset of V.

Theorem 5.13: Let S be an orthogonal set of non zero vectors in an inner product
space V. Then S is a linearly independent set.

Proof: To show S is linearly independent, we have to show that every finite subset
of S is linearly independent.

Let {v1,....., vn} be a finite subset of S.

Let, 1v1 + ..... + nvn = 0, i  F

(1v1 + ..... + nvn, 1v1 + ..... + nvn) = 0

 | 1 |2 || v1 ||2 + ..... + | n |2 || vn ||2 = 0

 | i |2 || vi ||2 = 0  for all i = 1, ....., n

 | i |2 = 0 for all i as || vi ||2 = 0  || vi || = 0  vi = 0

which is not true

 i = 0  for all i = 1, ..., n

 S is linearly independent.

Corollary 2.: An orthonormal set in an inner product space is linearly independent.

Proof: Let S be an orthonormal set in an inner product space V. Let v  S. Then
v  0 as v = 0  (v, v) = 0  1, a contradiction. Therefore, S is an orthogonal
set of non zero vectors and so linearly independent.
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Theorem 5.14: (Gram-Schmidt Orthogonalization process)

Let V be a non zero inner product space of dimension n. Then V has an orthonormal
basis.

Proof: It is enough to construct an orthogonal basis of V. For let S  V be an

orthogonal set. Then T = |
|| ||

x
x S

x

 
 

 
 is an orthonormal set.

Let {v1,..., vn} be a basis of V.

Let  w1 = v1. Define w2 = v2 – 2 1

1 1

( , )

( , )

v w

w w
 w1

 = v2 – 2 1

1 1

( , )

( , )

v v

v v
 v1

Then  (w2, w1) = (w2, v1)

 = (v2, v1) – 2 1

1 1

( , )

( , )

v v

v v
 (v1, v1) = 0

Also v2 = 1v1 + w2 = 1w1 + w2

where 1 = 2 1

1 1

( , )

( , )

v v

v v
  F.

(Note v1 is linearly independent  v1  0  (v1, v1)  0)

Define w3 = v3 – 3 2 3 1
2 1

2 2 1 1

( , ) ( , )

( , ) ( , )

v w v w
w w

w w w w


Then (w3, w2) = 0 = (w3, w1)

Also v3 = 1w1 + 2w2 + w3, where 1, 2  F.

In this way, we can construct an orthogonal set {w1,..., wn} where each
vi = 1w1 + ... + wi, i  F

 1

1
,...,

|| || || ||
n

n

ww

w w
 is an orthonormal set which is linearly independent by

Corollary 1 to Theorem 5.13 and hence forms a basis of V as dim V = n.

Aliter: Let dim V = n. We use induction on n.

Let n = 1. Let 0  x  V, then v = 
|| ||

x

x
  V such that, || v || = 1.

So, {v} is an orthonormal basis of V.

Suppose now that the result holds for any inner product space of dimension
less than or equal to n – 1.

Let V be an inner product space of dimension n

Let 0  v  V be such that, || v || = 1.

Define Tv : V  C such that,

Tv(v) = < v, v >

Then Tv is a linear transformation.

Let   C, then  =  || v ||2 =  < v, v > = < v, v > = Tv(v)
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and so Tv is onto, i.e., Range Tv = C.

By Sylvester's law

dim V = dim Ker Tv + dim Range Tv

 n = dim Ker Tv + dim C

= dim Ker  Tv + 1

 dim W = n – 1, where W = Ker Tv

= {x  V | Tu(x) = 0}

= {x  V | < v, x > = 0}

By induction hypothesis, W has an orthonormal basis {w1, w2,..., wn–1}

Now wi  W  < v, wi > = 0 i = 1, 2,..., n – 1

Also < v, v > = || v ||2 = 1

So {w1, w2,..., wn–1, v} is an orthonormal set.

i.e., {w1, w2,..., wn – 1, v} is L.I. set by Corollary 1 to Theorem 5.13.

Since dim V = n, {w1, w2,..., wn–1, v} is a basis of V and hence is an orthonormal
basis of V. So, result follows by induction.

Example 5.11: Obtain an orthonormal basis, with respect to the standard inner
product for the subspace of R3 generated by (1, 0, 3) and (2, 1, 1).

Solution: Let v1 = (1, 0, 3), v2 = (2, 1, 1)

Then w1 = v1, w2 = v2 –
2 1

1 1

( , )

( , )

v w

w w
 w1

Now (v2, w1) = (v2, v1) = 2 + 0 + 3 = 5

(w1, w1) = (v1, v1) = 1 + 0 + 9 = 10

 || w1 || = 10

So, w2 = (2, 1, 1) – 5

10
 (1, 0, 3) = 3 1

,1,
2 2

  
 

 || w2 || = 9 1
1

4 4
   = 7

2

 Required orthonormal basis is

1 2

1 2

,
|| || || ||

w w

w w

 
 
 

 = 1 2 3 1
(1, 0, 3), ,1,

7 2 210

         

Example 5.12: Let V be an inner product space over R. Let {v1, v2,..., vn} be
a basis of V such that, whenever v = ivi then || v ||2 = i

2. Show that {v1,
v2,..., vn} is an orthonormal basis.

Solution: We have vi = 1.vi  || vi ||2 = 1 i by hypothesis

Consider vi + vj, i  j, then

|| vi + vj ||2 = 2

 < vi, vi > + < vj, vj > + < vi, vj > + < vj, vi > = 2

 < vi, vj > + < vj, vi > = 0
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 < vi, vj > + < vi, vj > = 0 as V is an inner product space over R

 < vi, vj > = 0 i  j

Hence {v1, v2,..., vn} is an orthonormal basis.

Theorem 5.15: (Bessel's Inequality)

If {w1,..., wm} is an orthonormal set in V, then

2

1

| ( , ) |
m

i
i

w v

  || v ||2 for all v  V.

Proof: Let x = v – 
1

( , )
m

i i
i

v w w



 (x, wj) = (v, wj) – (v, wj) = 0  for all j = 1,..., m

Let w = 
1

( , )
m

i i
i

v w w

  = 

1

,
m

i i
i

w


  i = (v, wi)

  v = x + w

Also (w, x) = (1w1 + ..... + mwm, x)

= 1(w1, x) + ..... + m(wm, x) = 0

Now || v ||2 = (v, v)

= (w + x, w + x)

= (w, w) + (x, x)

= || w ||2 + || x ||2  || w ||2

But || w ||2 = (w, w)

= (1w1 + ..... + mwm, 1w1 + ..... + mwm)

= 1 1  (w1, w1) + ..... + m m  (wm, wm)

= | 1 |2 + ..... + | m |2

as {w1,....., wm} is an orthonormal set

= 2

1

| |
m

i
i 

  = 2

1

| ( , ) |
m

i i
i

v w

  = 2

1

| ( , ) |
m

i
i

w v

  = 2

1

| ( , ) |
m

i
i

w v



 2

1

| ( , ) |
m

i
i

w v

   || v ||2 for all v  V.

Corollary 3.: Equality holds if and only if v = w.

Proof: Suppose v = w

Then || v ||2 = || w ||2 = 2

1

| ( , ) |
m

i
i

w v



Conversely, suppose equality holds

Then || v ||2 = || w ||2

 || x ||2 = 0  (x, x) = 0  x = 0

 v = w + x = w.
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Theorem 5.16: If V is a finite dimensional inner product space and W is a subspace
of V, then V = W  W.

Proof: Since V is an inner product space, so is W. By Theorem 5.14, W  has an
orthonormal basis {w1,..., wm}.

Let v  V.

Let w = 
1

( , )
m

i i
i

v w w , wi  W and x = v – w

Then (x, wj) = 0 as in Theorem 5.15, for all j = 1,..., m

 (x, w) = (x, 1w1 + ..... + mwm)

= 1  (x, w1) + ..... + m  (x, wm)

= 0 for all w  W

 x  W

So, v = w + x  W + W

V  W + W

 V = W + W

Let  y  W  W  (y, w) = 0  for all w  W, y  W

 (y, y) = 0  as y  W

 y = 0

 W  W = {0}

Hence V = W  W.

Corollary 4: If W is a subspace of a finite dimensional inner product space V, then
(W) = W.

By above theorem, V = W  W

Let w  W, x  W

Then x  W  < x, y > = 0  y  W

 < x, w) = 0  x  W

 w  (W)

i.e., W  (W)

Let v  (W) then v = w + w, w  W, w  W

 0 = < w, v > = < w, w + w) = < w, w > + < w, w > = < w,
w >

So w = 0  v = w  W

i.e., (W)  W giving W = (W).

Corollary 5: If S = {x1, x2,..., x r} is a basis of W and T = {y1, y2,..., ys} is a
basis of W then

{x1, x2,..., xr, y1, y2,..., ys} is an orthonormal basis of V.

By above theorem V = W  W
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Thus S  T is a basis of V

Also < xi, yj > = 0  i, j as yj  W j

proving the result.

Note: Theorem 5.16 need not hold in case  of infinite dimensional vector space.
For instance, take

V = {(an) | (an) is a sequence of complex numbers such that, 2

1

| |na
  


 .

Then V is a vector space with respect to componentwise addition and scalar
multiplication

Take a = (an), b = (bn)  V

Define < a, b > = 
1

n na b




Since ( | an | – | bn | )2  0

| an |2 + | bn |2  2 | an | | bn |

Now 2 | n na b |  2 | an | | nb |

 2 | an nb |  2 | an | | bn | as | bn | = | nb |

 | an |2 + | bn |2 < 
Thus < a, b > is well defined inner product on V.

Let Ak  V such that, kth entry is 1 and zero elsewhere

Let S = {| Ak | k = 1, 2,..., }  V

Then < Ai, Aj > = lj.

Let W = L(S), then W  V as v = 
2

1

n

 
 
 

  V and v  L(S).

[In fact L(S), is the set of those sequences whose only finite number of entries
are non zero].

Also x  W  < x, w > = 0  w  W

 < x, Ak > = 0 k = 1, 2, ...

 xk = 0 k where x = (xn)

 x = 0 or that W = {0}

So V  W  W = W.

Notice V is not F.D.V.S. by Theorem 5.16.

Example 5.13: If W is a subspace of V and v  V satisfies

(v, w) + (w, v)  (w, w) for all w  W

prove that (v, w) = 0 for all w  W, where V is an inner product space over F.

Solution: Let n be a +ve integer

Then w  W  
w

n
  W



Inner Product Space
and Hilbert Space

NOTES

Self - Learning
Material 205

 ,, ,v
w w w w

v
n n n n

           
     

 (v, w) + (w, v)  1

n
 (w, w)

Let n  

Then (v, w) + (w, v)  0 for all w  W

(v, –w) + (–w, v)  0 for all w  W

 – [(v, w) + (w, v)]  0for all w  W

 (v, w) + (w, v)  0 for all w  W

 (v, w) + (w, v) = 0 for all w  W

If F  R, then (w, v) = (v, w)

 (v, w) + (v, w) = 0

 2(v, w) = 0 for all w  W

 (v, w) = 0 for all w  W

If F  C, then (v, iw) + (iw, v) = 0 for all w  W

 – i (v, w) + i (w, z–) = 0 for all w  W

 –i [z – z–] = 0, z = (v, w) = x + iy

 – i (2iy) = 0

 y = 0

 z = (v, w) = real for all w  W

 (v, w) + (v, w) = 0

 2 (v, w) = 0

 (v, w) = 0  for all w  W.

Example 5.14: If V is a finite dimensional inner product space and f  V, prove
that  u0  V such that f (v) = (v, u0) for all v  V. Also show that u0 is uniquely
determined.

Solution: Let {v1,..., vn} be an orthonormal basis for V. Let v  V.

Then v = 1v1 + ... + nvn, i  F

Let f (vi) = i, i = 1, 2,..., n

Define u0 = 1 v1 + ... + n vn  V

Then (v, u0) = (1v1 + ... + nvn, 1 v1 + ... + n vn)

= 11 + ... + nn  as (vi, vj) = ij

= f (v)  for all v  V

Suppose  u0  V such that f (v) = (v, u0)

Then (v, u0) = (v, u0) for all v  V

 (v, u0 – u0) = 0 for all v  V

 (u0 – u0, u0 – u0) = 0
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 u0 = u0

 u0 is uniquely determined.

5.3.2 Conjugate Space H*

Consider a Hilbert space H and its conjugate space H*. Let y be a fixed vector in
H. Define a function f

y
 on H by,

f
y
(x) = (x, y) for all x in H

Assert that f
y
 is linear for f

y
(x

1
+x

2
) = (x

1
+x

2
, y) for all x

1
 and x

2
 in H.

 = (x
1
, y) + (x

2
, y) = f

y
(x

1
) + f

y
(x

2
)

Also

f
y
(x) = (x, y) = (x, y) = (f

y
(x))

which proves that ||f
y
||  ||y||

This implies that f
y
 is continuous. Thus f

y
 is linear and continuous mapping

and hence is a linear functional on H. On the other hand if y = 0, then f
y
(x) = (x, 0)

= 0 ||f
y
|| = ||y||. If y 0, then

||f
y
|| = sup{|f

y
(x)|;||x|| = 1}

,y
y y

f y
y y

Hence ||f
y
|| = ||y||

Thus for each y  H, there is a linear functional f
y
 H* such that ||f

y
|| = ||y||.

Hence the mapping y f
y
 is a norm preserving mapping of H into H*.

5.3.3 Reflexivity of Hilbert Space

Theorem 5.17: For every Hilbert space  there exists a surjective isometry
:* of the dual * of  onto  which is additive and conjugate

homogeneous (i.e., (f ) = ( )f  for every *f   and every  ).

Proof: Suppose  is a Hilbert space and let * [ , ]   be the dual of . By

the Riesz represenatation theorem, for each *f  there exists a unique

y  such that ( ) ( ; )f x x y for every x  and f y . Conversely, for

each y  the functional :f  given by ( ) ;f x x y for every x  is

linear and bounded, i.e., *f  . This proves the surjective

isometry *  of the dual* of  onto :

( )f y  for every *f 
where y   is the unique Riesz representation of *f  . Therefore

every f in * is such that, ( ) ; ( )f x x f  for every *x 
Notice that  is additive. Clearly, if *,f g  , then

; ( )x f g = ( ) ( ) ( ) ( )f g x f x g x
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= ; ( ) ; ( ) ; ( ) ( )x f x g x f g

for every x  , so that ( ) ( ) ( )f g f g . Moreover, if *f 
and   then, ; ( ) ( ) ( ) ; ( )x f f x f x x f         ; ( )x f 

for every x  and hence ( ) ( )f f . This completes the proof.

From the above theorem we can conclude that every Hilbert space is
isometrically equivalent to its dual. In particular, every real Hilbert space is
isometrically isomorphic to its dual.

Theorem 5.18: Every Hilbert space is reflexive.

Proof:  Let   be the surjective isometry of Theorem 5.17 which is

additive and conjugate homogeneous. Let the mapping * *
*; :   be

given by, *
; ( ); ( )f g g f

for every *,f g  , where ; is the inner product on . This defines an

inner product on *. *
; is additive  since is additive. Now as  is conjugate

homogeneous,

* *; ( ); ( ) ( ); ( ) ( ); ( ) ;f g g f g f g f f g

for every *,f g  and every  and so *; is homogeneous in the

first argument. Evidently *; is Hermitian symmetric and positive.

Now, * ( )f f f

for every *f  , so that the norm * induced on * by the inner product

*
;  coincides with the usual induced norm on * [ , ]  . Since the dual

space of every normed space is a Banach space, (*, || ||) is a Banach space and
hence (*, || ||

*
) is a Hilbert space. We will now apply the Riesz representation

theorem to the Hilbert space*. Obtain an arbitrary ** . There exists a

unique *g  such that, *
( ) ; ( ); ( )f f g g f

for every *f  . Every *f  is given by ( ) ;f x x y for every

x  , where ( )y f  . Fix ( )z g  such that,

( ) ; ( ); ( )f z z y g f

Hence there exists z   such that, ( ) ( )f f z  for every *f  .

Therefore  is reflexive.

Check Your Progress

1. Define the term norm.

2. State Riesz representation theorem.

3. What can you say about the reflexivity of a Hilbert space?
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5.4 SELF-ADJOINT OPERATORS ON HILBERT
SPACE

Definition: A bounded linear operator T : H  H on a Hilbert space H is said to
be self-adjoint or Hermitian if,

T* = T …(5.5)

Equivalently, a bounded linear operator T is said to be self-adjoint if,

x, Ty  = Tx, y  for all x, y  H …(5.6)

A linear map on n  with materix A is self-adjoint iff A is symmetric
(A = AT). A linear map on n  with matrix A is self-adjoint iff A is Hermitian
(A = A*).

Not: Self-adjoint operators on Hilbert spaces are used in quantum
mechanics for representing physical observables like position, momentum, angular
momentum and spin.

Definition: A bounded linear operator T : H  H on a Hilbert space H is
said to be unitary if T is bijective and

TT* = T*T …(5.7)

Hence

T*  = T–1 …(5.8)

Definition: A bounded linear operator T : H  H on a Hilbert space H is said to
be normal if,

TT* = T*T …(5.9)

Note: If T is self-adjoint or unitary, then T is normal; the converse is not generally
true.

Theorem 5.19: Let T : H  H be a bounded linear operator on a Hilbert space
H. Then,

1. If T is self-adjoint then ,x xT  for all x H .

2. If H is complex and ,x xT  for all x H , then the operator T is
self-adjoint.

Proof:

1. If T is self-adjoint, then for all x,

, ,x x x xT T …(5.10)

By definition , , *x y x yT T and since T is self-adjoint, we have

, ,x x x xT T …(5.11)

Combining Equations (5.10) and (5.11) gives,

, ,x x x xT T …(5.12)

Hence ,x xT is equal to its complex conjugate which implies that it is real.
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2. If ,x xT  for all x H , then

,x xT  = , , * * ,x x x x x xT T T

Hence,

0 = * *, – , – ,x x x x x xT T T T

and by Lemma 1, T – T* = 0. Therefore, T = T*.

Theorem 5.20:  Consider T
n
 to be a sequence of bounded self-adjoint linear

operators T
n
 : H  H on a Hilbert space H. If T

n
 converges to T, then T is a

bounded self-adjoint linear operator.

Proof: If T
n
  T Then ||T

n
 – T||  0.

Also,

||T
n

* – T*|| = ||(T
n
 – T)*|| = ||T

n
 – T||

So that, ||(T – T*)||  <  ||(T – T
n
)|| + ||T

n
 – T

n
*|| + || T

n
* – T*||

  = ||(T – T
n
)|| + || T

n
 – T|| = 2 || T

n
 – T||

As n || T
n
 – T||  0. Hence || T – T*|| = 0 implying T* = T, Hence T

is self-adjoint.

Definition: Let H be a Hilbert space. Then S : H   H is positive operator

denoted by S  0 if ,S f f is real and , 0S f f for every f  H.

A positive operator on a complex Hilbert space is self-adjoint.

5.4.1 Projections on Hilbert Spaces

Let M and N are subspaces of a linear space X such that every x  X can be
written exclusively as x = y + z with y  M and z  N. Then we say that
X = M N is the direct sum of M and N and we call N a complementary subspace
of M in X. The decomposition x = y + z with y  M and z  N is unique iff
M  N = {0}. A given subspace M has many complementary subspaces. For

example, if X = 3  and M is a plane through the origin, then any line through the
origin that does not lie in M is a complementary subspace. Every complementary
subspace of M has the same dimension and the dimension of a complementary
subspace is called the codimension of M in X. If X = M N, then the projection
P : X  X of X onto M along N is defined by Px = y,  where x = y + z with
y  M and z  N. This projection is linear with rank P = M and ker P = N, and
satisfies P2 = P.

Definition: A projection on a linear space X is a linear map P : X  X  such that,

P2 = P ...(5.13)

Any projection is associated with a direct sum decomposition.

Theorem 5.21: Suppose X is a linear space.

1. If P : X  X is a projection, then X = ran P  ker P.

2. If X = M  N, where M and N are linear subspaces of X, then there is a
projection P : X  X with ran P = M and  ker P = N.
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Proof:

1. First prove that x  ran P  iff x = Px. If  x = Px, then noticeably x  ran P.
If x  ran P then x = Py for some y  X, and since P2 = P, it follows that Px
= P2y = Py = x.

If x  ran P  ker P then x = Px and Px = 0, so ran P  ker P = {0}. If
x  X then we have,

x  = Px + (x – Px)

where Px  ran P and (x – Px)  ker P since P(x – Px) = Px – P2x =
Px – Px = 0

Thus X = ran P  ker P.

2. Observe that if X = M  N, then x  X has the unique decomposition x =
y + z with y  M and z  N, and Px = y defines the required projection.
This completes the proof.

When using Hilbert spaces, we are particularly interested in orthogonal
subspaces. Suppose that  is a closed subspace of a Hilbert space . Then we
have =. We call the projection of  onto  along  the
orthogonal projection of  onto . If x = y + z and x = y + z, where y, y 
 and z, z  , then the orthogonality of  and  implies that,

           Px, x y, y z y, y y z, y x, Px (5.14)

Equation (5.14) implies that an orthogonal projection is self-adjoint. The
Equations (5.13) and (5.14) characterize orthogonal projections.

Definition: An orthogonal projection on a Hilbert space  is a linear map
P :  that satisfies,

P2 = P,        Px, y x, Py  for all x, y  

An orthogonal projection is necessarily bounded.

Corollary 6: Let P be a nonzero orthogonal projection. Then ||P|| = 1.

Proof: If x   and  Px  0, then the use of the Cauchy-Schwarz inequality
implies that,

2

   
x, P xPx, Px x, Px

|| Px || || x ||
|| Px || || Px || || Px ||

Therefore 1|| P || . If P  0 then there is an x   with Px  0 and
||P(Px)|| = ||Px||, so that ||P||  1.

There is a one-to-one correspondence between orthogonal projections P
and closed subspaces  of  such that ran P = . The kernel of the orthogonal
projection is the orthogonal complement of .

Theorem 5.22: Suppose that  is a Hilbert space.

1. If P is an orthogonal projection on , then ran P is closed and  = ran P
 ker P is the orthogonal direct sum of ran P and ker P.
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2. If  is a closed subspace of  then there is an orthogonal projection P on
with ran P =   and  ker P = .

Proof:

1. Let P be an orthogonal projection on . Then by Theorem 21, we have 
= ran P  ker P. If x = Py  ran P and z  ker P, then

, , , 0  x z Py z y Pz

So ran P  ker P. Hence  is the orthogonal direct sum of ran P and ker P.
It follows that ran P = (ker P), so ran P is closed.

2. Let  be a closed . Then =    Define a projection
P :    by Px = y  where x = y + z  with y   and z  .

Then ran P =  and ker P = . P is orthogonal. This completes the
proof.

If P is an orthogonal projection on  with range  and associated
orthogonal direct sum  =   , then I – P is the orthogonal projection with

range  and associated orthogonal direct sum  =   .

5.4.2 Positive, Normal, and Unitary Operators

Theorem 5.23 (Spectral): Suppose T is a self-adjoint operator on a finite-
dimensional complex vector space V with a (Hermitian) inner product , . Then
there is an orthonormal basis {e

i
} for V consisting of eigenvectors for T.

To prove this theorem we need to prove the following:

Lemma 1: Let W be a T-stable subspace of V, with T = T*. Then the orthogonal
complement W  is also T-stable.

Proof: Let   W  and w  W. Then,

Tv, w = v, T*w   = v, Tww  = 0

since Tw  W.

Proof of Theorem 5.23: For proving Theorem 5.23, we apply induction on the
dimension of V. Let v 0 be any vector of length 1 which is an eigenvector for T.
We know that T has eigenvectors because   is algebrically closed and so the
minimal polynomial of T factors into linear factors, and V is finite dimensional.
Thus .  is T-stable and by Lemma 1, the orthogonal complement ( . )is also

T-stable. With the restriction of the inner product to ( . )the restriction of T is
still self-adjoint. So by induction on dimension, the theorem is proved.

Theorem 5.24: Suppose T is a normal operator on a finite-dimensional complex

vector space V with a  Hermitian inner product , . Then there is an orthonormal
basis {e

i
} for V consisting of  eigenvectors for T.

Lemma 2: Let T be an operator on V and W a T-stable subspace. Then the
orthogonal complement W  of W is T*-stable.

Proof: Let W  and w W . Then,

T*v, w = v, Tww = 0 since Tw W .
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Proof of Theorem 5.24: We will again apply induction on the dimension of V.
Let  be an eigenvalue of T and V the -eigenspace of T on V. The assumption of
normality is that T and T* commute. So from the definition of commuting operators,

T* stabilizes V. Then from Lemma 2, T = T** stabilizes V . By induction on
dimension, the proof is complete.

Corollary 7: Let T be a self-adjoint operator on a finite dimensional complex

vector space V with inner product , . Let {e
i
} be an orthonormal basis for V.

Then there is a unitary operator k on V, i.e., kv, kw  = v, w  for all v, wV
such that, {ke

i
} is an orthonormal basis of T-eigenvectors.

Proof: Let {f
i
} be an orthonormal basis of T-eigenvectors, whose existence is

assured by the spectral theorem. Let k be a linear endomorphism mapping e
i
  f

i

for all indices i. We claim that k is unitary. If i ii
a e  and j ij

w b e , then

, , , , ,i j i j i j i j i j i j
ij ij ij

kv kw a b ke ke a b f f a b e e v w

This is the unitariness and completes the proof.

A self-adjoint operator T on a finite dimensional complex vector space V
with Hermitian inner product is positive definite if,

Tv, v  0 with equality only for v = 0.

The oeprator T is positive semidefinite if Tv, v  0 i.e., equality may
occur for non-zero vectors v.

Lemma 3: The eigenvalues of a positive definite operator T are positive real
numbers. When T is just positive semidefinite, the eigenvalue are nonnegative.

Proof: We have by now showed that the eigenvalues of a self-adjoint operator
are real. Let v be a nonzero -eigenvector for T. Then,

 v, v = Tv, v  > 0

by the positive definiteness. Since v, v > 0, essentially  > 0. When T is
just semidefinite, we get only   0 by this argument.

Corrollary 8: Let T = T* be positive semidefinite. Then T has a positive semidefinite
square root S, i.e., S is self-adjoint positive semidefinite and

S2 = T

If T is positive definite, then S is positive definite.

Proof: From the spectral theorem, there is an orthonormal basis {e
i
} for V

consisting of eigenvectors, with respective eigenvalues 
i
  0. Define an operator

S by,

.
i i iSe e

Noticeably S has the same eigenvectors as T with eigenvalues the nonnegative
real square roots of those of T and the square of this operator is T. Now, let

i ii
a e and i ii

w b e and compute
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* , , , , ,i j i j i j j i j i i i i i
ij ij i

S v w v Sw a b e e a b e e a b e e

by orthonormality and the realness of i . We therefore get,

, ,i j i i j
ij

a b e e Sv w

Since the adjoint is unique, S = S*. This completes the proof.

The standard (Hermitian) inner product on n  is,

1 1
1

( , , ), ( , , )
n

n n i j
i

v v w w v w

The n-by-n complex matrices give  linear endomorphisms by left
multiplication of column vectors. With this inner product, the adjoint of an
endomorphism T is, T* = T, i.e., conjugate transpose. Certainly, we often write the
superscript ‘*’ to indicate conjugate transpose of a matrix and say that the matrix
T is Hermitian. Similarly, an n-by-n matrix k is unitary if, kk* = 1

n
 where 1

n
 is the

n-by-n identity matrix. This is equivalent to unitariness with respect to the standard
Hermitian inner product.

Corollary 9: Suppose T is an Hermitian matrix. Then there is a unitary matrix k
such that k*Tk = Diagonal, with diagonal entries the eigenvalues of T.

Proof: Suppose {e
i
} is the standard basis for n . It is orthonormal with respect

to the standard inner product. Let {f
i
} be an orthonormal basis consisting of  T-

eigenvectors. From Corollary 7, let k be the unitary operator mapping e
i
 to f

i
.

Then k*Tk is diagonal, with diagonal entries the eigenvalues.’

Corollary 10: Let T be a positive semidefinite Hermitian matrix. Then there is a
positive semidefinite Hermitian matrix S such that,

S2 = T

Proof: T is positive semidefinite self-adjoint with respect to the standard inner
product. So S2 = T.

5.5 COMPLETE ORTHOGONAL SETS

Definition: Orthogonal set

A set of functions

is called orthogonal if every function is orthogonal to every other function
i.e. if
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Examples of orthogonal sets

1. The set of trigonometric functions

 on the interval . This set is one of the first and most important
examples of orthogonal sets.

2. The set of Legendre polynomials

 on the interval . The first few polynomials of the sequence are

Definition: Orthonormal set

A collection of functions

is called orthonormal if it is orthogonal and if each of the functions is of
unit length i.e.

Example

The set of trigonometric functions

on the interval  is orthonormal. These functions are obtained by
dividing the functions

by their lengths.

Expansion by orthogonal systems of functions

Let  and  be any two mutually perpendicular vectors of unit length in a

plane. Then any vector  in that plane can decomposed in the direction of these
two vectors and written as



Inner Product Space
and Hilbert Space

NOTES

Self - Learning
Material 215

where  and . Similarly if  and  are any
three mutually perpendicular unit vectors in a three-dimensional space, then any
vector  in the space can be decomposed in the direction of these three vectors
and written as

where  and  Likewise it is possible to

represent any function  in Hilbert space as a linear combination of an

orthonormal set of functions. For this, it is necessary for the orthonormal system
to be complete.

Definition: Complete orthogonal set

An orthogonal set of functions is called complete if it is impossible to add to it
even one function, not identically equal to zero, that is orthogonal to all the
functions of the set.

We can easily give an example of an orthogonal set that is not complete.
Suppose we are given any arbitrary orthogonal set and remove a single function

from it, the remaining set will be incomplete. For example, if we remove 

from orthogonal set

The remaining set

is orthogonal as before, but it is not complete since the function 

which we excluded is orthogonal to all functions of the set.

5.5.1 Parseval’s Identity

The square of the length of a vector in Hilbert space is equal to the sum of the
squares of its projections onto a complete set of mutually orthogonal directions.
In other words, if

is a complete orthonormal set of functions in Hilbert space and if a

function  is given by

then
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Proof: Denote by  the difference between  and the sum of the first 
terms of its series representation i.e.

Now the function  is orthogonal to each of the functions

. Let us show that it is orthogonal to the function

, i.e.,

We have

or

where we employ the fact that, because the functions are orthogonal to
each other,

Now in (1)

and thus (1) becomes

Hence, in the equation

the terms on the right side are all orthogonal to each other. Now, by the
Pythagorean theorem, the square of the length of  is equal to the sum of the
square of the summands on the right side of (2), i.e.

Since the set of functions  is normalized, we have
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Now we are dealing with functions of a Hilbert space which consists of

the functions  for which the Lebesgue integral of  exists. This means that
as  approaches , the integral

converges and the term

on the right side of (3) approaches zero. Thus (3) becomes

Check Your Progress

4. What is self-adjoint operator?

5. Define a projection.

6. Give the statement of spectral theorem.

5.6 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Let V be an inner product space. Let v  V. Then norm of v (or length of v)
is defined as and is denoted by || v ||.

2. Let X be a Hilbert space and    X, then there is y
0
  X such that,

 (x) = (x, y
0
) for x  X

Furthermore, the mapping 0y   is conjugate linear and 0|| || || ||y .

3. Every Hilbert space is reflexive.

4. A bounded linear operator T : H  H on a Hilbert space H is said to be
self-adjoint or Hermitian if,

T* = T

Equivalently, a bounded linear operator T is said to be self-adjoint if,

x, Ty  = Tx, y  for all x, y  H

5. A projection on a linear space X is a linear map P: X  X such that,

P
2
 = P.

6. Suppose T is a self-adjoint operator on a finite-dimensional complex vector
space V with a (Hermitian) inner product. Then there is an orthonormal
basis {ei} for V consisting of eigenvectors for T.
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5.7 SUMMARY

 Let V be a vector space over field F (where F = field of real or complex
numbers). Suppose for any two vectors u, v  V  an element (u, v)  F
such that,  [(u, v) here is just an element of F and should not be confused
with the ordered pair.]

 Inner product space over real field is called Euclidean space and over
complex field is called Unitary space.

 Let V be an inner product space. Let v  V. Then norm of v (or length of v)
is defined as and is denoted by || v ||.

 Let X be a Hilbert space and    X, then there is y
0
  X such that,

 (x) = (x, y
0
) for x  X

Furthermore, the mapping 0y   is conjugate linear and 0|| || || ||y .

 Let (, , ) and (, , ) be measure spaces with (  and (
< +  where  is absolutely continuous with respect to .

 Lebesgue-Nikodym theorem holds if both ( , , )    and ( , , )    are
-finite. But in this case h may not be -integrable.

 Let X be a Hilbert space and B a bounded, positive definite and sesquilinear
functional on X × X. Then there is a unique bounded linear operator

:S X X such that (x, y) = B(Sx, y) for all x, y – X and ||S|| –1.
Besides S–1 exists and is bounded with ||S–1|| r.

 A set {ui}i of vectors in an inner product space V is said to be orthogonal
if (ui, uj) = 0 for i  j. If further (ui, ui) = 1 for all i, then the set {ui} is called
an orthonormal set.

  An orthonormal set in an inner product space is linearly independent.

 Consider a Hilbert space H and its conjugate space H*. Let y be a fixed
vector in H. Define a function fy on H by, fy(x) = (x, y) for all x in H. Then
the mapping y fy is a norm preserving mapping of H into H*.

  Every Hilbert space is isometrically equivalent to its dual.

  Every Hilbert space is reflexive.

 For every Hilbert space  there exists a surjective isometry :* of
the dual * of  onto  which is additive and conjugate homogeneous.

 A bounded linear operator T : H  H on a Hilbert space H is said to be
self-adjoint or Hermitian if,

T* = T

Equivalently, a bounded linear operator T is said to be self-adjoint if,

x, Ty  = Tx, y  for all x, y  H

  A bounded linear operator T: H  H on a Hilbert space H is said to be
self-adjoint or Hermitian if, T* = T.
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  A bounded linear operator T: H  H on a Hilbert space H is said to be
unitary if T is bijective and TT* = T*T.

  A bounded linear operator T: H  H on a Hilbert space H is said to be
normal if, TT* = T*T.

  A projection on a linear space X is a linear map P: X  X such that,

P2 = P.

  An orthogonal projection on a Hilbert space  is a linear map P: 
that satisfies, P2 = P, for all x, y  

  Suppose T is a self-adjoint operator on a finite-dimensional complex vector
space V with a (Hermitian) inner product. Then there is an orthonormal
basis {ei} for V consisting of eigenvectors for T.

5.8 KEY TERMS

 Unitary space: Inner product space over real field is called Euclidean
space and over complex field is called Unitary space.

 Norm: Let V be an inner product space. Let v  V. Then norm of v (or

length of v) is defined as ( , )v v  and is denoted by || v ||.

 Orthogonal vectors: Let V be an inner product space. Two vectors
u, v  V are said to be orthogonal if (u, v) = 0  (v, u) = 0.

 Orthogonal set: A set {ui}i of vectors in an inner product space V is said
to be orthogonal if (ui, uj) = 0 for i  j. If further (ui, ui) = 1 for all i, then
the set {ui} is called an orthonormal set.

 Self-adjoint operator: A bounded linear operator T: H  H on a Hilbert
space H is said to be self-adjoint or Hermitian if, T* = T.

5.9 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Define inner product space.

2. Define the term unitary space.

3. What is a linear transformation?

4. Define an orthonormal basis.

5. State Gram-Schmidt orthogonalization process.

6. What do you understand by conjugate space?

7. When is a space said to be reflexive?

8. What do you mean by kernel of an orthogonal projection?

9. Define Hermitian inner product.

10. What is Parseval’s identity?
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Long-Answer Questions

1. Illustrate the properties of inner product spaces.

2. Prove Riesz representation theorem.

3. Explain and prove Lebesgue-Nikodym theorem.

4. Describe all the operators on the Hilbert space.

5. Discuss the concept of conjugate space.

6. Show that every Hilbert space is reflexive.

7. Let P be a nonzero orthogonal projection. Then prove that ||P|| = 1.

8. Describe and prove spectral theorem.

9. Explain orthonormal and complete orthonormal sets.
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