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INTRODUCTION

Atthe close of the 19th century Stieltjes showed that the integral is a linear functional
and hence was able to generalize Riemann’s theory to introduce Riemann-Stieltjes
integrals. However, there were many shortcomings in Riemann’s theory and it was
felt that an integration theory which could encompass a larger class of functions
was needed. This paved the way for sthe concept of measure, which was introduced
by Borel and Lebesgue at the beginning of 20th century.

Functional analysis is a branch of mathematical analysis, the core of which
is formed by the study of vector spaces endowed with some kind of limit-related
structure such as inner product, norm, topology, etc., and the linear operators acting
upon these spaces and respecting these structures in a suitable sense. It is concerned
with infinite-dimensional vector spaces and mappings between them. The historical
roots of functional analysis lie in the study of spaces of functions and the formulation
of properties of transformations of functions such as the Fourier transform as
transformations defining certain operators between function spaces. This turned
out to be particularly useful for the study of differential and integral equations. The
usage of the word functional goes back to the calculus of variations, implying a
function whose argument is a function.

In modern introductory texts to functional analysis, the subject is seen as the
study of vector spaces endowed with a topology, in particular infinite dimensional
spaces. A significant part of functional analysis is the extension of the theory
of measure, integration and probability to infinite dimensional spaces, also known
as infinite dimensional analysis.

This book, Integration Theory and Functional Analysis is divided into
five units that follow the self-instruction mode with each unit beginning with an
Introduction to the unit, followed by an outline of the Objectives. The detailed
content is then presented in a simple but structured manner interspersed with Check
Your Progress Questions to test the student’s understanding of the topic. A Summary
along with a list of Key Terms and a set of Self-Assessment Questions and Exercises
is also provided at the end of each unit for recapitulation.

Introduction
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UNIT 1 SIGNED MEASURES

Structure

1.0 Introduction
1.1 Objectives
1.2 Basics of Signed Measures
1.2.1 Hahn Decomposition Theorem
1.22 Mutually Singular Measures
1.3 Radon-Nikodym Theorem
1.3.1 Lebesgue Decomposition
1.3.2 Riesz Representation Theorem
1.4 Extension Theorem (Carathéodory)
14.1 Lebesgue-Stieltjes Integral
142 Product Measures and Fubini's Theorem
1.5 Answers to ‘Check Your Progress’
1.6 Summary
1.7 Key Terms
1.8 Self-Assessment Questions and Exercises
1.9 Further Reading

1.0 INTRODUCTION

In mathematics, signed measures is a generalization of the concept of measures
that permits it to have negative values. There are two somewhat different concepts
of a signed measures which depends on the fact that one should permit or not the
infinite values. There are two types of measures, extended signed measures and
finite signed measures. For a specified or given measurable space (X, Y), that is
fora set Xwith an o algebra or sigma algebra 2 on it, an extended signed measures
is considered a function. A finite signed measures can be defined except that it only
takes the real values, i.e., it cannot take -+oo or —oo. Finite signed measures form a
vector space. The sum of two finite signed measures is a finite signed measures
because it is the product of a finite signed measures by a real number which is
considered closed under linear combination. It follows the assumption that the set
of finite signed measures on a measures space (X, 2.) is a real vector space. The
Hahn decomposition theorem is named after the Austrian Mathematician Hans
Hahn. The theorem states that given a measurable space (X, 2)) and a signed
measures | defined on the o algebra 2. then there exist two sets P and Nin 2 and
the pair (P, N) is termed as a Hahn decomposition of the signed measures . In
measures theory, Lebesgue’s decomposition theorem states that for given pand v
two o-finite signed measures on a measurable space (Q, 2.).

In this unit, you will learn about the basics of signed measures, Hahn
decomposition theorem, mutually singular measures, Radon-Nikodym theorem,
extension theorem (Caratheodory), Lebesgue-Stieltjes integral, product measures

and Fubini’s theorem.

Signed Measures

NOTES

Self - Learning
Material 3



Signed Measures

1.1 OBJECTIVES

After going through this unit, you will be able to:
NOTES ¢ Explain the significance of signed measures
¢ State Hahn and Jordan decomposition theorems

¢ Discuss the meaning of mutually singular measures is

Explain Radon-Nikodym theorem

Elaborate on the Caratheodory extension theorem

Describe Lebesgue decomposition

State the significance of Lebesgue-Stieltjes integral

Discuss the product measures and Fubini’s theorem

1.2 BASICS OF SIGNED MEASURES

In mathematics, signed measures is referred as a simplification of the concept of
measure that allows it to have negative values. There are two different notions of
a signed measures that depends on the condition that how the infinite values are
taken. In advanced concept typically the signed measures take finite values, while
sometimes generally the infinite values are taken. Hence the former concept is
termed as ‘Finite Signed Measures’ while the later is termed as ‘Extended Signed
Measures’.

For a specified (given) measurable space (X, X)), that is for a set Xwitha ¢
algebra or sigma algebra 2 on it, an extended signed measures is a function as
follows:

pn:X —> RU/{ow0, -0}

This implies that i(A) = 0 where p is sigma additive. It satisfies the following
equality for any sequence 4 , 4., ..., A of disjoint setsin >..

u(GAn}iu(An)k

One possibility is that any extended signed measures can take the value as
+00 or it can take the value as —co. But both the values are not available.

Similarly, a finite signed measures can be defined except that it only takes
the real values, i.¢., it cannot take -+oo or —oo. Finite signed measures form a vector
space.

The measures can be extended signed measures but may not be the general
finite signed measures. For example, consider a nonnegative measure v on the
space (X, 2) and a measurable function f: X — R such that,

[ 17 G dv(x) <ce.

Subsequently, a finite signed measures is given by,

w(A) = [ f(x)dv(x)

Self - Learning
4 Material



Thisis forall 4in ..

This signed measures will take only finite values. To permit it to take +oo as a
value, substitute the assumption regarding f being absolutely integrable with the
more relaxed condition,

[ 1 dv(x) <o,
Here f"(x) = max(—f(x), 0) is the negative part of f.
Properties

The two results follow which implies that an extended signed measures is the
difference of two nonnegative measures and a finite signed measures is the difference
of two finite nonnegative measures.

The Hahn decomposition theorem states that for a given signed measures L,
there exist two measurable sets P and N such that,

l.PUN=Xand PN N=U.

2. W(E) =0 for each E in X such that £ — P or in other words P is a positive
set.

3. W(E) L0 foreach E in X such that £ c N thatis N is a negative set.

Furthermore, this decomposition is unique for adding/subtracting p null sets
from Pand N.

Now consider the two nonnegative measures p* and p- defined by,

' (E)=wPNE)
And

p(E)=—pNNE)
This is for all measurable sets £, thatis £'in ..

Here both u* and p~ are nonnegative measures. The measures take only
finite values and are termed as the positive part and negative part of |, respec-
tively. Thus we have u = p* — p. The measure |u| = u* + p is termed as the
variation of p and its maximum possible value specified as ||| = |u|(X) is termed
as the total variation of .

This possibility of the Hahn decomposition theorem is termed as the Jordan
decomposition. The measures pu*, i and || are independent of the option of
P and N in the Hahn decomposition theorem.

Space of Signed Measures

The sum of two finite signed measures is a finite signed measures because it is the
product of a finite signed measure by a real number which is considered closed
under linear combination. It follows the assumption that the set of finite signed
measures on a measure space (X, 2.) is areal vector space. This is quite opposite
to the positive measures which are only closed under conical combination and
thus form a convex cone but not a vector space. In addition, the total variation
defines a norm for which the space of finite signed measures becomes a Banach
space. As per the Riesz representation theorem, if X'is a compact separable space

Signed Measures

NOTES
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Signed Measures
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then the space of finite signed Baire measures is considered the dual of the real
Banach space of all continuous real valued functions on X.

Let (X, S) be a measurable space. A function v : § — [0, 0] is considered
as a signed measures if the following conditions are true:

e Ifv(A)=0.

e If {0, 0} (range v) is a singleton set or empty.

e If {£,}, area pairwise disjoint collection of measurable sets then we
have,

V(CJ E)= i v(E,)

Here the sum converges absolutely if 2? V(E,) < oo
For example, let g € L'(X, S, u) where piis a measure and defines,
W(E) = IE gdu =IE g du- IE g du

Definition: Aset E e S is a positive set for the signed measures v if v(F£) >0
forall F e § with F « E . Similarly, a negative set can also be defined.

Lemma 1: Suppose v is a signed measures and £ is a positive set. If F' < E is
measurable then F'is considered as a positive set. Additionally, if in a countable
family E, € § are all positive then UTEZ .

Proof: The first assertion follows immediately from the definition.

Assume that {£,};" are positive sets then we can write UT E, asadisjoint
union of the form UT F and consequently F, C E,.
Inaddition, if B U1 E = U1 F then,
B=JBNE)
Subselquently,
v(B)=Y v(BNF)20
i=1

Since foralli, B\ F, C E,.

Lemma 2: Consider that (X, S) be a measurable space and v a signed measures
and assume a subset £ ¢ § and 0 < v(E) < . Then there exists a positive set
P c E suchthat, v(P)>0.
Proof: For the condition, if E is positive then take £ = P. Consequently assume
that there exists a subset ) — E suchthat, W(N)<0.Let A/ (E)={Ne S:N
c E,v(N)<03}. Since E is not positive hence A/ is nonempty.

Let n € N be the smallest natural number such that there exists N, € N (E)

1
with v(N,) < —— . IfE\N, is positive then it follows the definition and is proved.
n

1
Ifit is negative then continue inductively.



Signed Measures

Let n, be the smallest positive integer such that there exists N, € N (E)

such that, v(N,) < —L. Reproduce to obtain N,,...,N, such that
n,

NOTES

V(N)) < T I<j<k and n,., is selected as the smallest positive integer and
j

1
there exists N, € N(E\U{N,) suchthat, v(N,,,) < ——.
k+1

Observe that n,,, 2 n, and {N } is a disjoint family of sets.
Let,

P=E\(ON,{)

k=1

We have,

E=Pu(QNkJ

Therefore,

WE)=v(P)+ Y v(N,)

Because v(E) < oo we obtain that the sum on the right converges absolutely.
Subsequently,

oo

3L, < e

k=1 M k=l

Specifically, n, — oo since k — . We have,

v((JN) <0 and vE)> 0
k=1

As aresult we have, v(P)>0

Let € > 0 and consider that K is very large such that we have,

<e, Vk>2K

Ny —

We already know that,
K
PcE\ (U N, ] :
k=1
Subsequently by construction, P contains no measurable set F with
-1

Wy —1

v(F)<

Hence, P contains no subset F' € S with v(F)) <—g. This is true forall >0
and hence P must be positive. Any measure is thus a signed measures and some-
times termed as a positive measure.

Self - Learning
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Signed Measures and Complex Measures

Now we will explain a generalization of the notion of a measure where the values
are permitted to be outside [0, o0].

Definition: Suppose A is a 6 algebra on a non-empty set X. A function pu: A —
[ —oo, o] is termed as a signed measures on .4, if it has the properties explained
below.

1. Either one of the following is true:
o n(A)<mo,VAe A
o u(d)>-o,VAe A

2. fu()=0.

3. For any pairwise disjoint sequence (4, )., — A thereis the equality,

MQ#FEM@) (L.1)

The convention that if one term on the right hand side of Equation (1.1) is
equal to +oo then the entire sum is equal to oo. It is significant to use Condition (1)
because it avoids conditions when one term is co and another term is —oo.

A complex measures simplifies the concept of measure using the complex
values or we can say that these are sets whose size (length, area and volume) is a
complex number.

A complex measure L on a measurable space (X, ) is a function defined on
> which takes complex values that is sigma additive. We can write,

u:x—-C
This specifies that for any sequence (4,) of disjoint sets in 2. there is,

ulJd) = u4,).

n=1
This is possible provided that the sum on the right hand side converges com-
pletely or diverges accurately in analogy with the real valued signed measures.

Integration with Respect to a Complex Measures

The integral of a complex valued measurable function can be defined with respect
to a complex measures by approximating a measurable function with simple
functions. The already existing integral of a real valued function can be used with
respect to a nonnegative measure. The real and imaginary parts u, and p, of a
complex measures 1 are considered finite valued signed measures. Using the Hahn-
Jordan decomposition theorem these measures can be split as follows:

=y -y and g, =g — gy

Here u*, u,~, w,*, u,” are the unique finite valued nonnegative measures.
Subsequently, for a measurable function f which is real valued for the moment,
we can define:

[orau=(], rdw [ rau)+i], fau: -] rdu)



This expression holds provided that the expression on the right hand side is
defined such that all four integrals exist. At the time of addition of these integrals
the indeterminate co — o is not encountered.

For a given complex valued measurable function, its real and imaginary com-
ponents can be integrated independently as already discussed and we can denote
this as follows:

| rdu=] R(Hdu+i] S(fHaw

Variation of a Complex Measure and Polar Decomposition

For a complex measure W its variation or absolute value |u| can be defined using
the formula,

(A =sup > (4]

Here A4 is in 2. and the supremum flows over all sequences of disjoint sets
(4,) whose union is 4. Considering only the finite partitions of the set 4 into
measurable subsets, we can obtain an equivalent definition.

This implies that || is a nonnegative finite measure. Correspondingly since a
complex number can be represented in a polar form we can have the polar de-
composition for acomplex measures. There exists a measurable function 6 with
real values such that,

du=e’d|p
This implies that,

[ rau=[ rediu|

This holds for any absolutely integrable measurable function f, i.e., fsatisfying
the condition,

[\ r1d]nice=

The Radon-Nikodym theorem can be used to prove that the variation is a
measure and the polar decomposition exists.

The Space of Complex Measures

The sum of two complex measures is also referred as a complex measures and
similarly the product of a complex measures by a complex number. To be precise,
the set of all complex measures on a measure space (X, 2) forms a vector space.
Additionally, the total variation ||| is defined as follows,

| [=l | (X)
This is considered as the norm with respect to which the space of complex

measures is termed as a Banach space.

1.2.1 Hahn Decomposition Theorem

The Hahn decomposition theorem is named after the Austrian mathematician Hans
Hahn. The theorem states that given a measurable space (X, 2)) and a signed

Signed Measures
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Signed Measures measures [ defined on the o algebra 2’ then there exist two sets P and Nin 2. such
that,

l.PUN=Xand PN N=O.

NOTES 2. Foreach Ein 2 such that, E — P one has u(E) >0, i.e., P is a positive set
for w.

3. Foreach Ein 2. such that, £ — N one has w(E) <0, i.e., N is a negative set
for .

In addition, basically this decomposition is unique because for any additional
pair (P', N') of measurable sets which fulfils the above three conditions, the
symmetric differences P A P' and N A N' are u null sets based on the logic that
every measurable subset of them has zero measure. The pair (P, N) is termed as a
Hahn decomposition of the signed measures L.

Hahn-Jordan Decomposition

A consequence of this theorem is the Jordan decomposition theorem, which states
that every signed measure p can be expressed as a difference of two positive
measures | and p, of which at least one is finite. Here p* and pare the positive
and negative part of 1, respectively. These two measures can be characterized as
follows:

p(E)=uwENP) and u™(E):=—u(ENN)

This holds for every E in 3. and both p* and p~ can be verified as positive
measures on the space (X, 2.) where at least one of them is finite, since p cannot
take both +oo and —oo as values and satisfy p = pu* — w. The pair (u*, p) is
termed as Jordan decomposition and also sometimes Hahn-Jordan decomposition
of .

Proof of the Hahn Decomposition Theorem

Preparation: Consider that pu does not take the value —o or else decompose
according to —p. As already explained, a negative set is a set 4 in 2 such that
u(B) d< 0 for every Bin 2. which is a subset of 4.

Claim: Assume that a set D in 2_ satisfies p(D) < 0. Then there is a negative set
A < D such that W(4) < w(D).

Proof of the Claim: Define 4 = D. Further presume for a natural number » that
A, < D has been constructed. Let,

t,=sup{(B):BeX,Bc 4}

This denotes the supremum of p(B) for all the measurable subsets Bof 4 .
This supremum may be infinite. Since the empty set & is a feasible B in the
definition of z and u(J) = 0 hence we obtain ¢ > 0. By definition of ¢ there
exists B c 4 in > which satisfies that,

W(B,)=min{l,z /2}.

SetA . =A \B concludes the induction step. Define,

Self - Learning
10 Material



Signed Measures

A=D\JB,.

n=0

Since the sets (B) ., are disjoint subsets of D hence it follows from the
sigma (o) additivity of the signed measures p that, NOTES

u(A) = u(D)— Y w(B,) < u(D)— Y min{l,z, /2}.

n=0 n=0

This shows that u(4) < u(D). Presume that 4 is not a negative set, i.e.,
there exists a B in 2. which is a subset of 4 and satisfies ji(8) > 0. Then ¢ > p(B)
for every n hence the series on the right must diverge to +oo which signifies that
W(A) =—o0, which is not permitted. Consequently, 4 must be a negative set.
Construction of the Decomposition
Consider that set N, = . Initiating that N is given then define s, such that,

s, =inf{u(D):DeX,Dc X\N,}.

This is the infimum of (D) for all the measurable subsets D of X\ N . This
infimum may be —oo. Since the empty set is a feasible D and (&) = 0 hence we
have s < 0. Therefore there exists a D in 2. with D < X\ N, and
#(D,) <max{S, -1} <0.

As per the above claim we can define that there is a negative set
A < D suchthat, (4 )<u(D ). Wecandefine N , =N U A4 to conclude the
Initiation step.

Define,

N={]4,

n=0
Since the sets (4,) _ are disjoint hence we have for every B < Nin . that,
u(B)=> wBNA,)
n=0

This is true by the sigma or ¢ additivity of .. Specifically, this proves that N
is anegative set. Define P=X\N. If P is not a positive set then there exists D < P
in X with (D) < 0. Subsequently s < (D) for all 7 and,

H(N)=2 u(4,) <Y max{s,/2,~1} = —eo,
n=0 n=0

This is not possible for p consequently P is a positive set.

Proof of the Uniqueness Statement: Consider that (N, P) is an additional
Hahn decomposition of X. Subsequently P N' is considered as a positive set
and also anegative set. As aresult, every measurable subset of it has measure
zero. The similar applies to N () P'. Because Self - Learning
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(PAPYU(NAN")=(PONYUNNP).
Hence the proof'is complete.

Signed Measures: Hahn and Jordan Decomposition

The theoretical measure is termed as a nonnegative extended real valued function
defined on a measurable space (X, 13). On the contrary, a signed measures can
also use negative values. By definition, a signed measures v must satisfy the following
properties:

1. The v assumes at most one of the values —co and oo.

2. v(A)=0.
3. V(U;E,-) = 2:1V(E,-) forany sequence <E,> of the disjoint measurable

sets. Consequently, if V(U; E,») is finite then the series converges

absolutely.
Property (1) is sufficient to avoid oo — oo whereas Property (2) defines that
there is at least one positive set. Property (3) is essential for the existence of a

positive set having positive measures that are included in a measurable set with
finite positive measure.

We can state that a set A is positive with respect to a signed measure v if 4
is measurable and all measurable subsets of 4 have nonnegative measure. In the
same way, B is termed as negative if it is measurable and every measurable subset
of it has non positive measure. The set C'is termed as a null set if it is both positive
and negative.

Evidently, every measurable subset of a positive set is termed positive
and a union of a countable collection of disjoint positive sets is also positive, by

Property (3). For a countable collection of positive sets <P,> which may not be
necessarily disjoint, we can define that their union is also positive. If £ be an
arbitrary measurable set of UP, then we can define,

E,=EUR\U_LP,

0=
Here <E : > is a sequence of disjoint measurable sets whose union is £ and

each £ is contained in positive P.. Consequently, W(E) = v (UE,) = 2 V(E)=0
as per Property (3).

Eventually it can be proved that given a signed measures space (X, B, v)
there is a positive set 4 and a negative set B such that 4 and B partition X. This is
termed as the Hahn decomposition theorem. The following is an important lemma.

Lemma: Let £ be a measurable set having finite positive measure. Then thereisa
positive set P having positive measure contained in E.

Proof: If E is positive then the theorem holds. Assume that £ is not positive then

it has ameasurable subset of negative measure. Let n, € Z, be the smallest such



1
that there is a measurable set £ | with V(E)) < —; . If we consider n as small then

there is no £, fulfilling the form. Next we take E\E .

Take v(E\E|) =wW(E) —WE ) >W(E)>0.1f E/E, is positive then we exit the
proof.

Initiating, if £\U'_| E, isnotpositive thenlet n, € Z, bethe smallest such

1
that there is a measurable set £, with V(E,) < P Continuing further,
k

let P=FE\UZ,E,. Subsequently, E=PU(UE,). Here P and <E,> are
disjoint. Consequently by Property (3), v(E) = v(P)+ 2 v(E,) . But by definition

n=0.

i—o0 "7

V(E) < oo hence 2 V(E,) is absolutely convergent. Therefore, lim

Now consider that € > (0, accordingly there is & such that, n 1 <€,
k

Consequently, w1
k

Here Pis contained in £\ U:l E, . 1f 4 contains a measurable set which is

henceforth contained in £\ U:l E; with measure less than —e and consequently

1

less than ~ n —1 then n,is considered no longer the smallest positive integer that
k

makes the existence of a measurable set having measure less than the negative of
its reciprocal.

As aresult, P contains no measurable set having measure less than —e.
Since € is arbitrary, hence P contains no measurable set having negative measure.
This shows that P is positive.

It is obvious that v(P) = W(E) — Z W(E) > w(E) > 0.
Hence proved.

Theorem 1.1 (Hahn Decomposition Theorem): Let (x, B, v) be a signed
measures space. Then there is a positive set P and a negative set N such that,

X=PUN and PAN =A.

Proof: Assume that v never takes 0. Let p = sup, 1s positive v(P). Since Ais
positive, consequently p > 0. By the definition of sup, there exists is a sequence of
positive sets <B> such that, p =1lim, _ v(P).Let P=UP then Pis positive.

i—oo

Therefore, p 2 v(P). But forany i, v(4) = v(4,)+ v(4A\ 4)=2v(4,).

Signed Measures
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Signed Measures Hence, v(A4) > p . Asaconsequence, 0 < v(A) = p < .

Let, N=X\P.

Here if we can assert that /V is negative then no further proof required.
NOTES Presume that E is a positive subset of N. Subsequently £ and P are disjoint and

E U P ispositive.
Consequently, p > v(EU P)=v(E)+v(p)=v(E)+ p. Thisimplies that
v(E) = 0. Therefore, N does not contain any positive subsets of positive measure.

As aresult, by the contrapositive of the lemma, N does not contain any subsets of
positive measure.

Thus the theorem proves that the Hahn decomposition of a measurable
space associated with a signed measures exists. Though, it is not exceptional.

Consider that m be the Lebesgue measure on R .

Now define v, (E)=m(EN[-1,0]) and v,(E) = m(E[0,1]).

Let v = v, — v,. Now consider that (—e0,0) and (0,o0) is a Hahn
decomposition since for any measurable £ < (—0,0], v(E) =v,(E[-1,0])
—v,(EN[0,)=v(EN[-1,0])>0 and any F c(0,%),v(F)=v,(A-v,
(FN[o,1])<0.

Similarly, it can be verified that [-1,0] and (—eo, —1) U (0, =) is an additional

Hahn decomposition. Hahn decomposition is considered unique except for null
sets.

If v is a signed measures and P and N is Hahn decomposition then we can
define v* through v*(E) = v(E( P) and v through v~ (E) = —v(E( N).

Consequently, v=v"—v". Here v" and v_are measures that are mutually
singular because there is a binary partition {4, B} of X such that v'(4) = v
(B)=0when4=Nand B=P.

A decomposition of the measure v as a difference of two mutually singular
measures v" and v is termed as Jordon decomposition. The Jordan
decomposition is in fact independent of the Hahn decomposition and there is only
one pair of such decomposition and is unique in nature.

Let v=v"—v be a Jordan decomposition. By definition, there exists a
partition 4 and B of X such that v* (4) = v (B) = 0. Here (B, A) is a Hahn
decomposition.

Now consider that g = g, then v (E)<v (B)=0,1.e., v (E)=0.
Consequently, v(E) = v*(E)—v (E) = 0. This implies that B is positive.

Similarly 4 is negative. Subsequently we can deduce that Hahn decomposition is
up to null sets where as the Jordan decomposition is unique.

Self - Learning
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Theorem 1.2 (Jordan Decomposition Theorem): Let v be a signed measures
on (X, S). Then there exists two measures v" and v~ on (X, S) such that, v=v"+
v_and v" L v,
Furthermore, if " and p~on (X, S) such that, v=p"—p-and p* L p~.
Then p*=v andv =p.
Proof: Assume that u* and p- satisfy the last two conditions. Then, there exists
measurable sets 4, Bsuch that, X = 4|J B and 4\ B = A. Inaddition, p"(B)=

u(4)=0.
If P, N be the corresponding sets for v and v then,
e Ais positive for v.
e Pispositive for v.
e Bisnegative for v.

e Nisnegative forv.

Observe that, P\ 4 pand P\4c B
Subsequently, (P\4) = p* (P\A) — p (P\M) =0—p(P\4) <0

Consequently, we obtain that u(P\4) =0 and v(P\4) = 0. In the same way
we deduce that v(4\P) = 0.

For E € S we establish that,
W(E) = W (ENA)=vENA)=wENPNA)+v(ENP\ )
= v(ENPNA)=WENADNP)=v(ENA)=V(E)
Similarly, we obtain u (E)=v(E) forall E = §. The following definitions

will prove the assumptions.

Definition 1: v and v are termed as the positive and negative variation of v.
vt + v is termed as the total variation of v, |v|. This is precisely defined in the
theorem.

Note: £ — § isnull for a signed measures vifwW(F)=0forall F - E, FeS.
This is true ifand only if [v|(E) =0.

For signed measures v, v, we can state that v L v, if and only if
il L vyl

Definition 2: For a signed measures and a measurable function f, we state that /'
is integrable with respect to v if fis integrable with respect to v and fis also
integrable with respect to v-. Furthermore, we can define that,

[ rav=[ rav -] fav-
The right hand side of the above equation homogeneously obtain the
integration over X and replace it with integration over P and N, respectively.

Note: If v is a signed measures and p is a (honest) measure on a measurable
space (X, S) then we can state that v is absolutely continuous with respect to p if

for g e § and u(E) =0 we have v(E).

Signed Measures
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Signed Measures We can define that v << p when v is absolutely continuous.
Note: v << p & [y << p.

Absolutely continuous and mutually singular are at times the opposite terms.
NOTES If v and p are measures such that both are p L v and v << p then
v=0. The similar condition holds for v a signed measures.

Proof: To state that v | pmeans that X = 4|J B where 4,Be S, ANB=A,
and v(B) = u(A4) = 0. Then because v << 1, we obtain v(4) = v(B) = 0 and that
v(X)=v(AUB) =v(A)+v(B) = 0. For signed measures, just replace vand p
in the statement by the total variance |[v| and |u|.

Proposition: Assume that v is a finite signed measures, i.e., [V| (X)<owcand pisa
positive measure, both on the measurable space (X, S). Then, v<<p if and only if
for all € >0, there exists a 0 > 0 such that [v(E)| < € whenever pu(E) <.

Proof: We include v << p < |v| << u consequently without loss of generality
assume that v is ameasure, i.e., v> 0. The condition € — & holds, if u(£) =0 then
W(E) <o forall 5> 0. Specifically, we obtain v(E) < € for all € > 0. Subsequently,
v(E)=0. Accordingly, v << p.

Conversely, assume that the € —  condition fails. Therefore there exists
€ >0 with no 6. Fix such an € > 0. Hence, V& > 0, there exists a £ € S with

WEy) <dand W(E,) > €. Let E, € § satisfy u(E,) < 21—n and v(E,) 2 . Take

o 1 ) o
F, = Un:k E . Then, W(F;) < Pl and v(F, ) 2€. Using the continuity theorem,
we obtain,
n(F) =0,
k=1

However,

W(F) = limv(F,) >€
k=1

Hence, v is not absolutely continuous with respect to .

Corollary: If 1 e L' (X, u) where p is a measure, then for all € >0 there exists

a &> 0 such that, | IE Jdu|<e whenever u(E)<8.

Proof: Consider that v(E) = _[E Jdu then v<< p and apply the proposition.

1.2.2 Mutually Singular Measures

Two complex measures p and v on a measure space X are considered mutually
singular if they are provided on different subsets. More specifically, X = AU B

Self - Learning
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where 4 and B are two disjoint sets such that the following properties hold for any Signed Measures
measurable set E,

1. Thesets 4\ E and B() E are measurable.

2. The total variation of p is supported on 4 and that of v on B, i.e., NOTES
lull(BOAE)=0=[v[(ANE).

The relation of two measures being singular is defined as p L v which is
evidently symmetric. However, it is sometimes stated that v is singular with re-
spect to L.

A discrete singular measures with respect to Lebesgue measures on the real
integrals is a measure A defined at 0. We can state that A(E) = 1 iff

0 € E. Generally, a measure A is concentrated on a subset 4 if M(E)=A (E () 4).

In this case the measure is concentrated at 0.

Two positive or signed or complex measures p and v defined on a measur-
able space (Q, ) are called singular if there exist two disjoint sets 4 and B in 2.
whose union is  such that 1 is zero on all measurable subsets of B while v is zero
on all measurable subsets of 4. This is denoted by p L v

Apolished form of Lebesgue’s decomposition theorem decomposes a sin-
gular measure into a singular continuous measure and a discrete measure.

As a special case, a measure defined on the Euclidean space R" is called
singular if it is singular in respect to the Lebesgue measure on this space. For
example, the Dirac delta function is a singular measure.

Consider the following discrete measure function on the real line,

def |0, x<0;
H(x);{l o

This has the Dirac delta distribution 6 as its distributional derivative. This is
ameasure on the real line and a point mass at 0. Though, the Dirac measure 6, is
neither absolutely continuous with respect to Lebesgue measure A nor is A abso-
lutely continuous with respect to §: A({0})=0. But 5 ({0})=1,if Uis any open
set not containing 0 then A(U) >0 but 5 (U) =0.

Check Your Progress

What are signed measures?

What is finite signed measures?

State Hahn decomposition theorem.

How can the space of signed measures be defined?

Define the integral of a complex valued measurable function.
What is Jordon decomposition?

When do complex measures become mutually singular?

S A o

When are the two positive or signed or complex measures called

singular?
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Signed Measures

1.3 RADON -NIKODYM THEOREM

The theorem is named after Johann Radon, who proved the theorem for the special
NOTES case where the underlying space is R and Otto—Nikodym who proved the general
case. The Radon-Nikodym theorem is a consequence in measure theory that
states that given a measurable space (X, Y.), if a o-finite measure v on (X, 2.) is
absolutely continuous with respect to a o-finite measure p on (X, 2.) then there is
ameasurable function fon X which takes values in [0, ) such that,

w)=[ rdp
This holds for any measurable set A.

Radon-Nikodym Derivative

The function f satisfies the above stated equality is uniquely defined up to a p-null
set. If g is an additional function which satisfies the same property then f = g, p-
almost everywhere (u-a). f1s generally described as dv/dp and is termed as the
Radon-Nikodym derivative. The option of notation and the name of the function
reflect the fact that the function is analogous to a derivative in calculus and describes
the rate of change of density of one measure with respect to another. A similar
theorem can be proved for signed and complex measures if | is a nonnegative
o-finite measure and v is a finite valued signed or complex measures such that
|v| << u then there is p-integrable real or complex valued function g on X'such

that,

()= gdu,

This holds for any measurable set 4.
Properties

If Yis a Banach space and the generalization of the Radon-Nikodym theorem also
holds for functions with values in Y then Y is said to contain the Radon-Nikodym
property. All Hilbert spaces have the Radon-Nikodym property. The following
properties hold for Radon-Nikodym:

e Consider that v, pand A are the o-finite measures on the same measure
space. If v <<A and p << A, i.e., v and p are absolutely continuous with
respect to A then we can state that,

d(\;—;u) = j—; + Z—‘; A-almost everywhere.

o [fv << << A then we can state that,

dv dvdu
—=——"J-almost everywhere.
dr dudh Ve

e Particularly, if p << v and v << p then we can state that,

du _
Self - Learning -
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v’
— | v-almost everywhere.
du



e Ifu << andgisa p-integrable function then we can state that,

d
J.ng‘u :JXgﬁdﬂ,.

e Ifvisa finite signed or complex measures then we can state that,

d|v|_|dv
du |du|
Divergences

If pand v are measures over X and v << p then,

e The Kullback-Leibler divergence from pito v is stated as follows:

d
Dy () =] log(d—‘v‘]du

e Fora >0, a# 1 the Rényi divergence of order o from pto v is stated as
follows:

1 dﬂ a-1
D —— tog| [ log| “£ ] au|.
Al =—— og(fx og(dvj u}

The Assumption of o-Finiteness

The Radon-Nikodym theorem holds the assumption that the measure p with respect
to which one computes the rate of change of v is sigma finite. When p1is not sigma
finite then the Radon-Nikodym theorem fails to hold.

Consider the Borel c-algebra on the real line. Let the counting measure p
of a Borel set 4 be defined as the number of elements of 4, if 4 is finite and +o0
otherwise. It can be checked that 1 is certainly a measure. It is not sigma finite,
because not every Borel set is atmost a countable union of finite sets. If v be the
usual Lebesgue measures on this Borel algebra then v is absolutely continuous
with respect to i, since for a set 4 we can state p(4) = 0 only if 4 is the empty set
and then v(4) is also zero.

Assume that the Radon-Nikodym theorem holds for some measurable
function fthen we can state that,

W)= fdu

This holds for all Borel sets. Taking 4 to be a singleton set, 4 = {a} and
using the above equality we obtain,

0=Afla)

This holds for all real numbers a. This implies that the function f'and
consequently the Lebesgue measure v is zero, which is a contradiction.

Proof

For finite measures pLand v, consider functions /by fdu d< dv. The supremum of
all such functions together with the monotone convergence theorem provides the

Signed Measures
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Signed Measures Radon-Nikodym derivative. The truth that the remaining part of 1t is singular with
respect to v follows from a procedural fact regarding finite measures. After
establishing the result for finite measures, extending to o-finite, signed and complex

measures can be obtained logically.
NOTES -
For Finite Measures

Assume that pand v are both finite valued nonnegative measures. Let F'be the set
ofthose measurable functions f/: X — [0, +oo] which satisfy the given notation as
follows:

[ rdusva

This is for every A4 € 2. This set is not empty contains at least the zero
function. Now consider thatf , f, € F'where let 4 be an arbitrary measurable set,
A =xed|f(x)>f(x)} and 4, = {x € 4| f(x) € f,(x)}. Then we obtain
the following expression,

[ maxif fydn=[ fdp+] fdpsv)+vid)=v4.

Consequently, max {f,, f,} € F.

Now, consider that {f } be a sequence of functions in " such that,

sup

li—IEJ.Xf"d‘uszF.[de”'

By substituting /' with the maximum of the first 72 functions, it can be assumed
that the sequence {f } is increasing. Let g be a function defined as,

g(x):= lim f, ().

By Lebesgue’s monotone convergence theorem we obtain,

Lgd;t: }{mejAﬁq d L <v(A)

This is for each 4 € X and consequently g € F. Moreover, by the
construction of g we obtain,

Jogdu=sup| fdu
Now, because g € F'we have,

vy(A)=v(4)-[ gdu

This defines a nonnegative measure on 2.. Assume that v, # 0, then because
u is finite there is a € > 0 such that, v (X) > & w(X). Let (P, N) be a Hahn
decomposition for the signed measures v, — € p then for every 4 € 2. we have
v,(4 N P) 2 g (4 N P)and consequently we obtain the following expression:

V(A) =jAgdu+voA szgduwo(AmP)
Self - Learning
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2Lgdu+eu(AﬂP)=L(g+£1P)du.

In addition, w(P) > 0 if w(P) = 0. Then because v is absolutely continuous
inrelation to p, we have v (P) < v(P) = 0, subsequently v (P) = 0 and we obtain
the expression,

v, (X) — 81(X) = (v, — eu)(N) <.

Contradicting the fact that v (X) > & p(X).

Subsequently, because
J.ng},lSV(X)<+OO_

g +¢ 1, € Fand satisfies the expression of the form,
IX(g+81P)du > Ingu = i‘ifjxfd“'

This is not possible. As a result the initial assumption that v, # 0 must be
false. Accordingly v, = 0 as required.

Now, because g is p-integrable, the set {x € X|g(x) = +o} is considered
as p-null. Consequently, if a fis defined as follows,

g(x) if g(x)<xo
0 otherwise,

-]

Then f contains the required properties.

For the uniqueness, consider thatf, g : X — [0, +00) be measurable functions
which satisfy the expression,

W)= fdu=[ g dp

This is for every measurable set A. Then, g — fis p-integrable and we obtain,

[ (g=r)du=o.

Specifically it holds for 4 = {x € X | f{x) > g(x)} or {x € X|f{x) <g(x)}.
It follows that,

[(e=f) du=0=] (g-/) du

Subsequently we can state that (g — f)" = 0 p-almost everywhere. The
same is true for (g — /) and hence f = g p-almost everywhere, as required.
For o-Finite Positive Measures

If pand v are o-finite, then X can be defined as the union of a sequence {B } of
disjoint sets in 2, each of which has finite measure for both p and v. For each n,
there is a > -measurable function f B — [0, +o0) such that,

W)= f, du

Signed Measures
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Signed Measures This is for each 2-measurable subset 4 of B . The union f of those functions
is then termed as the required function. For the uniqueness, because each of the f,
is p-almost everywhere unique then consequently is f.

NOTES For Signed and Complex Measures

If v is a o-finite signed measures, then it can be termed as Hahn-Jordan
decomposed because v = v — v~ where one of the measures is finite. Applying
the earlier obtained result to those two measures, we can obtain two functions,
g, h: X — [0, +o0) which satisfy the Radon-Nikodym theorem for v* and v-,
respectively, where at least one is p-integrable, i.e., its integral with respect to pLis
finite. Then it is obvious that f = g — & satisfies the required properties including
uniqueness because both g and / are unique up to p-almost everywhere equality.

If v is a complex measure, then it can be decomposed as v =v, +iv,
where both v, and v, are considered as the finite valued signed measures. As a
result, we obtain two functions of the form g, 4 : X — [0, +o0) which satisfy the
required properties for v, and v, respectively. Evidently, /= g + i A is the required
function.

Theorem 1.3: Johann Radon-Otton Nikodym Marcin: Let (X, B, n) be a 6-
finite measure space and let v be a measure defined on 5 such that v << p. Then
there is a unique nonnegative measurable function fup to sets of p-measure zero
such that

WE)=[ rdu,
for every E € B. fis called the Radon-Nikodym derivative of v with respect to

dv

and it is often denoted by [@} .

Proof: Consider the following examples to prove the theorem:

Let (R, M, v) be the Lebesgue measures space. Let p be the counting measure

on M. So p is not o-finite. Forany £ € M, if u(£)=0, then £= @ and hence
V(E)=0. This defines v << . Suppose that fis Radon-Nikodym derivation, then

foreach xe R, 0=v({x})= j{x} fdu :j{x} Sx@dun="f(x)u({x}). Hence,

f=0. This means for every £ € M, v{E)= L 0d 1= 0, which contradicts that

vis the Lebesgue measures.

If vis still the same measure as explained above but we let—to be defined
by u(0) = 0 and p{d) = o if 4 # 0. Clearly, u, is not o-finite and
v << u. The Radon-Nikodym derivative does not exist. Suppose fis one. Then
forany 0=v({x})= L }fd,u = f(x)u({x}) = f(x)e. Thus, f=0. Hence for

any E € M, v(E)=inf, 0dp = 0.

Obviously if w(X) =0, then the measure of every set in M. with respect to

Self - Learning and v is zero.
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Assume that (X, B, n) is a finite measure space and defines the existence
and uniqueness of the Radon-Nikodym derivative. Then the case when p is
o-finite follows by the pasting of the derivatives on each set of finite measure.

Let 7= {fis measurable | W(E) > IE fdu, forall E e M}. Fis nonempty

because the zero functionisinit. Let s = sup ;- IX Jf d . Thenthere is a sequence

(h,) in Fsuchthat, lim [ f.du=s.

Let f,, f, F, then for any Ee M, _[EfIszdu= SV fdu

{xeE|fi ()2 /2 ()}

fiv frdp= Sdu+

+J‘ <
(el ()< (1)} (Bl (02 £ (x) fdusv(ixeE

{xeE|fi(x)<f2(x)}

| ()2 f,(0)}) +v({xe E| fi(x) < f,(x0)}) = v(E)
Therefore, f,v f, € F.

Let 1 =V," h,. Then < fn> is anonnegative increasing sequence in F and
,111330 JX J,du=s. Define gby g(x)= lg{lo f/(x) for x € X . Thenby the motonone
convergence theorem, for any £ e M, IE gdp= }1113}0 _[E f,du<v(E). This

shows g e F and J.ngy=limIXﬁ1dﬂ=s_

Therefore, the function v, defined on M by v, (E) =W(E) - L gdll isa

measure. We can definethat v =0and then gis the required function. Suppose v, is
not zero. Since v (X)>0and p(X) <oo, there is >0 such that, v (X)— e p(X)>0.
Let {4, B} beaHahndecomposition for the signed measures v, — . Then forevery

E e M,7(ANE)~ep(4NE)20.Subsequently, (E)=vy(E)+ [ gdu>v,(E
NA)+ JE gdu>ep (AnE)+ JE gdu,= JE(g+ € X,) . Therefore, g+ €y,
is also in F. However, if p(4) > 0, then JX (gt+ey,)du
= jX gdu+u(A) >JX gd |1 = s, whichisacontradiction. Obviously, if u(4)=0,since

v<< u, ¥(4) = 0. Therefore v,(4) = v(d) ~ | gdu <v(4)=0.Hence y,(4)=0.

Consequently, v (X)—ew(X)=v(B)—ew(B) <0, contradicting that v (X)—en(X)
>0.

Accordingly, v,= 0, which means W(E) = JE guforevery £ e M.
Toshowuniqueness, let v(E)= J Efdu = _[E gdp. Then JE(f— 2)du =0.Since

Eisarbitrary, j

{/-g20

Similarly, /=g a.e.on {x € X|f(x)<g(x)}. Hence f=ga.e.on X.

}f—gdﬂ = 0. This shows f=g a.e. on {x € X)|f{ix) >g(x)}.
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Note: If we add the condition that v is finite, then the function g in our proof'is
integrable.

1.3.1 Lebesgue Decomposition

In measure theory, Lebesgue’s decomposition theorem states that for given pand
v two o-finite signed measures on a measurable space (€, 2.), there exist two
o-finite signed measures v, and v, such that:

s Vv=y, TV
® v,<<p,l.e.,V,is absolutely continuous with respect to .
e v L, ie.,v, and pare singular.

These two measures can be uniquely determined. The Lebesgue’s
decomposition theorem can be defined and improved in various ways. Primarily
the decomposition of the singular part can be improved as follows:

v=y +v

. v
cont sing pp

Where,
e v__istheabsolutely continuous part.
® Vi is the singular continuous part.
°* Vv, is the pure point part or a discrete measure.

Subsequently, absolutely continuous measures can be classified using the
Radon-Nikodym theorem. Consequently, Lebesgue decomposition provides an
extremely explicit description of measures. The Lebesgue decomposition theorem
states that if (X, (2) is a measurable space and i is a finite measure on X, then for
every measure v, there is a unique decomposition v = v, + v, such that,
v, <<pandv, | u. Generalization of Lebesgue decomposition theorem can be
defined as follows.

Assume that the space of all finite measures on (X, Q2) is denoted by M.
Then the above is equivalent to the statement that M =S @ T, where S is the
space of all measures that are absolutely continuous with respect to p, while T is
the space of all measures that are singular with respect to p. We can characterize
T in terms of S as follows,

T=S*t={veM|v.Lmforallme S}

Consequently state that a subspace S — M has property D (for
decomposition) if M =S @ S*. Then the Lebesgue decomposition theorem defines
that {v|v <<p} has property D for any fixed p.

Theorem 1.4 (Lebesgue Decomposition): Let v be a 5-finite signed measures
on (X, S) and p be a o-finite positive measure on (X, S). Then there exists unique
o-finite signed measures v, and v, on (X, S) such that v=v + v, vl and
vl << H.

This can be proved with the help of Lemma 1.

Lemma 1: Assume that v and p are positive measures on (X, S) such that they do
not take the value in {oo, —o}. Then either v L p or there exists a
€>0and £ € Ssuch that W(E) >0 and v(F) > e u(F) forallR € S, FC E.



Note: The conclusion is, that is a positive set for v—gp.

Proof of Lemma: For each ,eN, consider that (P, N ) be the Hahn

1
decomposition for v — TH Put P=U7 P, and N =[] N, . Here Nis anegative

1 N
set for V=—4, Vn e N Therefore, 0 < v(N) < M) for all n. Consequently,
v(N) = 0.
(a) If u(P)=0thenbecause P|JN = X and P(\ N = (0 we canstate that u
L.

(b) If u(P)>0then u(P )> 0 for some 5 e N. Because P, is a positive set for

1 1
V—;,U , we can obtain that V(F) 2 ;,U(F ) for all F e P,. Now take

P =FE and ¢ = 1 Hence the lemma is proved.
n

Proof: Assume that p and v are finite positive measures.
Consider that F = {f : X —> [0, o] : f is measurable and

[ fdu<v(E),VEes}.

Then F # ( because 0 € F.If f, g € F , then we can state that #=max
fgeF
IfA={xeX:f(x)>g(x)}, then for givenany E e §,

hdﬂ - J.Ef\A hdlu +IE\A hdlu - JE(\A fdlu +jE\A gdlu
SVENA)+v(E\NA)=v(E)
If a=sup, {ijdﬂ :f € F} thenwe can state that ¢ < v(V) < o . Select

f, € F such that, Jandﬂ —a.Use g, =max{f,,...., [,}
Then, g, < g,,., andbecause g, € F we obtain, a = JX g,du ZIX J,du,

Consequently, IX g, du— a.

Nowset f(x)=1lim, ,_ g, (x).

By the monotone convergence theorem, we obtain the following expression:

ijdﬂ=a<m

This implies that f1s integrable and is finite almost everywhere.
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Set v (E) = V(E)—L fdu for Ee§. Here v,is a positive measure
because f e F.

We can state that x L v, . Ifitis not, then by Lemma 1 there exists £ > 0

and E;, € S which s positive for v, —eu suchthat, u(£,) > 0. Subsequently,
jE (F +exE,)du = jE fd p+eu(ENE,)
SIEfd,u+vO(EmEO) SjEfdy+v0(E) =w(E).
Therefore, f+gy E,eF.
But, it is obvious that _[ M f+eyE,du=a+eu(E,) > a, which contra-dicts

the truth that IX J =a isasupremumin F. As aresult, we have pu | V-

Hence we can state that v,(£) = JE fdu.

Uniqueness: Assume that v = 1 + 1, where 1, are signed measures as
T, L pand 1, << u. We include v = 1, + 1,= 7, + 1,. Consequently, 7,— v,
=V, -1,

0

By uniqueness of the Lebesgue decomposition theorem, v = IE Sdu.

For the o-finite case we have the following Lemma 2:

Lemma 2: Let A be a o-finite positive measure on (X, S) and assume that
A(X) = oo. Then there exists an integrable function w : X — (0, 1) such that if

A, (E)= _[E wd A we have the following properties:

(a) 4, 1s a finite measure.

(b) Vf = 0 measurable and JX fdA, =JX fwdA.
1
(c) ME) = J.E;dflw .

(d) Vf > 0 measurable and JX FdA IJXéd A, .

() EecS, ME)=0=A1,(E)=0.

Proof: Let 4 be disjoint measurable sets such that U7, 4, = X and
1< A(4)<eo.



c 1
Set W= 25771y A4 - Herew() < 0, 1) forall ¢ . Furthermore,
J

i=1

by the monotone convergence theorem we have,

- 1
-[X wdA = ;T(A])JXXA]dl

Therefore, wis integrable and A, is a finite measure.
Proof of o-Finite Positive Measures

Consider that v, i be o-finite positive measures. To obtain measurable functions
v, w:X— (0, 1) with uv-integrable and w p-integrable apply the lemma.

Set, v,(E) = JE vdv and U, (E)= IE wdu.
Obtain unique measures v, and v such that v} 1 u,, v' <y, and

3 a __
VV+VV —VV.

1 1
Define v(E) = [, —dv; and v(E)= [ ~db!.

1 a
Subsequently, we have v, (E) + v, (E) = JE; A +v)=w(E)
Because v) | u,, hence we have v, L u and because v* < u, we have
Wwu.

Given that v <« u, there exists an #**-integrable such that,

vi(E)= | hdg,

1 1 |
Define, v, (E) JE;dvf = J.E;hd,uw = J.E;hwd,u

To establish the theorem for a signed measures v relate the above to v and
v~ obtain the difference v=v"—v.

Notation: If v < u, we can state the V(E) = JE S du . The function fis termed

dv
as the Radon-Nikodym derivative of v with respect to p. We denote f by [a} .

When v < u we canstate that dv = fdu . This is stimulated by the truth that,

[ hav=|h du
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Proposition: Assume that p1 be a o-finite signed measure and A, 1 are positive
o-finite measures such that v < x4 and u < A . Then the following conditions
hold:

dv
1 dv = —|d
(@)If g e I'(v). then | g jxg[dﬂ} u

dV dv dlu
(b)If y « A, then | = |= w | lan

Proof: To prove (a), establish it for v and v using standard methods and subtract.

To prove (b), we obtain:

WE) = jE[Z—;} du=1 [Z—;} . [j—‘ﬂ da

Consequently, v < u and subsequently

oo iflo1[2] 41

Hence proved.
1.3.2 Riesz Representation Theorem

Let H be a Hilbert space over [ or , and T a bounded linear functional on (a
bounded operator from to the field, Ror @, over which is defined), then there

exists some g € H such that for every f € H wehave
() =9

Moreover, T lI=Il g Il (here |l T Il (here denotes the operator norm of T,
while || g Il is the Hilbert space norm of g.

Proof: Let us assume that H is separable and consider the case on E.

Since 4 is separable wse can choose an orthonormal basis $.,j= 1 for.
s
Let be a bounded linear functional and set .

Choose f € H, let¢; = {f,q’:j}, and define fa = E?:l €; ;. Since the
¢; form a basis we know that ||f — f,,J]| = Oasn — oo,

T(f2) = Xj=19 G- ...(1.2)
Since T is bounded, say withnorm || T |j<= co, we have

ITU)=TEISNT IS = full. ...(1L.3)
Since ||f — f,ll = @asn — oz from (1.2) and (1.3) we can say that

T = T () = 2= 9 G- . (14)



Also the sequence a. must itself be square-summable. To check this, first
note that since [T(f)| < T llll f | wehave

- 1/2
ari(ge) (L)

The above inequality must hold for any square-summable sequence ¢, (since
any such ¢; corresponds to some element in H). Fix a positive integer N and

[ee]
2Gq
j=1

define a sequence ¢j =gj for j = N, ¢; = Ofor. Clearly such a sequence is square-
summable and equation (1.5) then gives

N 1/2
<IT I (_zla,)

N 1/2
2
Q.;a;) <ITI. ...(1.6)

Thus a; is square-summable, since the sequence of partial sums is bounded
above.

NZ
z g

j=1

or

Since a.. is square-summable the function g = X a; ¢; is well-defined as
anelement of H, and T'(f) = X a, ¢; =< f, g >. Then from equation (1.6),
I g 1=Il T Il But from Cauchy-Schwarzwe have [T(f)| = | < f.g > [ <l f ll g |

or ITCFM
1L

<ll g I implying I T I<ll g Lso|l T iI=ll g I.

Application

The example below shows how functional analytic methods are used in ODE.
Consider the equation below:

—f" () + b()f (%) = q(x) ..(L.7)
onthe interval 0 < x < 1, where b(x) = & = 0 for some &. Assume that the
functions b and g are continuous on [0,1]. Let us find a solution to equation (1.7)
with £'(0) = f'(1) = 0 (considering arbitrary boundary conditions). If we
multiply (1.7) by a € * function ¢ and integrate the first term, — £ ¢ by parts from
x= 0tox = 1,we get

Jy OF 099 () + bCOF ()9 () dx = f q (OP(x)dx. (18)

The above equation must hold for any ¢ € ¢1([0,1]}, if £ 1s a €2(0,1)
solution to equation (1.7) whsich is continuous on [p,1]. Conversely, if fora given
¢ 2 function we find that (1.8) holds for all , then must be a solution to equation
(1.7), for if we “undo” the integration by parts in (1.8) we obtain

P(Df (1) = PO)f (0) + dC(—f" (x) + b (X)) = p(x)q(x)

for all ¢. A familiar PDE argument then shows that £'(0) = f'(1) = 0and
equation (1.7) must hold.
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Signed Measures We can show that there is a unique solution to equation (1.8). Such a solution
will not necessarily be twice-differentiable as required by equation (1.7), but it will
satisfy equation (1.8). Equation (1.8) is often called the “weak’ formulation of the

problem.
NOTES
Define an inner product

1
<gm>=Luﬂ@H@ww@mumwnm

onsa the space €1 ([0,1]), and let ¢ denote the completion of the this space. (We
must use b = § = 0 to assure that < r anglerally is an inner product, so
that, || g JI= /(g. g} = 0iff g = 0). The space H is a Hilbert space, and can be
interpreted (if need be) as a subspace of €([0,1])

Define a functional T: H — Rby

1
H@=Lq&ﬁ@ﬂx

One can easily check that T" is bounded on H using Cauchy-Schwarz
theorem. From the Riesz Representation Theorem it then follows that there must
exist some function ¢ g gy such that

T(¢) =(f )

for all ¢ € H. This is exactly equation (1.8), the weak form of the ODE, , the
function fthat satisfies equation 1.8 lies in / and F'is a continuous function.

1.4 EXTENSION THEOREM
(CARATHEODORY)

We fix a topological space Q. The power set of Q is denoted by P(Q) and
consists of all subsets of Q.

Definition: A ring on Q is a subset R of P(Q), such that
l. oeR.
2. A BeR = AuUBeR.

3. ,BeR = A\BeR.
Definition: A c-algebra on Q is a subset X of P(QQ), such that

1. 6eX.
2. (4),.n€X = U,4,€X.
3. AeX = A°eX.
Since, A N B=A\(4\B) it follows that any ring on  is closed under finite
intersections; hence any ring is also a semi-ring. Since, N, 4, = (N, A9) itfollows

n n

that any o-algebra is closed under arbitrary intersections. And from A\B=A4 N B,
we deduce that any c-algebra is also a ring.
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If (R),., 1sasetofrings on Q) thenitis clear that ), R, is also aring on Q.

Let Sbe any subset of P(Q2), then we call the intersection of all rings on 2 containing
S the ring generated by S.

Definition: Let “A be a subset of P(Q). A measure on A is a map
u: A —[0,+inf] such that

1. u()=0.
2. If 4, e A aredisjointand 4=, 4, € A then p(4) =) p(4,).

If A is a c-algebra, we do not need to assume that in addition W, 4, € A.
By taking all but finitely many 4 to be the empty sets one sees that

pA4 w..w4,)=pw(4)+...+u(4,). If A = B then AW (B\A4A)=B and hence
M(B) = u(4) + u(B\ A) 2 u(A) |

Definition: We call an outer measure on Q amap A : P(Q) —[0,+o0] with,
1. M6)=0.
2. AcB = MA)<MB).
3. (4, PO, MU, 4SS M4,) .
By taking all but finitely many 4 to be the empty set one sees that an outer
measure is subadditive; A(4 U B) <A(4) + A(B).
Let A be an outer measure on Q. We define ) to be the set of all subsets

A < Q such that for any X < Q, we have A(X) =X N A)+MX N A4°).

In other words, D consists of all subsets 4 = Q that cut Q intwo in a

A
good way. Clearly Q € =, and by the very form of the definition of ¥, , we have

Aex, < A€z, .
Theorem 1.5: Let, A be an outer measure on Q and let Y. be as defined
above. Then ) isac-algebraon Q.

Proof: After the preliminary remarks preceding the Theorem, it only remains to

provethat ). is closed under countable unions. We will first prove that ) is
closed under finite intersections and unions.

Let, 4, B ezk and let, X be any subset of Q. We have
XNA =X (ANB )N A° since (4N B)° o A° . On the other hand we have
(ANB) =4 UB¢ and hence XNUAUNB) NnAd=XNANB)U
(XNANA“)=X nAnB°. Therefore we have, MX N(4NB)°)=AX N
ANB) NA)+MXNANB) mA =MX NA)+MX AN B°)
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Now adding A(X " 4N B) and using that A(X N A)=A(X " A4NB)
+MX NANBC),oneobtains M(X NANB)+MX N (4N B°)=1X).Hence
ANBeZ, .

Since 4UB=(4° "B)° and 4\B= 4~ B wesee that =, is closed

under finite unions and the set-theoretic difference. Thus ¥, isaringon Q.

If 4, B € %, are disjoint and x cQ then, M(XN(4wWB)=
M) -MX A NAB)Y=AX) - AX N AL X N A " B)= MXNA)+\
(XNB)as A“"B=B

Using induction we obtain A(X N 4,) = anzlk(X M 4,) whenever4,

are in 3, and pairwise disjoint. Now we fix a sequence 4 in 3, which are
pairwise disjoint and we denote the union U, 4, by 4. Furthermore, we fix an
arbitrary x < () and an arbitrary large integer N.

Since X "4 c X n(w),4,)" and X, is closed under finite unions, we

have A(X N A+ MX N (WY, 4) <MX N (e A,I)C)+Z’IX(X0A,1)=K(X)

n=1

But N is arbitrary in this equation and so we can obtain,

MX NAT)+D MX N A)<SMX) ...(1.9)

On the other hand we have A(X) <A(X N 49)+ (X N 4) , which again by
the definition of an outer measure is less than or equal to

MX NA9)+) MX N A4,). Hence again using Equation (1.9) we obtain,

MX)SMX AA)+ X A A SMX N A+ WX N 4,)SA(X)

From this we conclude that > N 1s indeed closed under countable unions and
, by taking X = A that A(4) = zn M(4,) . Therefore the restriction of L to X, is a

measure on ¥, . Hence proved.

We will call =, the c-algebra related to A.

Now we come to a critical step; we want to associate an outer measure A,

to a given measure A on some ring R. Of course, we want the restriction of the

outer measure A, to thering to coincide with the measure p.

Let Rbearingon Q and let pbe ameasure on R. If X < Q is any subset
we can cover X with sets from R to approximate X inside R—we call an R-

cover of X a countable subset (4 ) of R with X cU, 4, . This leads to the

n n

following definition; for any X — Q we define A, (X) to be the infimum of all

sums Y u(4,) where (4,),_, is any countable cover of X with 4 in R. We
need to check that this is an outer measure.



Theorem 1.6: The map A, : P(€2) > [0,+] defined above defines an outer

measure on .
Proof: Since € R , we have A,(¢)=0.If X Y are two subsets of 2, then
any cover of Y with sets from Ralso covers X and hence A, (X) <A (Y).

Now let X' be any sequence of subsets. By the definition of the infimum we

can find ¢>0 and for each n an R-cover (4,,), of X such that,
€

>ow4,,) <A, (X) tor The sets 4,,, form a countable cover of X =U, X, ;

we can forexample set B, = 4, B, = 4,,, B, = 4,,, B, = 4,, and so on, similar to
Cantor’s proof of the countability of Q. But then, A, (X)=2,(, X,)<

€

Zn’m M(A,,’m) <Zn (XH (Xn) + >

But € was arbitrary and hence %, (U, X,) <" %, (X,).

= A (X,)+e

Theorem 1.7: The restriction of 7‘;1 to Ris L.

Proof: Forany 4 € Rthe set 4 itself forms a cover and hence A, (4) <pu(4).On
the other hand, let (4 ) be an R-cover of 4. We define B =4 n4 and
B, =(4,nA)\u,,, (4, " A4). Then clearly B, eR, the B are disjoint,
W B =4 and w(B,)<u(4,). Since p is a measure on R we have

u(4) = Z (B,) whichis less than or equal to Z 1(4,) . Since this holds for any

‘R-cover of 4 we have u(4) <A (A4). Therefore equality holds and the Theorem
is proved.

We will call A, the outer measure associated to .

So, we now have two constructions; given a ring and a measure on it we
can construct an outer measure. Given an outer measure, we can construct a -
algebra such that the restriction of the outer measure to the c-algebra is a measure
on the c-algebra. So it seems feasible that we can construct a measure on a o-
algebra starting from a ring with a measure on it.

Lemma: Let R be a ring on QQ and let p be a measure on R. Let A be
the outer measure associated to p. Let ¥ be the o-algebra related to A. Then R €
>,

Proof: Let 4 be an element of Rand let X be any subset of Q. Since, A is an outer
measure on Q) we have

M) =MX N AUXNAD MY N A)+MX N AY)

Now let (4,),., be any R-cover of X. Then the 4,4 form an

R-cover of X n4 and the 4, N A° form an R-cover of X n A° . Hence we
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where the last step follows from the fact that p is a measure and hence

wW(CwD)=w(C)+ (D). Since the inequality holds for any R-cover of X we

NOTES need A(X N 4) + (X N 49) <MX) . We thus need equality; for any x = Q we

have A(X)=MX N A)+A(X N A), orin other words 4 e¥ and since 4 was
an arbitrary element of R the lemma is proved.

Note: Anyring generates a o-algebra; one simply enlarges the ring with countable
unions. Or, the o-algebra generated by the ring R is the intersection of all o-
algebras that contain R. Therefore, the above lemma shows that the c-algebra
generated by Ris contained in .

Theorem 1.8 (Caratheodory): Let Rbe aring on Q2 and let p be a measure on
‘R. Then there exists a measure p’ on the c-algebra generated by R such that the
restriction of i’ to R coincides with p.

Proof: Let A be the outer measure on Q associated to p. Let X be the
c-algebra associated to A. Then by the above lemma the c-algebra generated by
Ris contained in X. Hence, A restricts to a measure on the -algebra generated
by R. By Theorem 1.7 this restriction of A to R coincides with pu. Hence the
theorem is proved.

For example, consider Q to be the real line. Then the open intervals generate
a c-algebra X. For any open interval (a, b) with a < b we can put pu((a, b)) =
b—a. Then there exists a measure p’ on Z such that p'((a, b)) = b —a. Indeed, for

countable unions of disjoint intervals we can define w(\, (a,.b,)) =Y (b,~a,).
Hence p does give rise to a measure on the ring generated by all intervals.

1.4.1 Lebesgue-Stieltjes Integral

Lebesgue-Stieltjes integrals are named after Henri Leon Lebesgue and Thomas
Joannes Stieltjes. The Lebesgue-Stieltjes integration generalizes the Riemann-
Stieltjes and Lebesgue integration. The Lebesgue-Stieltjes integral is the ordinary
Lebesgue integral with respect to a measure known as the Lebesgue-Stieltjes
measure which can be combined to any function of bounded variation on the real
line. The Lebesgue-Stieltjes measure is a regular Borel measure and conversely
we can state that every regular Borel measure on the real line is of this type.

The Lebesgue-Stieltjes integral is,

[ 1o de(x)

This is defined as f : [a, b] & R which is Borel measurable and bounded,
and g : [a, b] &> R which is of bounded variation in [a, b] and right continuous or
when f is nonnegative and g is monotone and right continuous. To establish,
presume that f is nonnegative and g is monotone non-decreasing and right
continuous. Describe w((s, 7]) := g(¢) — g(s) and w({a}) := 0. There is a unique
Borel measure p on[a, b] which agrees with w on every interval /. The measure
p, occurs from an outer measure given by,
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ug<E>:inf{2ﬂg(1i>|EcU1i}

The infimum is taken over all £ by countably several semi-open intervals.
This measure is termed as the Lebesgue-Stieltjes measure associated with g.

We can define the Lebesgue-Stieltjes integral as the Lebesgue integral of f
with respect to the measure H, in the standard method. If g is non-increasing, then
define,

b b
[ Feodgx) =] f(0d(-g)x),
If g is of bounded variation and f is bounded, then we can write as follows:

gx) = g,(x) —g,(x)

Here g (x) : = V* g is the total variation of g in the interval [a,x] and
g,(x) = g,(x) g(x). Both g and g, are monotone non-decreasing. Now the
Lebesgue-Stieltjes integral with respect to g is defined as follows,

| redg o =[ rerdg, ()= £ (x)dgs (),

Integration by Parts

A function £is said to be regular at a point a if the right and left hand limits fla +)
and f(a —) exist and the function takes the average value at the limiting point as
follows,

f(a)= %(f(a—) ¥ f(ab),

Given two functions U and V of finite variation, if at each point either U or
V'is continuous or if both U and V" are regular then there is an integration by parts
for the Lebesgue-Stieltjes integral. It can be expressed as follows:

[[Uav +['vau =u@+vpn-Ua-) r(a-).

Here b > a.

When g(x) = x for all real x, then M, is the Lebesgue measure and the
Lebesgue-Stieltjes integral of f with respect to g is equivalent to the Lebesgue

integral of /-
1.4.2 Product Measures and Fubini’s Theorem

Given two measurable spaces and measures on them we can obtain the product
measurable space and the product measure on that specific space. Theoretically,
this can be defined using the Cartesian product of sets. Consider that (X, 2, ) and
(X, 2.,) be two measurable spaces, i.e., 2 and 2., are sigma algebras on X and
X, respectively. Now let u, and i, be measures on these spaces. We can denote
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Signed Measures this by 2. x 2_ the sigma algebra on the Cartesian product X, x X, produced by
subsets of the form B, x B,, where B, € £ and B, € X,

The product measure p, X p, is defined to be the unique measure on the
measurable space (X, X X, x T, x X)) satisfying the property,

(1, X 1)(B, x B))=n (B)) ny(B,)
This holds forall B, € X ,B, € X..

Actually, when the spaces are o-finite then for every measurable set £ we
can define,

(X M)E) = [ (B, () =] (), ()

Here E = {yeX |(x,y) €E} and ¥ = {xeX |(x,y) €E}, which are both
measurable sets.

NOTES

The uniqueness of product measure is guaranteed only in the case that both
(X, 2, 1,)and (X, 2, u,) are o-finite. The Borel measure on the Euclidean
space R can be obtained as the product of n of the Borel measure on the real line
R.

Let (£, ¢, 1,)and (£, €,, n,) be finite measure spaces. Then the set,

A={4,xA,:4, €¢,A4, € ¢} isan-system of subsets of E=E x E..
Define the product c-algebra e ® e, = 6(A). Sete=¢ ®¢,.

Lemma 1: Let f/: £ — R be e-measurable. Then for all x, € E, the function
X, = f(x,x,): E, > R is g,-measurable.

Proof: The set of e-measurable functions can be denoted by v to evaluate the
result and for which the condition holds. Subsequently v is considered as a vector

space which contains the indicator function of every set 4 € A . Furtherif f, ev

for all n and if f is bounded with 0 < £, T f subsequently f € v also. Thus,

according to monotone class theorem v contains all bounded e-measurable
functions.

Lemma 2: For all bounded e-measurable functions f the function is of the form,

o i) =[SO, (d) B > R

This function is considered bounded and € -measurable. This lemma can
be easily solved by using the monotone class theorem as we have done in
Lemma 1. For this p, and p, must be finite.

Theorem 1.9 (Product Measure): There exists a unique measure p=p, ® p,
on ¢ such that, u(A, x A)) = p,(4,)u,(4,). This holds for all 4, € ¢ and
4, € g,

Proof: Uniqueness holds since .4 is a n-system generating €. Using the already
defined lemmas we can define the existence as follows,

Self - Learning w4) = JE] (JEz 1, (x5, )1, (dx, ) | W, (dx,)

36 Material



Use monotone convergence to define that p is countably additive.
Proposition: Let € =¢, ®¢ and 1=, ®,. Forafunction fon £, X E, we
candefine f for the function on E, x E specified by f (x,,x,)=fx,x,). If f is

g-measurable then f is ¢-measurable. Further if f is non-negative then

A =)
Fubini’s Theorem

Fubini’s theorem is named after Guido Fubini. It is a consequence which provides
conditions for which it is possible to compute a double integral using iterated integrals.
As a consequence it also permits the order of integration to be changed in iterated
integrals.

Fubini’s theorem is also sometimes termed as Tonelli’s theorem. It is used
to establish a connection between a multiple integral and a repeated one. If f{x, )
is continuous on the rectangular region R : a <x < b, ¢ <y <d, then the equality of

the formHR S, y)d(x,y)= J.; J.Cd f(x,y)dydx holds.

Theorem Statement

Let 4 and B are complete measure spaces. Assume that f(x,y) is 4 x B measurable

if

ijglf(x=Y)|d(x,y)<m’

Here the integral is taken with respect to a product measure on the space
over 4 x B. Subsequently,

[ ([ rena)ac=[ (] reona)ay=]  reondey,

Here the first two integrals are considered as the iterated integrals with
respect to two measures and the third integral is with respect to a product of these
two measures. If the integral of the absolute value is not finite then the two iterated
integrals may essentially have different values.

Corollary: If f{x,y)=g(x)h(y) for some functions g and /, then we can state that:

[ eax] hay=]  fxydcxy),

Here the integral on the right side is defined with respect to a product
measure.

Another alternate statement of Fubini’s theorem states that if 4 and B are &-
finite measure spaces and not essentially absolute, and if either

IA(IBIf(x,y)Idy)dX<w or IB(LIf(x,y)IdX)dy@o holds then

[ 1 fGep)d(xy) <.

Signed Measures
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and, [ ([, rendv)ac=[ ([ fooyax)ay=]  feerdey).

For this the essential condition is that the measures must be c-finite.

NOTES
Check Your Progress

9. Define Radon-Nikodym theorem.
10. State the Caratheodory extension theorem.
11. What does Lebesgue’s decomposition theorem state?
12. Whatis Lebesgue-Stieltjes integral?

13. Define Fubini’s theorem.

1.5 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Signed measures is referred as a simplification of the concept of measures
that allows it to have negative values. There are two different notions of a
signed measures that depends on the condition that how the infinite values
are taken.

2. A finite signed measures can be defined except that it only takes the real
values, i.e., it cannot take +oo or —oo. Finite signed measures form a vector
space.

3. Hahn decomposition theorem states that for a given signed measures L,
there exist two measurable sets P and V. This decomposition is unique for
adding/subtracting u null sets from P and V.

4. The sum of two finite signed measures is a finite signed measures because it
is the product of a finite signed measures by a real number which is
considered closed under linear combination. It follows the assumption that
the set of finite signed measures on a measures space (X, ) is areal vector
space. The total variation defines a norm for which the space of finite signed
measures becomes a Banach space. As per the Riesz representation theorem,
if X is a compact separable space then the space of finite signed Baire
measures is considered the dual of the real Banach space of all continuous
real valued functions on X.

5. The integral of a complex valued measurable function can be defined with
respect to a complex measures by approximating a measurable function
with simple functions. The already existing integral of a real valued function
can be used with respect to a nonnegative measure. The real and imaginary
parts b and B of acomplex measures 1 are considered finite valued signed
measures.

6. A decomposition of the measures v as a difference of two mutually singular
measures v and v~ is termed as Jordon decomposition.

7. Two complex measures p and v on a measures space X are considered
mutually singular if they are provided on different subsets.

Self - Learning
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8.

10.

11.

12.

13.

Two positive or signed or complex measures pLand v defined on a measurable
space (Q, 2.) are called singular if there exist two disjoint sets 4 and Bin 2.
whose union is € such that 1 is zero on all measurable subsets of B while v
is zero on all measurable subsets of A.

. The Radon-Nikodym theorem is a consequence in measure theory that

states that given a measurable space (X, 2.), if a o-finite measure v on (X,
2.) is absolutely continuous with respect to a o-finite measure p on (X, X))
then there is a measurable function fon X which takes values in [0, o) such
that,

) =] fdu
This holds for any measurable set A.

Let Rbe aring on Q and let pu be a measures on R. Then there exists a
measures W' on the o-algebra generated by R such that the restriction of
to R coincides with p.

In measures theory, Lebesgue’s decomposition theorem states that for given
uand v two o-finite signed measures on a measurable space (Q, 2.), there
exist two o-finite signed measures v and v{.

The Lebesgue-Stieltjes integral is the ordinary Lebesgue integral with respect
to a measures known as the Lebesgue-Stieltjes measures which can be
combined to any function of bounded variation on the real line.

Fubini’s theorem is also sometimes termed as Tonelli’s theorem. It is used
to establish a connection between a multiple integral and a repeated one. If
fx, y) is continuous on the rectangularregion R: a £x £ b, c £y £d, then

the equality of the form HR f(x,»)d(x,y)= _[ ’ J ‘ f(x,y)dydx holds.

1.6

SUMMARY

Signed measures is referred as a simplification of the concept of measures
that allows it to have negative values. There are two different notions of a
signed measures that depends on the condition that how the infinite values
are taken.

A finite signed measures can be defined except that it only takes the real
values, i.¢., it cannot take +oo or —o. Finite signed measures form a vector
space.

An extended signed measures is the difference of two nonnegative measures
and a finite signed measures is the difference of two finite nonnegative
measures.

Hahn decomposition theorem states that for a given signed measures 1,
there exist two measurable sets P and V. This decomposition is unique for
adding/subtracting pnull sets from P and V.

The sum of two finite signed measures is a finite signed measures because it
is the product of a finite signed measures by a real number which is

Signed Measures
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considered closed under linear combination. It follows the assumption that
the set of finite signed measures on a measures space (X, ) is areal vector
space.

The total variation defines a norm for which the space of finite signed
measures becomes a Banach space. As per the Riesz representation theorem,
if X is a compact separable space then the space of finite signed Baire
measures is considered the dual of the real Banach space of all continuous
real valued functions on X.

A complex measures | on a measurable space (X, 2) is a function defined
on 2 which takes complex values that is sigma additive.

The integral of a complex valued measurable function can be defined with
respect to a complex measures by approximating a measurable function
with simple functions.

The already existing integral of a real valued function can be used with
respect to a nonnegative measure. The real and imaginary parts 3 and B
of'a complex measures L are considered finite valued signed measures.

The sum of two complex measures is also referred as a complex measures
and similarly the product of a complex measures by a complex number.

The pair (P, N) is termed as a Hahn decomposition of the signed measures
L.

Jordan decomposition theorem states that every signed measures L can be
expressed as a difference of two positive measures p* and (-, of which at
least one is finite.

Every measurable subset of a positive set is termed positive and a union of
a countable collection of disjoint positive sets is also positive.

Given a signed Measures space (X, B, v) there is a positive set 4 and a
negative set B such that 4 and B partition X.

A decomposition of the measures v as a difference of two mutually singular
measures v" and v-is termed as Jordon decomposition.

For a signed measures and a measurable function f, we state that f'is
integrable with respect to v if f1s integrable with respect to v+ and fis also
integrable with respectto v-.

Ifvis a signed measures and p is a (honest) measures on a measurable
space (X, S) then we can state that v is absolutely continuous with respect
to u if for and pu(£) =0 we have v(E).

Two complex measures g and v on a measures space X are considered
mutually singular if they are provided on different subsets.

A discrete singular measures with respect to Lebesgue measures on the
real integrals is a measures A defined at 0.

Two positive or signed or complex measures p and v defined on a
measurable space (Q, X)) are called singular if there exist two disjoint sets 4
and B in 2, whose union is € such that u is zero on all measurable subsets
of B while v is zero on all measurable subsets of 4.



Let Rbe aring on Q and let p be a measures on R. Then there exists a
measures W' on the -algebra generated by R such that the restriction of p’
to Rcoincides with .

A polished form of Lebesgue’s decomposition theorem decomposes a
singular measures into a singular continuous measures and a discrete measure.

As aspecial case, a measures defined on the Euclidean space R, 1s called
singular if it is singular in respect to the Lebesgue measures on this space.
For example, the Dirac delta function is a singular measure.

The Radon-Nikodym theorem is a consequence in measures theory that
states that given a measurable space (X, 2.), if a 6-finite measures v on (X,
") is absolutely continuous with respect to a 6-finite measures p on (X, )
then there is a measurable function fon X which takes values in (0, o).

The function f'satisfies the above stated equality is uniquely defined up to a
u-null set. If g is an additional function which satisfies the same property
then /= g u-almost everywhere (u-ae). fis generally described as dv/dp
and is termed as the Radon-Nikodym derivative.

In measures theory, Lebesgue’s decomposition theorem states that for given
pand v two o-finite signed measures on a measurable space (Q, ), there
exist two o-finite signed measures 2 and v

The Lebesgue-Stieltjes integral is the ordinary Lebesgue integral with respect
to a measures known as the Lebesgue-Stieltjes measures which can be
combined to any function of bounded variation on the real line.

Given two measurable spaces and measures on them we can obtain the
product measurable space and the product measures on that specific space.

Fubini’s theorem is also sometimes termed as Tonelli’s theorem. It is used
to establish a connection between a multiple integral and a repeated one. If
fx, ) is continuous on the rectangularregion R : a <x< b, c <y <d, then

the equality of the form HR S, y)d(x,y)= J. ’ J. ’d f(x,y)dy dx holds.

1.7

KEY TERMS

Signed measure: Signed measure is referred to simplification of the
concept of measures that allows it to have negative values. There are two
different notions of a signed measures that depends on the condition that
how the infinite values are taken.

Hahn decomposition theorem: Hahn decomposition theorem states that
for a given signed measures L, there exist two measurable sets P and N.
This decomposition is unique for adding/subtracting p null sets from P and
N.

Jordan decomposition theorem: Jordan decomposition theorem states
that every signed measures p can be expressed as a difference of two
positive measures i and p of which at least one is finite.

Signed Measures
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Signed Measures ¢ Jordon decomposition: A decomposition of the measures v as a difference
of two mutually singular measures v* and v~ is termed as Jordon
decomposition.

e Mutually singular: Two complex measures p and v on a measures
space X are considered mutually singular if they are provided on different
subsets.

NOTES

¢ Fubini’s theorem: Fubini’s theorem is named after Guido Fubini. Itis a
consequence which provides conditions for which it is possible to compute
a double integral using iterated integrals. As a consequence it also permits
the order of integration to be changed in iterated integrals.

1.8 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What s signed measure?
Why are Hahn and Jordan decomposition theorems used?
What is mutually singular measure?
Define Radon-Nikodym theorem.
State the drawbacks of Caratheodory extension theorem?
What is the significance of Lebesgue decomposition?
Define Lebesgue-Stieltjes integrals.

e S A

Specify the term product measure.
9. What does Fubini’s theorem state?

Long-Answer Questions
1. Explain in detail the signed measures with the help of examples.

2. Discuss Hahn and Jordan decomposition theorems with the help of proof
and examples.

3. Explain mutually singular measures with the help of appropriate examples.
4. Discuss Radon-Nikodym theorem with the help of proof.

5. Explain Lebesgue decomposition and its importance with reference to signed
measures and decomposition.

6. Describe Riesz representation theorem with application.
7. Explain Lebesgue-Stieltjes integral with the help of examples.

8. Discuss product measures and Fubini’s theorem with reference to signed
measures and decomposition.

9. Brief'anote on the importance of Caratheodary extension theorem with
examples.
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2.0  INTRODUCTION

In mathematics, Baire set describes the specific relations between measure theory
and topology. Particularly, Baire sets help to evaluate measures on non-metrizable
topological spaces. The Baire sets form a subclass of the Borel sets. A subset of a
compact Hausdorff topological space is termed as a Baire set if it is a member of
the smallest c—algebra which contains all compact Gg sets.

Functions with compact support in X are those with support that is a compact
subset of X. For example, if X is the real line, they are functions of bounded
support and therefore vanish at infinity and negative infinity. Real valued compactly
supported smooth functions on a Euclidean space are termed as bump functions.

The Riesz—Markov—Kakutani representation theorem relates linear
functionals on spaces of continuous functions on a locally compact space to
measures in measure theory. The theorem is named for Frigyes Riesz (1909) who
introduced it for continuous functions on the unit interval, Andrey Markov (1938)
who extended the result to some non-compact spaces, and Shizuo Kakutani (1941)
who extended the result to compact Hausdorff spaces. There are many closely
related variations of the theorem, as the linear functionals can be complex, real, or
positive, the space they are defined on may be the unit interval or a compact space
or alocally compact space, the continuous functions may be vanishing at infinity or
have compact support, and the measures can be Baire measures or regular Borel
measures or Radon measures or signed measures or complex measures.

In this unit, you will learn about the Baire sets and Baire measure, continuous
functions with compact support, regularity of measures on locally compact spaces

and Riesz-Markov theorem.

Baire Sets and
Baire Measure
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2.1 OBJECTIVES

After going through this unit, you will be able to:

Explain Baire sets and Baire measure

Describe continuous functions with compact support
State the regularity of measures on locally compact spaces
Discuss Riesz-Markov theorem

2.2 INTRODUCTION TO BAIRE SETS AND
BAIRE MEASURE

The Baire set describes the specific relations between measure theory and topology.
Particularly, Baire sets help to evaluate measures on non-metrizable topological
spaces. The Baire sets form a subclass of the Borel sets. A subset of a compact
Hausdorff topological space is termed as a Baire set if it is a member of the
smallest c—algebra which contains all compact G sets.

As per Dudley, a subset of a topological space X is termed as a Baire set if
it belongs to the smallest c—algebra for which all continuous functions defined on
Xinto the real line are measurable. A discrete topological space is locally compact
and Hausdorff. Therefore any function defined on a discrete space is continuous
and as per Dudley all subsets of a discrete space are Baire.

Properties

The following properties hold for Baire sets:

¢ Baire sets correspond with Borel sets in every metric or metrizable space.
Specifically they correspond in Euclidean spaces and all their subsets
considered as topological spaces.

e For every compact Hausdorff space, every finite Baire measure, i.¢., a
measure on the -algebra of all Baire sets is regular.

¢ For every compact Hausdorff space, every finite Baire measure has a unique
extension to aregular Borel measure.

In the descriptive set theory, a set of reals or subset of the Baire space or
Cantor space is termed as universally Baire if it has a definite strong regularity
property. Universally Baire sets are used in Q-logic. A subset 4 of the Baire
space is universally Baire if it has one of the following equivalent properties:

1. For every notion of forcing, there are trees 7'and U such that 4 is the
projection of the set of all branches through 7"and it is forced that the
projections of the branches through 7"and the branches through U
are complements of each other.

2. For every compact Hausdorff space Q2 and every continuous function
ffrom Q to the Baire space, the preimage of 4 under fhas the property
of Baire in Q.

3. For every cardinal A and every continuous function f from A° to the
Baire space, the preimage of 4 under fhas the property of Baire.



Baire Measures

A Baire measure is a measure on the c-algebra of Baire sets of a topological
space. In spaces that are not metric spaces, the Borel sets and the Baire sets may
differ. Baire measures can be used because they connect to the properties of
continuous functions directly.

Definition: Ameasure pon (R, By) is a Baire measure (on R), if p (E) <o
whenever E is a bounded (Borel) set.

Assume that pis a finite Baire measure. Then, define

F(x) o = p (-0, x])

Fis termed as the cumulative distribution function of . Now examine:
p(a, b] = p (=0, b] — (o0, a] = F(b) — F(a)

Furthermore,

(a.5)=(a.b,+-]

! n
Consequently,

. 1 ) 1

w(a, b] = F(b) - F(a) = limpu(a,b + ;] = lim (b + ;) —F(a)
Accordingly,
Fb)=limF(b +l)

n—>0 n
Hence, and we can conclude that F'is right continuous.

W(ib}) = F(b) - F(%)

nib}y = F(b) = F(a)
As aresult, F'is continuous at b if and only if w(b)=0.

Proposition: Let p be a finite Baire measure and let ' be its cumulative
distribution function. Then F'is monotone increasing, bounded, right continuous

and li_r)n F(x)=0.

For a given cumulative distribution function that is increasing and right

continuous we can construct a Baire measure. The following is the notation for
this:

F(-o0)= lim F(x)
F(o0) = lim F(x)

Theorem 2.1: If 'is amonotone increasing function which is right continuous,
then there exists a unique Baire measure p such that p(a, b] = F(b)— F(a).

Corollary: Every such ' which is also bounded is the cumulative distribution
function of a finite Baire measure, provided that /(—oc) =0. The Lebesgue-Stiltjes
integral with respect to F'can be defined with p1 the appropriate measure as follows:

J 6dF = [ odu
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Let p be the counting measure on py c-algebrais P(N) and
all functions are measurable.

If /: N— R is non-negative then how the following will be evaluated,
[ fdu=7"f(m
n=1

A function /: N — [F'is integrable if and only if | f|is,

S| £ ()< o0

By the discrete cosine transform, if a sum converges absolutely in # then we
have the expression,

0 0
lim Z Xy = Z limx,
=1 m=1

n—>0 n—>0
m —

Check Your Progress

1. What is Baire set?
2. Give the properties of Baire set.

3. Define Baire measure.

2.3 CONTINUOUS FUNCTIONS WITH
COMPACT SUPPORT

Functions with compact support in X are those with support that is a compact
subset of X. For example, if X is the real line, they are functions of bounded
support and therefore vanish at infinity and negative infinity. Real valued compactly
supported smooth functions on a Euclidean space are termed as bump functions.
The specific functions with compact support are considered dense in the space of
functions that vanish at infinity. For more complex examples and in limits, for any
€> 0, any function fon the real line R that vanishes at infinity can be approximated
by selecting an appropriate compact subset C of R such that,

| ) T (ftx) [ < e

This holds for all x € X, where / .is termed as the indicator function of C.
Every continuous function on a compact topological space has compact support
since every closed subset of a compact space is indeed compact.

Let X be a separable and locally compact metric space, then for each
compact set K — X'there is a continuous function with compact support and such
that /1K = 1.

Definitely, X = U U, , where {U } is aincreasing sequence of open and
n=1

pre-compact subset of X (this follows from the Lindel6f theorem). Consequently
thereisan ;e N, suchthat K U .



: aire Sets and
2.3.1 Regularity of Measures on Locally Compact Baire ety and
Spaces

Definition: A Borel measure on (—a, b] is defined as the o-additive measure
defined on the Borel algebra of (a, b] and is the smallest c-algebra containing all NOTES
the open subsets of (a, b].

Theorem 2.2: Let p be a finite Borel measure, p ((a, 7]), less than co. Then, F(¢)=
u ((a, £]) is an increasing function such that, lim F'(s) = F(¢).
s>t

On the other hand a Borel measure on (a, 5] 1s uniquely determined by
every such function.

Proof: Let pu be a finite Borel measure. By o-continuity we have,
lim w(UJ(@,b+s,)1(a,b) for every decreasing sequence (s,)=0. For the reverse

we will use the extension procedure. Let F'be as defined above. Consider the
algebra 4, generated by the intervals (s, 7]. For such an interval define,

WE(s, 1) = F(1) = F(s)

Now, we need to prove that,

WF (s, )< 3 u(B))

WheneverBj eAand; B, =(s,t] isadisjoint union. As everny 1s a finite

union of intervals, assume as disjoint partition
(s.0={J,(s21))
Let, € > 0. For fixed j we can choose 9¢j > 0, such that
F(t,+8,)~F(s) < F(t,)~F(s,)+2 ¢
Let, 3> 0. Then,

[s+8,11c| (s, 1, +8))

J
By compactness we can find 7, such that
[s+8,11c|JGs,.t; +3))

j=1

Now, reorganize the intervals such thats <s+8<¢ +8, and

s, <t +8,<t,+8,,etc,sothat <z +5 .This gives,

F(t)-F(s+8)< i(F(z,. +8,)~F(s)) < S uF((s,o1,) +2 e

<e+ Y PF((s,.t,])
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Since € > 0 is arbitrary, we have

F(t)=F(s+8)<)_uF((s,.t,])

Using lim,_, F(s +8) = F(s), we deduce
F(O)=F(s)< Y uF((s,.1,)

Find a o-additive measure fi F, by applying the Caratheodory extension
procedure which satisfies,

HE((s,1]) = F(1) = F(s)

Here, the sets of meausre 0 are defined by the outer measure p, which is

uniquely determined by the values [i F{((s, ¢]). Since the measure is finite, for every
measurable set £ c (a, b] we can find B € 4 such that,

w-(EAB)<g

This gives,

e (B) =& <pp(E)<p,(B)+e

Hence, the extension is uniquely determined from its values on intervals
(s, 1].

In the following equations we suppose that ' :[a, b] > R is amonotone

increasing function, continuous from the right. Here, we need the following four
derivatives:

ho

h

o h
e o Fx+h)—F(x)

D, F(x) = hr{’lilonf P
e o F(X)-F(x—h)
D F(x) = llrililonf T

Note that
D'F(x)>D,F(x) and D F(x)>D_F(x)
We know that £'is differentiable at x if all the values coincide and are finite.

Theorem 2.3: Let /'be a monotone increasing function. Then F'is differentiable
almost everywhere. Furthermore,

[ F(0dx < Fb)-Fla)

Proof: Here, define F(x) = F(b) for x > b. For example, consider



E, ={x:D'F(x)>u>v>D_F(x)}
for rational u, v. We have to prove that m « (£, ) = 0. Then we can conclude that,

D,F(x)<D'F(x)<D_F(x)< D F(x) almost everywhere. In the same
way, D"F(x) < D,F and so, F'is differentiable almost everywhere.

Now, we consider s =m"(E,,) and €>0. We can find an open set O such
that £, , cO and m(O)<s+¢. For each pointxeE, there is a small
interval[x — 4, x] < O such that,

F(x)-F(x—h)<vh

Now, we can find a finite disjoint collection/ , ..., I, of such intervals such
that,

N
m(U Interior(/,))>s—¢

n=1

Now, I, =[x, —h,,x,]. So, from disjointness
N

D (F(x,)=F(x,=h))<vD>_h, <vm(0) < v(s+8)
n=1 n

Now define 4 = U,],v:l Interior(Z,) N E, , . Weknow thatevery y € 4 isaleft
endpoint of an interval (y, y + k) contained on some / such that,

F(y+k)—F(k)>uk

By applying the covering theorem, we obtain disjoint intervals J , ..., J,,

such thatUl,J . contains a subset of 4 of measure greater than s —2¢ . Then,

i

f[F(yk + k)= F(k)]>uY k, >u(s—2e)

Note here that, every J. is contained in some / . Hence, by monotonicity
and disjointness we get,

D [F(y + k)= F(k)I<F(x,)~F(x,~h,)

Jicl
n

Thus we have,
u(s—2¢e)< i[F(yk +k)—F(k)] Si(F(xn) -F(x,—h))<v(x+eg)

Passing to the limit € >0 we get us < vs. Since # > v we must have
s =0. In the following we may assume that,

g(x)=lim F'(x)

h—0

F(x+h)-F(x) _
B
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exists almost everywhere. We define,
S =n (F(x +1)- F(x)]
n

Since, F'is increasing we know that f, (x)>0. Sincelim, £, (x) = F'(x)
almost everywhere, we know that F’ is measurable. By Fatou’s lemma we find,

[\ <timinfn [ [F(x+ L Poax
a n a n
h+l oz+l
= llmnlnf(njb ”F—nL ”FJ

1
- liminf(F(b) = nj: " F]

= F(b)~limn jb‘”%F = F(b)- F(a)

Corollary 1: A function of bounded variation is differentiable almost everywhere.

Corollary 2: Let p be a finite Borel measure on (a, b]. Then there exists an
absolute continuous measure p_and singular measure . such that,

[l L
Proof: Consider F(x) = ((a, x]). Then, F'is differentiable almost everywhere
and we may define the absolute continuous measure

b, (@ x) = [ F'(x)dm

Then, G(x)=F(x)— Lx F'(x)dm is again an increasing function. The singular
measure is determined by,

m, ((a,x]) = G(x)

Obviously, G'= 0 almost everywhere.
2.3.2 Measure and Outer Measure

Definition: An outer measure p* is an extended real valued set function defined
on all subsets of a space X having the following properties:

(@) o =0
(b) Ac B= p*xA < pxB(Monotonicity)

(©) Ec Y E = n*E<) u*E, (Subadditivity)
i=1 i=1

The outer measure p* is said to be finite if p+X < oo,



By correspondence with the case of Lebesgue measure we say thata set £
is measurable with respect to p* if for every set 4 we have,

n¥*A=p*(ANE)+p*(ANE®)

Since, p* is subadditive, in order to show that £ is measurable, we only
need to prove that,

WEA>u*(ANE)+u*(ANE®)
forevery 4.

When p*4 = oo, this inequality holds trivially. So, we only have to prove it
for sets 4 with p*4 finite.

Theorem 2.4: The class 3 of p-measurable sets are a G-algebra. If ﬁ is restricted

to 3, then ﬁ is a complete measure on f3.

Proof: It is clear that the empty set is measurable. From the symmetry of the
definition of measurability in £ and E*, we have that £ is measurable whenever E
is measurable. Now, let £, and £, be measurable sets. From the measurability of
E

2
W*A=p*(ANE,)+p*(ANE")
and by the measurability of £,
W*A=u*(ANE)+u*(ANES NE)+pu*(ANE,S NE) )
Now, since
AN[E, VE,]=[ANE,JU[ANE, NE/S]
we have,
W*(AN[E, VE, ) <u*(ANE,)+u*(ANES NE))
by subadditivity, and so
WEA>p*(AN[E, VE)+u*(ANE, NES)

This implies that £, U E| is measurable. So we get that the union of two
measurable sets is measurable. But by induction, the union of any finite number of
measurable sets is measurable. Hence, B is an algebra of sets. Suppose, £'=UE,
where <E > is a disjoint sequence of measurable sets, and fix

G,= UE,

Then G, is measurable, and
WEA=p*(ANG,) +u*(ANG,O)
>p*(ANG, ) +pu*(ANES)

because £ G-
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Now,G NE =E and G N E ‘=G _,andby the measurability of £ ,
we have

W*(ANG)=p*(ANE)+p*(4NG, )

By induction (as above, u*(4NG, )=p*(ANE, )+pn*(4NE, ,) and
so on),

WH(ANG,)=Y u*(ANE)
i=1
and so,

P*AZP*(ANES)+) p*(ANE)

i=1
>u*(ANE ) +p*(ANE)
Since, ANE L_Jl(AﬁEi)

Thus, E is measurable.

Since, the union of any sequence of sets in an algebra can be replaced by a
disjoint union of sets in an algebra, it follows that B is a G-algebra.

Let us now prove that ﬁ is finitely additive. Let £, and E, be disjoint
measurable sets.

Then, the measurability of £, implies that,
W(E, VE,)=pu*(E, UE,)

—u*([E, UE,|NE, +u*([E, UE,]NE,")
=p*E, +p*E

Finite additivity now follows by induction.

If Eis the disjoint union of the measurable sets { £’ }, then
and so,
WE2Y WE,
pa

But,

LESY WE, by the subadditivity of p*. Hence, i is countably additive.

i=1

So 1 is a measure since it is non negative and p ¢=p*dp=0.



2.3.3 Extension of a Measure

A measure on an algebra is a non negative extended real valued set function p
defined on an algebra A4 of sets such that,

(@) up=0

(b) If <4 >is adisjoint sequence of sets in 4 whose union is also in A4, then

H(q Aij = i A,
= i=1

Thus, a measure on an algebra A4 is a measure iff 4 is a G-algebra.

We construct an outer measure p* and show that the measure i is an

extension of measure p defined on an algebra. Define, u*E = inf z 4, , where
i=1

<A > ranges over all sequence from A4 such that

ECGAI.

i=1

Lemma 1: If 4 € 4 and if <4 > is any sequence of sets in 4 such that 4 < U4,,
i=1

then pd < z nA; .
i=1

Proof: Fix, B,=4nA4,nA°,  n..nA . ThenB € Aand B, c A . Butsince 4
is the disjoint union of the sequence <B >, by countable additivity

0

quZuBn <

n=1 n=1

Corollary: If 4 € A, u*4 = pA.

Actually, from above, we have

[Ms

uA

n

A<D pd, <p*A+e
n=1

or,

pA<pu*A4+¢

Now, as since € is arbitrary, we have
pA<u*A4

Also, by definition

p*A<uAd

Therefore,

ped = pd
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Lemma 2: The set function u is an outer measure.
Proof: We know that from the definition, p* is a monotone non negative set
function defined for all sets and p¢ = O. Now it is only remained to prove that it

is countably subadditive. Let E ¢ U E, . If uxE =oo for any i, then we have u*E
i=1

< 2pxE = oo, If uxE # oo, then given & > 0, there exists for each i a sequence

g

<4;>7, of setsinA suchthat £, — G 4, and

J=1

Do, <u*E +—
A1 2

Then,
u*E< ZuAij < ip*Ei +€
i pan
Since € is an arbitrary positive number, we have
n*E< i n*E
i1
which proves that p is subadditive.

Lemma 3: If 4 € A4, then 4 is measurable with respect to pu*.

Proof: Suppose E be an arbitrary set of finite outer measure and € be a positive
number. Then there is a sequence <4 > from 4 such that £ < LA, and

Xpd <p*E+e.

By the additivity of pLon 4, we have

w(A4) =p(4, N A) +p(4, N A9)

Hence,

W*E+g >iu(Ai mA)+iu(Ai N A%)
pan p)

>Su*(ENA)+p*(EnAS)

because

EnAdcu(4,nA)

and

ENAS cu(4 A

Since € is an arbitrary positive number, we have

L¥E>p*(enA)+p*(EnA9)

and thus 4 is p*-measurable.



Note: The outer measure p+ which we have defined above is known as the outer
measure induced by pL.

Notation: For a given algebra 4 of sets we use A _to denote those sets which are
countable unions of sets of 4 and use A_;to denote those sets which are countable
intersection of sets inAc.

Theorem 2.5: Let p be a measure on an algebra 4, pu* be the outer measure
induced by p, and £ be any set. Then for £ > 0, there existsaset 4 € A_with £

cAand p*A<p*E+e.
There is also aset B € A4_ with £ B and pu*E = u*B.

Proof: From the definition of p* there is a sequence <4 > from A such that
E c w4, and

D4 <p*E+e .. (2.])
i=1

Fix4=u4,

Then, p* 4 <Tp* 4,

=3ud, ...(2.2)
because p+and pLagree on members of A by the above mentioned corollary.
Hence, Equations (2.1) and (2.2) imply

pr*A<u*E+eg

which proves the first part.

To prove the second statement, we note that for each positive integer n
thereisaset4 inA_, suchthat, Fc 4 and

W*A <p*E+ 1 (From first part proved above)
n

LetB=nA .Then,B €A _jand EcC B.Since Bc 4,
1

p*B<p*4 Sp*E+—
n

Since # is arbitrary, by monotonicity, B < uxE. Hence p*B = u*E.
2.3.4 Riesz-Markov Theorem

Consider that X denotes a locally compact Hausdorff space. Let fbe areal valued
continuous function on X. The support of fis the subset of the form,

Supp (f) : = Closure of {x € X : f(x) #0}
Here f has compact support if the support of fis a compact subset on X. /'
is zero outside a compact set. A linear functional or linear form, also termed as a

one-form or covector, is a linear map from a vector space to its field of scalars. In
R”, if vectors are represented as column vectors then linear functionals are

represented as row vectors and their action on vectors is specified by the dot
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product or the matrix product with the row vector on the left and the column
vector on the right. Generally, if V'is a vector space over a field & then a linear
functional f is a function from V'to k, which is linear,

fO+w)=f(v)+ f(w) forall v, wey

flav)=af(v) forall yve V,aek.

The set of all linear functionals from V'to k, Hom (V,k), is itself a vector
space over k. This space is called the dual space of V or sometimes the algebraic
dual space. It is written as V" or /" when the field £ is implicit. Every non-degenerate
bilinear form on a finite dimensional vector space V gives an isomorphism from
to V*. Specifically, the bilinear form on V'is denoted by <, > and there is a natural

isomorphism 7 — " -y — " given by the following expression:
Vi(w):i= <v, w>.

The inverse isomorphism is givenby V" — V' : f - f~ where f* is the
unique element of V" for which forall w € V. The vector is then,

(£ w)=f(w).
The above defined vector v* e V* is said to be the dual vector of v e V.

In an infinite dimensional Hilbert space, equivalent results hold by the Riesz
representation theorem. There is a mapping /' — V* into the continuous dual
space V*.

Riesz Representation Theorem for Linear Functionals on C (X)

The following theorem represents positive linear functionals on C (X), i.e., the
space of continuous compactly supported complex valued functions on a locally
compact Hausdorff space X. The Borel sets in the given statement refer to the o-
algebra produced by the open sets.

A non-negative countably additive Borel measure p on a locally compact
Hausdorff space Xis regular if and only if,

¢ L(K) <oo for every compact K.
e ForeveryBorel set £, u(E) =inf {W(U) : Ec U, U open}

e The relation pu(£) = sup (W(K) : K < E, K compact) holds whenever E is
open or when E is Borel and p(E) < oo.

Theorem 2.6: Let X be a locally compact Hausdorff space. For any positive
linear functional y on C (X), there is a unique Borel regular measure p on X such
that,

w(f)=] fE)du(x)
This holds for all /in C (X).

One method to measure theory is to initiate with a Radon measure defined
as a positive linear functional on C(X). In its original form by F. Riesz (1909) the



theorem states that every continuous linear functional A[f] over the space C[0,1]
of continuous functions in the interval [0,1] can be represented in the form,

AN =] f(x)dax).

Here a(x) is a function of bounded variation on the interval [0,1] and the
integral is a Riemann-Stieltjes integral. Since there is a one-to-one association
between Borel regular measures in the interval and functions of bounded variation
consequently the above stated theorem generalizes the original statement of F.
Riesz. He assigns to each function of bounded variation the consequent Lebesgue-
Stieltjes measure and the integral with respect to the Lebesgue-Stieltjes measure
agrees with the Riemann-Stieltjes integral for continuous functions.

Riesz-Markov Representation Theorem for the Dual of C (X)

The Riesz-Markov theorem gives a concrete realization of the dual space of C (X),
1.e., the set of continuous functions on X which vanish at infinity. The Borel sets in
the statement of the theorem also refer to the c-algebra generated by the open
sets.

If pis a complex valued countably additive Borel measure, then is regular
iff the non-negative countably additive measure | 1 | is regular as defined above.

Theorem 2.7: Let X be a locally compact Hausdorff space. For any continuous
linear functional y on C,(X), then there is a unique regular countably additive
complex Borel measure 1 on X such that,

W FO)du(x)

This holds for all fin C (X). The norm of y as a linear functional is the total
variation of pis given as follows,

IAAISVAIC e

To conclude, v is positive iff the measure L1 is non-negative.

2.4 Integration of Continuous Functions with
Compact Support

Let 4 be a k-form on B™. We define the support of to be the closure of the set
{x e R",v, # 0}
and we say that ., is compactly supported if suppw is compact. We will denote by

0% (R™) the set of all €* k-forms which are compactly supported, and if I/ is an
open subset of R™, we will denote by 0¥ (1) the set of all compactly supported

k-forms whose support is contained in .

Letw = fdx, A+ A dx, beacompactly supported n-form with £ € ¢5° (R™)-
We will define the integral of ® over R™:

[ o
R®
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to be the usual integral of f over g™

fdx.
Rn

(Since g is ¢=> and compactly supported this integral is well-defined.) Now
let @ be the rectangle

[alrbl] X X [anibn]'

Theorem 2.8
Let o be a compactly supported n-form, with supp © < Int Q. Then the following
assertions are equivalent:
1. _r w = (.
2. There exists a compactly supported (n — 1 )-form, g, with suppy cInt @
satisfying gqy = .
We will first prove that (2.4) = (2.3). Let

n
u= Zfi dx; A ..Adx; A Adx,
i=1

(the “hat” over the g x, meaning that has to be omitted from the wedge product).
Then

n
af,
du = Z( iyt Y A ndx,,
~ axi

and to show that the integral of dy is zero it suffices to show that each of the
integrals
Jy 5L dx (2.3)

is zero. By Fubini we can compute (2.3) by first integrating with respect to the
variable, x. , and then with respect to the remaining variables. But

of i=b;
[ 5 rdx=f@hZ =0
12

since f;is supported on U.

We will prove that (2.3) = (2.4) by proving a somewhat stronger result.
Let Ube an open subset of ™. We’ll say that U has property p if every form,
w € N7 (U) whose integral is zero in 4™~ (17).

Theorem 2.9

Let U be an opsen subset of g#~1 and 4 & IR an open interval. Then if has
property does as well.



Remark

It is simple to see that the open interval A4 itself has property p. Hence it follows by
induction from Theorem 2.8 that

IntQ = A; X - x A4,, A; = (ay,b;)
has property p, and this proves “(2.3) = (2.4)".
To prove Theorem 2.9 let (x, t) = (xy, ..., x,—4,2) be product coordinates
on[J x A. Given g € A7 (U x A) We can express g as a wedge product, 4t A o
with g = f(x, t)dxy A Adx,_qand f € C5 (U x A). Leta e ar-1(1) be the
form

0 = ([ ,f (v, )dt)daey A~ (2.4)

f 0= f(xt)dxdt= f W
Rn-1 R" R"

so if the integral of m is zero, the integral of 6 is zero. Hence since U has property
P, = dvforsomev € 021 (U). Let p € €= (&) beabump function which is
supported on 4 and whose integral over is one. Setting
K =—p(t)dt Av
we have
dix = p(t)dt Adv = p(t)dt A8,
and hence
w—dx =dt A{a—p(t)d) =dt Au(x,t)dx; A-Adx, 4
where

w(xt) = £ (o)~ p(2) [ £ (ut)de
by (2.3). Thus

Ju(x, t)dt = o.
Let a and b be the end points of 4 and let

vix,t) = _f:: (x,5)ds. ---(2.5)

By (2.4) v(a,x) = v(b,x) =0, so v is in C5 (U X A) and by (2.5),

dv/dt = u. Henceif we lety be the form, v:(x, t)dx; A - A dx we have:

n-1’
dy =u(x,t)dxA--Adx,,_; = w—dx
and
w=d(y+x).
Since y and k are both in A?~*(U x A) this proves that wis in
dnN"~*(U x A) and hence that U % 4 has property P.
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® =N bk

Check Your Progress

What are continuous functions with compact support?

What is Borel measure?

State a condition for an outer measure to be finite.

Why is Riesz-Markov theorem used?

What does Riesz-Markov representation theorem for the dual of C (X)

fata)
SLAU ]

2.5

ANSWERS TO ‘CHECK YOUR PROGRESS’

. The Baire sets form a subclass of the Borel sets. A subset of a compact

Hausdorfftopological space is termed as a Baire set if it is a member of the
smallest c—algebra which contains all compact Gg sets.

. Baire sets correspond with Borel sets in every metric or metrizable space.

Specifically they correspond in Euclidean spaces and all their subsets
considered as topological spaces. For every compact Hausdorff space,
every finite Baire measure, i.e., a measure on the o-algebra of all Baire sets
isregular.

. Ameasure pon (R, B) is a Baire measure (on R), if p (E) <co whenever

E is abounded (Borel) set.

. Functions with compact support in X are those with support that is a compact

subset of X. For example, if X'is the real line, they are functions of bounded
support and therefore vanish at infinity and negative infinity. Real valued
compactly supported smooth functions on a Euclidean space are termed as
bump functions.

. A Borel measure on (—a, b] is defined as the c-additive measure defined

on the Borel algebra of (a, 6] and is the smallest c-algebra containing all
the open subsets of (a, b].

. The outer measure p* is said to be finite if pX < oo,

7. The Riesz-Markov theorem gives a concrete realization of the dual space

of CO(X), 1.e., the set of continuous functions on X which vanish at infinity.

The Borel sets in the statement of the theorem also refer to the -algebra
generated by the open sets.

. The Riesz-Markov theorem gives a concrete realization of the dual space

of C(X), 1.e., the set of continuous functions on X which vanish at infinity.
The Borel sets in the statement of the theorem also refer to the -algebra
generated by the open sets.



2.6 SUMMARY

o The Baire set describes the specific relations between measure theory and

topology. Particularly, Baire sets help to evaluate measures on non-metrizable
topological spaces.

The Baire sets form a subclass of the Borel sets. A subset of a compact
Hausdorfttopological space is termed as a Baire set if it is a member of the
smallest c—algebra which contains all compact G sets.

Baire sets correspond with Borel sets in every metric or metrizable space.
Specifically they correspond in Euclidean spaces and all their subsets
considered as topological spaces.

For every compact Hausdorff space, every finite Baire measure, i.e., a
measure on the o-algebra of all Baire sets is regular.

For every compact Hausdorff space, every finite Baire measure has a unique
extension to aregular Borel measure.

A measure pon (R, B) is a Baire measure (on R), if p (E) <oo whenever
E is abounded (Borel) set.

Let p be a finite Baire measure and let F be its cumulative distribution
function. Then F'is monotone increasing, bounded, right continuous and

lim F(x) = 0.

X >®

If 'is a monotone increasing function which is right continuous, then there
exists a unique Baire measure p such that p(a, b] = F(b)— F(a).

Functions with compact support in X are those with support that is a compact
subset of X. For example, if X'is the real line, they are functions of bounded
support and therefore vanish at infinity and negative infinity. Real valued
compactly supported smooth functions on a Euclidean space are termed as
bump functions.

A Borel measure on (—a, b] is defined as the o-additive measure defined
on the Borel algebra of (a, ] and is the smallest G-algebra containing all the
open subsets of (a, b].

The class B of pk-measurable sets are a c-algebra. If ﬁ is restricted to 3,

then ﬁ is a complete measure on [3.

In R”, if vectors are represented as column vectors then linear functionals
are represented as row vectors and their action on vectors is specified by
the dot product or the matrix product with the row vector on the left and the
column vector on the right.

The Riesz-Markov theorem gives a concrete realization of the dual space
of C,(X), 1.e., the set of continuous functions on X which vanish at infinity.
The Borel sets in the statement of the theorem also refer to the c-algebra
generated by the open sets.
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2.7

KEY TERMS

e Baire set: The Baire sets form a subclass of the Borel sets. A subset of a

compact Hausdorff topological space is termed as a Baire set if it is a
member of the smallest c—algebra which contains all compact G sets.

Borel measure: A Borel measure on (—a, b) is defined as the c-additive
measure defined on the Borel algebra of (@, b) and is the smallest c-algebra
containing all the open subsets of (a, b).

Riesz representation theorem: The following theorem represents positive
linear functionals on C (X), i.€., the space of continuous compactly supported
complex valued functions on a locally compact Hausdorff space X. The
Borel sets in the given statement refer to the c-algebra produced by the
open sets.

2.8

SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1.

A A o

Define the terms Baire sets and Baire measures.

What do you mean by continuous functions with compact support?
Define regularity of measures on locally compact spaces.

How will you define the regularity of measure on locally compact spaces?
What is the difference between measure and outer measure?

State extension of a measure.

What does Riesz-Markov theorem state?

Long-Answer Questions

1.

Explain the importance and applications of Baire sets and Baire measure in
signed measures and decomposition.

. Describe and prove the uniqueness of continuous functions and compact

support.

3. Describe the concept of regularity of measure on locally compact spaces.

Discuss the differences among measure, outer measure, extension of a
measure and measure space.

5. Discuss Riesz-Markov theorem in signed measures and decomposition.

[llustrate the applications of signed measures and decomposition.
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UNIT 3 NORMED LINEAR SPACES

Structure

3.0 Introduction
3.1 Objectives
3.2 Normed Linear Spaces
32.1 Linear Transformation
3.22 Metric on Normed Linear Spaces
3.23 Linear Transformation and Dual Spaces
3.3 Banach Spaces
33.1 Conjugate Spaces
3.3.2 Natural Embedding of a Normed Linear Space in its Second Dual
3.3.3 Embedding Lemma and Tychonoff Embedding
334 Urysohn’s Metrization Theorem
3.4 Uniform Boundedness Principle and its Consequences
3.5 Quotient Space of Normed Linear Space and its Completeness
3.5.1 Bounded Linear Transformation
3.52 Normed Linear Space of Bounded Linear Transformations
3.6 Answers to ‘Check Your Progress’
3.7 Summary
3.8 Key Terms
3.9 Self-Assessment Questions and Exercises
3.10 Further Reading

3.0 INTRODUCTION

In mathematics, a linear space is a basic structure in incidence geometry. It consists
of'a family of subsets of a set such that the intersection of two subsets contains at
most one element of the set. The elements of the set are called points and the subsets
are called lines. Linear spaces can be seen as a generalization of projective and
affine planes. The term linear space was coined by Libois in 1964. Linear
transformations are the transformations that can be represented by matrices. Vector
spaces stem from affine geometry, through the introduction of coordinates in the
plane or three-dimensional space. The foundation of the definition of vectors was
Bellavitis notion of the bipoint, an oriented segment one of whose ends is the origin
and the other one a target. Vectors are elements in R?, R*, etc., and are used in
systems of linear equations. An important development of vector spaces is due to
the construction of function spaces by Lebesgue. This was later formalized by Banach
and Hilbert, around 1920 and was used for evaluating algebra and the field of functional
analysis. The 2- or 3-dimensional vectors are defined through real valued entries and
the ‘Length’ of a vector can easily be extended to any real vector space R”.

The Hahn-Banach theorem is an essential tool in functional analysis. It permits
the extension of bounded linear functionals defined on a subspace of some vector
space to the complete space and also illustrates that there are ‘Enough’ continuous
linear functionals defined on every normed vector space for studying the dual
space. It is named for Hans Hahn and Stefan Banach who proved this theorem
independently and a general extension theorem from which the Hahn-Banach
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theorem can be derived, which was proved in 1923 by Marcel Riesz. A Banach
space is a complete normed vector space or a Banach space is a vector space
which is equipped with a norm and which is complete with respect to that norm.
Two common types of Banach spaces are real Banach spaces and complex Banach
spaces, which are Banach spaces whose underlying vector spaces are defined
over the field of real numbers or complex numbers, respectively. Various infinite
dimensional function spaces evaluated in analysis are Banach spaces, including
spaces of continuous functions (continuous functions on a compact Hausdorff
space), spaces of Lebesgue integrable functions known as LP spaces and spaces
of holomorphic functions known as Hardy spaces. These are the most commonly
used topological vector spaces and their topology is based on a norm.

In this unit, you will learn about the normed linear spaces, Banach spaces,
conjugate spaces, nature imbedding of a normal linear space in its second dual
and uniform boundedness principle and its consequences.

3.1 OBJECTIVES

After going through this unit, you will be able to:

¢ Explain the meaning of normed linear spaces

¢ Discuss the significance of linear transformation

¢ Describe linear transformation and dual spaces

¢ Explain quotient spaces

e Elaborate on the Banach spaces and completeness of /, L», R, Crand C
[a, b]

¢ Discuss about the conjugate spaces

e Know about the natural imbedding of a normed linear space in its second
dual

¢ State uniform boundedness principle, open mapping theorem and closed
graph theorem

3.2 NORMED LINEAR SPACES

A normed linear space is a vector space X and a non-negative valued mapping |||
on X termed as the norm, which satisfies the following properties:

1. |x||=01ifand onlyif x=0.

2. |lax]||=a]||x||, for all scalars a.

3. |xtyll < ixlf + [yl

Here ||x|| is considered as the length of x or the distance from x to 0. Fora

given vector x, if y is defined as (1/||x]|) x, then y has unit length and is called the
normalized vector for x.

The 2- or 3-dimensional vectors are defined through real valued entries and
the ‘Length’ of a vector can easily be extended to any real vector space R”. The
following properties of vector length are essential:



1. The zero vector ‘0’ has zero length whereas every other vector has a Normed Linear Spaces
positive length.
lx||>0ifx=0
2. Multiplying a vector by a positive number changes its length without NOTES
changing its direction. Moreover,

|lox ||=lo| || x|l for any scalar a.

3. Thetriangle inequality holds, i.e., taking norms as distances, the distance
from point A through B to C is never shorter than going directly from
A to C or the shortest distance between any two points is a straight

line.
|lx+» <] x ||+] y | for any vectors x and y. ( By triangle inequality)
The generalization of these three properties shows the ways to the notion of
norm. A vector space on which a norm is defined is then called a normed vector
space. Normed vector spaces are essential to study linear algebra and functional

analysis.

A seminormed vector space is a pair (V, p) where V'is a vector space and

paseminormon V.

Anormed vector space is a pair (¥, - ) where Vis a vector space and - a
normon V.

A vector norm can be taken as any real valued function that satisfies all the
three properties. Properties 1 and 2 together imply that,

[[x||=0 ifand only if x = 0.

A functional variation of the triangle inequality is given as,

lx=»|=]|||x]| -]y for any vectors x and y.

This also illustrates that a vector norm is a continuous function.

3.2.1 Linear Transformation

By a Linear Transformation (L.7".) we mean amap 7': — W, such that or such
that, T(ox + By) = al(x) + BT(y) wherex,y € V, o, B € Fand V, Ware vector
spaces over the field F. Also, we will be dealing with vector spaces that are finite
dimensional, unless mentioned otherwise.

Theorem 3.1: A L.T. T:V — Vis one-one iff 7 is onto.
Proof: Let T: V— V be one-one. Let dim V' = n.

Let {v,, v,, ....., v } be a basis of V, then {T(v,), ....., T(v )} will also be a
basis of V as

o, T(v)) + o, T(v,) + ..... +al(v,)=0
= Tay, + .. +ov)=T0) (TaLT)
= oyt +toay, =0 (Tis1-1)

f— ocl. =0 forall ; Self - Learning
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Normed Linear Spaces thus 7(v,), ..... T(v,) are L.I. and as dim V' = n the result follows.
Let now v € V be any element
then v =a,T(v) +a,T(v,) + ... +alv) a e€F
NOTES =T(ay, + ... tay)
= T(v') for some V'
Hence T'is onto.
Conversely, let T be onto.
Here again we show thatif {v ,v,, ..... v } is a basis of }'then so also is
{Tv), T(v,), ..., T(v,)}
For any v € V, since T is onto, 3 some V' € V such that,
TV)=v

Again V' € V means V' = ZOLivi o, € F

v=T0) =T o )= D.q T(v)
= 1), T(v,), ..., T(v,) span V'
and as dim V'=n, {T(v,), ..., T(v,)} forms a basis of V.
Now if v € Ker T be any element
then I(v) =0

= TEoav)=0
= Zaol(v)=0
= o;=0foralli as 7(v)), ..., T(v,) are L.I.
= v=Zay, =0

= Ker 7 ={0} = Tis I-I.

Theorem 3.2: Let V" and W be two vector spaces over F. Let {v, v, ..., v }
be abasis of Vand w , w,, ..., w, be any vectors in IV (not essentially distinct).
Then there exists aunique L.T

T:V— Wsuchthat, T(v) =w, i=1,2,..,n.

n
Proof: Let v € V' be any element, thenv= > ay,, o, €F

i=1
as {vy, v,, ..., v, } is a basis of V.
Define T:V— Ws.t.,
Tv)=Z aw,
Then T'is a linear transformation (verify!).
Clearly here, T(v) = T(ov, + ... + 1. v, + ... + ov ) = lw, for all i
To show uniqueness let 7' be any other L.7. from V' — W such that,

T'(v)=w,
Self - Learni Let v € V' be any element, then v =X a.v,
elf - Learning
70 Material I'v=T'Cay)=Zal'(v)=Zaw = T(v)



Hence T =T, Normed Linear Spaces

Thus we notice that a linear transformation is completely determined by its
values on the elements of a basis.

Definition: Let 7: V' — Wbe a L.T. NOTES
then we define Rank of 7= dim Range 7= r(T)
Nullity of 7= dim Ker 7'= w(7).
Theorem 3.3: (Sylvester’s Law) : Let 7: V' — Wbe a L.T., then
Rank T + Nullity T = dim V.

Proof: Let {x,x,, ..., x, } be abasis of Ker T'then {x, x,, ..., x, } being L.I.
in Ker Twill be L.1. in V. Thus it can be extended to form a basis of V.

Let {x,, x,, ..., X, V|, V,, ..., v} be the extended basis of V.
Then dim Ker 7= nullity of T=m

dm V=m+n
we show {T(v,), T(v,), ..., T(v,)} is a basis of Range T
Now a,T(v)) + o, T(v,) + .. +a T(v)=0
Moy, +..+tayv)=0

U

U

oV, oy, .. tay € Ker T

= oyt toay, =Bx .+ B x

or av, t .. +tav +Px + .+ EB)x, =0
= o =a,=.=p=.=p,=0
= o, =0 foralli

ie., {T(v)), T(v,), ..., T(v,)} is L.I.

Now if 7(v) € Range T be any element thenasv € V'
v=ax, +..tax +bv +.+bv a, bj e F
Iv)=a,I(x) +..+a, Il )+ bT(v)+..+bT(v)

=0+..+0+b,T(v)+..+b,1T(v,) [as x;, € Ker T]
or that 7(v) is a linear combination of 7(v,), ..., T(v,)
which, therefore, form a basis of Range 7.
. dim Range T=n =rank T
which proves the theorem.

Theorem 3.4: If T: V' — V'be a L.T. Show that the following statements are
equivalent.

(?) Range T n Ker T= {0}
@) f I(T(v)) =0 then T(v) =0, v e V
Proof: (i)= (ii)
(Tv)=0=1T(v) e Ker T
Also T(v) € Range T (by definition)

. Self - Learning
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(i) = (1)
Letx € Range T Ker T
= x e Range Tandx € Ker T
= x=T() forsomev eV
and T(x)=0
x=1Wv) = T(x) = T(T(v))
= 0 =T(T(v))
= T(v)=0 (given condition)
= v=0.
Algebra of Linear Transformations

Let V and W be two vector spaces over the same field F. Let 7: V— Wand
S V— Whbe two linear transformations. We define 7+ S, the sum of Tand S
by
T+ S:V— W, such that,
(T+Syv=TWv)+S8Wv), veV
Then T+ Sis also a L.T. from V' — W as
(T +8) (ox + By) = T(ax + By) + S(ax + By)
al(x) + BT(y) + aSx) + BS()
T+ Sx + B(T+ Sy
Again for a € F, we define the product of a L.7. T: V— W with a, by
(al) : V'— W such that, (aT)v = a(T(v)).

Itis easy to seethataT'isaalsoa L.T. from V'— W. Let Hom (V, W) be
the set of all linear transformations from V'— W. Then we show Hom (V, W)
forms a vector space over F'under the addition and scalar multiplication as defined
above.

We have already seen that when 7, S € Hom (V, W), a € Fthen T+ S,
o7 € Hom (V, W), thus closure holds for these operations. We verify some of
the other conditions in the definition.

(T+S=TWv)+Sv)=Sv)+Tv)=E S+ T)vforallveV
= T+S=8+Tforall S, T € Hom (V, W)
The map O : V— W, such that, O(v) =01is a L.T. and
(T+O0yw=TWv)+O0W)=TWv)=(0+ Ty forall v
thus O is zero of Hom (V, W)
For any T € Hom (V, W), the map (-7) : V— W, such that,
Ty =-T()
will be additive inverse of 7.
Again, [o(T + S)]v=o[(T + S)v] = o[T(v) + S(W)] = aT(v) + aS(v)
=@l + (aS)yv=(al + aS)y forallvelV
= T+ S)=oaol +aS



[(aP)TTv = (aP)T(v) = a[BT(v)] = [(BT)]v for all v

= (aB)T = a(BT)
(1T)yv=1.T(v)=T(v) forallv
= 1.T=T

Hence one notices that Hom (7, W) forms a vector space over F.
Note: The notation L(V, W) is also used for denoting Hom (V, W).
Definition: Product (composition) of two linear transformations

Let V, W, Z be three vector spaces over a field F

Let T:V—>W, S:W—>Z bel.T.

Wedefine ST :V — Z, such that,

(ST)v = S(T(v))

then ST'is a linear transformation (verify!), called product of S and 7.

Note: 7S may not be defined and even if it is defined it may not equal ST.

Definition: A L.T. T : V' — V is called a linear operator on V, whereas a
L.T.T:V— Fis called a linear functional. We use notation 7> for 7.T and
T"=T"'T, etc.

Theorem 3.5: Let 7, T, T, be linear operators on /; and let / : V' — V' be the
identity map I(v) = v for all v (which is clearly a L.T.) then

O IT=TI=T
(@) (T, + T,) =TT, + TT,
(T, +T)T=T,T+T,T
(i) T\ T) = (aTPT, = T\(aT)) o € F
(iv) T(T,T;) = (T, T,)T;.
Proof: (i) Obvious.
(1) [I(T, + T)x

TUT, + Tyx] = TITy(x) + Ty()]

T(T,(x)) + T(Ty) = TT,(x) + TTy(x)
= (TT, + TT,)x

= (T, +T,) =TT, + TT,

Other result follows similarly.

(i) [T, Ty) e = al(T,Tyx] = ofT,(T,(x))]

[(@T)Tylx = (@T)) [Ty@)] = alT,(Tye)]

[T\ (aT)lx = T\(aT,)x = T\ (aT,(x)) = ol (T,(x))]

Hence the result follows.

(iv) Follows easily by definition.
Refer exercises for the generalised version of above theorem.

Theorem 3.6: Let /" and W be two vector spaces (over F) of dim m and n
respectively. Then Hom (V] W) has dim mn.
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Normed Linear Spaces Proof: Let {v,,v,,...,v }and {w,w,, ..., w } bebasis of /and Wrespectively.

Define mappings T, i VoW, such that,

T(v)=ow1<i<m
NOTES 1<j<n
where v € V'is any element and therefore,
v=ov, t o, +..av forsomea e F
Note also thatT’ .j(vk) =0ifk=1i
=w ifk=i

We show T, are L.T.

Let x,y € Vthenx = Yo, y= > By, o,B, €F
1 1

Now Tij(x +y)= Tl.j[(oalv1 o tav )t Byttt By )]
= Tl + By, + o+ (a, + BV, ]
= Tl.j(ylv1 T tyv)
=W,
= (o + Bw; = o, + Bow, = T,(x) + T,(0)
Also, Tl.j(kx)= Tij(X(Ole1 + .. tav))

= Tij(koclv1 + ..+ ha,v,)
= (hoy)w; = Moy w) = AT, (Zay)

= AT (x)
Hence Tl.j € Hom (V, W). We claim S = {Tij| 1<i<m,1<j<n} forms
a basis of Hom (V, W)
Suppose,
By Thy + BT+ o + BTy By Ty + BppTop + oo + B, T, +
+ Bmlel + BmZTmZ Tt anTmn - O’ Bij €F
[where 0 is, of course, zero of Hom (V, )]
By operating on v,, we get

BT (v) + BTp(vy) + o + BT, 00) + By Ty (v) + =0
= Bw, TBw, T B, OO0+ .L=0
But w, w, ..., w are L.I.
= By =By = By, =0
Similarly, by operating on v, we’ll get B,, =B, =... B,, =0

Thus by operating on v;, v, ... we find that all the coefficients are zero and

4
hence S is L.1.. So, o(S) = mn.
Let Now T € Hom (¥, W) be any element, then
T:V—>WisalL.T.

We show T'is a linear combination of T, i

Self - Learning
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Consider v,, then 7(v,) € W and thus is a linear combination of w,, w,....

wi’l

Let T(v)) = o, ,w, + oW, + ... + o W
Put 7y = o T} + o, Ty + oo+ oy, T+ 0y Ty + 0Ty + o+
a T

mn mn
(where aj,, o, ... are, of course, the same as before)
Then T,(v) = o, T,,(v) + a,T,v) + ..

=a,w ta,w,+ta,w +0+0+..+0
= Ty(v) = T(v)

Similarly proceeding with v, v,, ... v we get

Ty(v,) = T(v,)

rywv,)=T(,)
Thus T, and T agree on all elements of the basis of V.
= T, and T agree on all elements of V=T, =T
But 7}, is a linear combination of members of §
= T'is a linear combination of members of S
= S spans Hom (V, W)
or that S forms a basis of Hom (V, W)
Hence dim Hom (V, W) = mn.

Corollary : Obviously dim Hom (¥, V) = m? where dim V= m and

dim Hom (V, F)=m .1 =m as dim F(F) =1 as F'is generated by 1 and
thus {1} is a basis of F(F).

Example 3.1: Find the range, Rank, Ker and nullity of the linear transformation
7T:R? > R?, such that,
Ix,y,z)=(x+z, x+y+2z, 2x+y+32)
Solution: Let (x, y, z) € Ker T be any element, then
T(x, y, z) = (0, 0, 0)
= (x+tz, x+ty+2z, 2x+y+32)=(0,0,0)
=>x+t0+z=0
x+y+2z=0
2x+y+3z=0
Giving x=-—z, z+y+2z=01e, y=-—2

Thus Ker T consists of all elements of the type (x, x, —x) = x(1, 1, -1)
where x is any real number, i.e., Ker 7'is spanned by (1, 1,—1) which is L./. Note
(1,1,-1) e Ker T

Hence dim (Ker 7) = 1 = nullity of T
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Again, from definition of 7, we notice elements of the types (x +z, x +
y+ 2z, 2x+y+3z)arein Range T

Now (x+z, x+y+2z, 2x+y+32)=(x+0+z x+y+2z 2x
+y+ 3z)

=(x, x, 2x) + (0, y, y) + (z, 2z, 32)

=x(1,1,2) +y(0, 1, 1) + z(1, 2, 3)

Thus Range T is spanned by {(1, 1, 2), (0, 1, 1), (1, 2, 3)}

Since (1, 1, 2) + (0, 1, 1) = (1, 2, 3) we find these vectors are L.D.
So dim Range 7<2

Again as (1, 1, 2) and (0, 1, 1) are L.1. we find
dim Range 7=2 = Rank 7.

Example 3.2: Find the range, rank, Ker and nullity of the following linear
transformations

(@) T:R*> > R’ such that, T(x,, x)) = (x}, X, + X5, X,)

b) T R* - R? such that, T(x, Xy, X5, Xy) = (] = Xy Xy T X5, X3 — X,)
Solution: (a) From definition of 7, we notice elements of the type (x,, x,
+x,, x,) will have pre images in R?, i.e., elements of this type are in Range T.

Now, (x, x; +x,, x))= (x;, + 0, x;, + x,, 0 + x,)
= (x}, Xy, 0) + (0, x,, x,)
=x,(1, 1, 0) + x,(0, 1, 1)
or that Range 7 is spanned by {(1, 1, 0), (0, 1, 1)} and since
a,(1, 1, 0) + a,(0, 1, 1) = (0, 0, 0)
= o, =0o,=0
these are L./. and thus form a basis of Range T
= Rank 7= dim Range 7= 2.
Again, (x, xy)) e Ker T = T(x,, x,) = (0, 0, 0)
= (x, x; +x,, x,) = (0, 0, 0)
=>x,=0,x,tx,=0,x,=0
=>x=x,=0
= Ker 7= {(0, 0)}
Also then nullity 7= dim Ker 7= 0.
(b) From defintion of 7, we find elements of the type (x, —x,, x, + x;,
x; — x,) have pre image in R*,
Now,
() =Xg Xy, T X5 X3-%)=(x; +0+0-x,, O+ x,+x;+0, 0+
0+ x5 —x,)
=x,(1, 0, 0) + x,(0, 1, 0) + x5(0, 1, 1) + x,(-1, 0, - 1)
or that Range 7 'is spanned by
{(1, 0, 0), (0, 1, 0), (0, 1, 1), (-1, 0, -1)}



Since Range T'is a subspace of R® which has dim 3 these four elements
cannot form basis of Range 7.

In fact these are L.D., elements as
(-1,0,-1)+(1,0,0)+ (0, 1, 0) + (0, 1, 1) = (0, 0, 0)
If we consider three members
(1,0, 0), (0, 1,0), (0, 1, 1)
wenotice a,(1, 0, 0) + a,(0, 1, 0) + (0, 1, 1) = (0, 0, 0)
= o~0foralli

or that (1, 0, 0), (0, 1, 0) (0, 1, 1) are L.I. and hence form basis of
Range T

= dim Range 7=3 =rank of T
one might notice here that as
(-1, 0,-1)=-1(1, 0, 0) —-1(0, 1, 0) —-1(0, 1, 1)
the elements (1, 0, 0), (0, 1, 0), (0, 1, 1) span Range T’
Also then Range 7 =R’
Agan  (x,, x,, x5, x,) € Ker T'= T(x, x,, x;, x,) = (0,0, 0)

:xl—x4=0
x2+x3=0
x3—x4=0

if we fix x,, we get x;, = x,, x, = —x; = —x,, X; =X,
or that elements of the type (x,, —x,, x,, x,) are in the Ker T
1.e., Ker T'is spanned by (1, -1, 1, 1) (Note (1, -1, 1, 1) € Ker 7)
this being L.1. forms basis of Ker T’

= dimKer 7=1

= nullityof 7=1.

Example 3.3: Let F'be a subfield of complex numbers and 7 a function from
F? — F defined by

T(x,, xp Xx3) = (x; —x, + 2x5, 2x; +x,, —x; — 2x, + 2x;)
() Show that Tisa L.T.

(z7)) What are the conditions on g, b, ¢ such that (a, b, ¢) be in the null space
of 77 Find nullity of

SOIUtion: T[(xla xza x3) + (yla y27 y3)] = T(xl +y17 xz +y27 x3 +y3)
=0ty =Xy —yy 2t 2y, 20+ 2yt t oy,
— X, =y, — 2%, —y, + 2x; +2y3)
Also T(x, x5, X3) T Ty, ¥ys ¥3) = (x; =X, + 25, 2x, +x,, —x, —2x, +
2x;)
O =V T2y, 2y vy = 2y, + 2p)
=0 =Xyt 2y Ty =y, T 2y, 2yt 2y,

Normed Linear Spaces

NOTES

Self - Learning
Material

77



Normed Linear Spaces

78

NOTES

Self - Learning
Material

—X; = 2x,t2x; -y, — 2y, + 2y;)
=0 Ty =Xy =y, + 205 + 2y, 2x,+ 2, T x, +
X =Y =26 =, T 2y 1 2y)
Thus T((x, Xy X3) + (v, ¥y 33)) = T0x), Xy X9) + Ty, ¥y 3)
It is easy to see that for any o
T(ax), x5 Xx3)) = aT(x;, x,, x;)
Thus TisaL.T.
Now if (a, b, ¢) € Ker T then T(a, b, c) = (0, 0, 0)
= (a-b+2, 2a+b, —a—-2b+2c)=(0,0,0)
= a-b+2c=0
2a+b=0
—a-2b+2c=0
1 -1 2
Since| 2 1 0|=0
-1 -2 2
The above equations have a non zero solution.

Solving the equiations, we find

1 -1 2][a 0

2 1 0f|lp| =10

-1 -2 2]|c 0

R, >R,-2R,R, > R, + R,
(1 -1 2] [a 0

0 3 —4||b|l=|0

10 -3 4 ||c 0

R, >R, +R,

Since rank of coeficient matrix is 2, the number of L./. solutions is
3-2=1.

Ifwetake c =k, we geta= - % , b= 43—k, ¢ =k as solution of the given
equations. In other words a, b, ¢ should satisfy the relation % = " = % for

(a, b, c) to be in Ker 7.
Now (- 2, 4, 3) is one member of Ker 7" and all other members would
be multiples of this, i.e., {(— 2, 4, 3)} generates ker 7. Since (- 2, 4, 3) being



non zerois L.I. {(— 2,4, 3)} forms a basis of Ker 7 or that dim Ker 7= nullity
T=1.

In fact, the result dim /= dim Range 7 + dim Ker 7 will then give us
dim Range T =Rank 7=2 as dim V' = dim F° = 3.

Example 3.4: If T}, T, € Hom (V, W) then show that
(@) n(aT) =nr(T) foralla e F, a0
@) | n(T) — (T, | < (T, + T,) <n(T)) + rT,)
where 7(7T) means rank of 7.
Solution: (i) 7, : V—> W
thus 7 (V) = range T, is a subspace of W
Now, (al))v = a(T\(v)) € T,(V) forallve V
= (aI)yVcT, (V) (1)
Againas oo # 0, o exists and thus,
(o'T) V < T,(V)
oo ' TV < aT (V)
= T\(V) cal((V)= T,(V) = al(V) byEquation (1)
= dim 7 (V) = dim oT,(V)
or r(T)) = r(aT)).
(it) Since, (7| + T))x = T(x) + T,(x) forallx eV
(T, + )V < T,(V) + T,(V)
= dim [(T, + T,)V] <dim [T,(V) + T,(V)]
<dim T (V) +dim T,(V)
= (T, + T, <nr(T)) +rT,)
Again, T, =(T,+T)-T,=(T,+T)+(-T,)
= /(1) = (T, + T)) + (-T)]
<HT,+T)+r-T)=nT,+ T, + rT,)
(using Equation (1) a=-1)
= H(T)-nT) <HT, +T,)
Similarly, #(T,)—n(T,)<HT,+T,)
= |HT)-nrT)|<KT,+ T, <KT)) +rT)).

Example 3.5: Let Tbe a linear operator on ¥/ If 72 =0, what can you say about
the relation of the range of 7 to the null space of 77 Give an example of linear
operator T of R? such that 72 = 0, but T # 0.

Solution: 72 =0= 7> (v) =0 forallv e V
= T(T(1)=0
= T(v) e Ker T forallveV
= range T < Ker T.
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Normed Linear Spaces Define 7T: R2 - Rz’ such that

T(x;, x)) = (x,, 0)
then 7'is a linear operator (Verify!)

NOTES Since  T(2,2)=(2,0) % (0, 0)
T+0
But Tz(xl, x,) = I(T(x}, x,)) = T(x,, 0) = (0, 0)
= T?=0.

Example 3.6: Let 7 be a linear operator on 7 and let Rank 72 = Rank T then
show that Range T Ker T = {0}.

Solution: T: V— V, T*: V—>V
Rank 72 = dim V' — dim Ker 7
= dim Ker 7= dim Ker 77
We claim Ker 7 = Ker 7°
xeKerT=T(x)=0= T*x)=T(0)=0
x € Ker T?> = Ker T c Ker T?
Ker 7= Ker T (as they have same dim)

U

U

Now, x e Range TnKer 7= x € Range T and x € Ker T’
T(x)=0,x=T(y) forsome y € V

I(1(») =0

’(») =0

yeKerT?=Ker T

I)=0=>x=0

Ker 7' Range T = {0}.

bu U

U

Invertible Linear Transformations

We recall thatamap 7': V— Wis invertible iff it is 1-1 onto, and inverse of T
is the map T°': W — ¥ such that

Tl(y)=xc>T(x)=y

We show that inverse of a (1-1 onto) L. T isalsoa L.T. Let T: V—> W
bea 1-1 onto L.7. and T™': W — V be its inverse.

We have to prove
T ow, + Bw,) =al'(w) + BT '(w) o, BeF,w,w, €¢ W
Since T'is onto, for w, w, € W,3v,v, e V
such that, 7(v,) = w,, T(v,) = w,
< v = Tl(wl), v, = Tl(wz)

Now, T (aw, + Bw,) = T (aT(v,) + BT(v,)

= TN (T(aw,) + T(Bv,))

= T/ (T(aw, + Bv,))
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=av, + By,

= al'(w)) + BT '(w,).
Definition: A L.T. T: V' — W s called non-singular if Ker T = {0}, i.e., if
Tis 1-1.

Theorem 3.7: A linear transformation 7 : V' — Wis non singular iff 7 carries each
L.I subset of V' onto a L.1. subset of W.

Proof: Let T'be non-singularand {v,, v, ...,v } bea L.l subset of V. we show
{T(v)), T(v,) ..., T(v,)} is L.I. subset of W.

Now o, 7(v) + ,T(v,)) + ... + o T(v)) =0 o € F
T(ovy .t ov) =0
av, t..av, € Ker T'= {0}

v, t..oav, = 0

U U ey

o, =0 forallias v, v,..,v are L.l
Conversely, let v € Ker T be any element
Then, T(v)=0
= {T(v)} isnot L.I. in W
= visnot L. in V. (by hypothesis)
= v=0= Ker 7= {0}
= Tisnon singular.

Theorem 3.8: Let 7: VV— Wbe a L.T. where V and W are two F.D.V.S. with
same dimension. Then the following are equivalent

(1) Tisinvertible
(#i) Tisnon singular (i.e., Tis 1-1)
(iti) T is onto (i.e., Range T'= W)
@@v) If {v,, v,,..., v} is a basis of V' then
{1(v)), T(v,),..., T(v,)} is a basis of W.
Proof: (i) = (ii) F follows by definition.
(it) = (iii) T'is non-singular
= Ker T = {0}
= dim Ker 7= 0
Since  dim Range 7'+ dim Ker 7= dim V, we get
dim Range 7= dim V'
= dim Range 7= dim W (given condition)
But Range 7 being a subspace of W, we find
Range T=W
(7ii) = (i) T onto means Range 7= W
= dim Range 7’=dim W=dim V'
and as dim Range 7+ dim Ker 7= dim V, we get
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Normed Linear Spaces dimKer T=0
= Ker 7= {0}
or that 7'is 1-1 and as it is onto 7' will be invertible.
NOTES (i) = (iv) T'is invertible = T'is 1-1 onto
1.e., T'is an isomorphism.
(v) = (i)

Let {T(v)),..., T(v,)} be basis of W where {v,,...v } is basis of V. Any
w € W can be put as

w=o,T(v) +.+ o T(v,)
= T(a,v, +..+a,v,) = T(v) for some v € V
... T'is onto. Thus (ii7) holds.
Hence (7) holds.
Example 3.7: Let T be a linear operator on R?, defined by
T(x,, xp x3) = Bxp, x; — X, 2x; + X, + Xx3)
show that T'is invertible and find the rule by which 7! is defined.
Solution: 7: R® - R®
Let (x,, x,, x;) € Ker T be any element
Then I(x,, x,, x;) = (0, 0, 0)
= (Bx, x,—x, 2x; tx, +x;)=(0,0,0)
= 3x,=0, x, - x,=0, 2x, +x, +x; =0
= X, =X, = x; = 0 or that Ker 7= {(0, 0, 0)}
= T'is non singular and thus invertible (Refer Theorem 3.8)

Now if (z, z,, z;) be any element of R>, then (x 1» X5, X3) will be its image

under 7'if,
T(xp x27 x3) = (Zla 227 23)
= 2x1 =z,
X% 75

2)c1+)c2+x3=z3

. . _ Zl _ Zl _
which give x; = 3 X, = 3 —Zy Z3= 23—z, 1 2,

Hence 7! : R® - R is defined by

T_l (Zl’ Zz, Z3) = (ﬂ,ﬂ_ZZ, 3 — 71 +Z2j
3°3
Example 3.8: If 7: V— VisaL.T, such that T'is not onto, then show that
there exists some 0 # v in V such that, 7(v) = 0.

Solution: Since 7'is not onto, it is not 1-1 (theorem done)

Suppose 3no 0 #v e Vst T(v)=0
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Then T(v) = 0 only when v =0
= Ker 7'= {0} = T is 1-1, a contradiction.

Theorem 3.9: Let 7: V— Wand S : W— U be two linear transformations.
Then

(/) If S and T are one-one onto then ST is one-one onto and (ST) ! = 7!
S—l.

(i1) If ST is one-one then T is one-one
(iii) If ST is onto then S'is onto.
Proof: (i) Since S and T are 1-1 onto, S™! and 7! exist.
Let ST(x) = ST(y)
Then  S(T(x)) = S(T(»))
= T(x)=T(y)as Sis 1-1
= x=yas Tis 1-1
= STis 1-1.

Again ST: V' — U, letu € U be any element then as Sinonto, 3w € W
such that, S(w)=wuandas T: VV— Wis onto 3 v € V such that, T(v) =w

Now  T(v) =w = S(T(v)) = S(w) = ST(v) = u
or that ST is onto.
Also (STY(T 'S = S((T'sYY) = ST Hs ! =susHy =85t =1
Similarly (T'SYST) =TS ST =T (S 'S T=T'UN)=T"'T=1
Showing that,  (ST) ' = 7§
(ii) Let v € Ker T be any element
Then T(v)=0
= S(I(v)) = 5(0)
= ST(v)=0
= v € Ker ST and Ker ST = (0) as ST is 1-1
> v=0=Ker7T=(0)= Tis I-1.

(7ii) Let u € U be any element. Since ST : V' — U is onto, 3 some v €
V' such that, ST(v) = u

ie., S(T(w)) =u

Let 7(v) = w and w € W such that,
Sw)=u

Then, S is onto.

Example 3.9: In the above theorem show that if ST'is 1-1 onto then 7'is 1-1 and
Sis onto. Again, if ¥, W, U are of same dimension and S7'is one-one onto then
so are S and T

Solution: First part of the problem follows by (i7) and (iii) of Theorem 3.9.
Letnow dim V=dim W=dim U
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The result then follows by using Theorem 3.8 we proved earlier that if T’
:V— WisalL.T. where dim V'=dim W then Tis 1-1 iff T is onto.

Example 3.10: Let 7 be a linear operator on F.D.V.S. Suppose there is
a linear operator U on V such that 7U = I. Show that T is invertible and
T =U
Solution: We have T: V—V, U : V—V such that, TU =1 we claim U is 1-1.
Let Ux) = U@y)
Then  T(U(x)) = T(U(y))
= I(x) =1(y) (TU = 1)
= x=y
or that U is 1-1 and, therefore, onto also.
Hence Uis invertible.
Now U~!: V' — Vsuch that, UU ' = 1
Thus UT = (U = UT(OU Y =U0TO)U ' =U0U "' =1
= UT=1=TU
= Tis invertible and 7! = U.

Example 3.11: Show that the conclusion of the previous problem fails if Vis not
finite dimensional.

Solution: Let /"be the vector space of all polynomials in x over a filed F.
Let 7= Differential operator on V.
re., T:V—V,such that,

d
() = 5/ ()
X
Notice this 7'is a linear transformation.
Let U:V— Vsuch that,

u(f) = [ /(o

Then U s a linear transformation.

Again TU(f) =T j;‘ fyde =f=I(f)
= TU=1
Now 7T(2x) =2, T(2x + 3) =2
and as 2x # 2x + 3, T'is not 1-1 and hence 7 is not invertible.

Thus UT # 1.

Example 3.12: Let V, and V, be vector spaces over F. Show that V', x V, is
FD.VS. if and only if V| and V, are F.D.V.S.

Solution: Let V=10, 0) v, € V}}
V) =1{0,v,) v, € V,}

then V,"and V" are subspaces of V| x V,



Define 0, : V; — V" such that,
0,(v) = (v}, 0)

Then 0, is an isomorphism (Prove!)

Similarly 0, : V, = V" such that,

0,(v,) = (0, v,)
will be an isomorphism.
So v/, rv,=v,
Suppose V| x V,is ED.V.S., then V',"and V" are F.D.V.S. (being subspaces
of V, x 1)

=V and V, are ED.VS.

Conversely, if V, and V, are F.D.V.S. then V| x V, is F.D.V.S. and dim
(V, x V) =dim V| +dim V,. (Note: If {e, e,, ...,e, } and {f, f,, ..., f, } are
basis of V| and V, respectively, then {(e,, 0), ..., (¢, 0), (0, f), ..., (0, f)}
is a basis of V; x V)

Example 3.13: Let ¥, and W, be subspaces of ' such that 7 and WL are
I 2

ED.VS. Show that isalsoa FED.VS.

N0,
. Vv
Solution: Define 6: V — AT such that,
1 "
0(v) =W, +v, W, +v)

It is easy to see that 0 is a linear transformation where Ker 0 = W, N I,

Hence r 5 = 0(V)
Again, since r and s are F.D.V.S., so will be Y Y I fact
m w, MW
dim| x| =dim ~ + dim .
e m w,

Also 0(¥) is a subspace of % x WL and is therefore, finite dimensional.
1 "

Hence 1s FD.V.S.

Wy,
3.2.2 Metric on Normed Linear Spaces

Let U(F), V(F) be vector spaces of dimension n and m respectively. Let B =
gy, out, B=1{v,, .., v } be their ordered basis respectively. Suppose
T': U— Visalinear transformation. Since 7(u,), ..., I(u,) € Vand {v,, ..., v _}
spans V, each T(u,) is a linear combination of vectors v, ..., v .

Let T(u) = o vy +.oo,v,

T(uz) =0,V T to v,
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Normed Linear Spaces

T (un) =a,v,tT..to, v

where each o € F. Then the m x n matrix
NOTES

(€N (€3] e Oy,

Uy Oy e e Oy

is called matrix of 7'with repsect to ordered basis 3, ' respectively. 4 is uniquely
determined by T'as each o € F is uniquely determined. We write

A=[T]; o
The word ordered basis is very significant, for as the order of basis is
changed, the entries o will change their positions and so the corresponding
matrix will be different.

In particular if U=V, B = ', then instead of writing [T]B g We write [ 7] b

Let M, . (F) denote the vector space of all m x n matrices over F. Let
Hom (U, V) denote the vector space of all linear transformations from U(F) into
V(F). We prove

Theorem 3.10: Hom (U, V)= M, (F).
Proof: Define 0 : Hom (U, V) - M, (F), such that,
0(7) = [T]B, B’

Where B = {u,,...u },B'= {v,...v } are ordered basis of U, V' respectively.
0 is well defined as [T]B b is uniquely determined by 7.

It is not difficult to verify that 0 is a linear transformation.
Let 0(S)=6(T), S, T e Hom (U,YV)

Then, [Sg o = [T]g g

= (a)=)

= a;= bl.j forall i,

= Su;) = Z‘a,-jv,- = ;b,-jvi =T(u) forallj=1,..n

= S=T=0is 1-1.

LetA= (al.j) M, . (F). Then 3 alinear transformation 7€ Hom (U, V)
such that,

S
mxn

T(u,) = Dy, forj=1,..n
i=1

A= [T]B, g = 0(7) = 0 is onto.

Self - Learning Hence 0 is an isomorphism and so Hom (U, V) =M, (F).
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Corollary : dim Hom (U, V) = mn.

Proof: S=setofall m X n matrices with only one entry 1 and all other entries
zero, is abasis of M, (F).

Clearly, o(S)=mn = dmM __(F)=mn
dim Hom (U, V) = mn.

Theorem 3.11: Let S, T'be two linear transformations from V(F) into V(F). Let
B be an ordered basis of V. Then

[ST], = [ST,[ T
Proof: Let B = {v,, ... v }

Let Sv)=a;v, +..a

Sv)=a,v, +..+ta,v

where a; € F

In general, S(vj) = zaijvi forallj=1, .., n
i=1

(5], = (a,)
Similarly,

I(v)=byv, +..+b v

nl'n

I(v,))=b,v, +..+b, v wherebl.jeF

In general, T(v,) = 2bev,  forall k= I,..,n

~.
Il
—

[ST]; = (c;), where ¢, = 2 aibj
j=1
Also, (i, k)th entry in [S]; [7];
= Zlaijbjk = ¢, = (i, k)th entry in [ST]B
=

[ST], = L8], (7],
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Normed Linear Spaces Corollary : If S'is an invertible linear transformation from V(F) into V(F), then
so is [S] 5 with respect to any basis 3 of /" and conversely.

Proof: Since S'is invertible, 3 7: V' — V'such that, ST=1=T§. Let 3 be an
ordered basis of V. Then by above theorem,

[ST)= 1] = I, where T = S
= [S},[7], =1
=[Sl =1
= [LSFI]B = [S]‘lB for any basis § of V'
Conversely, let [S]B be invertible. Then 3 a matrix 4 = (al.j) over F such that,
[Slg 4 =1
Let T: V— Vbe a linear transformation such that,

NOTES

T(v) = 2@y forallj=1,..n
i=1

(7] = 4
[S][g [T]ﬁ =1
= [ST]B =1
= (ST)(vj)Z v, forallj=1,..,n
= D)= (S (oyv, + ... + o v )
=, t.o oy
=x forallx eV
= ST=1= Sisinvertible.

We now give a relation between matrices of a linear transformation with respect
to two different basis of a vector space.

Theorem 3.12: Let T': V(F) — V(F) be a linear transformation. Let = {u,,
st} B ={v,, ..., v, } be two ordered basis of V. Then 3 a non singular matrix
P over F'such that

[T]B, ZFI[T][;P-
Proof: Let S: V' — V' be a linear transformation such that S(u,) = v, for all i =
1, ...n.

Now x e Ker § = S(x) =0, x=ou, +.. +tau, o €kl
= Slou, +..+ou)=0

o, S(u,) + ...+ o Su,) =0

oav, +..+tayv =0

o,=0 foralli

x=0

Ker § = {0}

S'1s 1-1 and so onto.

L

U

Self - Learning . §'is an isomorphism. Let [T, = (a.)
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Then T(u]) = Zaijui
i=1

(STS)(v) = ST(w)

n

= S[Z“@/”i] = 24V
i=1

i=1
[STS g = (a;) = [T],
[S1g [Tl [S 15 = [T1g
[Slp [ 715 815" = [T,
[T]g = [S15 ' [T14[S1
= P'[T], P, where P = [S],.

Example 3.14: Let T be a linear operator on C2 defined by 7 (x5, X,) = (x;, 0)
Let B = {eg =(1,0), €,=(0, 1)}, B’ = {o, = (1, i), o, = (i, 2)} be ordered
basis for C“. What is the matrix of 7 relative to the pair 3, '?

Solution: Now 7(g) = 1(1, 0)
=(1,0)
=a(l, i)+ b(-, 2)
= a—-bi=1wherea, b € C
ait+2b=0
= a=2,b=—i

U Uy

= 1I(g) = 2q, - ia,
Also T(e,) = T(0, 1) = (0, 0) = O, + Oav,

[2 0
[T]B[}'_[_i 0]

Example 3.15: Let T be the linear operator on R? defined by T (xp, X)) =
(_xza Xl)
(i) Prove that for all real numbers c, the operator (7— ¢l) is invertible.

(ii) Prove that if B is any ordered basis for R? and [7] b= A, thena,,a,, #
0, where 4 = (al.j).

Solution: (i) Let B = {€, = (1, 0), €, = (0, 1)} be an ordered basis for R2.
Then, T(e,) = T1(1,0) = (0, 1) = 0, + 1€,
T(e,) = T(0, 1) = (-1, 0) = -1, + O€,

0 -1 c 0
[HB:L o}’[d]ﬁz{o c}

- -1
N

det [T — CI]B =¢? + 1 # 0 for all real numbers ¢
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[T- c]]B is invertible.
= T—cl is invertible for all real numbers c.

(if) Let B be any ordered basis for R? such that,

41 a4

[T]B - |:6121 6122:| =A’ aij € R

By (i) T—a,,/ is Invertible

= [T- a“I]B is invertible
0 .. .
— [ 2 } is invertible
dyy ax —ay
= —a,,a,, # 0 as det of abve matrix # 0
= = 0.

dyp95)
Example 3.16: Let 7T be the linear operator on R defined by
T(x,, xy, x3) = (3x; + x5, —2x; + x5, —x; + 2x, + 4x;)

Show that 7'is invertible.
Solution: Let B = {€,=(1,0,0), €,=(0,1,0), €;,=(0,0, 1)} be an ordered
30 1
basis of R®. Then [T]B =|-2 1 0| =4.
-1 2 4

det4d=34)+1(-4+1)=12-3=9=%0
So, A isinvertible
= Tisinvertible.

Example 3.17: Let 4 be an n X n matrix over F. Show that 4 is invertible if and
only if columns of 4 are linearly independent over £

Solution: Let V(F) be a vector space of dimension n. Let B = {v,,..., v} be
an ordered basis of V. Let 4 = (al.j). Then 3 a linear transformation 77: V— V'
such that,

I(v) = ;aijvi
[T]B =
Let M, (F) denote the vector space of all #n X n matrices over F.

Let4 € M, (F)be invertible. Then T'is also invertible (by Corollary to Theorem
3.11) and so T'is 1-1, onto.

apg A

Let, ol @ |+..+a =0,0, € F
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oayy o FO,a,

Gy + - FQ,ay,

NOTES
= oa,t..taoa,=0

oa, +..+taa, =0

= oa, v+ .. +toa,v, =0
oa, v, t..taa v, =0
=  oaav,*+..*a,v)+. . FTala,y, .. Ta,v)=0
= oy Iv)+..+oTW)=0
= Toyw, +..+ay)=0
= o t..tay =0asTis l-1
= o,=0foralli
=  Columns of 4 are linearly independent.

Conversely, let columns of 4 be linearly independent over F.
Now, xeKerT

Tx)=0,x eV

oy, +..tay,=0

o, T(v) + .. +o,T(v,)=0

U Uy

= Zn:och(vj) =0 = iaj(zn:ayvi]=0
: =

j=1 i=1

U
2
r
+
Q
I
[a)

each o, = 0 as columns are linearly independent.
x=0 = Ker T={0}

T is 1-1 and so onto.

uud iy

T'is invertible.
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Example 3.18: Let T be the linear operator on R? defined by 7 (x, x)) =
(—x,, X))

Let B: {EIZ(I,O), €2=(Oa 1)}

B’ = {a’l = (13 2)7 (12 = (13 - 1)}
be ordered basis for R%. Find a matrix P such that,
[Tl = P '[T]; P.
Proof: I(e))=17(1,0)= (0, 1) = 0g, + 1€,
I(e,)=1(0,1)= (-1,0) = - 1€, + 0¢,

0 -1
1= |} 7]
Define  S:R?> — R?such that,
S(e)=a, i=1,2
Now, a,=(1,2)=1€e, +2¢,
a,=(l,-1)=1¢g, +(-1)e,
= S(ay) = loy + 2a,
S(a,y) = 1oy, + (= 1o,
1 1
= Sh=[;
1 1
11 1 _|3 3
= P=[ }andF =
2 - 2 1
3 3
1
1 _ 13 3010 -1{|1 1
= Py P 2 1 L 0M2 —1}
3 3
1 b2
_| 3 3|1 1{_| 3 3
LA | At O R
3 3 3 3
:[T]g'

Example 3.19: Let Tbe linear operator on R®, the matrix of which in the standard
ordered basis is

1 2
A=1]0 1
-1 3

A = =

Find a basis for the range of 7 and a basis for the null space of 7.



Solution: Det 4 = 1(4 —3)—2 (1) + 1(1)

=1-2+1=0
.. Ais not invertible and so 7 is not invertible.
Let {e; =(1,0,0), e,=(0,1,0), €;=(0,0, 1)}
be standard ordered basis of R>.
Let (x), X5, x;) € Ker T
Then, T(xy, x5, x3) =0

T(x,(1, 0, 0) + x,(0, 1, 0) + x,(0, 0, 1)) = 0

T(x, €, + x,6, t x;65) =0

x,1(e)) + x,1(e,) + x;7(€;) = 0

(L0, —1)+x,(2,1,3) +x5(1,1,4) =0

(x; T 2xy + X3, Xy + x5, —x; + 3x, +4x3) =0

X+t 2x +x;3=0,x,+x;=0, —x; +3x, +4x;, =0

x,+tx,=0,x, +x3=0

L O R U U

(), X5, X3) = (= xp, X, —X3)
=x(-1,1,-1)
= Everyelement in Ker 7'is multiple of (- 1, 1,— 1)
= Ker T'is spanned by (-1, 1, - 1)
Since (- 1,1,-1)#0, {(—1, 1,—1)} is a basis of Ker 7.
.. dim Ker 7=1 = dim Range 7=2
Since Te, =(1,0,-1)
Te,=(2,1,3)
belong to Range T"and aTe, + bTe, =0
we find a(1,0,—1)+bH(2,1,3)=0
= b=0,a=0

= {Te,, Ts,} is alinearly independent set in Range 7. As dim Range 7'=2,
{(1,0,-1),(2, 1, 3)} is a basis of Range T.

Example 3.20: Let 7 be a linear operator on " and let 4 be the matrix of 7'
in the standard ordered basis for F". Let W be the subspace of F'” spanned by

the column vectors of 4. Find a relation between Wand T.
Solution: 7: F" —> F"

LetB=1{e, =(1,0,0,..0),..,e,=(0,0, ..., 1)} be the standard ordered

basis of F'” and let
a1 ap Ay
4= dy; Ay o
) Apy
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thus, T(e) =a, e, t a,e, +..+ta_e
1 1161 2162 n1€n
I(e,) = aj,e; + aye, + ... +a, e,

T(en) - alnel + a2neZ Tt annen

and also Wis spanned by
@y, ays oo @), (@195 Aoy ooy @)y ooy (@4, Gy s @)}
We claim 7: F" — Wis onto L.T.
Forany x € F", x = a,e;, + a,e, + ... t o, e,
= T(x) = oy T(e) + a,T(e,) + ... + o, T(e,)
= T(x) € Was I(e), T(e,), ...., I(e,) € W
Again, forany w € W, w = ,T(e,) + B,T(e,) + ... + B,1(e,)
=T(B,e; + Bre, +... ¥ B,e,)
showing that 7'is onto.
= Range 7'= W = dim Range 7= dim W
or that rank of 7= dim W
which is the required relation between 7'and W.

3.2.3 Linear Transformation and Dual Spaces

The set of all linear transformations from vector space ¥ over F into vector space
W over F, is also a vector space over F. Further, if dim V= m, dim W=n, then
dim How (V, W) = mn. In particular, if W= F, then,

AN
Hom (V, F) is called dual space of V over F. It is denoted by } and read
as V dual. In this section we study these dual spaces.
N
First we will construct a basis of V', from a given basis of V.
Theorem 3.13: Let {v, ..., v } be a basis of V.
Define \?l. : V' — F such that,
N
v.(ov, +..toav)y=a i=1,2,.,n
ThenA\?l. is a linear transformation forall7 =1, ..., n and {\?1, e \tn} 1S
a basis of V. Hence dim V =dim V.
Proof: Let v,V € V
Suppose v=ov, T taoy,
V= Blvl + ...+ ann’ (X,l-, Bi e F
Ifv=v,thena =f forallj=1, .. n
A e .
vi(v)=o =v, (V)

- v, is well defined forall i =1, ..., n

AN - J—
Also V(v V)= G B+t oy, + By,
St
— !
I V,‘(V) + /‘fi(V)
and v{av) = v(aa,v, + ..+ ao,v,)



= oo, = ouil.(v)
" 12. isal.T foralli=1, .., n

Bydefinition,  v,(v) = (v, + . + Ly + ..+ Ov) = 0 ifj i
—1ifj=i
Si(xj) =5, forallij=1, ..
Let ovt..ta,v,=0 o ekl
Then, (a,v + ... +Aan$n) (v) = 0(v) = 0
= e .(v.) =0
= o,=0 forallj=1,.
: {\?1, s }1sLI overF
Letfe VLetf(v)— i=1,...,n
Then (ocv+ +0cv)(v)
- aivAi(vi)
=a, [= 1

A
~ fandoyv, + ..+ a, v agree on all bases elements of V.
So, f o, v . ta, v
A
AV v ot spans V

Hence, {vl, . v .+ 1s a basis ofV called dual basis of {v,, ..., v, } such
that, v l.(vj) =

Corollary : [ et V'be a finite dimensional vector space over F. Let 0 # v
€ V.Then 3 f e V such that, f(v) # 0.

Proof: Since v#0, {v} is L.I. set. So, it can be extended to form a basis

of V.
Let {v=v,, vz, ..., v,} be a basis of V.
Let {9 IR be correspondlng dual basis. Then v (v) 8
1(V1)
Let f= v1 € V
Then ) =f(v) =v,(v) =1 %0,
Theorem 3.14: Let J'be a finite Qimensional vector space over F.
Define 0:V-—> I; such that,
O0w) =T, forallveV
where T, : 19 — F such that,

T(f) =f(v) for all f € ﬁ

Then 6 is an isomorphism from } onto V (Here V dual of V called
double dual of 7). .

Proof: Letf, g V
Then T(f+g=(*+g W
=/ +gv)
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=T+ T2

Leta € F
Then T (af) = (af) (v)
= of(v)
= ocT(f)
T, e V

0 is well defined as v=v"= T (f) = f(v) )
=f0)=T,(f) forallfe V=>T,=T,

Oisal.T as
ov+Vv)=T,_ ,=T,+T,=6(v)+0()

as T,.()=f(v+)

=f) +f(v)

=T.(f)+ T

=(T, +T)(f)forallfeV

T,.,=T,+T,

Also O(av) = =al, = ad(v)
as 0W(f)=f(ow)

= af(v) )

=al(f) forallfeV

T, =al,

LetO;tveKerO:>6(v)—O:>T —0
By Corollary to Theorem 3.13 3 f € V such that, f(v) # 0

T(fH=0
a contradictionas 7, = 0 = T (/) = 0

Ker6 ={0} =0 is 1-1

V=0V c V

= dim 6(V) = d1m V'=dim V dim V (by Theorem 3.13)

o) = V as 0(V) is a subspace of V

. 0 is onto from V' to V
Thus 0 is an isomorphism.

Corollary 1: Let V'be a finite dimensional vector space over F. If L is a linear
functional on ¥, then 3 a unique v € Vsuchthat, L(f) =f(v) forall f e V.
Proof: L is alinear flmction/\gl onV

= L € V = Junique v € V such that,
0 (v) =L as 0is 1-1 onto
T, =L
= L(f) =T[(f)=f(v) forall fe V



Corollary 2: Let V' be a finite dimensional vector space over the field /. Then
each basis for V' is the dual of some basis for V.

Proof: Let {f, ..., f,} be a basis for V. o

By Theorem 3.13, 3 a basis {L,, ..., L} for V' s.t., Li%) = 81']'- As in
Corollary 1 3 unique v, € V for each i,

st, L=T, =0(v) .

Since {L,, L,, ..., L,} isabasis for V, {0 L, .., 0 L} ={v,..,v}
is basis for V7as 0 is an isomorphism.

Also ;= L{f) =T, Vl_(};) = /()
1> - /) 18 dual of basis {v,, ..., v} for V.
Example 3.21: Let /" be the vector space of all polynomial functions from R to

R which have degree less than or equal to 2, Let ¢, £,, #; be three distinct real
numbers and letL.: V — f be such that, L (p(x)) =p(z,),i=1, 2, 3. Show that

{L, L,, Ly} is a basis of V. Determine a basis for ¥ such that, {L,L,, L;}is
its dual.

Solution: L; (p(x) + g(x))
= L(r(x)), r(x)=px)+ q(x)
= r(t,') :p(ti) + Q(ti)
= Lp(x)) + L{q(x))
Also L(op(x)), a € F
= L(q(x)), g(x) = ap(x)
= Q(ti)
= ocp(il.) =al(px)) foralli=1,2,3
L eV foralli=1,2,3
Let oL, + o,L, + oLy =0
Apply it on polynomials 1, x, x* to get
o, + o, +o,=0
oyt T oLt ost; = 0
altf + oc2t§ + 0L3t§ =0

h L |0

2 2
it 5| L%

oy 1 1 1
Aoy, | =0,4=|4 1 1
oy g 55

detd=(t,-t)(t,—t;) (t;— 1))
# 0 as 1, t,, t; are distinct
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Thus A" exists.
o
a|=0=>0,=a,=0a;=0
o3
Hence, {L,, L,, L;} isa L.l set.
Since dim V'=3, {L,, L,, L,} is a basis of V'

Let {p,(x), p5(x), p5(x)} be a basis of V'such that, {L,, L,, L,} isits dual
basis.

Then, L,(p,) =1, L,(p,) =0, Ls(p,) =0
Lyp) =0 =>pt) =0
= 1, is a root of p,(x)
Ly(p) =0 =>pit) =0
= 15 1s a root of p,(x)
Since, degp,(x) <2,
p(x) = olx — 1)) (x — t3), o = Constant
Lip)=1 =p@)=1
=at,—t) (-t =1
1

Z T ) -n)

(x=1)(x—1)
(1 —1) (4 — 1)

. _ (x-)(x—1) (x—1)(x—-1t)
Similarly, p,(x) = (ty =) (1 — 13) (t=1)(-1)

Example 3.22: Let V' be the vector space of all polynomial functions p from R
into R which have degree 2 or less. Define three linear functionals on V' by

pl(x) =

s p3(x) =

[®) = J,p0ds, fi(p) = [ pods,

AP = [ peds

Show that {f,, /5, f3} 1s basis of I> Determine a basis for V such that,
1> /2 /3 1s its dual basis. .
Solution: It can be easily seen that f, f,, f; € V.

Let of, +a,f, +oyf;=0, o, €R

Apply it on 1, x, x* to get



1 2
Let, A=11 4 1
1 8

2]
Then’ A az = O, det A * O
O3
oy
A4 a,|=0=a =a,=0;=0
O3

S 33 1s a L set.
Since dim V' =3, {f, /5, f3} 1s a basis of V.

Let {p,(x), p,(x), p5(x)}, be a basis of V'such that, {f,, £, f;} is its dual

basis.

Sip) =L AHp) =0, f3(p) =0
Let px)=c, +cx+ c2x2

2
2 x3

X
fé(pl): 0 j— C0x+C17+C2?

=0

0

2

C C
= c0x+?1x +?2x3 =0 when x =2

f3(pl)=0 = cox+017+cz?

2

C C
= c0x+31x +?2x3 =0 whenx=-1

c c
e, x+—x? + 253
2 3

=oax(x —2) (x + 1)

C C
Silp) =1 :>Cox+?1x2+?2x3 =1 whenx=1

= oc.l(—l)(2)=1:>og=_%

¢ 2, 6 3 1

c,X+—Xx" + X = __ _
o 5 3 2x(x 2)(x+1)

1
= _—x +lx2 +Xx
2 2
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C2 1 Cl 1
—_— = —_—, = = —, c :1
3 2 2 2 0

_ _ 3
c,=lc,=1¢,= -3

py(x) = 1+x—%x2

Similarly, we can find p,(x), p5(x).
Definition: Let W be a sub-sat of V.
Define AW)={feV |f(vK)=O for allw € W}
Then A(W) is a sub-space of V as a, B € F,
fhge AW)= fw)=0=g(w) forallwe W
= of(w) +Pgw)=0 forallwe W
= (af+PBg) w)=0 forallwe W
= af+Pg e AW)
A(W) is called annihilator of W.
Example 3.23: Let U, W be sub-sets of V. If U < W, show that A(U) c A(W).

Solution: Let /'€ A(W) then, fw)=0 forallwe W
= fwy=0 foralue UasUc W
= fe AD).

Theorem 3.15: Let V' be a finite dimensional vector space and W, a subspace
of V. Then dim A(W) = dim V — dim W.

Proof: Let {w,, ..., w, } be a basis of .

It can be extended to form a basis of V.

Let {w, ... W, V, ., ..., V,,} be a basis of V.

Let {f,, ... /s f,n + 1» -+ f,,} be corresponding dual basis.

Then ﬁ(wj)ZO i=m+1,..,n
j=1.,m

s ;e AW) foralli=m+1,..,n

We show {f, | |, ..., f,,} 1s a basis of A(W).

Let Oy Sy T T, f, =0
(&, 1 fps1 Tt f)(v)=0 forallk=m+1,.,n
oSy (V) = 0

S o, =0 forallk=m+1,..,n

So, {f,, 4 1» - Sy 18 @ L1 set. .

Letf e A(W)Athenf(w)ZO forallwe W,feV

feV=f=B8-4it.+B,/, 1 . TB.J,

= 0=f(w)=B,f(w)=, forallj=1,..,m
= /=Bui1Sui1 T B,



= {f,+ 1> - [y} sSpans A(W)
“ S+ 15 e fy) 18 @ basis of A(W).
Hence dim A(W)=n—m =dim V' —dim W.

/\

Corollary1: -~y
A(W)

A

Proof: Sincedim = dim V' — dim A(W)
AW)

=dim V-dim V+dim W
=dim W=dim W
1%

L ~W.
AW)

I

Hence,

Corollary 2: If Vis a finite dimensional vector space and W, a subspace of V,
then

AAW) = W.
Proof: Define 0 : W — A(A(W)) such that,
6(w2 =T,
where T, : W — F such that,
T () > f(w)

T, e AAW)) as T, (f)=f(w)=0 forallfe 4 (W)
Then as in Theorem 3.14, 0 is well defined 1-1 linear transformation.
W=0(W) < AAD))
Since dim A(A(W)) = dim V dim A(W)
=dim V' —dim A(W)
=dim W
(by Theorem 3.15)
and dim 6(W) =dim W

AAW)) = 0(W)
.. 0 1s onto from Wto A(A(W))
Hence W=AAW)).

For sake of convenience, we shall write A(A(W)) = W.
Consider for example, V' = Iiz, W={(x,0)|x eR}
Then A(W) is a subspace of V' spanned by f

where  f(x,, x,) = x,

In fact, {f} is a basis of A(W) as dim W= 1.

Also, A(A(W)) is spanned by T' where w = (1, 0)
Since dim A(A(W)) =1, {T, } is a basis of A(A(W))
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Then 0 : W— A(A(W)) such that,
ow)=T,
is an isomorphism as basis of #is mapped to basis of 4(A(W)).

Example 3.24: Let W, W, be subspaces of finite dimensional vector space V.
Determine A(W, + W,).

Solution: f'e A (W, + W)
< f(x)=0 forallx e W, + W,
< fw)=0=f(w, forallw, e W, w, € W,
& feAW) m AW,
AW, + W,) = A(W,) N AW,).
Example 3.25: Let f,, f,, f; be three linear functionals on R* defined as follows:
Si(ep, Xy, X5, X)) = X + 2x, + 205 + X,
Hoxys Xp, X3, %) = 22 + 3y
S, Xy, X5, x4) = — 2x; — 4xy + 3x,
Determine the subspace W of R* such that,
Jw)y=0,weW i=1,2,3.
Solution: Let (x,, x,, X5, x,) € W
Then  fix,, x5, X5, x,) =0 i=1,2,3
' x,+ 2%, + 2%, +x,=0
2x,=x,=0
—2x; —4xy; +3x, =0

X
12 21
X
02 o0 1||?]=0
X3
-2 0 -4 3
X4

By elementary row transformations, we get

1 0 2
010
0 00

_ O O
I
e

X +2x,=0,x,=0,x,=0
(x), Xy, X3, X4) = (= 2x5, 0, x5, 0) = x5(= 2, 0, 1, 0)
.. Wis spanned by (-2, 0, 1, 0).

Example 3.26: Let ¥ be the subspace of R® spanned by the vectors
o, =(2,-2,3,4,-1),0,=(0,0,-1,-2, 3)
o,=0-1,1,2,5,2),a,=(1,-1,2,3,0)

Describe A(W).

Solution: Let /'€ A(W)

Then f(w)=0 forallwe W



= f(a)=0foralli=1,2,3,4
Let SO, Xy, X5, X4y X5) = €)X+ CoXy + 03Xy + C4x, T+ CoXs

(Note v, = (1,0, 0,0, 0), v, = (0, 1, 0,0, 0), v, = (0,0, 1, 0, 0), v, =
(0,0,0,1,0), vs=(0, 0,0, 0, 1) form a basis of R°).
Let {V,, v, V3, ¥, v5} be its dual basis.

N N AN AN AN
Then  f=cv, t v, + vyt v, +c5vs

5
= f(xp Xyy X3, Xy, xs) = Zci‘;i (xp Xy X3, Xy x5)
1

5
= Yeb vy + X, F xgvy X, Xgvs)
1

=C X T oxy Ty T oeux, Toesxs
A

as v; (v) =9
f(a)=0 foralli=1,2,3,4

q
2 -2 3 4 -1
(&)
1 12 5 2 0
= | =
o o0 1 -2 3||°
Cy
1 -1 2 3 0
Cs

By elementary row transformations, we get

q
1 -1 0 -1 0
(%)
O 01 2 0 0
c:
o 00 o0 1|]°
Cq
O 0 0 0 O
Cs

=>c—¢-¢=0,c;+2,=0,¢5=0
= 2¢,-2¢,+¢;=0,¢5=0,¢c;=-2¢,
Let c,=a,c,=b
Then  ¢;=-2b
2¢,-2a-2b=0=c,=a+b
= f(x), Xy, X3, Xy, X5) = (@ + b) x; + ax, — 2bx; + bx,
Take a=1,b6=0
Then  fi(x|, X5, X3, X4 X5) = X, + X,
Take a=0,b6=1
Then  f)(x, Xy, X3, X4y X5) = X, — 2X3 + X,
f=af, + bf,
S 4/, f5) spans A(W)
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Let af, + Bf, = 0. Apply it on v,, v, respectively. We get a + 3 = 0,
a=0=pB=0.

S fa 18 L So, {f), f,} 1s a basis of A(W)
Hence dim A(W)=2.

Example 3.27: Let V' be a finite dimensional vector gpace. Suppose V' =W, ®
W, where W,, W, are subspaces of V. Show that V' = A(W,) © A(W,).

Solution: dim V'=dim (W, ©® W,)
=dim W, +dim W,
Also dim (A(W)) © A(W,))
= dim A(W)) + dim A(W,)
=dim V' —dim W, + dim V' —dim W,
=2 dim V- (dim W, + dim W)
=2dim V—dim V=dim V = (Aiim V
Since A(VI/I) @ A(W,) is a subspace of V'
and dim K =dim (A(W)) @ A(W,)),
V=AW)® A(AWz)-

Example 3.28: If fand g are in V' such that, f(v) = 0 implies g(v) = 0, prove
that g = ¢f for some ¢ € F.

Solution: If /=0, then g =0 = ¢fwhere c =0 € F.
Let /' 0 then 3 v # 0 in V such that, f(v) # 0

Let c= £ )

S
h=g—-cfandx € V

and azﬁ.

Q)

Then  f(x — aw) = f(x) — of(v) = 0
= x—oav € Ker f
= x—av=y € Kerf
= x=ytov
h(x)= g(x) — ¢f(x)
=g() + ag(v) — ¢f(y) — cof(v)
=ag(v)—cof(v)asy e Kerf=y e Kerg
=og(v)—oag(v)=0forallx e VV
h=0=g=cf
Hence the result follows.
Definition: Consider the system of m equations

ax, +..+a,x =0



a,x, +..+a,x =0, where a; € F
in 7 unknowns.

Let U be the subspace of F™ generated by m vectors
Uy = (g5 s gy wees Uy, = (Ayp5 ey @)

If dim U = r, we say the system of equations has rank .

We determine the number of linearly independent solutions to the system
of equations in 7. Consider

Theorem 3.16: Ifthe system of homogeneous linear equations

ax, +..+a,x =0

ax, +..+a, x =0,

where a;eF is of rank 7; then there are n — r linearly independent solutions

in F®.
Proof: Let S be the set of solutions of the given system of equations
S={(a, oy ) € F"[ Yaa; =0, i=1,2,.,m}
Then S is a subspace of F" =V
Let {v,, v,, ..., v,} be the standard basis of V'
and {f,, f,, ..., f,,} be its dual basis
Let U be the subspace of V" as described above
Define 0 :S— A(U), such that,
0((ay, ayy oy ) =04 fy 0L, f, + o T, f)
Let f=ofi to,f,+ . ta,f,
Then Sfw) =( fi+..+a,f) @y, +. +a,v,)
=oa, t...o0a,
=0 as(a,.,a,) eSS
Similarly f(u,) = ... = f(u,) = 0
So fe A(U)

It can be easily shown that 0 is a linear transformation.
If (o, oy, ..., @) € Ker 0 then Y a;f; =0
1

=>a=0 Vi
= Ker 6 = {0} or that 0 is 1-1.
Letnow fe A(U)cV

and suppose f= o, f; + o, f, + ... + o, f
Then, 0 = f(u,) = a,a;; + ... + o,a,,

0=fu, =oa, +..+toa

n-mn
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ooy, Oy ey o) €8

and 0 (o, 0y, ..., @) = 0 f) + ... + o, f, =f

or that 0 is onto.

Hence S = A(U)

= dim §=dim A(U) =dim V- dim U

=n-r

Hence there are n— r linearly independent solutions of the given system of

equations.

Corollary : If n > m, that is, if the number of unknowns exceed the number of
equations, then the system of equations has a non zero solution.

Proof: Since U is generated by m vectors, r=dim U<m<n=>n-r>0=
system of equations has a linearly independent solution, which is non zero (as zero
vector is not linearly independent).

Exam%)le 3.29: Let m and n be positive integers. Let f,, ..., f,, be linear functionals
on F. For o in F™ define T(a) = (f; (), ..., £, ().

Show that T is a linear transformation from F) into F™. Then show that
every linear transformation from F" into ™ is of the above form, for some

Sis wes S
Solution: Sincef,, ..., f, are linear transformations, sois T Let {e, ..., e,} be
the standard basis of F(ﬂ).

Then T(e,) F™ vi=1,..,n
So, T(e)= B, - B;) Vi=1, .., n
I(a)= T(oye, + ... toe), a=oe + .. +ae
=a,Ie)+..+ao,T(e)
=By oo By T o T ,Bys o B
=By Tt aB, oy, T B)
For each i(1 <i <m), 3 a linear transformation
fi: F™ — F such that,
Jie) = By - file) = By
Si(@) = filoye, + ... +ae)
=By oy,
Sa(a)=1 (oe + ..+ ae)
=By, Tt aB,,
So, T(a)= (fi(), ..., f,(ar)).

Example 3.30: Let /" be the vector space of all 2 x 2 matrices over the field of
real numbers and let

1]

n




Let Wbe the subspace of V' consisting of all 4 such that AB=0. Let fbe Normed Linear Spaces
a linear functional on ¥ which is in the annihilator of W. Suppose that f(/) =0 and
f(C)= 3, where [ is the 2 x 2 identity matrix and

c={° ﬂ NOTES
0 1

Find f(B).
Solution: Now W= {4 |A4B =0}

Let AZ[%lau}EV

1 0 0 1 00 0 0
Then AZQH{O Oi|+a12[0 0:|+a21[1 0i|+a22[0 1:|

1 0 0 1 0 0 0 0
f(A)zanf{O O}Jfalzf{o O}LazlfL O}Jfazzf[o J

=a, 0+ apPp + ayy + a0 (say).
0=fh=a+?

3=/(C)=5
So, a=-3,6=3

Let DZ[é ﬂ.ThenDBZO

So,D e W
= f(D)=0as [ € A(W).
0=a+2B:>B=%

Also, let £ = [O 0}.
1 2
Then EB = 0.
So, E € W.
= f(E)=0asfe AW)
T Y+20=0=>y=-6

So, f(B)=2x(=3) +(-2) (gj HEDEO B (M)

=—6-3+6+3=0.

Example 3.31: Let F be a subfield of complex numbers. We define n linear
functionals on F™ (n>2) by

S &y e x) = Zn:(k—j)x-, 1 <k<m.
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Solution: Now f,(x,, ..., x,) = ox; — X, — 2x5 ... —(n — 1) x,
Sy, v x)=x T oxy, =Xy ... —(n—2) x,
NOTES S s x,)= 2%, Xy T 0xy .o —(n - 3) x,

S enx)=m-Dx +(n-2)x,+(n—-3)x;+...+1x
Let ¥ be the subspace of F™ annihilated by 1> oo Sy
Then  (x}, ..., x,) € W

= filx, . x,) =0 YVk=1,2,.. n

n—1 +0xn

0 -1 -2 .. .. —n=-D][x
0 -1 .. .. -n-2)||x
2 1 0 o o —1=3)||x3]=0
| n-1 n-2 n-3 0] |x,]|
X
1.e., AX =0, where A4 is the matrix on the left and X =
X

It can be easily seen that Rank 4 = 2.
.. number of linear independent solutions in Wis n—2.
Sodim W=n-2.
Transpose of a Linear Transformation
Let V, W be vector spaces over F.
LetTbea lineaAr transAformation from Vinto W.
Define T': W — V such that,
T'(g) = gT
Then T is a linear transformation called the transpose of T.
It can be easily shown that

() (T, +T,)'=T,'+T,/,where T|, T, are linear transformations from
Vinto W.

@) (T,T,)'=T,' T/, where T, : W— Vand T, : V— W are linear
transformations

(i) (al)'=aT',a € F,T:V—> Wis a linear trasnsformation
(iv) I'=1,1:V — Vis the identity map.
Theorem 3.17: Let T: VV— W be a linear transformation. Then
(@) The null space of T* = the annihilator of range of 7.
(b) If V W are finite dimensional, then
(i) Rank of T = rank of T
(ii) Range of 7" = annihilator of the null space of T.
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Proof: (a) Now g € Null space of 7"

of T.

< T'(g)=0

S gT=0<gTV=20 < g(Range 7) =0
< g e ARy

Where A(R;) denotes the annihilator of range 7.

(b) Letdim V' =n,dim W=m,

Let r = rank of 7= dim R, = dim T(})

where R denotes the range of 7.

Now dimA(R;) = dim A(TV)

=dm W-dm T(V)=m—-r

Nullity of T" = dimension of the null space of T*

=dimAR)=m—r

But nullity of T! = dim W —rank T"
dim W —rank T’

= m —r=m —rank T"

= rank 7" =r= rank T

This proves (7).

Let N denote the Ill/l\ll space of T.
Then A(N) = {f € V| f(n) =0V n € N} = Annihilator of the null space

Now f € Range T*

= f=Tg, geW
=gT
= f(n)=gTn)=g(0)=0 VneN
= f e AN)
= RangeT" < A(N)
So, dim A(N)=dim V—dim N

=dim V—nullity T=rank T
=rank 7' = dim Range T"
Therefore, A(N) = Range T*
This proves (if).

Lemma: Let 7: V' — Wbe alinear transformation. Let = {v,, .., v }, B'={w,,

... w,,} be ordered basis of V] Wrespectively. Let B={ f}» -, 1,/ be the dual basis
of V'such thatfi(v) = 3. Let F € V.

Then

f= Zf(vi)fi
1
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Proof: Suppose f= Y.¢, f;, ¢; € F
1
Then f(V,) = Dafiy) = Yy = ¢

So,  f=Y o) /.
1

Theorem 3.18: Let 7: V— Whbe alinear transformation. Letp =V enV ),
B"= {wy, ..., w,} be ordered basis of V] Wrespectively. Let B = {f|, ..., .},

p = {g, - g, be the dual basis of V] W respectively.

Let4=(ay) be the matrlx of T'with respecto 3, B’ and B = (b, i) be the matrix
of T'withrespecy to, B B
Then a; = bjl. Vi j.

This shows that the matrix of 7' is the transpose of the matrix of 7. For this
reason 7' is called the transpose of T.

Proof: Now 7' : W — V such that,
T'(g) = gT = f (say)
Then flv)=(T"g) (»)
= (gD (v)

= (g7) (v) = gj[ia,d wk]
1

= Yaug;w) = Yay 8 = ay

By above lemma,

/= Zf(vj)fi = zajifi
1 1

But f = T’gj = >'b,f;
1
So, Ybifi = Yaul;
1 1
= (b —a;) ;=0
1
= b;=a;V i, j. This proves the theorem.

Let 4 = (a;) be the m % n matrix over F. Then row rank of A4 is
defined as the dimension of the subspace of F™ spanned by (@15 eees A1pp)s ooes
(@15 - Q)

Similarly, column rank of A is defined as the dimension of the subspace
of F'™ spanned by (a,;, yps oer @pp))s coor (@15 oes @)



Theorem 3.19: Let 4 be an m X n matrix over F. Then Normed Linear Spaces
Row rank of 4 = column rank of 4.
Proof: Define 7: F" — F™ such that,
T((xps s X)) = Vps oor V) NOTES

n
where y,= > a;x;
=

Then T'is a linear transformation.
Range 7= {I(x,, ..., x,) | x;, € F}
={T(x, (1, ..,0) + ... +x,0,-0, 1)) | x;, € F}
={xI(e) +..+x,T(e) | x; € F}
e; = nth-tuple with ith co-ordinate 1 and zero elesewhere
= {linear combination of columns of 4}
c subspace generated by columns of 4 and vice-versa
Thus, Range T = subspace of F" generated by columns of 4
So, Rank T = columnrank of 4
Also, Rank 7" = column rank of 4’

= Dimension of subspace of F"™ generated by columns
of A’

= Dmension of subspace generated by rows of 4
= Row rank of 4
Thus, column rank of 4
= Row rank of 4 (as Rank 7' = Rank 7T)
= Rank 7.

Example 3.32: Let V' be a finite dimensional vector space over F. Let T'be a
linear operator on V. Let ¢ € F. Suppose 3 0# v € V'such that 7(v) = cv. Prove
that there is a non zero linear functional fon V such that, 7' f= cf:

Solution: Now (7' —cl)v=0,v#0
= v e Ker (T - cl)
= Ker (T — cl) # {0}
= dimKer (T—cl) > 1
= nullity of (T—cl) > 1
=rank of (T—cl)<n
= rank of (T —cl)' <n
= nulity oAf(T—cI)’Z 1
= 3 fe V suchthat f# 0 and (T—cl) f=0

=T f=cf, f=0.
Example 3.33: Let 4 be m x n matrix with real entries. Prove that 4 = 0
& Trace (AtA) = 0. Self - Learning

Material 111



Normed Linear Spaces Solution: Let At =B= (sz)
A= (ajk)m Xn

nxm

NOTES A4=BA=C=(cy), cy= Zlblf i
i
Trace (4'4)=0

= Zcii =0
1

=>c¢,t..*tc,=0

nn
m m
= zbl-jaﬁ +...+2bnjajn =0
1 1

= (@) +..+ 2 (a;,) =0
= a; = 0 Vij
= A=0.
Converse is obvious.
Quotient Spaces

If Wbe a subspace of a vector space V(F) then since < W, + > forms an abelian

group of <V, + >, we can talk of cosets of Win V. Let % be the set of all cosets

W+ v, v e V, then we show that % also forms a vector space over F, under
the operations defined by
W+rx)+W+y)=WwW+x+y) xyeV
oW+x)=W+ ox oeF
Addition is well defined, since,
WH+x=WwW+x
W+y=w+)
>x—-xeW,y-yeW
> x-x)t+t@-)y)eW
= @ty - +y)ew
= W+x+y)=w+x +)y)
Again, WH+x=W+x
=>x-—x €W,

> ax—x)eWw oeF

Self - Learning
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> o —-—ax' € W
=> W+tox =W+ ox'
= aW+x)=o(W+x"

Thus, scalar multiplication is also well defined. It should now be a routine
exercise to check that all conditions in the definition of a vector space are satisfied.

W+ 0 will be zero of %

W —x will be inverse of W+ x

Also

U(W+x)+(W+y)= a(W+(x+y)=W+alx+y)=W+(ox+oy)
=W+ox)+ W+ oay) =a(W+x)+ oW+ y) etc.

Hence, V/W forms a vector space over F, called the quotient space of V'
by W.

Check Your Progress

1. What is normed linear space?

»

How are 2- or 3-dimensional vectors defined through real valued
entries?

Define the terms seminormed and normed vector spaces.
What is linear transformation?

Explain about the dim mn?

SANENANEF R

When is a linear transformation 7- ¥ — Wnon singular?

3.3 BANACH SPACES

The Hahn-Banach theorem is an essential tool in functional analysis. It permits the
extension of bounded linear functionals defined on a subspace of some vector
space to the complete space and also illustrates that there are ‘Enough’ continuous
linear functionals defined on every normed vector space for studying the dual
space. It is named for Hans Hahn and Stefan Banach who proved this theorem
independently and a general extension theorem from which the Hahn-Banach
theorem can be derived was proved in 1923 by Marcel Riesz.

The most general formulation of the theorem can be given for a vector
space V over the field R of real numbers where a function f : /— Ris called
sublinear if,

f(yx)=7f(x) foranyy € R+and any x € V' (Positive homogeneity).
fx+y) < (x)+f(y) for any x, y € V' (Subadditivity).

Every seminorm on V' (specifically, every norm on ¥) is sublinear. The
Hahn-Banach theorem states that if N: ¥ — R is a sublinear function and ¢ : U
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— R is alinear functional on a linear subspace U < ¥ which is dominated by N
on U,

PX)SN(E) VxeU

Then there exists a linear extension y : '— R of ¢ to the whole space V,
1.e., there exists a linear functional y such that,

Y =) VxeU

and

y(x)<SN(x) VxeV.

Another description of Hahn-Banach theorem states that if /'is a vector
space over the scalar field K (either the real numbers R or the complex numbers

C),if V.V —> R isaseminormand ¢ :U — K is a K-linear functional on a
K-linear subspace U of V"' which is dominated by on U in absolute value,

lp(x)| SN (x) VxeU

Then there exists a linear extension y : V'— K of ¢ to the whole space V,
1.e., there exists a K-linear functional y such that,

W(x) = o(x) VxeU

and
v <Mx)  vxel.
Banach Spaces

A Banach space is a complete normed vector space or a Banach space is a vector
space which is equipped with a norm and which is complete with respect to that
norm. Two common types of Banach spaces are real Banach spaces and complex
Banach spaces, which are Banach spaces whose underlying vector spaces are
defined over the field of real numbers or complex numbers, respectively.

Various infinite dimensional function spaces evaluated in analysis are Banach
spaces, including spaces of continuous functions (continuous functions on a compact
Hausdorff space), spaces of Lebesgue integrable functions known as L” spaces
and spaces of holomorphic functions known as Hardy spaces. These are the most
commonly used topological vector spaces and their topology is based on a norm.

A metric space X is considered as complete if every Cauchy sequence in X
converges to a point in X. Normed spaces whose induced metric spaces are
complete are specified with a special name. A Banach space is a normed space
whose induced metric space is complete.

The following normed spaces are all Banach spaces:
lp, L, R, C"and C [a, b]
A closed vector space of a Banach space is itself a Banach Space.

Let K stand for one of the fields R or C. The known Euclidean spaces K",
where the Euclidean norm of x = (x,, ..., x ) is given by [p]| = (x *+...+x ?)"?
are termed as Banach spaces. Hence every finite dimensional K vector space



becomes a Banach space being endowed with an arbitrary norm because all norms
are equivalent on a finite dimensional K vector space.

Consider the space of all continuous functions f : [a, b] > K defined on a
closed interval [a, b]. This space becomes a Banach space if an appropriate norm
|If|| is defined in it. Such a norm may be defined as ||f|| = sup {|f(x)| : x. [a, b]}
known as the supremum norm. This is a well defined norm because continuous
functions defined on a closed interval are bounded.

Since f is a continuous function on a closed interval then it is bounded and
the supremum in the above definition is obtained using the Weierstrass extreme
value theorem. Hence, we can replace the supremum by the maximum. In this
case, the norm is also called the maximum norm.

The space is complete under this norm and the resulting Banach space is
denoted by C[a, b]. This example can be generalized to the space C(X) of all
continuous functions X — K, where X'is a compact space, or to the space of all
bounded continuous functions X — K, where X'is any topological space or indeed
to the space B(X) of all bounded functions X — K, where X'is any set.

For any open set Q C, the set 4(Q2) of all bounded, analytic functions u :
— Cis a complex Banach space with respect to the supremum norm.

If p > 0 is a real number, we can consider the space of all infinite sequences
(x,,X,, X, ...) of elements in K such that the infinite series 2., [x [’ is finite. The
p-throot of this series’ value is then defined to be the p-norm of the sequence. The
space, together with this norm, is a Banach space; it is denoted by ¢#. The Banach
space ¢~ consists of all bounded sequences of elements in K; the norm of such a
sequence is defined to be the supremum of the absolute values of the sequence’s
members.

Again, if p > 1 is areal number, we can consider all functions f : [a, 5] > K
such that |fP is Lebesgue integrable. The p-th root of this integral is then defined to
be the norm of f. By itself, this space is not a Banach space because there are
non-zero functions whose norm is zero. We define an equivalence relation as follows:
f and g are equivalent if and only if the norm of f—g is zero. The set of equivalence
classes then forms a Banach space; it is denoted by L”([a, b]). It is crucial to use
the Lebesgue integral and not the Riemann integral here, because the Riemann
integral would not yield a complete space. These examples can be generalized;
see 17 spaces for details.

If X and Y are two Banach spaces, then we can form their direct sum X . ¥,
which has a natural topological vector space structure but no canonical norm.
However, it is again a Banach space for several equivalent norms, for example

e [ O A B

This construction can be generalized to define /7 -direct sums of arbitrarily
many Banach spaces. When there is an infinite number of non-zero summands,
the space obtained in this way depends upon p.

If M is a closed linear subspace of the Banach space X, then the quotient
space X/M is again a Banach space.
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The L spaces are function spaces defined using a natural generalization of
the p-norm for finite-dimensional vector spaces. They are sometimes called
Lebesgue spaces, named after Henri Lebesgue. The length of a vectorx = (x,,
X,, ..., X ) in the n-dimensional real vector space R” is usually given by the
Euclidean norm:

Jol = (32 + 3 ot 2]

The Euclidean distance between two points x and y is the length ||x - J/”2 of
the straight line between the two points. In many situations, the Euclidean distance
is insufficient for capturing the actual distances in a given space.

For areal number p > 1, the p-norm or L”-norm of x is defined by,

I/p
[l = (bal? + ol -+l )

The L*-norm or maximum norm (or uniform norm) is the limit of the
[7-norms for p — co. It turns out that this limit is equivalent to the following definition:

x|}

For all p > 1, the p-norms and maximum norm as defined above indeed
satisfy the properties of a ‘Length Function’ or norm, which specify that:

||X||O° = max{|x1 5| XD ey

¢ Only the zero vector has zero length.

e The length of the vector is positive homogeneous with respect to
multiplication by a scalar.

o The length of the sum of two vectors is no larger than the sum of lengths of
the vectors (By triangle inequality).

Abstractly speaking, this means that R” together with the p-norm is a Banach
space. This Banach space is the L”-space over R".

For example,

For1 < p < oo, we define the p-norm on R™ (or ¢ ) by

Kxixs—n) L= (g 1P + |2, |2 + ==+ |, [P) 2P,
For p = o2 we define the oo, or maximum, norm by
i %) .= max{lx, | bl 2 03

Then R™ equipped with the p-norm is a finite-dimensional Banach space
for1 <=p < co.

For example,

The space C([a, b]) of continuous, real-valued (or complex-valued) functions on

[a, b] with the sup-norm is a Banach space. In general, the space C(K) of
continuous functions on a compact metric space K equipped with the sup-norm is
a Banach space.



For example,

The space C*([a, b]) of k-times continuously differentiable functions on [a, b]is
not a Banach space with respect to the sup-norm [I- I, for k = 1, since the uniform
limit of continuously differentiable functions need not be differentiable. We define

the € *-norm by

LF U=t F 4 uf e, + =+ if g .

Then C¥([a, b]) is a Banach space with respect to the ¢*-norm.
Convergence with respect to the -norm is uniform convergence of functions and
their first derivatives.

For example,

For 1 < p < oo, the sequence space £7 (W) consists of all infinite sequences
x = (x,, )=, such that

Zum Al
n=1

oo ip
I xll,= ( x Ixﬂl"’)

n=1

with the p-norm,

For p = oo, the sequence space £ (M) consists of all bounded sequences,
with
I xl.=sup{lx,||n=12 .}

Then £# (M) is an infinite-dimensional Banach space for 1 < p < oz The

oo
n=—oa

sequence space £7 (Z) of bi-infinite sequences x = (x, is defined in an

analogous way.

3.3.1 Conjugate Spaces

The complex conjugate of a complex vector space V'is the complex vector space
y consisting of all formal complex conjugates of elements of ¥, i.e., 7 isa vector
space whose elements are in one-to-one correspondence with the elements of V:

V={|vell},

It implies the following rules for addition and scalar multiplication:

Vv+w=v+w and oV =Q.
Here v and w are vectors in V, o is a complex number and g denotes the

complex conjugate of a. In the case where V' is a linear subspace of C”, the

formal complex conjugate 7 is obviously isomorphic to the real complex conjugate

subspace of V'in C".
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Normed Linear Spaces Conjugate Linear Maps

Any linear map f: ¥ — Winduces a conjugate linearmap £ : — W defined by

the formula,
NOTES

fM=f).

The conjugate linear map 7 is linear. Furthermore, the identity map on

V/induces the identity map j and the following expression:

feg=f°g

This holds for any two linear maps f'and g. Therefore, the rules y —
and f - 7 define a category of complex vector spaces to itself.

If V'and W are finite dimensional and the map £is described by the complex
matrix 4 with respect to the bases B of V and C of W then the map 7 is
described by the complex conjugate of 4 with respect to the bases 5 of 7 and
cofwy.

Structure of the Conjugate

The vector spaces Vand 7 have the same dimension over the complex numbers
and are therefore isomorphic as complex vector spaces. Though there is no standard
isomorphism from V'to j/ . This implies that the map C is not an isomorphism,
because it is antilinear.

The double conjugate J/ is naturally isomorphic to ¥ with the isomorphism

V sy defined by,

V.

Typically the double conjugate of V'is simply identified with V.
Conjugate of a Hilbert Space
Given a Hilbert space H(either finite or infinite dimensional), its complex conjugate
H is the same vector space as its continuous dual space 7{". There is one-to-one

antilinear association between continuous linear functionals and vectors.
Alternatively, any continuous linear functional on H is an inner multiplication to

some fixed vector and vice versa.

3.3.2 Natural Embedding of a Normed Linear Space
in its Second Dual

Determining if two given spaces are homeomorphic is one of the fundamental
problems in topology.
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Definition: A one-one and onto (bijection) continuous map f: X — Yis a
homeomorphism if its inverse is continuous.

A bijection f: X — Yinduces a bijection between subsets of X and subsets
of Y and it is a homeomorphism iff this bijection restricts to a bijection,

U—- fU)

Open (or closed) subsets of X
{Open ( ) su }f‘l(V)<—V

{Open (or closed) subsets of Y}

between open (or closed) subsets of X and open (or closed) subsets of Y.

Definition: Suppose Xis a set, Y a topological space and /: X — Y an injective
map. The embedding topology on X (for the map f) is the collection,

SNT)={f"(WIV Y open} of subsets of X.

The subspace topology for 4 — Xis the embedding topology for the inclusion
map 4 - X.

Theorem 3.20 (Characterization of the Embedding Topology): Let X has the
embedding topology for the map /: X — Y. Then,

1. X— Yis continuous.

2. For any map A — Xinto X,

;
A — Xis continuous iff 4 — X — Yis continuous.

The embedding topology is the only topology on X with these two properties.
The embedding topology is the most common topology on X'such thatf: X — Y
1s continuous.

g
Proof: The reason is that 4 — Xis continuous.

g S

Sg'T)cT eog'(f'T)cT, < (f)'(1)cT, o A>X>Y
is continuous by definition of the embedding topology. The identity map of Xisa
homeomorphism whenever X is equipped with a topology with these two properties.
Definition: An injective continuous map /: X — Y'is an embedding if the topology
on Xis the embedding topology for f,i.e., 7 =/,

Any injective map /: X — Y induces a bijection between subsets of X and
subsets of /(X) and it is an embedding iff this bijection restricts to a bijection,

U f(U)

e
between open (or closed) subsets of X and open (or closed) subsets of /(X).

{Open (or closed) subsets of X} {Open (or closed) subsets of f(X)}

Alternatively, the injective map /: X — Y'is an embedding iff the bijective
corestriction /' (X)| f: X — f(X) is a homeomorphism. An embedding is a
homeomorphism followed by an inclusion. The inclusion 4 — X of'a subspace is
an embedding. Any open (or closed) continuous injective map is an embedding.
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Normed Linear Spaces For example, the map f(x) = 3x + 1 is a homeomorphism from R — R.

Lemma: If/: X — Yis ahomeomorphism (embedding) then the corestriction of
the restriction f(A)| f\A: A —> f(4) (B| f\ A: A —> B) is a homeomorphism
NOTES (embedding) for any subset 4 of X (and any subset B of Y containing f(A)). If the
maps ]j X, — Y are homeomorphisms (embeddings) then the product map

[1/::]1]X, Y, isahomeomorphism (embedding).
Proof: In case of homeomorphisms employ that there is a continuous inverse in

both cases. In case of embeddings, employ that an embedding is a homeomorphism
followed by an inclusion map.

A g
Lemma (Composition of Embeddings): Let X — Y — Zbe continuous maps.
Then f and g are embeddings implies that g o fis an embedding which in turn
implies that /' is an embedding.

Proof: For proving the second implication, first note that / is an injective continuous
map. Let U < X be open. Since g o f is an embedding, U =
(gof)! Wtorsome open Wc Z But(gof)'=f"'g'Wwhere g' Wis open
in Y since g is contimuous. This shows that f is an embedding.

Theorem 3.21 (Characterization of the Product Topology): Given the product
topology H Y, . Then,

1. The projections 7, : H Y, — Y, are continuous, and

2. Foranymap f: X— H Y into the product space we have,

jeJ

f e T
Y.. . . Y. . .
X g Jiscontinuous < vy j e J: X E / = Y is continuous.

The product topology is the only topology on the product set with these
two properties.

Proof: Let T, be the topology on X and T, the topology on Y. Then

Se=U s ;' (T ,) is a subbasis for the product topology on 17 . Therefore,

jeJ

f:X—> 117, is continuous <:>f‘1(UjEJ ©(T))c 7,

jeJ

A (Ujleil(n;l(T;))) (= TX

SvjelmofN(T)c=T,

Self - Learning < v jeJ: m;0 f is continuous by definition of continuity
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Now, we have to show that the product topology is the unique topology

with these properties. Take two copies of the product set g X . Provide one

copy with the product topology and the other copy with some topology that has
the two properties of the above theorem. Then the identity map between these
two copies is a homeomorphism.

Theorem 3.22: Let (X)) _ ,be an indexed family of topological spaces with

subspaces 4,cX. Then H 4; is a subspace of E X; .

jeJ
LT -T17,
2. (J14,)° =4, and equality holds if 4, = X, for all but finitely many
jed.
Proof: (1) Let (x) be a point of [T, .Since Sy = Ujej ;' (T ;) is a subbasis

for the product topology on H X, ,wehave

x)e |4, vkel ' (UHN [ 14, # ¢ forall neighbourhoods U,
of x,.

< Vked: U A #¢forall neighbourhoods U, of x,

S vVvkeldix e A_k

= &[4

) (H 4, c H A/ because s is an open map so that T ( (H 4,)°)c
A; forallj e J. If 4, =X for all but finitely many j € J then HA/ c
(H A;)° because H A;. is open and contained in H 4;.

It follows that a product of closed sets is closed.

Note: A product of open sets need not be open in the product topology.

3.3.3 Embedding Lemma and Tychonoff Embedding

Theorem 3.23 (Embedding Lemma): Let 7 be a family of mappings where
each member /'€ F maps X — Y, Then,

1. The evaluation mapping e: X — H feF Y, defined by 0e(x) =f(x), for
all x € X is continuous.

2. The mapping e is an open mapping onto e(X) if F distinguishes points and
closed sets.
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3. The mapping e is one-to-one if and only if F distinguishes points.

4. The mappping e is an embedding if F distinguished points F distinguishes
points and closed sets.

Proof: (1) Let T er I nge the projection map to the space Y, Then

m,0€e =g S0 that T 0e is continuous. Therefore e must be continuous as g is
continuous.

(2) Suppose that U is open in X and x € U. Choose f €F such that f(x)
gm. The set B = {z € e(X)| nf(z) gm} is a
neighbourhood of e(x) as the set is open (it is defined for components not
being in the closed set f(X \U) and clearly e(x) € B. Moreover

ch(B) < f{lU) by construction. It is now claimed that AU) — nf(B). This
follows trivially from the definition of a family of functions distinguishing
points and closed sets. Therefore f(U) == ,,(B) and subsequently /(U) is
an open subset of TEgOé(X). Therefore the evaluation map is an open
mapping.

(3) The definition of distinguishing points implies injectivity.

(4) Combining a, b and ¢, we see that X = e(X) as e is a continuous, open,
injective, surjective (as a continuous map is always surjective onto its image)
map.

Definition: If X is a space and 4, a set then by the power X* we mean the
product space IT X , where X =X, for each o € 4. Any power of [0, 1] s called
a cube. A map e: X — Y is an embedding iff the map e: X — e(X) is a
homeomorphism. If there is an embedding e: X —Y then we say that X can be
embedded in Y.

Theorem 3.24 (Tychonoff’s Embedding Theorem): A space is Tychonoffiff it
can be embedded in a cube.

Proof: = Let X'be a Tychonoft'space and let 4 = {f: X — [0, 1]/ fis continuous}.
Define e: X — [0, 1] by e(x)(f) = f (x).
(i) eisinjective: Ifx,y € Xwith x#y, then there is f €4 so that f{x) =0 and
fy) = 1. Then e(x)(f) # e(y)(f), so e(x) # e(y).
(i) eis continuous: This is immediate since 7 o= .

(7ii) e: X — e(X) carries open sets of X to open subsets of e(X): For let U be
open in Xand letx € U. Then there is f € 4 so that f{x) =0 and fX— U)

=1.LetV= n}l ([0, 1)), an open subset of [0, 1]%. Then e(x) € Vand ify
€ Xissuch thate(y) € V, thene(y)(f) € [0,1),s0f(y)<1andy € U. Thus
e(x) € Vne(X) ce(U).

(i), (if) and (ii7) together imply that e is an embedding.



<:[0, 1] is clearly so [0, 1]* is Tychonoff for any 4. Any subspace of a
Tychonoft space is Tychonoff. Thus if X can be embedded in a cube, then X'is
homeomorphic to a Tychonoff space and so is itself Tychonoff.

Theorem 3.25: Let (T, 7) be the 3-point topological space defined by
T=1{0,1,2} and 7 = { @, {0}, T}. Let (X, /) be any topogical space and
suppose that i/ N X=@. Then there is an embedding e: X — 744,

Proof: For each U € U, define f,: X —> T by f (y) =0ify € Uand f (v)=1ify

¢ U. Thenf, is continuous. For each x ¢ X, define/: X — Tbyf (y)=2ify =
xand f(y) = 1ify#x. Thenf, is also continuous.

Define e by e (y)=f(y) for eachi € U/ U X. Then
(i) eisinjective, forifx,y € Xwithx=#ythene (y)=1bute (x) =2, so e (x)
# e () and hence e(x) # e(y).

(if) eis continuous because each f is continuous.

(iii) eis open into e(X), forif U € Uand x € Uthen V= n;;} (0) is open in T

“*. Furthermore, so m_e(x)=0, so e(x) € V'while ify € Xis such that e(y)
€ Vthen n e(y)=0and hence y € U. Thus V N e(X) C e(U).

3.3.4 Urysohn’s Metrization Theorem

Theorem 3.26 (Urysohn’s Metrization Theorem): Suppose (X, 7) is a regular
topological space with a countable basis B, then X'is metrizable.

Proof: Let (X, 7) be a regular metrizable space with countable basis 3. For this
proof, we will first create a countable collection of functions {f } ., wheref X
— Rforall m € N, such that given any x € X and any open neighbourhood U of
x there is an index N such that £ (x) > 0 and zero outside of U. We will then use
these functions to imbed Xin R".

Letx € Xand let U be any open neighbourhood of x. There exists B, € B
such thatx € B . Now, since X has a countable basis and is regular, we know that

Xis normal. Next, as B, is open, there exists some B, € BB such that BT’ cB,.
Thus we now have two closed sets B_n and X\ B , and so we can apply Urysohn’s

lemma to give us a continuous functiong, :X— Rsuchthatg, ( BT[) ={1} and

g, (X\B )= {0}. Notice here that this function satisfies requisite: g  (y) =0 for
y e X\ B and g (x)> 0. Here, g was indexed purposely, as it shows us that
g} 1s indexed’by NxN, which is countable (since the cross product of two
countable sets is countable). Considering this, relable the functions {g, | as

n,meN
{fl"l } neN”
We now imbed X in the metrizable space R”. Let F: X — R” where F(x)=

(f,(x), £,(x), £,(x), ...), where f_are the functions constructed above. We claim
that F'is an imbedding of X'into R".
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Normed Linear Spaces For Fto be an imbedding it is required of F'to be homeomorphic onto its
image. First, this needs that F'should be a continuous bijection onto its image. We
know that s continuous as each of its component functions f, are continuous by

NOTES construction. Now we show that F'is an injection.

Letx, y € X be distinct. From the Hausdorff condition there exist open
sets U_and U, suchthatx e U,y € U, with U N U= ¢. By the construction of
our maps f there exists an index N € N such thatf (U ) >0 and F,(X\U ) =0.
It follows that f, (x) # f,(v) and so F(x) # F(y). Hence, F'is injective.

Now, as it is clear that F'is surjective onto its image F(X), all that is left to
show is that F'is an embedding. We will show that for any open set U € X, F(U)
is open in R". Let U < X'be open and let x € U. Pick an index N such that /| (x)

>0andf (X\U)=0. Let F(x) =z € F(U). Let V= 7, ((0,00)), i.e., all elements
of R*with a positive Nth coordinate. Now let W= F(X) N V. We claim thatz e W
c F(U) showing that F(U) can be written as a union of open sets, hence making
it open.

First we show that Wis open in F(X). We know that }is an open set in R".
W= F(X) " V,and Wis open by the definition of the subspace topology.

Thereafter, we will first show that f(x) =z € Wand then W c F(U). To
prove our first claim, F(x) =z = (F(x)) = f,(x) > 0 = -7 (2) = \(F(x)) =

S (x)>0= = (z) >0 which means thatz € ny (V) andalsoz € F(X) =z €

F(X) n'V=W.Now we show that W c F(U). Lety € W. This means y € F(X)
NV=Ww.

Now we show that W F(U). Lety € W. This means y € F(X) N V. This
means there exists some w € X such that F(w)=y. But, since y € V'we have that:

n, () =n (F(w))=f,(w)>0sincey € V,butf, (w) =0 forallw e X\U
and so y € F(U).

In conclusion, as we have shown that F: X — R" is a map that preserves
open sets in both directions and bijective onto its image, we have shown that F'is
an embedding of the space X into the metrizable space R" and X is therefore
metrizable, the metric being given by the induced metric from R".

Theorem 3.27: The topology generated by the dictionary ordering on R? is
metrizable.

Proof: From previous Theorem 3.26, all we have to do for showing that R*is
metrizable in the dictionary ordering is to prove that this space is regular with a
countable basis.

Now, since the set {(a, b), (¢, d)|a<c,b<d;a,b,c,d € R} isabasis for
the dictionary ordering on R? and the set of intervals with rational end-points are a

basis for the usual topology on R, it follows that the set {(a, ), (¢, d)ja<c, b<
d;a,b,c,d e Q} isacountable basis for the dictionary ordering.
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Now we will show that the dictionary ordering is regular. Let « € R?and B
< R%such that B is closed in the dictionary ordering and a ¢ B. Let e =inf {d(a,
b)| b € B}. We know that € is greater than 0, for otherwise a would be an
accumulation point of B, which is a contradiction. It follows that the open sets ((«,

a—</2), (a, a+e/2)) and UbeB ((b, b—¢/2), (b, b+€/2)) are disjoint open sets

containing a and B, respectively. Hence, the dictionary ordering over R?is
metrizable, since it is regular and has a countable basis.

Note: In this proof we have shown that a sequence of functions {f } . with the property
that for each x € X'and each neighbourhood U of x there is some 7 € N such that f (x) >0 and
Jf.(»)>0forally eX\U, gives us an imbedding : X — R". Notice that we have the very similar
result if we have a sequence of functions {f} _, with same properties as above: given any x
€ X and any neighbourhood U of x there exists j€J such that Jj(x) >0and Jj(y) =0forally eX
\U, then we have an imbedding from X — R/ given by F(x) = (];(x))jE - This is known as the

imbedding theorem and is a generalization of Urysohn’s metrization theorem.

3.4 UNIFORM BOUNDEDNESS PRINCIPLE
AND ITS CONSEQUENCES

Theorem 3.28 (Baire): Suppose X is a complete metric spaceand (X)) _ isa
sequence of closed subsets in X. Also suppose that,

IntX, =0V nx1
Then

Int (U an =0
n=1
Proof: Fix O, = X sothat O isopenand densein X V n>1. We will show

that G = ﬂ 1 O, isdense in X. Let ® be a nonempty open set in X. We shall

prove that (G # 0 . As usual set,
B(x,r)={y e X;d(y,x)<r}

Choose any x, € o and ;> 0 such that,
B(xp,1) C O
Now select x; € B(x,,%,)(10, and r, >0 such that,
B(x,,1;) € B(x,,1,)NO,
O<rn< U
2

This is true as O, is open and dense. Construct two sequences (x ) and (7 )
by induction such that,
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B(xn+1’rn+l) CB(xn7rn)mon+l’ vn 20

r
O<r <=2,

n+l

NOTES

Clearly, (x,) is a Cauchy sequence. Suppose x, — ¢. Now as

X,., € B(x,,r,) foreveryn >0 and for every p 2 0,as p — oo

leB(x,,r), VYn=0
or fe w1G.

The Uniform Boundedness Principle

Consider two vector spaces E and F. Let L(E, F) denote the space of continuous
linear operators from £ into F'set with the norm,

T ||L‘(E,F): sup || Tx |
xek
[Ixll<1

For L(E, E) we can write L(E).

Theorem 3.29 (Banach-Steinhaus Uniform Boundedness Principle):
Consider two Banach spaces £ and F'be and let (T))ie/ be a family of continuous
linear operators from E into F. Let,

sup||Tl.x||<oo‘v’er (3.1)
iel

Then

sup || 7; || )< P (3.2)
iel

Or

There exists a constant ¢ such that
ITx||<cl|x|| VxeE, Viel

Proof: Let,
X,={xekE; Viel, |[Tx||<n}Vnz1

so that X is closed. From Equation (3.1) we have,

From the Baire category theorem, Int(X ;) # 0 for some n > 1. Let us

choose x, € E and »> 0 such that B(x,,7) € X,,. We have,

IT(x,+rz)||<n, Viel, VzeB(0,1)
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= r|| T ||,C(E,F)S ny+ || Tx, ||

= Su1p IT; ||L‘(E,F) <o
e

Corollary 1: Consider two Banach spaces £ and F. Let (7)) be a sequence of
continuous linear operators from £ into F such that Vxe E as n— oo, T x
converges to a limit denoted by 7x. Then we have,

1. sup, ||, ||£(E,F) <o
2. Te L(E,F)
30T lggry S lim inf, (T, [z ez )

Proof:

1. It follows straightforwardly from Theorem 3.20 and hence there exists a
constant ¢ such that

ITx||<cl|x|| Vn, VxekE
Atthe limit we find
ITx|| < cl|x|| VxeE
2. It follows since T'is linear.
3. Lastlywehave || x| < || T, llziz | x| ¥V € E whichimplies (3).
Corollary 2: Let G be a Banach space and let B be a subset of G. If for every f

e G* the setf(B) = {(f.x); x € B} is bounded in R (3.3)
then
B is bounded 3.4

Proof: Apply Theorem 3.28 with E=G*, F=R and I/ = B. For every
beB,set

L,()=(f.b), feE=G*

From Equation (3.3) this gives,

sup|T,(f)[ <o Vf€E

beB

From Theorem (3.28) there exists a constant ¢ such that,

[(f.b)|<c| fIIVfeG* VbeB

Therefore,

|b]| <c Vbe B
Corollary 3: Consider a Banach space G and a subset B* of G*. Suppose, for
every y e G the set <B*,x> = {(f,x}; feB *} is bounded in R (3.5
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Normed Linear Spaces Then
B*isbounded (3.6)
Proof: Apply Theorem 3.28 with E=G, F= R and j = p*.Forevery p ¢ B*
NOTES fix,

T,(X)=(b,x)(xeG=E)

We get that there exists a constant ¢ such that,
|<b,x>\£c|| x|| VbeB*, VxeG
From the definition of dual norm,

Ib|<c VheB*

Theorem 3.30 (Open Mapping Theorem): Consider two Banach spaces £
and F and let 7'be a continuous and onto linear operator from £ into F. Then
there exists a constant ¢ > 0 such that,

T(B,(0,1))>B,(0,c) (3.7)

Equation (3.7) means that the image under 7 of any open set in £ is an open
setin /. Suppose U'is open in E. We will show that 7(U) is open. Fix any point
¥, € T'(U) such that y, = Tx, for some x, €U. Let » > 0 be such that

B(x,r)cU,ie, x,+B(0,r)cU. Theny,+T (B (0, r) < T(U)
From Equation (3.7) we get that,

T(B(0,r)>B(0,r)

and hence,

By, rc) c T(U)

Corollary 4: Consider two Banach spaces £ and F and let 7' be a continuous
linear operator from E into F that is bijective. Then 7' is also continuous.

Proof: From Equation (3.7) and the assumption that 7'is one-to-one we get that
ifx € E'is chosen so that || 7x || <c, then || x || < 1. By homogeneity, we get

||x||Sl||Tx|| VxekE
c

Corollary 5: Consider a vector space E provided with two norms, ||[|, and | ||,.
Let £ be a Banach space for both norms and let there exists a constant
C >0 such that,

x|, <Cllx]|l, VxekE
Then, there is a constant ¢ > 0 such that,
x|, <Cl|x]|], VxekE

i.e., the two norms are equivalent

Proof: We get the result by applying Corollary 4 with E=(E, ||[|,), F'=(E,|/[,)
and T=1.
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Proof of Theorem 3.29

Case 1: If T'is a linear onto operator from E onto F, then there exists a constant
¢ >0 such that,

T(B(0,1)) > B(0,2¢) (3.8)
Proof: Fix X, =nT(B(0,1)).As Tis onto, we have U”_, X, = F. By the Baire
category theorem there exists some 7, such that Int(X, ) # 0. This implies,

Int[7(B(0,1))]# 0.

Choose ¢>0 and y, € F'such that,

B(y,,4c) < T(B(0,1)) (3.9)

Particularly, y, € m and by symmetry

—¥, € T(B(0,1)) (3.10)
Summing Equations (3.9) and (3.10) we get,

B(0,4c) = T(B(0,1)) + T(B(0, 1))

Alternatively, since T(B(0, 1)) is convex we have

T(B(0,1))+ T(B(0,1))=2T(B(0,1))
and Case 1 follows.

Case 2: Assume 7'is a continuous linear operator from £ into F that satisfies
Equation (3.8). Then we have,

T7(B(0, 1)) o B(0, ¢) (3.11)
Proof: Choose any y € F' with ||y|| < c. We have to get some x € E such that,

x| <1 and Tx = y.

Equation (3.8) implies that,

Ve >0 EIZEEwith||z||<%and||y—Tz||<e (3.12)
Picking € = ¢/2, we find some z, € E such that,

1 c
|z, ||<5 and || y — Tz, ||<5

Applying the similar construction to y — 7z, with € = ¢/4 we get some
z, € E'such that,

1 c
2, |I<Zand||(y—TZI)—Tzz ”<Z

Proceeding likewise, by induction we obtain a sequence (z,) such that,
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n

1 c
|z, ||<2—nand||(y—T(Z1 +z,+..2, ||<2—n‘v’

NOTES Clearly the sequence x, =z, +z, +... 4+ z, is a Cauchy sequence. Let

x, = x with ||x|| <1 and y = T’ since T'is continuous.

Theorem 3.31 (Closed Graph Theorem): Consider two Banach spaces E and
F. Let T'be alinear operator from E into F. Let the graph of 7, G(7) be closed in
E x F.Then T'is continuous.

Proof: Let,
lx[l, =[xz + | Tx|| and || x|, = x|l
be the two norms on E.

Note: The norm || ||, is termed as the graph norm.

Since G(7) is closed, E'is a Banach space for the norm || [|,. Alternatively,
E is also a Banach space for the norm || ||, and |||, <|| ||,. From Corollary 5, the
two norms are equivalent and hence there exists a constant ¢ > 0 such that |lx||, <

c|ix|l,- Hence we can infer that || 7x ||, < c || x|, .

3.5 QUOTIENT SPACE OF NORMED LINEAR
SPACE AND ITS COMPLETENESS

Definition
Let M be asubspace of a linear space L and let the coset of an element x in L be
defined by

x+M={x+mmeM}

Then the distinct cosets form a partition of and if addition and scalar
multiplication are respectively defined by

and

ag(x+M)=ax+M
then these cosets form a linear space denoted by L/M and called the quotient
space of L with respect to M. The origin in L/M is the coset 0 + M = M and the
negative of

x+Mis(—x)+ M
Theorem 3.32

Let M be a closed linear subspace of a normed linear spaceN. If the norm of a
cosetx + M in the quotient space N/M is defined by
Ix+Ml=Inf{l x+m l;m € M] ..(3.13)

then N/M is a normed linear space. Further if N is a Banach space, then so is
N/M.
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Proof: We first check that (3.13) defines a norm in the required manner. It is clear
that || x + M ||= 0. since || x + m || is a non-negative real number and every set

of non-negative real numbers is bounded below, hence inf{Jl x + m [, m € M }
is non negative, i.e.,

Ilx+MJ=0vx+Me N/M

Also || x + M ||= 0 < there exists a sequence {m, } in M such that
Ix +my ] — 0
& xisinM
& x+M=M=The zero element of N/M

Now

Ix+M) +@y+M)=lIE+y)+MlI

= Inf{llx+y+ml;me M}
= Inf{lx+y+m+ m;mandm € M}
= Inf{(x+m) + (y+m)l;mm €M}
<Inf{ll x4+ m l;m € M} + Inf{lly + m'|| - m" € M}
=lx+MI+ly+Ml

lax+M) Il=Inf{ll a(x+m) [l;m € M}
=Inf{|e| | x+ m [; m € M}
= |a|Inf{ll x + m |l; m € M}
=lalllx+MIl

Letus assume that N is complete and we will show that N/M is also complete.
If we start with a Cauchy sequence in N/M, then it is sufficient to show that this
sequence has a convergent subsequence. It is clearly possible to find a subsequence
{x_n+M} of the original Cauchy sequence such that
(x1 + M) — (x2 + M)I| < %

1
(2 + M) = (x5 + M)Il < m

and in general

1
"(Xn + M) - (Xn+1 + M)" < 2_"

We will show that this sequence is convergent in N/M. Let us choose any
vector y; inx; + M and we select y, in x, + M such that lly; - y,ll < % We now
choose a vector y, in x, + M such that lly; —ysll < i Continuing in this way we

. . 1
obtain a sequence {y } in N such that 1%, = yn41ll <3 1fm <n, then

"ym - Yn” =l Ym — Ym+1) + (Ym+1 - Ym+2) + et (Yn—l - Yn) Il
S MYm = Ym+1ll + 1Ym+1 = Ymt2ll + -+ lyn—1 — yull
1 1
< 2m + 2m+1 Tt 2n—1
1 1
<2_m+2m+1 + -+
_ @2y 1
- 1 2m+1
1-3

So {y,} is a Cauchy sequence in N. Since N is complete, there exists a vectory in N such that
y, = y. Finally
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l(xy + M) —(+M)Il=llx,—y+MI
< Inf{llx, —y + m|;m € M}
<|x, +m—yl| forallmeM

Buty, = x, + m,, forsomem, € M
< |ly, —yll = Osincey, = y.
Hence x, + M >y +M € N/M
= N/Miscomplete.

Definition

A series L=y @, , &, € X issaid to be convergent to x £ ¥, where Xis anormed
linear space if the sequence of partial sums < §_ =>where S, = XL, a; converges
toxi.e. forevery €= 0, there exists ny € N suchthat IS, — %[l <Eforn = n,,
A series Zq=1 2, is said to be absolutely convergent if Zn=4 I, [l is convergent.

Since every normed linear space is a metric space, hence every convergent
sequence in it is Cauchy but not conversely.

Theorem 3.33

A normed linear space is complete if and only if every absolutely convergent series
in X is convergent.

3.5.1 Bounded Linear Transformation

Definition

A linear transformation T is said to be bounded if 3 a non negative real number K
such that

I T ISKIxI vx
where K is called bound for T.
Definition
Let T be a continuous linear transformation, then
I'T I=sup{ll T(x) I; I x I< 1}
is called the norm of T.
Clearly norm of T is the smallest M for which || T(x) lI< M || x |l holds for every
el TI=Inf{M; || T(x) I<M [ x |}}

Theorem 3.34: Let N and N’ be normed linear spaces and let T be a linear
transformation of into . Then the inverse T-! exists and is continuous on its domain
of definition iff 3 exists a constant m >0 s, that

m || x I<I T(X) Il vx € N. ..(3.14)
Proof: Let (3.13) hold. To show that T-! exists and is continuous. Now exists iff
T isone - one. Let x;,%x-, € N. Then



Normed Linear Spaces

ISIT(x1 —x2) I=0 T =Tx2) =>TE) —Tx) =0 mllx;—x;
= Ix; —x31l=0 =T —x,)=0
=X, —X%x; =0 by (3.13)
= X1 =Xy

Hence T is one one and so T exists. Therefore, to each y in the domain of NOTES

T-' 3 x in N such that
T =y=>x=T(y)
Hence (3.13) is equivalent to
1
mIT=yl <l y 1= IT @I <— 1yl

= T~!is bounded
= T~1is continuous (by the above theorem)

Conversely let T exists and be continuous on its domain Y[N]. Letx € N
Since T exists, there is an y € T[N]s. That
') =xeT® =y
Again sinceT is continuous, it is bounded so that 3a + ve constant Ks.
That
IT 'yl < Kly =0 x IS K I TGO I

1
>ml| x IS T(x) | wherem = <> 0

Theorem 3.35
Let N and N’ be normed linear spaces and let T be a bounded linear transformation

of Ninto N': Put
a=sup{ll T) I;x € N, I x lI= 1}
b = sup{ll T(x) Il/Il x Il; x € N;x # 0}
c=Inf{K;K>0,Il T(x) IS Kl x|l vVx € N}

ITl=a=b=c

and
ITTEISITINIxI Vx€eN

Proof: By definition of norm
I Tl=sup{ll Tx) I;x€N,IxI<1}

Bydefinitionofe, | T(x) I=sclizll ¥xEN
andif |l x I= 1,then|l T(x) lI< cvVxEN
and so sup{ll T(x) FxEN,lIxll£1} <C

1.€.
ITI<C.

Also by definitionof band ¢, itisclearthate << B[J| T < ¢ < b].Again

ifx # 0,
Then
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and ﬁ has norm 1. Hence we conclude from the definitions of b and a that . But
X
it is evident that

a=sup{ll T IxeN;lIxlI=1} < sup{ll Tx) bxEN; I x II< 1}
=a<|TI.
Thus we have shown that
ITISc<b<a<ITI
=>|Tll=a=b=c
Finally definition of b shows that

Il T(x) |I< up{IT()II

h=xn - (g
=b=ITI
SHTE ISET I

ENXiO}

Remark : Now we shall denote the set of all continuous (or bounded) linear
transformation of N into N' by B(N, N") [ where letter B stands for bounded ].

3.5.2 Normed Linear Space of Bounded Linear
Transformations
Definition

Let V, W be normed vector spaces (both over & or over ¢ ). A linear transformation
or linear operator T': ¥ — W is bounded if there is a constant C such that

Il Tx llw<C Il xlly forallx € V. ..(3.15)

Remark

We use the linearity of 7'and the homogeneity of the norm in #'to see that

Il = Il =

Here T'is bounded and satisfies (3.15), ifand only if

sup I T(x) lly<C.
lIxlly=1

Theorem 3.36

Let V,Wbe normed vector spaces and let T: ¥ — W be a linear transformation.
Then the following statements are equivalent:

1. Tis abounded linear transformation.
2. Tiscontinuous everywhere in .
3. Tiscontinuous at 0 in.

Proof: (1.) = (2.): Let C be the constant as defined in the definition of bounded
linear transformation. By linearity of 7'we have

T =T ly=ITw-=-")lIly<Clv-=7Iy
which implies (2.).
(2) = (3.) is trivial.



(3.)= (1.): It is continuous at 0, then there exists >0 such that forall ¢ € ¥

with Il v < & we have || Tv 1< 1. Now letx € Vand x = 0. Then

X X
5—“ = 5/2and th ”T(a )H <1.
H 20 iyl /2 and thus x /M,

But by the linearity of 7'and the homogeneity of the norm we get

1>||T<5 a )|| 'a re) ) LI
= = = X
I iy /1, 20 lyll, ~ 21 x 1y v

and therefore | Tx llyw=C Il x ly with € = 2/4.

Notation: If T: ¥ — W is linear one often writes T'x for T(x ).

Definition

We denote the set of all bounded linear transformations T: ¥ — Wby L(V, W)

L(V, W) forms a vector space. §+ T is the transformation with (S + 7)

(x) = S(x)+ T(x)and cT is the operator x + T (x). On L(V, W) we define
the operator norm (depending on the norms on V"and W) by

I T lly
T =0T lpp=sup———r-
s EE e e v lly
Wecansee |l T ll iy w7y as the best constant for which (3.15) holds. Also
note

I Ty =0 T Wpgp gy | 2 llp-
Using the homogeneity of the y4-norm cab also be written as

WT Hppwwy= sup Il Tx lly-
iy =1

We use the lI-ll,, notation if the choice of V, W and the norms are clear
from the context.

Lemma

Let V" and W be normed spaces. If V' is finite dimensional then all linear
transformations from V'to W are bounded.

Proof: Let vy, ..., v, be abasis of V. Then for v = F%_, &, v, we have

mn
17t |Ear

The expression My la, | defines anorm on V. Since all the norms
on Vare equivalent, there is a constant C, such that

max |fo,—| 23y

!
i g Z a;v;
o =1

for all choices of ey, ..., a,,. Thus we get || Tv |l,< C | v Il forall v eV,

where the constant C is givenby € = ¢, X%_ [T v |

Normed Linear Spaces

NOTES

Self - Learning
Material

135



Normed Linear Spaces

NOTES

Self - Learning
136  Material

Lemma

1/2

On g, m™ use the Euclidean norms | x |l,= ( 5 |x}-|2)
=t
by T(x) Ax. Let

TR z 1/2
A ﬂH5==(E ¥ Iafjl‘)

i=1j=1 _
Then
T M=l A llgs-
Proof:

m 2

1 n

1ax 1= | Taz,
j=1

i=1

By the Cauchy-Schwarz inequality,
< ) Jay 0 x 1
=1

I Ax =1 A llgsll x 12

n
Z a;x;
=1
and therefore

forall x € EB™.
Thusll T l,, =N A llgs-

4 m z lfn':
My l= (2 Iyi-l*) .
=1

Let A be anm % n matrix and consider the linear operator ., pn _, pm defined

Check Your Progress
7. Define vector spaces and their ordered basis with the help of an
example.

8. Give the general formulation Hahn-Banach theorem.

9. Whatis Banach space?
10. When is metric space X considered as complete?
11. Define the term embedding.
12. Whatis embedding lemma?
13. Give the statement of Urysohn’s metrization theorem.
14. State closed graph theorem.

3.6

ANSWERS TO ‘CHECK YOUR PROGRESS’

. Anormed linear space is a vector space X and a non-negative valued mapping

||-|| on X termed as the norm, which satisfies the following properties:
(1) |x||=0ifand onlyifx =0.
(i1) ||la x||=|a]|[x]|, for all scalars a.
(1) [[x + vl < [|x]| + [yl



10.

11.

12.

13.

Here ||x|| is considered as the length of x or the distance from x to 0. Fora
given vector x, if y is defined as (1/|[x]) X, then y has unit length and is called
the normalized vector for x.

The 2- or 3-dimensional vectors are defined through real valued entries

and the ‘Length’ of'a vector can easily be extended to any real vector space
R,

. A'seminormed vector space is a pair (¥,p) where Vis a vector space and p

aseminorm on V. Anormed vector space is a pair (¥, -) where V'is a vector
spaceand - anormon V.

. Alinear transformation means a map 7: V' — W, such that T(ox + By) =

aT(x)+BT(y) wherex,y € V, a, B € Fand V, W are vector spaces over
the field F.

. If V'and W be two vector spaces (over F) of dim m and n respectively.

Then Hom (¥, W) has dim mn.

Alinear transformation 7: V' — Wis non singular iff 7 carries each L.L.
subset of " onto a L.1. subset of 7.

If U(F), V(F) be vector spaces of dimension n and m respectively then 3
={uy, ..., up}, B'={v1, ..., v} be their ordered basis respectively.

The most general formulation Hahn-Banach theorem can be given for a
vector space V over the field R of real numbers where a function f : '— R
is called sublinear.

. A Banach space is a complete normed vector space or a Banach space is a

vector space which is equipped with a norm and which is complete with
respect to that norm.

A metric space X'is considered as complete if every Cauchy sequence in X
converges to a point in X. Normed spaces whose induced metric spaces
are complete are specified with a special name. A Banach space is anormed
space whose induced metric space is complete.

Suppose Xis a set, Y a topological space and f: X — Y an injective map.
The embedding topology on X (for the map f) is the collection,

f_l(Ty) = {f_l(V)|V<: Y open} of subsets of X.

Let F'be a family of mappings where each member f € F maps X — Yf
Then,

* The evaluation mapping e: X — defined by mroe(x) =/ (x), forall x
X, is continuous.

¢ The mapping e is an open mapping onto e(X) if F distinguishes points
and closed sets.

e The mapping e is one-to-one if and only if F distinguishes points.
¢ The mappping e is an embedding if F distinguished points F distinguishes
points and closed sets.

Suppose (X, 7) is a regular topological space with a countable basis B,
then Xis metrizable.
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14.

Consider two Banach spaces £ and F. Let T'be a linear operator from £
into F. Let the graph of 7, G(T) be closed in E % F'. Then T'is continuous.

3.7

SUMMARY

A normed linear space is a vector space X and a non-negative valued mapping
||-|| on termed as the norm.

The 2- or 3-dimensional vectors are defined through real valued entries and
the ‘Length’ of a vector can easily be extended to any real vector space Rn.

The zero vector ‘0’ has zero length whereas every other vector has a positive
length.

Multiplying a vector by a positive number changes its length without changing
its direction.

The triangle inequality holds, i.e., taking norms as distances, the distance
from point A through B to C is never shorter than going directly from A to C
or the shortest distance between any two points is a straight line.

A vector space on which a norm is defined is then called a normed vector
space.

A seminormed vector space is a pair (V,p) where V'is a vector space and p
aseminormon V.

Anormed vector space is a pair (V, -) where V'is a vector space and - a
normon V.

A Linear Transformation (L.7.) means amap 7: V'— W, such that T(ow +
By) = aTl(x) + BT(y) where x, y € V, a, B € F and V, W are vector
spaces over the field F.

The notation L(V, W) is also used for denoting Hom (V, ).

If and W be two vector spaces (over F) of dim m and » respectively.
Then Hom (¥, W) has dim mn.

A linear transformation 7: V'— Wis non singular iff 7 carries each L.1.
subset of Vonto a L.I. subset of /7.

A function f: R — R is continuous on R iff for every open set Gin R, f_1
(G)isopeninR.

A function f: R — R is continuous on R iff for every closed set 4 in R f_1
(4)isclosedinR.

If function g is continuous at @ and fis continuous at g(a) then the composite
function fo g is continuous at a.

The function fdefined by f{x) = a* and a > 0 is one-one strictly monotonic
(a# 1) and continuous on the domain R with range (0, ). Therefore, the
inverse function fl exists and is continuous strictly monotonic as ax on the
domain (0, «0) with R as range.

The most general formulation Hahn-Banach theorem can be given for a
vector space V over the field R of real numbers where a function f: V—R
is called sublinear.



¢ A Banach space is a complete normed vector space or a Banach space is a Normed Linear Spaces
vector space which is equipped with a norm and which is complete with
respect to that norm.

e A metric space Xis considered as complete if every Cauchy sequence in X
converges to a point in X. Normed spaces whose induced metric spaces
are complete are specified with a special name. A Banach space is a normed
space whose induced metric space is complete.

NOTES

e The P spaces are function spaces defined using a natural generalization of
the p-norm for finite-dimensional vector spaces. They are sometimes called
Lebesgue spaces, named after Henri Lebesgue.

e Let X'be anormed space and X** = (X*)*denote the second dual space
of X. The canonical mapdefined by gives an isometric linear isomorphism
(embedding) from Xinto X**.

e Suppose Xis aset, Y atopological space and /: X — Y an injective map.
The embedding topology on X (for the map f) is the collection, f° —1 (Ty)=
{f_l(V)|Vc Y open} of subsets of X.

e Aspaceis Tychonoffiff it can be embedded in a cube.

e Suppose (X, 7) is a regular topological space with a countable basis B,
then X'is metrizable.

e Consider two Banach spaces £ and F' be and let (7})i/ be a family of
continuous linear operators from E into F.

e Consider two Banach spaces £ and F'and let 7'be a continuous and onto
linear operator from £ into F. Then such that, there exists a constant ¢ > 0.

e Consider two Banach spaces £ and F'. Let 7'be a linear operator from £
into F. Let the graph of 7, G(T) be closed in £ x F. Then T'is continuous.

3.8 KEY TERMS

e Norm: A normed linear space is a vector space X and a non-negative
valued mapping ||.|| on X termed as the norm.

e Normed vector space: A vector space on which a norm is defined is then
called a normed vector space.

e Seminormed vector space: Seminormed vector space is a pair (V, p)
where Vis a vector space and p a seminorm on V.

¢ Linear transformation: A linear transformationmeansamap 7: V— W,
such that 7(ox + By) = aT(x) + BT(y) wherex,y € V, o, B € Fand V,
Ware vector spaces over the field F.

e Banach space: A Banach space is a complete normed vector space or a
Banach space is a vector space which is equipped with a norm and which
is complete with respect to that norm.

e LP spaces: The LP spaces are function spaces defined using a natural
generalization of the p-norm for finite-dimensional vector spaces. They are

sometimes called Lebesgue spaces, named after Henri Lebesgue. i;"; i ,Lel‘“’”i”g 139
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3.9

SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1.

—_—
—_ O

0 0 2k w

What is the importance of normed linear spaces?
Why is linear transformation used?

How will you define metric on normed linear spaces?
What are dual spaces in linear transformation?

What is bounded linear transformation?

Define Banach spaces.

Specify the term completeness.

What is the importance of conjugate spaces?

What is embedding?

State the embedding lemma.

. Where is Urysohn’s metrization theorem applied?
12.

State Baire category theorem.

Long-Answer Questions

1.

10.

Show that image of a L.1. set by a L.T., need not be L./. (consider zero
L.T).

. Letdim V'=n, T: V— Vbe a L.T. such that Range 7= Ker 7. Show that

nis even. Prove that T: RZ — R2, such that, 7(x1,x2) =(x2,0)is such a
L.T.

. Show that £ R* — R%, such that, £ (x, y, z, £) = (2x, 3, 0, 0) is a L. T. Find

its rank and nullity.

. Find the L.T. from R3 — R3 which has its range the subspace spanned by

(1,0,-1),(1, 2,2).

. Let G be the set of all invertible linear transformations from V' — V'then

show that G forms a group under product of linear transformations.

. LetT:R3 > R2, S: RZ -5 R2 be linear transformations. Show that ST'is

notinvertible.

. Show that it is possible to find two linear operators 7, U on R2 such that

TU =0 but UT # 0. (Consider (x1, x2) = (x1, 0) and (x1, x2) — (0,
x1)-

. Alinear transformation 7" V' — Vis called idempotent or a projection if

T2=T. Show that if S, T'are idempotent and S7= TS then ST and S+ 7T—
ST are idempotent and if ST+ 7.S = 0 then S + T'is idempotent.

. Ifthe L.T. T: R7 — R3 has a four dimensional Kernel, show that range of T

has dimension three.

Prove the characterization of the embedding topology.



11. Give the proof of Urysohn’s metrization theorem.
12. State and prove Baire category theorem.

13. What do you mean by bounded linear transformation? Explain.
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UNIT 4 FINITE DIMENSIONAL
NORMED SPACES AND
SUBSPACES

Structure

4.0 Introduction
4.1 Objectives
4.2 Equivalent Norms
4.3 Finite Dimensional Normed Linear Spaces and Compactness
4.3.1 Linear Transformation in Vector Spaces
4.4 Riesz’s Lemma
4.5 Adjoint Operators
4.5.1 Reflexive Spaces
4.6 Finite Dimensional Normed Spaces and Subspaces
4.7 Hahn-Banach Theorem for Normed Linear Spaces
4.7.1 Hahn-Banach Theorem for Real Linear Space
4.7.2 Hahn-Banach Theorem for Complex Linear Space
4.8 Weak Convergence
4.9 Answers to ‘Check Your Progress’
4.10 Summary
4.11 Key Terms
4.12 Self-Assessment Questions and Exercises
4.13 Further Reading

4.0 INTRODUCTION

In mathematics, anorm is a function that assigns a strictly positive length or size to
all vectors in a vector space other than the zero vector while a seminorm is allowed
to assign zero length to some non-zero vectors. A normed vector space or normed
space is a vector space over the real or complex numbers, on which a norm is
defined. A norm is the formalization and the generalization to real vector spaces of
the intuitive notion of ‘Length’ in the real world. Riesz’s lemma (after Frigyes Riesz)
is alemma in functional analysis. It specifies (often easy to check) conditions that
guarantee that a subspace in anormed vector space is dense. The lemma may also
be called the Riesz lemma or Riesz inequality. It can be seen as a substitute for
orthogonality when one is not in an inner product space.

In functional analysis, each bounded linear operator on a complex Hilbert
space has a corresponding Hermitian adjoint (or adjoint operator). Adjoints of
operators generalize conjugate transposes of square matrices to (possibly) infinite-
dimensional situations. If one thinks of operators on a complex Hilbert space as
generalized complex numbers, then the adjoint of an operator plays the role of the
complex conjugate of a complex number. In a similar sense, one can define an
adjoint operator for linear (and possibly unbounded) operators between Banach
spaces. The adjoint of an operator 4 may also be called the Hermitian conjugate,
Hermitian or Hermitian transpose (after Charles Hermite) of A and is denoted by
A" or A7 (the latter especially when used in conjunction with the bracket notation).
Confusingly, A” may also be used to represent the conjugate of 4.
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A reflexive space is a locally convex Topological Vector Space (TVS)
such that the canonical evaluation map from Xinto its bidual (which is the strong
dual of the strong dual of X) is an isomorphism of TVSs. Since a normable TVS is
reflexive if and only if it is semi-reflexive, every normed space (and so in particular,
every Banach space) Xis reflexive if and only if the canonical evaluation map from
Xinto its bidual is surjective; in this case the normed space is necessarily also a
Banach space. In 1951, R. C. James discovered a Banach space, now known as
James’ space that is not reflexive but is nevertheless isometrically isomorphic to its
bidual (any such isomorphism is thus necessarily not the canonical evaluation map).

In this unit, you will learn about the equivalent norms, finite dimension normed
linear spaces and compactness, Riesz lemma, adjoint operators and reflexive
spaces.

4.1 OBJECTIVES

After going through this unit, you will be able to:
¢ Explain the concept of equivalent norms
¢ Describe finite dimensional normed spaces and compactness
¢ Explain Rieszlemma
¢ Discuss adjoint operators and reflexive spaces
e State reflexive spaces

4.2 EQUIVALENT NORMS

A norm is a function that assigns a strictly positive length or size to all vectors in a
vector space other than the zero vector while a seminorm is allowed to assign zero
length to some non-zero vectors.

A simple example is the 2-dimensional Euclidean space R? equipped with
the Euclidean norm. Elements in this vector space, example are usually drawn
as arrows in a 2-dimensional Cartesian coordinate system starting at the origin
(0, 0). The Euclidean norm assigns to each vector the length of'its arrow. Because
of this, the Euclidean norm is often known as the magnitude. A vector space
with a norm is called a normed vector space. Similarly, a vector space with a
seminorm is called a seminormed vector space.

Given a vector space V over a subfield F of the complex numbers, a norm
on V'is a function p: V'— F with the following properties:

Foralla.Fandallu,v./V,
1. p(av)=|a| p(v), (positive homogeneity or positive scalability).
2. p(u+v)<p(u)+ p(v) (triangle inequality or subadditivity).
3. If p(v) =0 then v is the zero vector (separates points).

A simple consequence of the first two axioms, positive homogeneity and
the triangle inequality, is p(0) =0 and thus,

p(v) =20 (positivity).
A seminorm is a norm with the 3rd property (separating points) removed.



Although every vector space is considered seminormed. Every vector space
V' with seminorm p(v) induces a normed space V/W, called the quotient space,
where W is the subspace of V' consisting of all vectors vin V'with p(v) =0. The
induced norm on V/Wis clearly well-defined and is given by,

pP(W+v)=p(v).

A topological vector space is called normable (seminormable) if the topology
of the space can be induced by a norm (seminorm). The norm of a vector v is
usually denoted ||v|| and sometimes |v|. The latter notation is generally not used
because it is also used to denote the absolute value of scalars and the determinant
of matrices. The following are some example of norms:

e Allnorms are seminorms.
e The trivial seminorm, with p(x) =0 for all x in V.
e The absolute value is a norm on the real numbers.
e Every linear form f on a vector space defines a seminorm by
X — (X))
Euclidean Norm

On an n-dimensional Euclidean space R”, the perceptive notion of length of the
vector x = (x, x,, ..., x,) is illustrated by the formula,

¥l = A2+ +

The Euclidean norm is the most commonly used norm on R”.

On an n-dimensional complex space C" the most common norm has the
form,

”Z” = \/|Zl|2 +---+|zn|2 :\/2121 +.t2z,Z,.

In both the cases we can express the norm as the square root of the inner
product of the vector and itself as follows:

el = yx*x,

Here x is represented as a column vector ([x; x; ...; x ]), and x* denotes
its conjugate transpose.

This formula is applicable for any inner product space, including Euclidean
and complex spaces. For Euclidean spaces, the inner product is equivalent to the
dot product. Hence, in this specific case the formula can also be written with the
following notation:

Il = /- x.

The Euclidean norm is also called the Euclidean length, L2 distance, 2

distance, L*norm or ¢2 norm. The set of vectors in R whose Euclidean norm
is a given positive constant forms an n-sphere.
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The Euclidean norm of a complex number is the absolute value (also called
the modulus) of it, if the complex plane is identified with the Euclidean plane R?.
This identification of the complex number x + iy as a vector in the Euclidean plane

makes the quantity |/xZ + y2 (first suggested by Euler) the Euclidean norm

associated with the complex number.

Taxicab Norm or Manhattan Norm or L1 Norm

n
[EIIREDNEAT
i=1

The name relates to the distance a taxi has to drive in a rectangular street
grid to get from the origin to the point x.

The set of vectors whose 1-norm is a given constant forms the surface of a
cross polytope of dimension equivalent to that of the norm minus 1. The Taxicab
norm is also called the L norm. The distance derived from this norm s called the
Manhattan distance or L distance.

p-Norm

Letp > 1 be areal number.

n 1/p
||x||p:=[2|xi ij :
i=1

Note that for p = 1 we get the taxicab norm, for p =2 we get the Euclidean
norm and as p approaches oo the p-norm approaches the infinity norm or maximum
norm.

The Lr class is a vector space and it is also true that the function,

[ /@ g du

(without p-th root) defines a distance that makes L7(X) into a complete
metric topological vector space.

Other Norms

Other norms on R” can be constructed as follows:

x =211 [+ /3] x5 P+ max( x3 2] x, )2

This is anorm on R*.

For any norm and any injective linear transformation 4 we can define anew
norm of x equal to ||4x|.

Weak and Strong Convergence

Definition: Asequence (x ) in anormed space Xis said to be strongly convergent
if there is an x € X'such that,



lim || x, —x||=0
n—yoo

This is written as,
lim x, =x
n—yoco

Or as,

X, =X

x is called the strong limit of (x ) and we say that (x,) converges strongly
to x.

Definition: A sequence (x ) in anormed space Xis said to be weakly convergent
if there is an x € X'such that for every f € X',

lim f(x,) = /(x)

This is written as,

Or as,

X

n

X

The element x is called the weak limit of (x ) and we say that (x ) converges
weakly to x.

Check Your Progress

1. Define anormed vector space.
2. When is a topological space said to be completely normal?
3. What is Euclidean norm?

4. Define weak convergence.

4.3 FINITE DIMENSIONAL NORMED LINEAR
SPACES AND COMPACTNESS

The motivating factor in rings was set of integers and in groups the set of all
permutations of a set. A vector space originates from the notion of a vector that
we are familiar with in mechanics or geometry. You would recall that a vector is
defined as a directed line segment, which in algebraic terms is defined as an ordered
pair (a, b) being coordinates of the terminal point relative to a fixed coordinate
system. Addition of vectors is given by the rule:

(ap bl) + (aza bz) = (al + a27 bl + bz)
You can easily verify that set of vectors under this forms an abelian group. Also,

scalar multiplication is defined by the rule a (a, b) = (aa, ab) which satisfies
certain properties. This concept is extended similarly to three dimensions. You can
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generalize the whole idea through the definition of a vector space and vary the
scalars not only in the set of reals but in any field F. A vector space thus differs
from groups and rings in as much as it also involves elements from outside itself.

Definition: Let < V, + > be an abelian group and < F,, +, - > be a field. Define
a function x (called scalar multiplication) from F' % V— V, such that, for all a
e F,veV,a-ve V Then Vis said to form a vector space over F if for all
x,y e V,a,p e F, the following hold
@) (o + PB)x=oax+ Px
@) o (x +y)=ox+ ay
@@i) (af) x = a (Bx)
(iv) 1.x=x, 1 being unity of F.
Also then, members of F are called scalars and those of V are called vectors.

Note: You can use the same symbol + for the two different binary compositions
of V and F, for convenience. Similarly, the same symbol, is used for scalar
multiplication and product of the field F.

Since < V, + > is a group, its identity element is denoted by 0. Similarly, the
field /' would also have zero element which will also be represented by 0. In case
of doubt, you can use different symbols like 0 and 0, etc.

Since you generally work with a fixed field, you would only be writing V'as a
vector space (or sometimes V' (F) or V). It would always be understood that
it is a vector space over F (unless stated otherwise).

You have defined the scalar multiplication from F'x J'— V. You can also define
it from /' x F'— J and have a similar definition. The first one is called a left vector
space and the second a right vector space. It is easy to show that if V" as a left
vector space over F, then it is aright vector space over /" and conversely. In view
of'this result, it becomes redundant to talk about left or right vector spaces. We
will consider about only vector spaces over F.

You can also talk about the above system when the scalars are allowed to take
values in aring instead of a field, which leads to the definition of modules.

Theorem 4.1: In any vector space V(F), the following results hold:
(@) 0.x=0
(@) a.0=20
@iif) (—ox = — (o) = o= x)
@) (a-Bx=ax—-Px,a, e F,xelV
Proof: (i) 0.x =(0+0).x=0.x+0.x
= 0+0x =0x+0x
= 0 =0.x(cancellationin V)

(@) .0 =a.(0+0)=0.0+a.0=>a0=0
@) (—o)x + ox =[(-a) +tajx=0.x=0
= (-ax) =— ox

(iv) follows from above.



The following examples illustrate Theorem 4.1

(1) If <F, +,.>be a field, then F'is a vector space over F as <F,+ >=
<V,+ >isanadditive abelian group. Scalar multiplication can be taken
as the product of F. All properties are seen to hold. Thus F(F) is a vector
space.

(i) Let <F, +,.> be a field
Let V=1{(a, a)a, a, € F}
Define +and . (scalar multiplication) by
(ap az) + (Bp Bz) = (OH + Bp o, + Bz)
(o, a,) = (aa,, ao,)
You can check that all conditions in the definition are satisfied. Here
V=FxF=F
One can extend this to F° and so on. In general we can take n—tuples

(04, 0y, ..., @), 0. € F and define F" or F = {(a, oy, ..., o) |,
€ F} as a vector space over F.

(ii)) If F < Kbe two fields then K(F) will form a vector space, where addition
of K(F) is + of K and for any a € F, x € K, a. . x is taken as product
of o and x in K.

Thus C(R), C(C), R(Q) would be some examples of vector spaces, where
C = complex nos., R =reals and Q = rationals.

(iv) Let V'=set of all real valued continuous functions defined on [0, 1]. Then
V forms a vector space over the field R of reals under addition and scalar
multiplication defined by:

(ftegh =f)+gkx) fgeV
(af)x =af(x) o € R forallx e [0, 1]
It may be recalled here that sum of two continuous functions is continuous
and scalar multiple of a continuous function is continuous.

(v) Theset F' [x] of all polynomials over a field F'in an indeterminate x forms
a vector space over F with respect to, the usual addition of polynomials
and the scalar multiplication defined by:

For f(x) =a,tax+..+ax" e F[x], aelF
a.(f(x)) =oa, + aax + ..+ aax".

) M (F),the set of all m x n matrices with entries from a field /' forms
a vector space under addition and scalar multiplication of matrices.

We use the notation M (F) for M (F).

(vii) Let F' be a field and X a non-empty set.

Let F¥= {f|f: X — F}, the set of all mappings from X to F. Then F¥
forms a vector space over £ under addition and scalar multiplication defined
as follows:

For fgeF aeF
Define f+rg:X—> F,aF:X— Fsuch that,
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(f+8x) =f(x)+ g
(af)x) =af(x) VxelX
(viii) Let V' be the set of all vectors in three dimensional space. Addition in Vis

taken as the usual addition of vectors in geometry and scalar multiplication
is defined as:

a € R,V € V= av isavector in /" with magnitude | o | times that of
V. Then V forms a vector space over R.

Subspaces

Definition: 4 non-empty subset /¥ of a vector space V(F) is said to form a
subspace of V if W forms a vector space under the operations of V.

Theorem 4.2: A necessary and sufficient condition for a non-empty subset " of
a vector space V(F) to be a subspace is that W is closed under addition and scalar
multiplication.
Proof: If Wis asubspace, the result follows by definition.
Conversely, let Wbe closed under addition and scalar multiplication.
Let X,y, € Wsince leF,-1 € F
C-lyeW=-yeW
X, -yeW=x-yeW
= < W, +>forms a subgroup of < V, + >.
Rest of the conditions in the definition follow trivially.
Theorem 4.3: A non-empty subset ¥ of a vector space V(F) is a subspace of
Viff ox + By e W fora, Be Ex, ye W
Proof: If Wisasubspace, result follows by definition.
Conversely, let given condition hold in WV.
Let x, y € Wbe any elements. Since 1 € F
l.x+1l.y=x+yeW
= Wis closed under addition.
Again, x € W, a € F then
ox=ox+0.y foranyy e W,0 e F
which is in /. (Note here 0 may not be in W)
Hence Wis closed under scalar multiplication.
The result thus follows by previous theorem.
Remark: J and {0} will be trivial subspaces of any vector space V(F).

For example, consider the vector space R*(R)
then W, =1a,0)|aeR;}
W,=10,b)| beRj}
are subspaces of R’
As forany a, B € R, (a,, 0), (a,, 0) € W, you find
a(a;, 0) + B (ay, 0)= (aa,, 0) + (Ba,, 0)



= (oa, + Ba,, 0) € W,

Hence W, is a subspace. Similarly, you can show W, is a subspace of R>.

Example 4.1: Show that union of two subspaces may not be a subspace.
Solution: Consider the given under Theorem 4.3.
W, U W, will be the set containing all pairs of the type (a, 0), (0, b)
Inparticular (1, 0), (0, 1) € W, U W,
But (1LO)+ O, H)=(1,1)e W, U W,
Hence W, U W, is not a subspace.

You are referred to exercises for more results pertaining to intersection and

union of subspaces.
A few more examples of subspaces are as follows:
(1) Let ¥ = R[x] and suppose W = {f(x) € V| f(x) =f(1—-x)}
Then W is a subspace of V as
W#dsince 0 e Wasf(x)=0=f(1 —x)
Again, if /(x), g(x) € W, then f(x) = £ (1 - x), g(x) = (1 - x)
Let S &) +gx) =h(x)
Then h(l-x) =f(1 —-x)+g(l —x)
= f(x) + gx) = h(x)
= h(x)e Wor that f(x) + g(x) e W
Again, for a € R, let af (x) = r(x)
Then "l—x) =af(l —x)=oaf(x) =rx)
= rMx)eW=oaf(x) eWw
Hence W is a subspace.

(i) Let V= FX (Refer example (vii) of Theorem 4.1) and suppose ¥ c X

Then W={feV|f(y)=0V y eVY} is asubspace of V'
Clearly 0 € Wand forf, g e W,

JSO) =0=g(y) VyeVY

So (+0) =f0)+2g0)=0 VyeY
= f+tgeW
Again, if a € F, then

(af)y =a(f(»)=0 VyeY

= of € W.
(i) If =R", then

W=A{(x, x5 .., x,) | x;, + x, + ... + x_ = 1} will not be a subspace

of V.
Notice, (1, 0,0, ..., 0) + (0, 1,0, ..., 0)=(1, 1, 0, ..., 0) ¢ W.
(iv) Let V =M, | (F). Let A be a 2 x 2 matrix over F.

Then W= {[xl } eV A{xl } = 0} forms a subspace of V

X X
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For

Also

W+ ¢ as Lﬂ ew

[xl}, yl} in W, we have

X3 B %)

AR
X3 Y2

Hence Wis a subspace of V.

(v) Let
If

Then woow,u W,

V= F;, where F, = {0, 1} mod 2.

W, = {(0,0), (1,0}
, = 1(0,0), (0, 1)
3 = 1(0,0), (1, 1)
{(0,0), (1, 0), (0, ), (1, D} =V

S 3
[

Thus we notice that here Vis union of finite number of proper subspaces.

This result may, however, not hold if /" happens to be a vector space over

an infinite field.

Example 4.2: Let V be a vector space over a finite field . Suppose

V=W ,uW,u..u W, W.being subspaces of V'V i. If o(F) = k then, show that
V=W, for some i.

Solution: Suppose V' = W, for any i

Now
and
=
and
Let

Wee W, oW,u..OW_,
wWoow,u...OW_ W,

dx e W, suchthat,x ¢ W, O W, U..UW,_,
dye W, u..UW,_, suchthat,y ¢ W,
S={ax+ty|laekF}

Then no element of S can belong to W, as

So
=
So

ax+y e W, = ax+y—ax=y € W, a contradiction
ax+yeW, VaeF

axt+tye WO W, u..0W_, VaekF

Jao, B € F, a#p such that

ox +ye Wj,vaLye ijorsomej,léjék—l
(x +y)—(Px +y) € W,

(o= Byx € W,



= X € WJ > xeW u.. U W,_,, a contradiction
V=W, for some i
(You may notice here that example (v) of subspaces o(¥) =2 and you could
write V=W, 0 W, U W,, V # W, for any i)
Sum and Direct Sum of Subspaces
If W, and W, be two subspaces of a vector space V(F), then we define
W, +W,={w +w,|w eW,w, e W,
W+W,20as0=0+0e W +W,
Again, x,y € W, + W,, a, B € F implies
x =w tw,
y =witwiw,w, e W,w, w,elW,
o + By = o (wy + wy) + PO, + wh)
= (aw, + Bw') + (oaw, + Pw’) € W, + W,
Showing thereby that sum of two subspaces is a subspace.
You can extend the definition, similarly, to the sum of  subspaces W,, W,, ...,

W, which would also be a subspace and we write W, + W, + ...+ W = Z w;
i=1

Definition: Let W, W,,..., W be subspaces of V'then W, + W, + ...+ W s
called the direct sum if eachx € W, + W, + ...+ W canbe expressed uniquely
asx=w, +w,+..+w,_ w e W and in that case we write

W, +Wy+ it W, =W, OW,® .0 W,

We say, a vector space V'is the direct sum of its subspaces W, W, ..., W,
it V=w,eW,®..0 W, ie,if

V=W +W,+ .+ W
and each v € V can be expressed uniquely asv=w, +w, +...+w w. e W.
Theorem 4.4: V=W, @ W, < V=W + W, W, W,=(0).
Proof: Let V=W, @ W,
We need to prove W, N W, = (0)
Let x e W, n W, thenx € W, and x € W,
>x=0+txe W +W,=V
> x=x+t0e W, +W,=V
Since x has been expressed as x =x + 0 and 0 + x and the representation has
to be unique, we get x =0
= W, W,=(0).
Conversely, let v € V be any element and suppose

v=w tw,

v = w', +w', are two representations of v
— ! ! —
then w T w, =w| +w, (V)
’ — !
= w—w =w,—w,
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Now L.H.S. is in /¥, and R.H.S. belongs to 7,
i.e., each belongs to W, N W, = (0)

[ ' —
= w, —w =w,—w, 0
p— 1 p— 1
= w, =wi,ow, =w,
Hence the result.

Note: The above theorem can also be stated as
Wi+ W, =W, @ W, W, nW,={0}.
Consider the Following Example: Consider the space V(F) = FX(F) where F
isafield
Let W, = {@a,0)]|a e F}
W, = 1{0,b)|b e F}
then Vis direct sum of /¥, and W,
velV= v =(a,b)=(a 0)+(0,b) e W, + W,
thus V.cw +Ww,
or that V.=w +Ww,
Againif (x,y) € W, W, be any element then
(x,y) e W, and (x,y) € W,
= y =0 and x=0
= () =(0,0)
= W, n W, =(0)
Hence V=w ew,

Example 4.3: Let / be the vector space of all functions from R — R. Let
V.={feV|fiseven}, V,={f e V| fis odd}. Then V,and V, are subspaces
of Vand V=V &V,

Solution: Addition and scalar multiplication in V are given by the rule
(f+ex=[f()+gx); (af)x=af(x)
Now V,#@as0(x) =0= 0(x)=0(-x)
=>0eV
Again fora, Be R, f, g € V,, we have
(af+Bg) (- x) = (af) (-x) + (Bg) (—x)
= o(f(=x)) + Bg(=x)
of(x) + Bg(x)
(ouf+ Pg)x
= aftPgel
= ¥, is a subspace of V'

Similarly, ¥, is a subspace of V.
Thus, V, + ¥, is a subspace of V. We show V' V +V
Let f € V be any member



Let g : R > R be such that g(x) =f(—x), then g € V

Also then f= (%f +%gj+[%f—%gj

Since (%f+%g) (—x)=%f(—x)+%g(— x)=%g(X)+%f(x)
= (%f+%gjx
1 1
we find Ef+5g ev,

Similarly, %f—lg eV,

2
= feV, vV, = VcV,+V,
or that V=V, +V,
Finally, fev,nV, = feV,fel,
= fEx)=f(x) and f(-x)=-f(x)
= fx) =-7x)
= S &)+ f(x) =0=0(x)
= 2f (x) =0 (x) for all x
= /=0 = f=0 = V,nV,=(0).

Hence the result.
Example 4.4: If L, M, N are three subspaces of a vector space ¥, such that
M < L then show that LN (M + N)=(L " M)+ (L HN)=M+ (L N N).
Also give an example, where the result fails to hold when M & L.
Solution: We leave the first part for you to try. Recall a similar result was proved
for ideals in rings. The equality is called modular equality.
Consider now the vector space V' = R?
Let L ={(a,a)|a R}
M ={(a,0)|a e R}
N ={0,b) | b € R}
It is a routine matter to cheek that L, M, N are subspaces of V. Indeed
o(a, a) + B(a', a') = (aa, aa) + (Ba’, Ba’)
= (oa + Ba’, aa + Ba’) € L, etc.
Now (x,y)eL"M = (x,y)e Land(x,y) e M
= y=xandy =0

= x=0=y = (x)=(0,0)
Similarly, LN ={0,0)}
= LnM+L~N={0,0)}
Again, M+N = {(a,b)|a,beR}andas(l,1) e M+ N
(1,1) el
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Wefind(1,1) e Ln(M+N),but(l,1) g LAM+LNN
Hence LM+ N)y#(L M)+ (L N),when M & L.

Example 4.5: Let V = RY (Refer example of Theorem 4.1) and fix x, € X.
Define

W=1{feVI]flx)=0;
W=1{geV]|gk)=0VxeX-{x}}
then show that W, W' are subspaces of Vand V=W & W'.

Solution: We leave it for the reader to show that W, W' are subspaces.
Let fe W W'then fe Wandfe W'

= f(x)) =0,f(x)=0 VxelXx=x,
= f(x) =0,V x e X,
= f =0and thus W W' = {0}.

Let fe Vandletf(x)) =r
Then (f—r dx,) € W, rox, e W’

and f=(—-rox) +trdx, e W+ Ww'
V=w+w
ie., V=wew

Notice here dx, denotes the Kronecker delta, i.e., dx, (x,) = 1, dx,
(x) =0V x #x,

Quotient Spaces
If Wbe a subspace of a vector space V(F) then since < W, + > forms an abelian

group of <V, + >, we can talk of cosets of Win V. Let % be the set of all cosets

W+ v, v € V, then we show that 14 also forms a vector space over F, under
the operations defined by:
W+x)y+(W+y) =W+ x+y) x,yelV
oW+x)y=W+oaxa eF
Addition is well defined, since,

W+x=W+x'

W+y=W+)y
x—x'eW,y—-y eW
=X+ -)) eW
x+y) - +)y) eWw

W+ x+y)

W+ x

x —Xx'

UV
I

I

+

=

+

S

=)
I
N
_l’_
R\

Aga

o(x — x")

momom
I
R
m
B!

ox — ox'
W+ ox

UV

I
S
_l’_
5



= oW +x) =W +Xx")

Thus, scalar multiplication is also well defined. It should now be a routine exercise
to check that all conditions in the definition of a vector space are satisfied.

W+ 0 will be zero of %

W — x will be inverse of W+ x
Also (W +x)+(W+y) = W+ (x+y))
W+ ox+y)
=W+ (ox + o)
= W+ ox) +(W+ ay)
= oW+ x)+ (W + y) etc.
Hence, V/W forms a vector space over F, called the quotient space of /' by
w.

4.3.1 Linear Transformation in Vector Spaces

In this section, you will learn about the concept of a homomorphism in case of
vector spaces.

Definition: Let /" and U be two vector spaces over the same field F, then a
mapping 7': V— U'is called a homomorphism or a linear transformation if

Tx+y) =Tx)+ T(y) forallx,yeV
T(ox) =allx) o € F
You can combine the two conditions to get a single condition
I(ox + By) =olx) + BI(y) x,yeVia, B eF
It is easy to see that both are equivalent. If a homomorphism happens to be

one-one onto also we call it an isomorphism, and say the two spaces are
isomorphic. (Notation V= U).

This concept is illustrated with the help of the following examples:

(1) Identity map I:V— V, such that,
Iv)=v

and the zero map O : V— V, such that,
Oov)=0

are clearly linear transformations.

(i) For a field F, consider the vector spaces F2 and F°. Define a map
T:F — F’ by
I(a, B, ) = (o, B)
then 7'is a linear transformation as
foranyx, y € F3, if x= (o, By, 7))
Y= (0, By 1y)

then T(x +y) = T(oy + 0y By + By vy +7,)

= (OH +a,, Bl + Bz)

= (o, By * (o, By) = T(x) + T(»)
and T(oax) = T(a (04, By, vy) = T((aet;, afy, ay,)
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= (aa,, off)) = ofa,, By) = allx)
(ii1) Let V" be the vector space of all polynomials in x over a field F. Define
T:V — V, such that,

T () = /@)
then T+ =2 (rg=-2r+sg=T(/)+ 1)

d d
T = = =oa—f=all
(o) = £ (@) = a2/ = aT()
shows that 7'is a linear transformation.
In fact, if 6 : V' — V' be defined such that

() = [ r dr
then O will also be a linear transformation.

(iv) Consider the mapping
T:R? > R, such that,
T(x,, xy Xx3) = X+ x5+ %3
then 7'is not a linear transformation.
Consider, for instance,
7((1,0,0) + (1,0, 0)) = 7(2,0, 0) = 4
7(1,0,0)+ 7(1,0,0) =1 + 1 = 2.
Theorem 4.5: Under a homomorphism 7°: V' — U,
(@) 7(0)=10 (@) T(—x) = - T(x).

Proof: T7(0) = T(0 + 0) = T(0) + 7(0)
= 7(0) = 0

Again T—x)+Tx) =T(—x+x)=T(0)=0
= — T(x) = T( — x).

Definition: Let 7: '— Ube a homomorphism, then kernel of T'is defined by
KerT={xeV|T(x)=0}
It is also called the null space of T.

Theorem 4.6: Let 7: V' — U be a homomorphism, then Ker T is a subspace
of V.

Proof: KerT#@as0 € Ker T
Leta, B € F, x, y € Ker T be any elements
then T(ox + By) = allx) + BT(y)

=a.0+p.0=0+0=0
= oxt+ By eKerT.
Theorem 4.7: Let 7: V' — U be a homomorphism, then
Ker T = {0} iff T is one-one.

Proof: Let Ker T = {0}. If T(x) = T(»)



then Tx)-T(y) =0
= ITx-y) =0
= (x —y) € Ker T = {0}
= x—y =0
= x =y = Tis 1-1.

Conversely, let T be one-one
if x € Ker T be any element, then 7(x) =0
= T(x) = 7(0)
= x =0
= Ker T = {0}.
Definition: Let 7: '— Ube a linear transformation then range of 7'is defined
to be
(V)= {T(x) | x € V} = Range T=R,
={uelU|lu=T1TW),v eV}
Theorem 4.8: Let 7': V' — Ube a linear transformation (linear transformation)
then range of 7 is subspace of U.
Proof: Since 7(0)=0,0 € V
7(0) € Range T

1e., Range T # ¢

Leto, B € F, T(x), T(v) € T(V) be any elements
then x,yeVv

Now aT(x) + BT(y) = T(ox + By) € T(V)
as ox + By eV

Hence the result.

Note: 7(V) = U iff T is onto.

Theorem 4.9: Let 7: V' — U be a linear transformation then

~ R T =T(V).
Ker T ange (V)

Proof: Let 7: V— U and put Ker 7= K, then K being a subspace of V, we
can talk of V/K.
Define amapping® : V/K — T(V), such that,
0 K+x)=T1Tk), xeV
Then 6 is well defined, one-one map as

K+x=K+y
& x—yeK=KerT
— Tx—y)=0
< I(x) = T()

= 0(K+x)=06(K+y)
If T(x) € T(V) be any element, then x € V and 6(K + x) = T(x), showing that
6 is onto.
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Finally6((K + x) + (K +y))= 8(K + (x +))

Itx +y)

T(x) + T(»)

0K + x) + 0(K + y)

and O(auK + x)) = 0(K + ax) = T(owx) = al(x) = oK + x)

shows 0 is a linear transformation and hence an isomorphism.

Note: The above is called the fundamental theorem of homomorphism for vector
spaces.

If the map 7 is also onto, then we have proved KV =U.
cr

Theorem 4.10: If 4 and B be two subspaces of a vector space V(F), then
A+ B B

A ~ANB
Proof: A being a subspace of 4 + B and A N B being a subspace of B, we can

A+ B and B

ANB’
A+ B

talk of

Defineamap 6 : B — such that,
0(b) =A+b, beB
Since by = b, = A + b, =A+b,, wefind 0 is well defined.
Again,as O(ab, + Bb)) = 4 + (ab, + Bb,)
(4+ab)) + (4 + pb,)
= o(d + b)) + B4 + by = alb,) + BAb,)
0 is a linear transformation

B,weﬁndxeA+B

Forany 4 +x € A+

= x =a+tb, aeAd beB
A+x =A+(a+Db)
=@d+a)+t(4+Db)
=A+A+b)=A4+b=0(b).
Showing that b is the required pre image of 4 +x under 0 and thus 0 is onto.
Hence by Fundamental theorem

A+B _ B
A Ker 6
We claim Ker® =4nNB
Indeed x e Kerf < 0(x)=4
S A+x=4

< xed,alsox e Ker ¢ B
&S xednB

A+B _ B

Hence =
A ANB




Note: By interchanging 4 and B, we get Brda, 4
BN A
. A+B _ B
1e., = .
A ANB
Corollary: If 4 + B is the direct sum then as 4 N B = {0}
A A®B
we get — =
(0) B

A®B

But (T:l) =~ A (Refer Note of Theorem 4.10) gives us 4 =

Theorem 4.11: Let 7 be a subspace of ¥, then 3 an onto linear transformation

O:V—)% such that, Ker 6 = W,

Proof: Define6 :V— % such that,

0x)=W+x

then 0 is clearly well defined.
Also O(ox + By) = W+ (ox + Py)

=W+ ax)+(W+ By

=W +x)+ B +y)=oalx) + pAYy)
Shows 0 is a linear transformation
0 is clearly onto.
Again, xeKerb < 0x) =W

SWH+Hx=W

SxeWw
Hence Ker 6 =W.
0 is called the natural homomorphism or the quotient map.

Note: In case W= (0) in the above, we find 6 will be 1-1 also as

0(a) = 0(b)
= W+a=W+b
= a-be W =(0)
= a—b =0
= a =b.
Hence in that case VEK or Vzl.
w 0)

Note W= (0) = Ker 6 =(0) = 6 is one-one.

Example 4.6: Let /7 and U be subspaces of V(F) such that W c U c V.
Letf: V— V/W be the quotient map. Show that f'(U) is a proper subspace of
VIW.
Solution: Since fis a linear transformation, / (U) is a subspace of V/W.
Iff(Uy=0thenf(x) =0 forallxe U
= W+x =W forallx e U
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= x €W forallx e U
= U < W,acontradiction
Again since U= V, 3 v, € V such that, v, ¢ U.

If f(vy) € f(U) then f(v,) = f (x) for some x € U
= f(v,—x)=0
> W+,—-x)=W
> Vv,-xew
= v, =x +w forsomew e W
= v, € U, a contradiction

Hence /(v £ /U) = /() # o

or that f'(U) is a proper subspace of % .

Linear Span and Finite Dimensional Vector Space (FDVS)

Definition: Let V(F) be a vector space, v, € V, o, € F be elements of } and

n
Frespectively. Then elements of the type 2 o,v; are called linear combinations
i=1
of v, vy, .., v, over F.
Let S be a non-empty subset of V, then the set

n
L(S) = zaivi lo; € F,v, eS,nﬁnite}
i=1

1.e., the set of all linear combinations of finite sets of elements of S'is called /inear
span of S. It is also denoted by < §>. If § = o, define L(S) = {0}.

Theorem 4.12: L(S) is the smallest subspace of V containing S.

Proof: L(S)#zpasveS=>v=1.v,1 e F
= v e L)
thus, in fact, S < L(S).
Let x,y e L(S), a, B € F be any elements
then x=ov, +ay, +..+ay,
y =By T BV, B v v, v]f es, a, Bj e F
Thus ox + By = oo, v, + ao,y, + ...+ aa,v, + BBV + ... + BB, v .
R.H.S. being a linear combination belongs to L(S).
Hence L(S) is a subspace of V, containing S.
Let now W be any subspace of V, containing S
We show L(S) < W
x e L(S) = x=Zoy, v,eS, a eF
v.e §c Wiorall i and Wis a subspace
= oy, e W=xe W
= L)W
Hence the result follows.



Theorem 4.13: If S, and S, are subsets of V] then
() S, =S, = L(S) < L(S,)
(@) L(S, v S, = L(S,) + L(S,)
(fii) L(L(S))) = L(S,).

Proof: (i)x € L(S)) =>x=2Zay, v,eS§,a €F

thus v.e S c§, foralli

= oy, € S, =>x € L(S,)

= L(S)) < L(S,).

(i) $,c8US = LS) LS, VvS,)

S, 8,08, = L(S,) c L(S, U S,
= LS, +L(Sy) € L(S, U S,)

Again, S, € L(S)) < L(S,)) + L(S,)
S, € L(S,) < L(S)) + L(S,)
= S, VS, < L(S,)) + L(S,).

Hence L(S, U S,) < L(S,)) + L(S,)
as L(S, U S,) is the smallest subspace containing S, U S, and L(S,) + L(S,)
is a subspace, being sum of two subspaces (and contains S, U S,).

Thus L(S, U S,) = L(S)) + L(S,).

(@iif) Let L(S,) = K then we show L(K) = L(S,)

Now K c L(K) .. L(S)) < L(L(S)))

Againx € L(L(S,)) = x is linear combination of members of L(S,) which are
linear combinations of members of .

So x is a linear combination of members of S,

= x e L(S))

Ths LIS < L(S)

Hence  L(L(S)) = L(S)).
Theorem 4.14: If W is a subspace of V; then L(W) = W and conversely.

Proof: W < L(W) by definition and since L(#) is the smallest subspace of V'
containing W and W is itself a subspace.

Lw)y cw
Hence LWy =Ww.
Conversely, let LLW)=W
Let x,ye W,o,p € F
Then x,y € L(W)
x, y are linear combinations of members of V.
ox + By is a linear combination of members of W/
ox + By € L(W)
ox + By e Ww
W is a subspace.

b uuudl
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Definition: If "= L(S), we say S spans (or generates) V. The vector space V'
is said to be finite-dimensional (over F) if there exists a finite subset S of /'such
that are

V'=L(S). We use notation FDVS for a finite dimensional vector space.

From the results, it is proved that

If S, and S, are two subspaces of V, then S, + S, is the subspace spanned
by §, VS,

Indeed, L(S, U S,) = L(S)) + L(S,) =S, + §,.
Example 4.7: Let S = {(1, 4), (0, 3)} be a subset of R%(R). Show that (2, 3)
belongs to L(S).

Solution: (2, 3) € L(S) if it can be put as a linear combination of (1, 4) and
(0, 3).

Now (2,3) =a(l, 4)+ B0, 3)
= 2,3) =(a+ 0, 40 + 3B)
= 2 =o,40 +33=3

_ _ 5
= o =2,p=- 3
Hence 2,3) =2(1,4) - % 0, 3)

Showing that (2,3) e L(S).
Example 4.8: Let ¥ = R*(R) and let S = {(2, 0, 0, 1), (= 1, 0, 1, 0)}. Find
L(S).
Solution: Any element (a.;, a.,, 05, a,) € L(S) is a linear combination of members
of S.

Let (o, o, a5 o) =a(2,0,01)+p(-1,0,1,0), o, B €R

then (a,, a,, a;, a,) = (2a—-P, 0, B, o)

ie., L(S) = {2a-B,0,B, ) |a, p € R}
Example 4.9: Show that the vector space F[x] is not finite dimensional.
Solution: Let J'= F[x] and suppose it is finite dimensional.

Then 3 § < V, such that, V= L(S) and S is finite.

Suppose S = {p,, py,.... P;}. We can assume p. = 0 Vi

Letdeg p=r;and lett = Max {r, ry,..., 7}

Now x*! € V and since V' = L(S),

x™=ap top, . top, o€l

So 0=CDxT+ap +..+op,

Since x'*! does not appear in D> Dyseeos Dy

We get — 1 =0, a contradiction. Hence V' is not FDVS over F.

Note if S= {1, x,..., x",...} then V' = L(S).



Linear Dependence and Independence: Basic Properties
Let V(F) be a vector space. Elements v, v,, ..., v, in V are said to be linearly
dependent (over F) if 3 scalars o, a,,... &, € F, (not all zero) such that,
a v, t oy, +..av =0
(vy» v, ..., v, are finite in number, not essentially distinct).
Thus for linear dependence X oy, = 0 and at least one o # 0.
If v, v,...v, are not linearly dependent (LD), these are called linearly
independent (L)
In other words, v,, v,,.., v, are LI if
oy, =0=a,=0foralli
A finite set X= {x,, x,...,x, } is said to be LD or LI according as its » members
are LD or LI

In general any subset Y of V(F) is called L/ if every finite non-empty subset of
Yis LI, otherwise it is called LD

So, if some subsets are LI and some are LD then Y is called LD

Observations: (i) Anon-zero vector is always Ll as v# 0, av= 0 would mean
a=0.
(&f) Zero vector is always LD
1.0=0 1#0,1 eF
Thus, any collection of vectors to which zero belongs is always LD

In other words, if v, v,,..., v, are LI then none of these can be zero. (But not
conversely, Refer example ahead).

(#i) vis LIiff v = 0.
(iv) Any subsetofa LI setis LI
(v) Any super set of a LD set is LD

(vi) Emptyset @ is LI since it has no non-empty finite subset and consequently
it satisfies the condition for linear independence. In other words, whenever Z oy,
= 0 in @ then as there is no i for which o # 0, set @ is LI We sometimes express
it by saying that empty set is L/ vacuously.

(vii) A setofvectoris LI if and only if every finite subset of it is L/
Some examples of linear dependence and independence are given as follows:

(i) Consider R*(R), R = reals.
v, =(1,0),v, =(0,1) € R* are LI

as a, v, + a,v, =0 fora,, a, € R
= a1, 0) + a0, 1) =(0,0)
= (o, o) =(0,0) = 0o, =0, =0.

(i1) Consider the subset
S=1{(1,0,0),(0,1,0),(0,0,1),(2,3,4)} in the vector space

R’(R).
Since 2(1,0,0)+ 3(0, 1, 0) + 4(0,0, 1) — 1(2, 3, 4) = (0, 0, 0)
we find S'is LD
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(i1i) In the vector space F[x] of polynomials the vectors f(x) = 1 — x,
g(x) = x —x%, h(x) = 1 — x* are LD since f(x) + g(x) — h(x) = 0.
Example 4.10: Show that the vectors v, = (0, 1,-2), v, =(1,-1, 1), v; =
(1, 2, 1) are LI in R*(R).
Solution: Let Za.v, = 0 for a. € R
Then a,0,1,-2)+a,(1,-1,1)+ 0, (1,2,1) =(0,0,0)
= (09 O‘v - 20(1) + (0(2, - aza az) + (OL3, 2a3a (13) = (O, Oa O)
= 0O+a,+a; =0
o, — o, + 20, =0
- 20, o, ta; =0
0 I 1
Since the coefficientdeterminant | 1 —1 2 | is—6#0theabove equations

-2 I 1
have only the zero common solution

> o =a,=0,=0=v,v, v, are LI
Example 4.11: Show that {f (x), g(x), A(x)} is LI in F[x], whenever. deg f (x),
deg g(x), deg h(x) are distinct.
Solution: Let fx) =a,+ax+..+ax", a #0
gx) =b,+bx+ .. +bx", b #0
h(x) =cytex+..t+ex, ¢#0
Let of (x) + Bgx) +yh(x) =0, o,B,yeF
Let m <n <t (without any loss of generality)

then y¢, =0=>y=0asc#0
o f(x) + Pgx) =0
and so Bp, =0=>P=0ash,#0

> ofx) =0=>oa0aq,=0=>a=0asa,6 =0
Hence {f(x), g(x), A(x)} is LI in F [x] over F.
Example 4.12: Show that the vectors
v=(01,1,2,4),v,=2,-1,-5,2),v;=(1,-1,-4,0)and v, = (2, 1, 1,
6) are LD in R*R).
Solution: Suppose av, + bv, + cv, +dv, =0, a,b,c,d € R
then a(1,1,2,4)+b2,-1,-5,2)+c(1,-1,-4,0)
+d2,1,1,6)=(0,0,0,0)
or (a,a,2a,4a)+ (2b,— b, — 5b, 2b) + (¢, — ¢, —4c, 0)
+ (2d, d, d, 6d) = (0, 0, 0, 0)
= a+2b+c+2d=0
a—-b-c+d=0
2a—5b—4c+d =0
4a +2b+0c +6d =0



1 2 1 2]|[a 0
N 1 -1 -1 1||b]| _|O
2 -5 -4 1l|¢ 0
4 2 0 6]ld] |0]
R,>R,—R,R;, > R,—2R,,R, > R, — 4R,
1 2 1 2[a] [0O]
0 -3 -2 -1[b| _ |0
0 -3 -2 —1||c 0
0 -3 -2 -1||d] |0]
R, >Ry Ry — %R3
1 2 1 21[a]l [O]
0 -3 =2 ~—1{|b]| _|o0
0 -1 =23 -13]|c 0
0 -3 -1 -12||d] |0
R, >R,-R,,R, >R,—R,
1 2 1 2][a] O]
0 -3 -2 -1||b| _ |0
0 0 0 O0flc 0
0 0 0 0fld] |O]
= a+2b+c+2d =0
-3b-2c+d =0
3b+2c+d=0

a=-1,b=-1,c=1,d=1 satisty the equations.
Since coefficients are non-zero, the given vectors are LD
Example 4.13: Show that
() {1, 2} is LIin R over Q.
@) {1, 2,3} is Llin R over Q.
(i) {1, N2, V3, 6 } is LI in R over Q.
Solution: (i) Suppose a+by2 =0, a,b € Q

Suppose b # 0, then~/2 =— % € Q, a contradiction

Hence b =0 and so @ = 0. Thus {1, ~/2 } is LI in R over Q.

(i) Let  a+b2+c¢3 =0, a,b,ceQ
Let ¢ # 0, then

Bo=—2b 5 =iV, wpeQ
— 3 =a?+ 2B + 2082
= o2 €eQ=ap=0
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Leta=0then = \E , a contradiction
So, ¢ =0 giving a+5y2 =0 = a=b=0 by (i)
Hence the result follows.

(iii) Let a+b2+c3+d\J6 =0, a,b,c,d e Q
Then (a+b32) + B (c+d2)=0

Let c+d2 #0
—(a+b¥2) _ —(a+b2)(c-d2)

Then B =

(c+d2) ¢ —2d?
=a+Bv2, o,BpeQ
= al+B2+(=DV3 =0
= — 1 =0by (ii), a contradiction
c+d2 =0=>c=d=0= a+bJ2 =0
= a=b =0

Hence the result follows.

Theorem 4.15: If S = {v,, v,,.... v } is a basis of J] then every element of V
can be expressed uniquely as a linear combination of v, v,..., v,.

Proof: Since, by definition of basis, V' = L(S), each element v € V' can be
expressed as linear combination of v, v,,..., v,.

Suppose  v=ov, toy, t . toy, o el
v=By, TBv,t .. +tByv, B el
then a v, + a,v, + .. +ayv =By, + By, + ..+ BV
= (o, = BPv, + (@, =BHv, + ... + (o, =B,)v, =0
= o — B, =0 foralli (v, v,,.. v, are L)

= o, =B, forall i.

4.4 RIESZ’S LEMMA

Riesz’s lemma, named after Frigyes Riesz, is a functional analysis lemma. It
defines the circumstances under which a dense subspace in anormed vector space
is guaranteed. The lemma may also be called the Riesz lemma or Riesz inequality
the Riesz rearrangement inequality (also called Riesz-Sobolev inequality) states

that for any three non-negative functions #:R" - R*,g:R” — R" and
h:R" — R" satisfies the inequality.
[[ wrer f g = p)hxdy <[[ L. £ (008" (x= y) (p)dxdly,

It can be seen as a substitute for orthogonality when one is not in an inner
product space.



Riesz’s Lemma: Let X' be anormed space, Y be a closed proper subspace of X
and a be a real number with 0 <o < 1. Then there exists an x in X with [x| = 1 such
that x—y|>aforallyin Y.

1. For the finite-dimensional case, equality can be achieved, or there exists x
ofunit norm such that d(x, ¥) = 1. When dimension of Xis finite, the unit
ball B < X'is compact. Also, the distance function d(- , Y) is continuous.
Therefore its image on the unit ball B must be a compact subset of the real
line, proving the claim.

2. The space €., of all bounded sequences shows that the lemma does not
hold fora=1.

Consequences of Riesz’s Lemma

Compact operators working on a Banach space have spectral features similar to
matrices. Riesz’s lemma is crucial in proving this point.

Riesz’s lemma proved that any infinite-dimensional normed space contains
a sequence of unit vectors {x } with |x -x |> o for 0 <o < 1. This is useful in
showing the non-existence of certain measures on infinite-dimensional Banach
spaces. Riesz’s lemma also shows that the identity operator on a Banach space X
is compact if and only if Xis finite-dimensional.

This lemma may also be used to define finite dimensional normed spaces: If
Xis anormed vector space, then Xis finite dimensional if and only if X closed unit
ball is compact.

Finite Dimensional Characterization

Riesz’s lemma can be applied directly to show that the unit ball of an infinite-
dimensional normed space X'is never compact: Take an element x from the unit
sphere. Pick x_from the unit sphere such thatd(x , Y, )> o fora constant0 <o

<1,where Y , isthelinear spanof {x ..x . }and d(x,,Y)= in£ lx, —y].
ye

Clearly {x } contains no convergent subsequence and the noncompactness
of the unit ball follows.

In general, a topological vector space Xis finite dimensional ifit is locally
compact. This also holds true in reverse. A topological vector space is locally
compact if it has a limited dimension. Therefore local compactness characterizes
finite-dimensionality. This classical result is also attributed to Riesz. A short proof
can be sketched as follows: Let C be a compact neighbourhood of 0 € X. By
compactness, thereare c , ...,c, € Csuchthat,

ccU (c,. L C).
i=1 2
We assert that the finite-dimensional subspace Y traversed by {c } is dense in X,
or thatitis closed by X. Since X'is the union of scalar multiples of C, it is sufficient
to show that C — Y. Now, by induction,

CctY+ LC
2m
for every m. But compact sets are bounded, so C lies in the closure of Y. This
proves the result.
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4.5 ADJOINT OPERATORS

Definition: Consider two Hilbert spaces H and H,. Let T : H — H be a
bounded linear operator. Then the Hilbert-adjoint operator T of 7'is operator
T :H,— H, such that forallx e H and y € H,,

(Tx, y)=(x, T*y) (4.1)

Theorem 4.16: The Hilbert-adjoint operator T* of T exists, is unique and is a
bounded linear oeprator with norm given by,

1T = 1] T ...(42)
Proof: Let 1 (v, x) =(y, Tx) ...(4.3)

We will show that / is sesquilinear. Now / is linear in the first argument and
conjugate linear in the second argument since,

h(y, ox; + Px,) (», T (ox; + Bx,))
= (y, aTx, + BTx,)
= o (3 Tx )+ B (1, Tx,)
= ah(,x)+ Bh(y, xX,).

Hence sicne the inner product is sesquilinear, we infer that / is sesquilinear.
By the Cauchy-Schwarz inequality,

A, x) | = [y, T [ < Ly [HITx [ < [T [x]] 1]yl

| h(y,x)

Implyine ————<|| T ||

PYIE | x 111w 1
We have,
Il <) T (44
Also,

, Tx Tx, Tx
Il ]| = sup . Tx)| >|Zsup—|< >|=||T|| ...(4.5)
o [l e [Tl ]

Combining Equations (4.4) and (4.5) gives ||h|| = ||T||. From Riesz
representation theorem, substituting T* for S, we have
h(y,x)= (T y,x) ...(4.6)

where T* : H,— H, is a uniquely determined bounded linear operator with
norm,

[T = [|All= I T .(47)
Combining Equations (4.3) and (4.6), we get

(3, Tx)=(T y,x)

Taking the conjugate gives Equation (4.1).



Lemma 1: Let Xand Y be inner product spaces and T* : X— Y abounded linear ~ Finite Dimensional Normed
operator. Then Spaces and Subspaces
. 9

1. T=0ifand onlyif ( Tx, y)=0forallx e Xandy € Y.
2. For X, a complex vector space, if T : X— X and ( Tx, x ) =0 for all NOTES
x € X, then T=0.
Proof: (1) If 7= 0, then for all x € X, Tx =0 and for any u € X we have,

(Tx,y)=0(0,y) =0(u,y)=0

Now let,

(Tx,yy=0forallxe X, yeY

Then Tx=0 forallx € Xand T=0.

(2)If ( Tx,x)=0 forall x € X, then for w=ox +y € x we have,

(Tw,w) = (T(ox +y), ox +y)
= lof (Tx,x) + (Ty,y)+ta(Tx,y) + & (Ty,x)
...(4.8)
Now if we pick oo = 1, then Equation (4.8) becomes
(Tw,w) =(Tx,x) +(Ty,y) + (Tx,y) + (Ty,x) ..-(4.9)

Now (Tx, x)and ( Ty, y) are equal to 0 by our assumption. Hence
Equation (4.9) becomes,

(Tx,y)+ (Ty,x)=0 ...(4.10)
Adding Equations (4.9) and (4.10) we obtain ( Tx, y)=0,and T =0

follows from (1).

Theorem 4.17: Consider two Hilbert spaces H and H,. LetS: H — H,and T
: H, — H, be bounded linear operators and 3 any scalar. Then,

—_—

ATy,x)=(y,Tx)foranyx e H,y e H ,
2. (S+T)y=S+T,

3.(BT)'= BT,
4. (TY'=T,
5. |IT7T(| = TT"||= TP,
6. T'T=0ifand only if T =0,
7. (ST)'=T'S"(ifH, = H)).
Proof:
1. From the definition of Hilbert-adjoint operator, we have

(T'y, x)={x, T y)=(Tx, y) =(y, Tx) ...(4.11)

Self - Learning
Material 171



Finite Dimensional
Normed Spaces and
Subspaces

NOTES

Self - Learning
172 Material

2. By the definition of the Hilbert-adjoint operator, for all x and y,
(%, S+T)*y) = ((S+Th,y)
=(Sx,y) + (Tx,y)
= (% S%y)+ (x, Ty)
=(x,(S*+T")y).

Thus it follows from the equality of the inner product spaces that (S + T)"
y=(8"+T")yforally e H sothat (S+T) =S +T".

3. By the definition of the Hilbert-adjoint operator,
(BT) y,x) = (» (BT) x)
= (¥ B(Tx))
=B (. Tx)
= B(T,x)
= (BTy.x).
Hence by Lemma 1, (BT) y= BTy forally e H,, which implies that

(BT)=pT".

4. By the definition of the Hilbert-adjoint operator, and from (1) we have,
(T x, y)y=(x, T'y) = (Tx, y) so that (((T")"— T)x, y) and by
Lemma 1, we have (T")"=T.

5. Weknow that T'T : H, — H, and TT" : H,— H.. By the Cauchy-Schwarz
inequality and by the definition of the Hilbert-adjoint operator in the definition
ofthe Hilbert-adjoint operator we have,

[ Tx[*=(Tx, Tx) = (T"Tx, x) <[[TTx| [xl| < [T} |l

Taking the supremum over all x of norm 1 we obtain || T|]> <|| T*T||. Now
by Theorem 4.16, (Refer Unit 5) we have |[T*T|| <|[T*||||T =|/T|]*. Hence
|T*T||= || T|]*. Substituting T" for 7 we get | T™T"||=|| T"|]*=||T|]*. But by
(4) we have (T*)" =T sot that | TT"||=||T]]>

6. From (5),if T*'T =0, then T =0 and conversely if T =0 then T"T =0.
7. By the definition of the Hilbert-adjoint operator,
(x, (ST)y) = {((ST)x, y)= (Tx, S'y)= (x, T'S"y). Hence by
equality of inner product spaces we obtain (ST)"y =T"S"y forally € H,
giving (ST)"=T"S".
4.5.1 Reflexive Spaces
Let X' be anormed space and X™* = (X*)"denote the second dual space of X. The

canonicalmap x — x definedby x(f) = f(x), f € X* gives anisometric linear

isomorphism (embedding) from Xinto X**. The space is called reflexive if this
map is surjective. This concept was introduced by Hahn in 1927.



For example, finite dimensional (normed) spaces and Hilbert spaces are
reflexive. The space of absolutely summable complex sequences is not reflexive.
James constructed a non-reflexive Banach space that is isometrically isomorphic
to its second conjugate space.

4.6 FINITE DIMENSIONAL NORMED SPACES
AND SUBSPACES

Definition
A norm on alinear space yisafunctionfl |I: X — Rsatisfying

1. Jxl=0and| xll=0ifandonlyifx =0forxe X
2. lexl=|al-lxIl
3. lx+yl=lixli+liyl
We observe that a semi-norm becomes a norm if it satisfies one additional condition
ie.
lx=0iffx=0

Further, || x []is called norm of x. The non-negative real number || x |lis
taken as the length of the vector x. Anormed linear space is an ordered pair (X, |-}

where |I:]l is anorm on X.
Theorem 4.18

Every finite dimensional subspace v of anormed space y is complete. Particularly,

every finite dimensional normed space is complete. To prove the theorem, we
prove a Lemma.

Lemma
Let{x,, x5, ... ... ..., x,, } be alinearly independent set of vectors in anormed
space X (of any dimension). Then there is anumber ¢ = @such that for every choice
of scalars ey, e, ... ... . ,c,, we have
Repgzs b i ozl = ey |+ o tag, ) (E=0)
...(4.12)
Proof: We write

S = layl+ las| + .t |, |

If s = p, all &; are zero, so that (4.12) holds for any C. Let 5 = 0, then
(4.12) is equivalent to the inequality which we obtain from (4.12) by dividing by §
and writing §; = a,/Sthatis

1B, x, + - . .. +B.x.ll=C (E|f3)| = 1) ...(4.13)
=1 ;
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Hence it is sufficient to prove the existence ofa ¢ = o such that (4.13) holds

for every ,-tuple of scalars B, ... ....., B, with

zlg] = 1.

Suppose that this is false. Then there exists a sequence < y_ = of vectors

fm)

Yo =8¢ Bph P +B; ':m’xn (_ZJ;E’? f‘“’| = 1)
f:

such that

ly Il =0 asm-—co

Since Z|g; ™| =1, wehave |8, ™| < 1. Hence for each fixed ,
the sequence

(B2 = P o)

i
is bounded. Consequently, by the Bolzano - Weierstrass theorem,
(B, ™7 has a convergent subsequence. Let £; denote the limit of that

subsequence and let <¥i, m = denote the corresponding subsequence of {y__ }.
By the same argument , < y, _ = hasasubsequence < y, = for which the

corresponding subsequence of scalars g, (= converges, let 8, denote the limit-
continuing in this way, after n steps we obtain a subsequence

{me} = (Fn,lr Vg s sessi ias ) Df{ym:l
whose terms are of the form

n

. {m) =3 [
ran= 2 "m (£ 1] -1)
'r—

=1
with scalars y; (=) satisfying (m) Brasm — o0,

Hence as 11 = oo,

n
Viiga =t = Z Bix;
=1

where | ;| = 1so thatnotall 8; can be zero. Since {xy, .. ... ..., x, }isa
linearly independent set, we thus have y = 0. Onthe otherhand,y, . — yimplies

I Il =11 ¥ by the continuity of the norm. Since Jly,_ || — 0 by assumption and
< Vam = 18 a subsequence of {y_}, we must have l ¥om I— 0. Hence
I ¥ I= 0,sothaty = 0. But this contradicts thaty = 0, and the lemma is proved.



Proof of the theorem

We consider an arbitrary Cauchy sequence {y,,, } in ¥ and show that it is convergent
in y, the limit will be denoted by y. Let dimY =nand {e, e,, ......, e, }anybasis
for y. Then each y,, has a unique representation of the form

¥y =y ey +a, g
Since < y_ =1s a Cauchy sequence, for every €= 0, there is an N such

that ly,, — v, ll<<€whenm, r = N. From this and the above Lemma, we have
forsome ¢ = @,

.
e>ly, —yll = ;!@m—afj%
i=:
r
= CZ;QFW = a(.ﬂ
7 T
=3

where m, r > N. Divisionby ¢ = (rgives

Tl
[a?m\" = cx?”[ = Z[an.m} — rzr‘.r}
J Fi Fi 1
=1
This shows that each of the i sequences

(rx;m ﬁ) = (a}lﬁ.aglj, ) I=12m

€
< Z (m,r > N)

is Cauchy in R or C. Hence it converges let &; denote the limit. Using these
1 limits, @4, @3, -, &, we define
¥ —a@gey T aze; o atage,

Clearly¥ € Y, Further

n

(m}
<) 1a™ —a 1ie 0

i=1

18 e (m})
Iy — yll = El(ai —a;) e

On the right @™ — @,. Hence lly,, — yll - 0. that is ¥,, = y. This

shows that < y_ = is convergentinY. Since < ¥, = was an arbitrary Cauchy
sequence in Y, This proves that ¥ is complete.

Remark

From the above theorem and the result “A subspace s of a complete metric space

x 1s complete if and only if the set py is closed in 5, we get the following :

Theorem 4.19

Every finite dimensional subspace Y of anormed space X is closed in X.
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Remark

Infinite dimensional subspaces need not be closed e.g. Let X = €[@, 1] and
Y = span{xy, Xy, o e Jwhere x(0) = t¥ so that Y is the set of polynomials. Y is
not closed in X.

4.7 HAHN-BANACH THEOREM FOR NORMED
LINEAR SPACES

Let X be a real or complex normed linear space, let y « y be alinear subspace,
and let ¢ £ pr=be a bounded linear functional on M. Then there exists a linear

functional # € x*thatextends £(i.c. 2 T M = £)and satisfies || Z || ,+=[| € ||,

The proof of the Hahn-Banach theorem has two parts: First, we show that
[ can be extended (without increasing its norm) from M to a subspace one dimension

larger: that is, to any subspace M, = span{M, x,} = M + Rx, spanned by M
and a vector x, € ¥ \ M. Secondly, we show that these one-dimensional
extensions can be combined to provide an extension from M to all of X.

Section 4.7.1 is the first step.
4.7.1 Hahn-Banach Theorem for Real Linear Space

Let X be a real normed linear space, let M € X be a linear subspace, and let
£ € M*beabounded linear functional on M. Then, for any vector x, € X \, M,
there exists a linear functional £, on M, = span{M, x,] that extends £ (Le.

£,[M = £) and satisfies [|£, "M; = £ Npy=

Proof: If # = 0 the result is trivial, so we can assume without loss of generality
that || £ J]l= 1 (why?) (this assumption is made only to simplify the formulae). Now
every x € M, canbe uniquely represented in the form x = Ax, + ywithi e R

and y¥ € M. To define £, as an extension of £, it suffices to choose the value of
£, (x,),callite, : we then have

£.(Ax; +v) =de; +£(y) ...(4.14)

We want to choose ¢, so that | £, (x)| <|| x || forall x € My, i.e.

—llAx, + il < Ae; +£(y) < lAx; +yl -(4.15)
forall § £ gand y € M. This holds for 4 = @by hypothesis on £, and for

A = 0t can be rewritten as
e +51— 207D < e < ey + 3 - £072) -+ (416)

foralli € Rand y € M (youshould check that this is correct both for 4 = 0
and for A < 0), or equivalently



—llx, 4 2l —8(2) € €, < lxy 4zl — £(2) +(4.17)

forall - e M- But for e M We have

23,25

£(z,) —#(z) =¥z, —z;) < lz; —z, 1 < Iy + 2,0 + ey + 2,11

...(4.18)
byl £11=1and the triangle inequality, so that
—ley + 2z, 1 —€(z) = llx, + 2.1l — £(z,) ...(4.19)
forall 24,22 € M _ Tt follows that
c = sup [—lx, + 2,11 —£(z,)]
B ...(4.20)

[y + 2, — €(25)]

S e
are finite and satisfy ¢_ < ¢, ;80 we can chooseany ¢; € [c_,c,].
Definition
Let S be a set. Then a partial order on S is a binary relation = on S that satisfies
1. a = a(reflexivity);
2.a < band b = gimply @ = b(antisymmetry); and
3.a = band b = cimply a = ¢ (transitivity)

foralla, b, c € 5. The pair (§,=) is called a partially ordered set (or poset).
We sometimes also refer to S alone as a partially ordered set if the relation < is

understood from the context.
Now let {§,=) be a partially ordered set. A subset » = ¢is called totally

ordered (with respect to < ) if for every pair a, b € T we have eithera < bor

b < a.Atotally ordered subset is also called a chain. An element it € 5 is said to

be an upper bound forasubset 7 € sifa = u forall a € T. (Note that the upper
bound « need not belong to T itself.) Finally, a maximal element of S is an element

m € Ssuchthatm = ximplies m = x. (A maximal element need not exist; and
if one exists, it need not be unique.)

Examples
1. The usual order = on R is a total order. There is no maximal element.
2. The usual order = on R = R U {—oo, +o0]is also a total order. Now there
is aunique maximal element +ce.
3. The usual partial order =on E"* is defined by x = yifand onlyifx; = y;
for1 =i = n.Forn = 2itisnot atotal order. There is no maximal element.

4. Consider the usual partial order = on EZ restricted to the three-element
subset § ={{0,0, (0,1),(1,07}. Then (0,1 )and (1,0} are maximal elements.
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5. The lexicographic order on ®Z is defined by x = ¥ if and only if either
x; < yy orelse x; = y; and x5 = y,. (Think of the ordering of words in a
dictionary) This is a total order (why?). There is no maximal element.

6. Let A be an arbitrary set, and let P{4) be the set of all subsets of 4. Then
the relation  of set inclusion is a partial order on P{4). (It is not a total
order except in two degenerate cases - can you see what they are?) There
is aunique maximal element A.

Let V' be a vector space, and let L(V) be the set of all linear subspaces of V.
Then the relation € of set inclusion is a partial order on £{V'). (Itis not a total
order except in two degenerate cases - can you see what they are?) There is a
unique maximal element .

We then have Zorn’s lemma.

Zorn’s Lemma

Let (5,=) be apartially ordered set in which every totally ordered subset has an
upper bound. Then (§, <) contains at least one maximal element.

Zorn’s lemma is a result of set theory that can be proven using the axiom of
choice. More precisely, Zorn’s lemma is equivalent to the axiom of choice in
Zermelo-Fraenkel (ZF) set theory. Other important statements of set theory that
are equivalent to the axiom of choice in ZF set theory are the well-ordering theorem
and the Hausdorff maximal principle. We shall not enter into the details of these
statements or the proof of their equivalence, which belong to a course in set theory
or mathematical logic; rather, we shall simply take Zorn’s lemma as a set-theoretic
result that we can use without worry

We are now ready to prove the Hahn-Banach theorem.
Proof of the Hahn-Banach for Real Linear Space

Let £ denotes the set of all extensions of £ to linear subspaces of X (not
necessarily to all of X ') that satisfy the properties claimed in the Hahn-Banach
theorem. More precisely, £ consists of all pairs (N, f) such that

1. v 1s alinear subspace of i that contains M;

2. f isabounded linear functional on ;

3.f\M =+ and

A0 F D=l £ Ngge.

Now equip £ with a partial order = by declaring that
(NF)S(N.f)=NESN andf[N=Ff -(4.21)

In other words, (N, f) < (N', f")iff fis an extension of /. (It is easy to
check that = is indeed a partial order; you should do this.)



Now suppose that F is a totally ordered subset of £. I claim that FF has an  fnite Dimensional Normed

upper bound in £ (in fact a least upper bound, though we do not need this fact),
defined as follows: First let

Y = U pyerN ...(4.22)

You should verify, using the fact that F is totally ordered, that ¥ is a linear
subspace of ; it is, in fact, the smallest linear subspace containing all the subspaces
N where (N, f) € F.Nextdefine on ¥ a linear functional g as the union of all the
linear functionals £ with (N, f) € F,i..

g(yv) = f(y) whenever (N,f) € F withy €N. -+(4.23)

You should verify, using again the total ordering of F, that & is well-defined
in the sense that f{y) = f'(y) whenever (N, f) € F and (N', f') € F with
¥ € Nand y € N'; and you should verify, using once again the total ordering of
F, that g is indeed linear. Finally, you should check that | g ll;+=ll £ ll,4~.. It
follows that (¥, g) € € and that (N, ) < (Y, g) for all (N, f) € F. Hence

(¥, g)is anupper bound for F (in fact the least upper bound, though we do not
need this fact).

So all the hypotheses of Zorn’s lemma are satisfied. We can therefore
conclude that £ has a maximal element (N, f, ).

4.7.2 Hahn-Banach Theorem for Complex Linear Space

Let V be a normed linear space over C Let W be a subspace of V and let g:
W — C be a continuous linear functional on W. Then there exists a continuous

linear extension f: ¥ — Cofgsuchthat || £ ll+=Il g ll;~-
Hahn-Banach Theorem for Normed Linear Space)

Let Y be a subspace of a normed linear space X and f'be a continuous linear
functionalonY; i.e., f € L(¥, R). Then there exists a continuous linear functional

gonX,i.e.,anelement of L(X, R), such that

1. g is an extension of f.

2.1 gl=lfl.

Proof: If is defined on x by g(x) =Il £ llll x |I, then pis a seminorm on . It
is obvious that,

FOO=1FDI =Ly I= p(¥)

forall ¥ € ¥. Bythe seminorm version of the Hahn-Banach Theorem, there
exists a linear functional g on ¥, which is an extension of f, such that
g(x) < p(x) =l £ ll x|, forall x € X, and this implies that & is continuous,
and || g 1<l f II. Clearly || g 1=l f |l since g is an extension of f.
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4.8 WEAK CONVERGENCE

Definition
Let y be anormed linear space, and let x,,, x € X,

1. We say that x,, converges strongly, or converges in norm to x, and write

X, xif

lim lx — x,ll = 0.

f—og

2. We say that x,, converges weakly to x, and write x , = xif

Vu €X*, lim{x,pu) = {x, ).
1 —+0oa

Definition

Let x be anormed linear space, and suppose that p_, 1 € X*. Then we say that
"V-
pu,, converges weak™  =to g, and write g, — g, if
vx € X, lim{x, u,}={(x p.
f—+oa

Note that weak™® convergence is just “pointwise convergence” of the
operators g, !

Remark

Weak* convergence only makes sense for a sequence that lies in a dual space X*.

However, if we have a sequence {u,} _, In X, then we can consider three types

nEN

of convergence of i, to it: strong, weak, and weak*. By definition, these are:

p, »p < limllpg —p Il =0,

11—+ oo
Hy, i g = VIex”, lim{p,T)={(uT)
—¥oa
i, 5 g e vxekX, lim{xpu,)={(xu).
1 —*+0J
Lemma
1. Weak* limits are unique.

2. Weak limits are unique.

Proof:
1. Suppose that i is a normed linear space, and that we had both , 5. pand
i, "L v In X# Then, by definition,
VxeX, ({(xp = 3.1_1& {x, e} = {x,v),

SOH — .



2.

Suppose that we have both x,, 5 xand x,,  y in X. Then, by definition,

Y €X', {x,p)= lim{x,,u}=(y,n).
Hence, by Hahn-Banach,

lx—yll= sup [{x—y,u)=0
Tl =1

SOx=1.

Lemma

If X is a finite-dimensional vector space, then strong convergence is equivalent to
weak convergence.

S AN

Check Your Progress

What are vector space and subspaces?
What is linear transformation in vector spaces?
State linear span and finite dimensional vector space.

Define reflexive space.

4.9

ANSWERS TO ‘CHECK YOUR PROGRESS’

1. A vector space with anorm is called a normed vector space.

A topological space is said to be topologically regular if every point has an
open neighbourhood that is regular.

. On an n-dimensional Euclidean space R”, the perceptive notion of length of

the vectorx = (x,, x,, ..., x ) is illustrated by the formula,

¥l = /2 +- o+

The Euclidean norm is the most commonly used norm on R".

A sequence (x;) in a normed space X is said to be weakly convergent if
there is an x € X such that for every f € X.

. 5. Let<V,+>beanabelian group and < F, +, - >be a field. Define a

function X (called scalar multiplication) from F'x V'— V, such that, for all a
eF,velV,a-vel

. Let Vand U be two vector spaces over the same field F', then a mapping T

: V— U'1s called a homomorphism or a linear transformation if
Tx+y)=Tx)+ T(y) forallx,y eV
T(ox) = allx) o € F

. Let V(F) be a vector space, v, € V, a, € I’ be elements of V and F

respectively. Then elements of the type Zaivi are called linear

combinations of v, v,, ..., v_over F. i=l
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Let S be a non-empty subset of ¥, then the set
n
L(S) = Z(x,-v,- |o; € F,v; €S, nfinite
i=1

1.e., the set of all linear combinations of finite sets of elements of S'is called
linear span of S. It is also denoted by < § >. If S = ¢, define L(S) = {0}.

8. Let X be a normed space and X** = (X*)*denote the second dual space
of X. The canonical map defined by gives an isometric linear isomorphism
(embedding) from X'into X**. This space is called reflexive if this map is
surjective.

4.10 SUMMARY

¢ Anormis a function that assigns a strictly positive length or size to all vectors
in a vector space other than the zero vector while a seminorm is allowed to
assign zero length to some non-zero vectors.

¢ A topological vector space is called normable (seminormable) if the topology
of'the space can be induced by a norm (seminorm). The norm of a vector v
is usually denoted ||v|| and sometimes |v|.

¢ On an n-dimensional Euclidean space R”, the perceptive notion of length of
the vectorx = (x,, x,, ..., x ) is illustrated by the formula,

[l =y e

The Euclidean norm is the most commonly used norm on R”.

e The Euclidean norm of a complex number is the absolute value (also called
the modulus) of'it, if the complex plane is identified with the Euclidean
plane R

e Asequence (x )inanormed space Xis said to be strongly convergent if
there is an x € X such that,

lim || x, —x||=0
n—oo

e Asequence (x ) in a normed space X is said to be weakly convergent if
there is an x € X such that for every f'e X',

lim f(x,)= /(x)

e Let<V,+>beanabelian group and < F, +, - >be a field. Define a function
x (called scalar multiplication) from F' x V— V, such that, forall o € F,
velV,a-vel

¢ 4 non-empty subset W of a vector space V(F) is said to form a subspace
of Vif Wforms a vector space under the operations of V.



¢ A necessary and sufficient condition for a non-empty subset ¥ ofa vector " f””esfé'c”;”if;?u 2’;:;’;{
space V(F) to be a subspace is that ¥is closed under addition and scalar
multiplication.
e Let Vand U be two vector spaces over the same field F, then a mapping
T:V— Uis called ahomomorphism or a linear transformation if
Tx+y) =Tx)+ T(y) forallx,yeV
T(ox) =allx) o € F

NOTES

e Let V(F) be a vector space, v, € V, o, € F be elements of V' and F

respectively. Then elements of the type Zoc,-v,- are called linear

combinations of v, v,, ..., v_over F. i=l

4.11 KEY TERMS

¢ Euclidean norm: On an n-dimensional Euclidean space R”, the perceptive
notion of length of the vector x= (x, x,, ..., x ) is illustrated by the formula,

¥l = A2+ +

The Euclidean norm is the most commonly used norm on R".

n
e Taxicab norm: || x||; := Z | x; | . The name relates to the distance a taxi
i=1
has to drive in a rectangular street grid to get from the origin to the point x.
e Subspaces: 4 non-empty subset /¥ of a vector space V(F) is said to form
asubspace of V'if W forms a vector space under the operations of V.

4.12 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions
1. Define strong convergence.
2. What is a perfectly normal space?
3. State the importance of Urysohn’s lemma.
4. Define adjoint operators.
5. Whatis reflexive space?

Long-Answer Questions
1. Illustrate the concept of equivalent norms.
Describe weak and strong convergence with the help of examples.
Explain the concept of regular and normal spaces.
State and prove Urysohn’s lemma.
Prove the characterization of the adjoint operators.

AU

Explain Hahn Banach theorem for real linear space, complex linear space

and normed linear space. Self - Learning
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UNIT 5 INNER PRODUCT SPACE
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Structure

5.0 Introduction
5.1 Objectives
5.2 Inner Product Space
5.3 Hilbert Space
5.3.1 Orthogonal Complements
5.3.2 Conjugate Space H*
5.3.3 Reflexivity of Hilbert Space
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5.5.1 Parseval’s Identity
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5.7 Summary
5.8 Key Terms
5.9 Self-assessment Questions and Exercises
5.10 Further Reading

5.0 INTRODUCTION

In mathematics, an inner product space is a type of space in mathematics. A field
of mathematics known as functional analysis, is a vector space with an additional
structure called an inner product. This additional structure associates each pair of
vectors in the space with a scalar quantity known as the inner product of the
vectors. An inner product naturally induces an associated norm, thus an inner
product space is also a normed vector space. A complete space with an inner
product is called a Hilbert space. An incomplete space with an inner product is
called a pre-Hilbert space, since its completion with respect to the norm, induced
by the inner product, becomes a Hilbert space. Inner product spaces over the
field of complex numbers are sometimes referred to as unitary spaces.

The mathematical concept of a Hilbert space, named after David Hilbert,
generalizes the notion of Euclidean space. It extends the methods of vector algebra
and calculus from the two-dimensional Euclidean plane and three-dimensional
space to spaces with any finite or infinite number of dimensions. Hilbert spaces
have inner products and so notions of orthogonality and orthogonal projection are
available. Many of the applications of Hilbert spaces exploit the fact that Hilbert
spaces support generalizations of simple geometric concepts like projection from
their usual finite dimensional setting. In particular, the spectral theory of continuous
self-adjoint linear operators on a Hilbert space generalizes the usual spectral
decomposition of a matrix, and this often plays a major role in applications of the
theory to other areas of mathematics and physics.
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Inner Product Space In this unit, you will learn about the inner product space, Hilbert spaces,

and Hilbert Space . .. .
orthogonal complements, conjugate space H*, self-adjoint operators on Hilbert
spaces, projections on Hilbert spaces and positive, normal and unitary operators.

NOTES 5.1 OBJECTIVES

After going through this unit, you will be able to:

e Describe inner product spaces and Schwarz’s inequality
¢ Discuss Hilbert spaces and convex set in Hilbert spaces
¢ Explain the self-adjoint operators on Hilbert spaces

¢ Define orthogonal sets

¢ Describe the conjugate space

¢ Discuss reflexivity and projections on Hilbert spaces

¢ State normal and unitary operators

5.2 INNER PRODUCT SPACE

In general a vector space is defined over an arbitrary field F. In this section we
restrict F'to the field of real or complex numbers. In the first case, the vector
space is called real vector space and in the second case it is called a complex
vector space. We have dot or scalar product of two vectors which among other
things satisfies the following:
(@) v.vz0and .v) =0 Vv =0
(if)
(iii)

where u, v, w are vectors and a, 3 real numbers.

W= Wy

(07 +PW) = aii.¥) + B W)

<

<y

We wish to extend the concept of dot product to complex vector spaces also.
We define a map on V' x JV'to F' (where V' = vector space over F) with same
property as dot product, called inner product and study the concept of length and
orthogonality.

Definition: Let J be a vector space over field F' (where F = field of real or
complex numbers). Suppose for any two vectors u, v € V'3 an element (u, v)
€ F'such that, [(u, v) here is just an element of F and should not be confused
with the ordered pair.]
(@) (u,v)= (v,u) (i.e., complex conjugate of (v, u))

@) (u,u)>20and (v, u)=0<=u=0

(i) (cut + Py, w) = o, w) + B(v, w)
forany u, v, w € Vand a, B € F.

Then Vis called an inner product space and the function satisfying (), (if) and
(iii) s called an inner product.

Self - Learning Thus inner product space is a vector space over the field of real or complex
186 Material numbers with an inner product function.



Notes:
1. Property (ii) in the definition of inner product space makes sense in as
much as (u, u) = (u,u) by (i) = (u, u) = real.

2. Property (iii) can also be described by saying that inner product is a linear
map in st variable.

3. Can we say that inner product is linear in 2nd variable?

Let’s evaluate
(u, av + Bw) = (av+Bw,u) by (i)
= a(v,u)+ P (w,u)
=@ (u,v)+ B (u,w)
So, itneed not be linear in 2nd variable.

4. If F=field of real numbers, then the function inner product satisfies same
properties as dot product seen earlier.

5. Inner product space over real field is called Euclidean space and over
complex field is called Unitary space.

6. Inthe vector space of all vectors in 3-dimensional space over reals, the
inner product will be the usual dot product of two vectors, i.e.,

<u,v>= |i||V| cos 0.

Example 5.1: Let V= F"", F = field of complex numbers.

Solution: u= (o, Oy..r Q)

v= (B, By B,) in F®
Define (u, v) = o, By + ...+ B,
It can be easily shown that (1, v) defines an inner product, called standard inner
product.

Example 5.2: Let V' =R®, y = (o, a,), v= (B B,)
Define (u, v) = a By — B, — o, +4 a,f,
Then

Solution: (i) (i, v) = (v, u) = (v, u)

(i) (u, u) = (0, — 0)* + 3a2 =0
(u,u)=0< o, = a,, a, =0
< a,=0=o0,
S u=(a,a,)=(0,0=0
(@) (o + Bu, w) = alu, w) + B(v, w)
can be easily verified.
Thus (u, v) defines an inner product.

Example 5.3: One may construct a new inner product from a given one. Let V,
W be vector spaces over F and 7, a one—one linear transformation from
Vinto W.
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Suppose (, ) is an inner product on W. Then,
Solution: <u,v>=(T(u), T(v))

defines an inner product on V' as

0 <v.u>= T0),T@w)

= (T, )

=<u,v>
@) <u,v>=(T(u), T(u)) 2 0

and<u,u>=0 < (T(u), T(u)) =0
& Tw)=0<=u=0asTis 1-1

@@ii) <owu + Bv, w> = (T(au + Bv), T(w))
(aT(u) + BT(v), T(w))
o(T(w), T(w)) + B(T(v), T(w))

=a<u,w>+p <y, w>

Example 5.4: Let V=M _ (C).Then< A, B>=Trace (4B*) where B*= B',
defines an inner product on V as

) <B, A> = Trace B4A*
Let A= (ay, B=(by, AB*=C=(c))

Solution (i):  B* = (d,), where d,; = bji
" cik = Zal]d]k = ECIU bk]
j— Cl.l. = Zalj bkj

= Trace AB* = X¢; = X(Zay bi)

Let A* = (el.j), where €;= a;
Let BA*=F = (fl.j), then
Jie = Zhyay

= Trace BA* = X f; = X(Zb,ay
= Trace BA* = LXay b; = Trace AB*
= <B,A>=<A4,B>

(ii) <A, B>=Trace AB* = X(Za; by)
Solution (ii): .. <4, 4>= Zzaijal_j — ZZM; 250

and <A,A>=O<:>|al.j|=0 Vi,j
<:>al.j=0 Vi, j
< A=0

Similarly axiom (ii7) can be verified.



Example 5.5: Let ' be an inner product space. Show that
@ (0,v)=0forallveV
@) (u,v)y=0forallve V=u=0
Solution: (i) (0, v)= (0, 0, v)
=0(0,v)=0
@) (u,v)y=0forallveV
= uw,u)=0=>u=0.

Example 5.6: Let W, W, be two subspaces of a vector space V. If W, W, are
inner product spaces, show that W, + W, is also an inner product space.

Solution: Let x,y e W, + W,.
Then X=u, +u,
y=v,tv, u,v, € Wiu, v, e W,
Define <x,y>=(u, v) + (u,, v,)
Then

@) <y,x> = (vu)+ (v, uy)

= (v, u)+(vy,uy)
= (up, v + (uy, v,)
= <X, y>
(i) <x,x>=(up, uy) + (uy, u,) 2 0
and <x,x>=0 < (u, u) =0=(u,, uy)
S u=0=u,
& x=0
@) <ox + By, z>=a<x,z>+pB<y z>
can be easily verified.
. <X, y > defines an inner product on W, + W,

So, W, + W, is an inner product space.

Norm of a Vector

Let V" be an inner product space. Let v € V. Then norm of v (or length of v) is
defined as ./(v,v) and is denoted by || v ||.

In the vector space of all vectors in 3-dimensional space,

lii|| = J<ii,ii > = |i| =length of « .

For this reason, norm of vector in general is also called length of vector.

Example 5.7: ||av || =|a|||v| foralla e F,v e V
Solution: | ow | = (o, ow)

= aa (v, v)

= lal (v}
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= [fav[[=[al v

We now prove an important inequality known as Cauchy-Schwarz inequality.
Theorem 5.1: Let V' be an inner product space.

Then | (u, v) | <||ull||v] forallu,ve V.
Proof: If u =0, then (u, v)=(0,v)=0

and lul = Jaww = J©.0) =0

. L.H.S.=R.H.S.

Letu#0. Then ||ul#0

(@sflul|=0 = (0,00 =0

=>wu)=0=>u=0)

Let w=v-— —(V’u)u

Then w,w) = (v— (V’u)u v— G, u)uj

27 2
[l [l

= -2
[lull

e @@y _ oo )
I - S
u u
| 1V IP =, v) [P
e |I?

Since (w, w) >0,
|, V) < JJulf || vIP

= @, v) | <[lul [Iv]

Notes:
(7) The above inequality will be an equality if and only if u, v are linearly
dependent.
Proof: Suppose | (u, v) |=|ull | V]

If u =0, then u = 0.v = u, v are linearly dependent.

Let u # 0. Then from above
w,w)=0=>w=0

v——(v’ uz) u =
[l
= v=v- v, u) u = u, v are linearly dependent.

2
[[u]]

Conversely, let u =av, o € F

_ — 2
Then [, V) [ =]am )| =]al[v]
_ _ 2
Fa v =To IvIFvi = To vl
| G, v) [ =[]l vl



(i) Inthe vector space of all vectors in 3-dimensional space, since
l<u,v>| = |u| |v]||cos8|
< Jlu||||v] as|cosO]<1
we find that Cauchy-Schwarz inequality holds.
Theorem 5.2: Let V be an inner product space.
Then (@) [|x+y||<||x||+ ||y forallx,y eV
(Triangle inequality)
@) fx+yIP+lx=yIP=20xI+yIP
(Parallelogram Law)
Proof: (i) [|x+y|f =(x+y x+y)
= x)+ 0,0+ 0+ 0,)

=[IxP+ () + @y + Iy
= [|x |+ 2Re (x, ») + | ¥ |
<IxlP+2@»|+yIP
<IxlP+2 0x Iyl + Iy
= (lxll+ 1y 1)

Hence, [[x + y [ <[ x[ + ¥

This is called triangle inequality as

|l x ||+ ¥ || = sum of the lengths of two sides of a triangle

|| x +y || =length of the third side of the triangle showing that sum of two side
of atriangle is less than its third side.

@ lx+y P+ lx=yl
=@tyxty)tx-y,x-y
= Ix P+ 1y IP+ e+ +[xP+ [y -6 -0
=2(IxIF + Iy )
Note: || x + y | + || x — v ||> = sum of squares of lengths of diagonals of a

parallelogram
2 (|| x |+ ||y |) = sum of squares of sides of a parallelogram.

.. sum of squares of lengths of diagonals of a parallelogram is equal to sum of
squares of lengths of its sides. For this reason (i7) is called parallelogram law.

Example 5.8: Using Cauchy-Schwarz inequality, prove that cosine of an angle
is of absolute value at most 1.

Solution: Let ' = Field of real numbers and ¥ = F®)
Consider standard inner product on V.
Let U=@xpyp2),v=0,2) €V
Let 0=(0,0,0)
Let 0 be an angle between OU and OV,
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2 2 2 2 2 2 ull v
NN e
. _ 1@ Nul vl
NOTES > |cos 0= 2>~ < -

el vl ffae (v

5.3 HILBERT SPACE

Theorem 5.3: Suppose E is an inner product space and M a complete convex
subset of £. Let x € E, then the following will be equivalent:

1. y € M satisfies |[x—y|| = (min__ ) |x—z]|.

zeM-

2. y e MsatisfiesRe(y —x,y—2z)<0 Vz e M.

Additionally, there is unique y € M satisfying (1) and (2).

Proof: (1) = (2): Forze M and0<0 <1, let
fO)=|x—{1-0)y+0z}|P=|x-y+0 (-2
=l —yIP+ 6% [ly — 2P +260 Re(x —y, y - 2).
Since f(0) =f(0)=||x —y| for 0 <6 <1, we have

lim
)

w:2Re(x—y,y—z)20
(2) = (1): Forz € Mwe have,
Re(y—x,y—z) =—Re(x—y,y—x+x—-2)
=k =y -~ Re(x -y, x-2)<0
Hence

Ix =P <Re(x —y,x—2z) < |x—y|| - [x — 2|
and therefore

e = Il < [ — 2|

forallze M.

It follows from (2) that there exists at most one such y, asifboth y and y,
satisfy (2) for all z € Mthen,

0y, =ylP =0 =ypy,=2) =0 =%, =)+, =Xy, »)
=Re(y, - x,y, -y, ¥ Re(y, —x,y,-») <0,

SOy, =,

To prove that there exists y satisfying (1), consider

o =inf || x—z|
zeM

Now consider a sequence {z, j— M that satisfies,
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1
a’<||x—z, <o’ +—
n

Claiming that {z } is a Cauchy sequence, we have
Iz, =z, I =z, = x) = i, — I
=i, —0IP +(,—®IF-2Re (z,—x,z,—x)

z +z
H=5 =lE, =0+ G, —0F-2Re (z,—x, 2, - )
Consequently
2 2 2 Zn+Zm
Iz, = 2,)IF = 2lz, = I+ 2 Iz, = 0)IF = 4 === —x

< 2(0(2 +l)+2(a2 +Lj—4a2 :2(l+l]
n m n m

which shows that {z } is a Cauchy sequence. Now as M is complete, there

exists y € M with y =1lim . Noticeably, ||x — y|| = lim Ix—z || = a.

n—>0 Zn n—>0

This completes the proof.

The map ¢: E > M defined by tx =y, where y is the unique element in M
and satisfies (1) and (2) of Theorem 5.3 is called the projection from £ onto M.

Corollary 1: Suppose M is a closed convex subset of a Hilbert space E then
t=1, has the following properties:

1. #=t,i.e., tisidempotent
2. [[x =8| £ |x =y, 1.e., ¢ 1s contractive
3. Re(tx—ty,x—y) >0, 1.e., t is monotone
Proof: (1) is evident.
(2) From Re(tx —x, tx —ty)<0and Re (ty —y, ty —tx) < 0
we get Re(x —y — (tx — ty), tx — ty) =2 0.

Hence ||tx — ty|? < Re(x — y, tx — ty) < |lx — y|| . ||tx — #y|| from which
lltx — ]| < |lx —y|| follows.

(3) Again from Re(x — y — (tx — ty), tx — ty) > 0 we get
0 <|ltx — ty|* < Re(x — y, tx —ty)
Linear Transformation

Consider a linear transformation 7" from a normed vector space X into a normed
vector space Y over the same field R or C. T'is continuous on Xif and only if'it
is continuous at one point.
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Theorem 5.4: T'is continuous if and only if there is C > 0 such that,

7] < Cli]| ~(5.1)
forallx e X.

Proof: = Ifthere is C > 0 such that Equation (1) holds for all x € X'then T'is
clearly continuous at x =0 and hence it is continuous on .X.

< Conversely, let T'is continuous on X and is hence continuous atx=0.
Then there exists 6 > 0, such that if ||x|| < J, then ||7x|| < 1. Let now x € X and

()

Ifwe choose C = % then Equation (5.1) holds for x # 0. But when x =0, Equation

ix =0 and so

x # 0. This implies
x|

1
<1 Thus ||Tx||£g||x|]_

5.1 holds always. This completes the proof.
From this theorem we get that if 7'is a continuous linear transformation from
Xinto Y, then

Tx
1T =y sup o <y o 52)

x|l

and is the smallest C for which Equation (5.2) holds. ||7]| is called the norm of 7.
| 7]| can be defined for any linear transformation 7' from X'into ¥ and 7'is continuous
iff||7]| <+ oo. Hence a continuous linear transformation is also known as a bounded
linear transformation.

Theorem 5.5: ||71| = sup,_y - | 7X ||

Theorem 5.6: Consider L(X, Y) to be the space of all bounded linear
transformations from X'into Y. Then it is a normed vector space with norm given
by Theorem 5.5.

Theorem 5.7: If Y is a Banach space then so is L(X, Y).

Proof: Here we will show that L(X, Y) is complete. Let {T } be a Cauchy
sequence in L(X, Y). Now, as
ITx =T x|=IT,-T)x | <|T,— T, . |kl

{T x} is a Cauchy sequence in Y foreachx € X. Set Tx=lim, T\ x.T

is evidently a linear transformation from X'into Y. Claim now that 7" € L(X, Y).
Since {7 } is Cauchy, [|7 || <C for some C> 0 and for all n. Now,

| Tx[|= lim || 7, x || < liminf {| 7, [|..]| x i
n—>0 n—>0

<(sw 7, 1] IxlisC 2]
< x € X. Therefore T is a bounded linear transformation. Now

we will show, lim||7, -T|=0. Given &€ > 0 there exists n, such that
n—>0

|17, —T |[<e ifn,m>n. Letn=n . Then we have,



IT,~Tll= sup [|T,x~Tx|

xeX |lx||=1

sup lim |7 x-T x|

xeX J|xl|=1"7%®

< sup liminf||T, T, |.| x|

xeX [lxl|l=1 M

< sup gfx|=e,
xelX ,||x||=1

This shows that lim || 7, — T ||= 0 or lim 7, = 7. Thus the sequence {7}
has a limit in L(X, ¥). This completes the proof.

L(X, C) or L (X, R) depending on whether Xis a complex or a real vector
space, is known as the topological dual of X and is denoted by X' . X" is a Banach
space.

Theorem 5.8 (Riesz Representation Theorem): Let X'be a Hilbert space and
¢ € X', then thereis y, € X'such that,

((x)=(x,y,) forx e X
Furthermore, the mapping / — y, is conjugate linearand || /|| =|| y, ||

Proof: Let /= 0 and let M= ker /. Then M~ is one-dimensional. Forx € X, x

can be uniquely expressed as x = v+ Ax, , where x, is a fixed nonzero element of

M*,ve M ,and ) is a scalar. We have then,
0(x) = £(0) + AA(x,) = hb(x,)
and

(xaxo) = (U+7‘x0’xo) =X ” Xo ||2

(x
Hence ifwe lety, = ﬁxo ,then (x, y)) = Al (x)) = £ (x). Rest of the
0

assertions are obvious. This completes the proof.

Let (€, X, 1) be ameasure space and fbe a X-measurable function on Q.
If L} Jdu has ameaning, then the set function v defined by,

v(4) = L fdu, Aex

is called the indefinite integral of /. Then v(¢)=0 and v is c-additive, i.e.,
if {4 } — X isadisjointed sequence, then

v(LﬂJAn)zz\/(An)

Also v(4)=0whenever 4 € ¥ and w(4) = 0. This provides the definition
of absolute continuity of a measure with respect to another measure. Let (Q2, 2, )
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and (Q, Z, v) be measure spaces. Then v is said to be absolutely continuous with
respectto u if v (4) =0 whenever 4 € ¥ and u(4) =0.

Theorem 5.9 (Lebesgue-Nikodym Theorem): Let (2, X, n) and (€2, Z, v) be
measure spaces with u(Q) <+ oo and v(Q2) <+ oo where v is absolutely continuous
with respect to . Then there exists a unique # € L' (€2, 2, p) such that,

v(4) = L hdy, AeX

Moreover, 4 >0 p almost everywhere.

Proof: Let p=p+ v. Then p is a finite measure on X. Consider the real Hilbert
space L? (€, %, p) and consider the linear functional ¢ on L? (Q, %, p) defined
by,

(=] fav
As

172

NI<([17F av) ([1av) " <v@"[[1£F dp]
= V@ | £ 11 Z(p)

¢ is abounded linear functional on L? (QQ, 2, p). By Riesz representation
theorem there is aunique g € L? (QQ, 2, p) such that,

J fdv =] fedp = fedu+ [ fedv

forall fe L? (Q, X, p), or

[ra-gydv={ fedn

..(5.3)

forall fe L* (Q, 2, p).
Claim 1: 0 <g(x) < 1for p almost everywhere x on Q.

Let 4 ={xeQ:g(x)<0} and 4,={xeQ:g(x)=1}. If we let
Jf =4, inEquation (5.1),then 0 < v(4,) < L (1-g)dv= J.A gdu which implies
w(4,)=0and hence v(4,) =0. Thus p (4,) =0. Now in Equation (5.1) choosing
f=%4,, wehave 0> L (1-g)dv = L gdu > u(4,). This implies p(4,) =0
and hence v(4,) = 0. Consequently, p(4,) = 0. This proves Claim 1.

Claim 2: Equation (5.1) holds for all Z-measurable and p almost everywhere
nonnegative functions f. For each positive integer n, let f = f A n. Since

1 - g>0and g >0 p almost everywhere, 0< f,(1-g)./" f(1-g) and
0< f.g ./ fg.Thenfrom Monotone convergence theorem and Equation (5.1)

we get,



[fa=g)dv=lim[,(1-g)dv=lim|[f gdu= fedy

which establishes the claim.

For a ¥-measurable and p almost everywhere greater than or equal to 0

function z choose = " = in Equation (5.1). Then,
-&
g
zdv=|z—=—du=|zhd
I j —g " I H .(5.4)

where h = li .Iffor A € ¥ we take z= y 4 in Equation (5.2), then
-&

v(4) = j 1, hdv = L hdyp

Since v(Q) < +oo , we know that Ihd u<+oo andhence h e L'(Q,Z, ).

The uniqueness of / is obvious. That /> 0 p almost everywhere is also obvious.
This completes the proof.

A measure space (Q2,X, ) is said to be o-finite if thereare 4, 4,, ... in X
suchthat | J4, =Qand p(4,)<too,n=1,2, ....
Theorem 5.10: Lebesgue-Nikodym theorem holds ifboth (Q2,Z, 1) and (€, %, v)
are o-finite. But in this case 2 may not be p-integrable.

Let X be a Hilbert space. For definiteness, let X be a complex Hilbert

space.

B(.,.): X x X = Cis called sesquilinear if for x, x , x, in Xand & , A,

2
€ C the following equalities hold:

B(hx, +X,yxy,X) = A B(x;, X) + A, B(x,, X)

B(x,hx, + %)) = A B(x,X,) + A, B(x, X,)

B is said to be bounded if there is » > 0, such that [B(x, y) < #||x|| . ||| for all
x and y in X'and B is said to be positive definite if there exists p > 0 such that |B(x,
x) > p |lx|]* for all x in X.
Theorem 5.11: Suppose that B is a bounded, positive definite and sesquilinear
function on X' x Xand that B(x, y) = B(y, x) forallxandyinX. Let((.,.)). Then
(X, ((.,.))) is aHilbert space which is equivalent to (X, (.,.)) as Banach space.

Theorem 5.12 (Lax-Milgram Theorem): Let X be a Hilbert space and B a
bounded, positive definite and sesquilinear functional on X x X. Then there is a
unique bounded linear operator S : X > X such that (x, y)=B(Sx, y) forall x, y
—Xand ||S|| < p!. Besides S! exists and is bounded with ||[S7Y|| < 7.
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Proof: Let D= {y € X: 3 y* € X.such that (x, y) = B(x, y*) vx € X}. D ***
as 0 € D. Also y* is uniquely determined by y as if

B(x,y,)=B(x,y,) = (x,y)Vx e X then B(x,y, —y,)=0Vxe X, and
hence 0 = B(y; ~ ;.3 —»,)2plly —y, | implying ||y ~y;[|=0 or
Y=y

Fory € D, let Sy=y*. As B is sesquilinear, D is a vector subspace of X and
S is linear on D. Furthermore, from p| Sy |’< B(Sy,Sy) =(Sy,y)<

I 71111 Sy Il, we get that [| Sy[|<[p™* ||y || for y € D. Thus S is bounded on D
with || §'||<p . We will now show that D =X. For this we first show that D is

closed. Let {y,},, © D lim y, = y with forsome ye X .

Then, (x,y) =lim(x, y,) =lim B(x, Sy, ) forallx € X.Since Sis bounded
on D, Sy is Cauchy in X and hence has a limit z € X. This and the boundedness
of Bimplies that, (x, y) = liin B(x,Sy,) = B(x,z) forall x € X. Hence y € D and

z=_Sy. So D is closed. Now if D # X, there is y, € D", y, # 0. Consider the
linear functional ¢ defined on Xby,

U(x)=B(x,y,),xe X

As Bisbounded, / is abounded linear functional on X, and hence by Riesz
representation theorem there is x, € X'such that,

B(x,y,)=(x,x)xeX

Thusx, € Dand P 1Y IP< B(454) = (X4, %,) = 0. Hence v,/ = 0. This
contradicts the fact that y # 0. Therefore D = X. Thus §'is a bounded linear
operator on X and ||S|| < p™.

As Sy = 0 implies (x,y) = B(x,Sy)=0Vxe X and hence y=0, Sis a
one-to-one map. Applying Riesz representation theorem again, for each y* in X
there exists y € X'such that, (x, y) = B(x, y*)Vx € X, 1.e.,y*=38y. Thus Sis an
onto map. Hence S™' exists. But from || S 'y |P=[(S'y,S 'y)|= | B|S 'y, y|
<rlI(Sy .11y |l itfollows that || S || < 7.

5.3.1 Orthogonal Complements

Let V'be an inner product space. Two vectors u, v € Vare said to be orthogonal
if (u,v)=0< (v, u) =0. So, u is orthogonal to v iff v is orthogonal to . Since
(0,v)=0 forall v € V, 0 is orthogonal to every vector in V.

Conversely, if u € V' is orthogonal to every vector in V, then (1, u) =0 =
u=0.

Let W be a subspace of V.



Define W+ = {v € V| (v, w) =0 for all w € W} (W" is read as W
perpendicular). Then W is a subspace of Vas 0 € W+ = W+ # ¢ and ViV,
e W, a, BeF

= (o, + Bvy, w) = av;, w) + B(v,, w) =0 forall w e W
= av, + Py, € Wt
W is called orthogonal complement of W.
Example 5.9: Let V' be an inner product space. Let x, y € V' such that,x 1 y

Then show that || x +y |>=| x |*+|| v |]*. (This is Pythagoras Theorem
when F =R as in triangle ABC with AB 1. BC, AB*=|| x |>, BC*=|| y |?, AC?

=x+y?

Solution: ||x+y||2 =x+y,x+ty
=)0ty +O Y
= |x|P+[y|* as (x,»)=0=(y,x).

Orthonormal Set

A set {u.}, of vectors in an inner product space V' is said to be orthogonal if
(u, uj) =0 for i # . If further (u,, u;) = 1 for all i, then the set {u } is called an
orthonormal set.

Example 5.10: Let /" be the real vector space of real polynomials of degree less
than or equal to n. Define an inner product on V' by

n . n . n
[zaixl’ ijij - zaibi
i=0 j=1 1

Then {1, x,..., x"} is an orthonormal subset of V.

Theorem 5.13: Let S be an orthogonal set of non zero vectors in an inner product
space V. Then S'is a linearly independent set.

Proof: Toshow Sis linearly independent, we have to show that every finite subset
of Sis linearly independent.

Let {v,,....., v, } be a finite subset of S.

Let, v, o +ay =0, o eF
(oyv, + ..o tov, oy, o +av)=0
2 2 2 2 _
= la [ v F+ e H o, [P v, [[F=0
= o [f|v,|?=0 foralli=1,...,n

= |a,f=0forallias||v,[F=0=|v][[=0=v.=0
which is not true
= o =0 foralli=1,.. n
= S'is linearly independent.
Corollary 2.: An orthonormal set in an inner product space is linearly independent.

Proof: Let S be an orthonormal set in an inner product space V. Let v € S. Then
v#0asv=0= (v,v)=0= 1, a contradiction. Therefore, S is an orthogonal
set of non zero vectors and so linearly independent.
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Theorem 5.14: (Gram-Schmidt Orthogonalization process)

Let V'be anon zero inner product space of dimension n. Then V" has an orthonormal
basis.

Proof: It is enough to construct an orthogonal basis of V. For let S < V'be an
orthogonal set. Then 7= {L |xeS§ } is an orthonormal set.

Let {v,,..., v,} be a basis of V.

(v2, W)
(wl, Wl)

Let w, =v,. Define W, =V, —

— (vsm)
(vlnvl)

Then (w,, w)) = (w,, v)

= (V27 Vl) - (VZHVI) (Vp Vl) =0

Vi, v1)
Also v, =, tw, = aw tw,
Vs, V
where o, = (G
Vi, v1)
(Note v, is linearly independent = v, # 0 = (v, v,) # 0)
_ (v3, w) (v3, m)
Define Wy = vy — wy — W
(wy, W) (W, W)
Then (W, wy) =0 = (wy, w))
Also vy = oyw, + a,w, + w,, where a,;, a, € F.

In this way, we can construct an orthogonal set {w,,..., w } where each
v,=aw t..t+tw, o eF

{| s T Y ||} is an orthonormal set which is linearly independent by
M Wi

Corollary 1 to Theorem 5.13 and hence forms a basis of V as dim V' = n.
Aliter: Let dim V' = n. We use induction on 7.

Letn=1.Let0#x € V, thenv = ﬁ € Vsuch that, | v| = 1.
X

So, {v} is an orthonormal basis of V.

Suppose now that the result holds for any inner product space of dimension
less than or equal to n — 1.

Let V'be an inner product space of dimension »

Let 0 # v € V' be such that, || v | = 1.

Define T, .V — C such that,
TO)=<v,v>

Then 7' is a linear transformation.

Leta € C, thena=o|v|[ =a<v,v>=<av, v> =T, (ow)



and so 7, is onto, i.e., Range T = C.
By Sylvester's law
dim V= dim Ker 7 + dim Range T,
= n=dimKer 7 +dim C
=dim Ker 7 + 1
= dim W=n—1, where W =Ker T,
=xeV|T,(x) =0}
={xelV|<v,x>=0}
By induction hypothesis, #has an orthonormal basis {w, w,,..., w, }
Now welW=<vw>=0 Vi=1,2,..,n-1
Also <v,v>=|v|f=1
So {w, wy,..., w,_,, v} is an orthonormal set.
Le., {w, w,,..,w_ ,v}is LI set by Corollary 1 to Theorem 5.13.

Sincedim V=n, {w,,w,,...,w_,, v} isabasis of /"and hence is an orthonormal
basis of V. So, result follows by induction.

Example 5.11: Obtain an orthonormal basis, with respect to the standard inner
product for the subspace of R* generated by (1, 0, 3) and (2, 1, 1).

Solution: Let v, = (1, 0, 3), v, = (2, 1, 1)

— — (Vz,Wl)

Then W, =V, W, =V, — w
1 P T )

Now vy w)=(vy, v)=2+0+3=5
w,w)=,v)=1+0+9=10
[w, [I = 10

5 3 1

S =2,1,1)- = (1,0,3)=|=,1,-—

o, =@ L2 (1,0.3)= (2]

[y |l
4 4 2

.. Required orthonormal basis is

L (L E £££1—1J}
{||w1||’||w2||} {m“’” 722

Example 5.12: Let V' be an inner product space over R. Let {v,, v,,..., v, } be
a basis of V'such that, whenever v = 2oy then || v 12 = Eal.z. Show that {v,,
V,..., v} 1s an orthonormal basis.

s _ 2 _ . .
Solution: We have v. = 1.v, = |[v,[*=1  Vibyhypothesis
Consider v, + v, i #J, then
v, +v.|?=2
i
= <y, v,>+ <vj, vj> +<v, vj> + <vj, v, > = 2

= <V, V> F <y, v,>=0
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= <V v,>t<v,v,>=0asV is an inner product space over R
= <V, v,>=0 Vi#j
Hence {v,, v,,..., v } is an orthonormal basis.
Theorem 5.15: (Bessel's Inequality)

If {w,,..., w _} is an orthonormal set in ¥, then

Z:I(w,-,v)l2 < ||v||2f0r allve V.

izl
m

Proof: Letx=v— > (v,w)w
izl

(x, wj) = (v, wj) — (v, wj) =0 forallj=1,.,m

m m
Let w= Z(v, w)w = Zaiwl-, a. = (v, w)
i=1 i=1
vV=x-tw
Also w,x) = (aw, + ... +a,w,, Xx)

= o, (w;, x) + .. +a,(w,x)=0
Now v [?= (v, v)

=w+x,w+Xx)

=(w, w) + (x, x)

- 2 2 2

= wil”+lxl" = wl

But [w 2= (w, w)
= (a,w; + ... ta,w oW o +a,w )
= o0y (W, w) + .. +a,a, W, w)
=lo, [+ .+, [

as {wy,....., w_} 1s an orthonormal set
m ) m 2 m 2 m 2
= Z|0‘i| = Z|(W=Wi)| = Z|(W,-,v)| = Z|(Wt,v)|
i=1 i=1 i=1 i=1
m
Sl <||v|Fforallv e V.
i=1

Corollary 3.: Equality holds if and only if v=w.

Proof: Suppose v=w

Then IvIP=1lwl? = Yo
i=l

Conversely, suppose equality holds

Then IvI? = lwiP

=

= [ x| 0=0x)=0=>x=0

> v=wt+x=w.



Theorem 5.16: If Vis a finite dimensional inner product space and W¥is a subspace
of ¥ then V' = W @ W

Proof: Since Vis an inner product space, so is . By Theorem 5.14, W has an
orthonormal basis {w,...,w,_ }.

Letv e V.

m
Letw= Y (v,w)w, w, € Wandx=v—w

i=1
Then (x, Wi) =0 as in Theorem 5.15, for all j = 1,..., m
(x, w) =(x, Bw, + ... +B,w,)

=B, (x, w) + ... +B, x,w)
=0forallwe W
x e W
So, v=w+xe W+ W
Ve w+ wt
= V=Ww+ W
Let ye WA W= (y,w)=0 forallwe W,y e W
= (0,y)=0ayeW
= y=0
W W= {0}
Hence V=wae W

Corollary 4: If Wis a subspace of a finite dimensional inner product space ¥, then

Wy =w.
By above theorem, V=W @& W+
Let we W, xe W
Then x e Wt = <x,y>=0 VyeWw
= <x,w)=0 Vxe W
= we (W)
ie., W < (Wt

Letve (W)t thenv=w+w,we W,w e Wt

= 0=<w,v>=<w,wtw)=<w,w>+<w,w>=<w,

w' >
So w=0=>v=weW
ie., (WLt < W giving W= (W,

Corollary 5: If S = {x, x,,..., x .} is a basis of Wand T'= {y,, y,,...,y,} isa
basis of W* then

1X)s Xyees X5 V15 Vyseons Vo 18 an orthonormal basis of V.

By above theorem V' =W & W+
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and Hilbert Space
Also<x,y,>=0  Vijasy € W V)
proving the result.
NOTES Note: Theorem 5.16 need not hold in case of infinite dimensional vector space.

For instance, take

V=1{(a,) | (a,) is a sequence of complex numbers such that, ZI a, < 00}.
1

Then Vis a vector space with respect to componentwise addition and scalar
multiplication

Take a=(a,),b=(0b)eV
Define <a,b>= ZanE
1

Since (la,|—1b,1)*=0
la, P+ b, >2]a,||b,]

Now 2 |Za,b,| < 2% |a, || B,

= 2|Za by |< 2% a,l||b, |as|b,|= bl
< Za, P+ 2b, <o
Thus < a, b > is well defined inner producton V.
Let 4, € V such that, k™ entry is 1 and zero elsewhere
LetS=1{[4,1k=1,2,.,}cV
Then <4, Aj > = 811..

n2

Let W= L(S), then W= Vasv= {L} € Vand v ¢ L(S).

[In fact L(S), is the set of those sequences whose only finite number of entries
are non zero|.

Alsox e W= <x,w>=0 YVweW
= <x,4,>=0Vk=1,2,..
= x, =0 Vk wherex=(x)
= x = 0 or that W* = {0}
So VeEW® W= W.
Notice Vis not F.D.V.S. by Theorem 5.16.
Example 5.13: If W is a subspace of V' and v € V satisfies
v,w)y+w,v)<(w,w) forallw e W
prove that (v, w) =0 for all w € W, where Vis an inner product space over F.

Solution: Let n be a +ve integer

Then WEW:>%EW
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Let

()6

v, W)+ (w, v) < L (w, w)

n—> ©

v,w)y+(w,v)<0 forallwe W
v, w)y+(w,v)<0 forallwe W
= —[(v,w)+ (w,v)]<0forallwe W
= v,w)+(w,v)>20 forallwe W
= (v,w)+w,v)=0 forallwe W

IfFc R, then (w,v)=(v,w)

= W,w)+v,w=0
= 2(v,w)=0 forallwe W
= (v, w)=0 forallwe W

If F < C, then (v, iw) + (iw,v)=0 forallwe W

= —-i(vw)+i(w,2)=0 forallwe W
= —ilz—-z]=0,z=(Wv,w)=x+1iy

= —i(2iy)=0

=y=0

= z=(Ww,w)=real forallwe W

= V,w)+(,w)=0

= 2W,w)=0

= (v,w)=0 forallw e W.

Example 5.14: If Vis a finite dimensional inner product space and f € V, prove
that 3 u, € Vsuch that /' (v) = (v, u,) forall v € V. Also show that u is uniquely

determined.

Solution: Let {v,,..., v } be an orthonormal basis for V. Letv € V.

Then
Let

Define

Suppose
Then

V=04 + ...+ v, o € F
fO)=B, i=12,.,n
ug=Pv,+ ..+ p,v, eV
v, ug)= (v, + .o v, By, + ..t B,v)
= of, .. +ap, as(v, vj) = 61,],
= f(v) forallveV
duy € Vsuch that f(v) = (v, u,)
(v, uy) = (v, u,) forallv e ¥
= (v,uy—uy)=0forallveV

= (u0 - uo’, Uy — uo’) =0
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!

= u, = u,
.. U, 1s uniquely determined.

5.3.2 Conjugate Space H*

Consider a Hilbert space H and its conjugate space H*. Let y be a fixed vector in
H. Define a function fy on H by,

fy(x) =(x,y) forallx inH

Assert that ’fy is linear for fy(x1+x2) =(x,+x,,y) forall x and x, in H.

= (%, )+ (%, Y) = £(x,) +£(x,)

Also

£ (0x) = (ax, y) = a(x, y) = o (x))

which proves that ||f 1<yl

This implies that fy is continuous. Thus f is linear and continuous mapping
and hence is a linear functional on H. On the other hand ify=0, then (X) (x,0)
=0=|f][=lyll. If y# 0, then

[IF]l = sup {[f, GO Ix]| = 1}

(i) )

Hence [|f || = [y]|
Thus for each y € H, there is a linear functional fy € H* such that ||fy|| =|lyll-

Hence the mappingy — fy is anorm preserving mapping of H into H*.

5.3.3 Reflexivity of Hilbert Space

Theorem 5.17: For every Hilbert space H there exists a surjective isometry
Y. H'—>H of the dual H" of H onto H which is additive and conjugate

homogeneous (i.e., W(af) = a¥P(f) forevery f € H" and every o€ IF).
Proof: Suppose H is a Hilbert space and let H = B[H,F] be the dual of H. By

the Riesz represenatation theorem, for each f € H" there exists a unique
y e Hsuchthat f(x)=(x;y) forevery x e H and || /| =] . Conversely, for
each y e M thefunctional f:H — F givenby f(x)=(x;y) forevery x € H is
linear and bounded, i.e., fe H". This proves the surjective
isometry ¥ : H" — H ofthe dual H* of H onto H:

Y(f)=y forevery feH"
where y € H is the unique Riesz representation of f e H" . Therefore
every fin H" is such that, f(x) = <x; ‘P(f)) forevery xe H*

Notice that ¥ is additive. Clearly, if f,g € H ,then

(x¥P(f+g) =([+9)0)=f()+gx)



= (PN +{(x¥(2)=(x¥()+¥(2)
forevery x e H,sothat W(f + g) =¥ (f)+¥(g).Moreover,if f e H"
and o€ T then, (x;% (af)) = of (x) = f(ox) ={o; ¥ (f)) =(x;a ¥ (f))
forevery x € H and hence ¥ (o) = o' (f) . This completes the proof.

From the above theorem we can conclude that every Hilbert space is
isometrically equivalent to its dual. In particular, every real Hilbert space is
isometrically isomorphic to its dual.

Theorem 5.18: Every Hilbert space is reflexive.
Proof: Let ¥ : H* — H be the surjective isometry of Theorem 5.17 which is
additive and conjugate homogeneous. Let the mapping (;), : 1 xH — F be
givenby, (13 g), = (¥(2):¥(f))

forevery f,g €™M ,where (; ) is the inner product on . This defines an
inner product on . < ; >* is additive ‘¥ since is additive. Now as ¥ is conjugate

homogeneous,

(o3 2). = (P(2): (o)) = (F(2): 0¥ (/) = (¥ () P(f)) = (f32).
forevery f,ge H" andevery ¢, e F andso < ; >* is homogeneous in the

first argument. Evidently <,>* is Hermitian symmetric and positive.
S=1Enl=1/1

forevery feH *, sothat the norm || ||* induced on H" by the inner product

Now,

( ; >* coincides with the usual induced norm on H" = B[H,F]. Since the dual
space of every normed space is a Banach space, (', || ||) is a Banach space and
hence (', ||||,) is a Hilbert space. We will now apply the Riesz representation

theorem to the Hilbert space H". Obtain an arbitrary ¢ e H™ . There exists a
unique g e H" suchthat, ¢ () =(/f;g). = (¥(2):¥(/))

forevery f e . Every fe isgivenby f(x)=(x;y) for every
xe H,where y=%¥(f)e H.Fix z=%¥(g) € H suchthat,

f(2)=(zy)=(¥(@):¥ ()
Hence there exists z € H such that, (/) = f(z) forevery fe H.

Therefore H is reflexive.

Check Your Progress

1. Define the term norm.
2. State Riesz representation theorem.

3. What can you say about the reflexivity of a Hilbert space?
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5.4 SELF-ADJOINT OPERATORS ON HILBERT
SPACE

Definition: A bounded linear operator T : H— H on a Hilbert space H is said to
be self-adjoint or Hermitian if,

T'=T ...(5.5)
Equivalently, a bounded linear operator 7'is said to be self-adjoint if,
(x,Ty) =(Tx,y) forallx,y e H ...(5.6)

A linear map on R" with materix A4 is self-adjoint iff 4 is symmetric
(A=AT"). Alinear map on ¢ with matrix A4 is self-adjoint iff 4 is Hermitian
(A=A").

Not: Self-adjoint operators on Hilbert spaces are used in quantum

mechanics for representing physical observables like position, momentum, angular
momentum and spin.

Definition: Abounded linear operator T : H— H on a Hilbert space His
said to be unitary if 7'is bijective and

TT =TT ...(58.7)
Hence
T =T1 ...(5.8)

Definition: A bounded linear operator T : H— H on a Hilbert space H is said to
be normal if,

TT*=T*T ...(5.9)

Note: If 7'is self-adjoint or unitary, then 7'is normal; the converse is not generally
true.

Theorem 5.19: Let T : H — H be a bounded linear operator on a Hilbert space
H. Then,

1. If Tis self-adjoint then (Tx,x) e R forall x e H.

2. IfHis complex and (Tx,x) € R forall x € H, then the operator T'is
self-adjoint.

Proof:
1. If Tis self-adjoint, then for all x,

(Tx,x)=(x,Tx) ...(5.10)

By definition <T X, y> = <x, T* y> and since 7'is self-adjoint, we have

(Tx,x)=(x,Tx) ...(5.11)
Combining Equations (5.10) and (5.11) gives,
(Tx,x)=(Tx,x) ..(5.12)

Hence (T X, x> is equal to its complex conjugate which implies that it is real.



2.1f <Tx, x> € Rforall xe H, then

<T x,x> = <T x,x> = <x,T*x> = <T*x,x>
Hence,
0= (Tox,x) (T x,x) = ((T-T")x,x)
and by Lemma 1, T—T*=0. Therefore, T=T".

Theorem 5.20: Consider T, to be a sequence of bounded self-adjoint linear
operators T, : H— H on a Hilbert space H. If T, converges to 7, then T'is a
bounded self-adjoint linear operator.

Proof: If T, — T Then | T, —T|| — 0.

Also,

IT,” =T =(T,-T)*|=|T,-T]

So that, [|((T-TY)|| < [(T-T)|I+|IT,-T |+ T, =T

=I(T-THI+[T,-T||=2||T,- T

Asn— oo, || T —T||—0.Hence || T—T||=0implying T*=T,Hence T
1s self-adjoint.
Definition: Let A be a Hilbert space. Then S : H — H is positive operator
denoted by S>0if (S f, f)isrealand (S f, f) > 0foreveryfe H.

A positive operator on a complex Hilbert space is self-adjoint.

5.4.1 Projections on Hilbert Spaces

Let M and N are subspaces of a linear space X such that every x € X can be
written exclusively as x =y + z with y € M and z € N. Then we say that
X=M® Nis the direct sum of M and N and we call N a complementary subspace
of M in X. The decomposition x =y + z with y € M and z € N is unique iff
M~ N={0}. A given subspace M has many complementary subspaces. For

example, if XY=’ and M is a plane through the origin, then any line through the
origin that does not lie in M is a complementary subspace. Every complementary
subspace of M has the same dimension and the dimension of a complementary
subspace is called the codimension of M in X. If X=M @ N, then the projection
P : X — Xof Xonto M along N is defined by Px =y, where x =y + z with
y € Mand z € N. This projection is linear with rank P = M and ker P = N, and
satisfies P>=P.

Definition: A projection on a linear space X is a linear map P : X — X such that,
p=p ..(5.13)
Any projection is associated with a direct sum decomposition.
Theorem 5.21: Suppose X is a linear space.
1. If P: X— Xis aprojection, then X=ran P @ ker P.

2. If X=M®® N, where M and N are linear subspaces of X, then there is a
projection P : X — X withran P= M and ker P=N.
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Proof:

1. Firstprove thatx € ran P iff x = Px. If x = Px, then noticeably x € ran P.
Ifx € ran P then x = Py for some y € X, and since P> = P, it follows that Px
=P =Py=x.

If x € ran P n ker P then x = Px and Px =0, soran P nker P= {0}. If
x € Xthen we have,

x =Px+(x—Px)

where Px € ran P and (x — Px) € ker P since P(x — Px) = Px — P’x =
Px—-Px=0

Thus X=ran P ® ker P.

2. Observe that if X=M @ N, then x € X has the unique decomposition x =
y+zwithy € Mand z € N, and Px =y defines the required projection.
This completes the proof.

When using Hilbert spaces, we are particularly interested in orthogonal
subspaces. Suppose that M is a closed subspace of a Hilbert space H. Then we
have H = M & M*. We call the projection of H onto M along M* the
orthogonal projection of H onto M. Ifx=y+zandx'=)"'+z', where y,)'
M andz,z' € M*, then the orthogonality of M and M* implies that,

<Px, x’> = <y, V' + z’> = <y,y'> = <y +z, y'> = <x, Px’> (5.14)
Equation (5.14) implies that an orthogonal projection is self-adjoint. The
Equations (5.13) and (5.14) characterize orthogonal projections.

Definition: An orthogonal projection on a Hilbert space H is a linear map
P :'H — "H that satisfies,

P*=P, <Px, y> = <x, Py> forallx,y e H

An orthogonal projection is necessarily bounded.
Corollary 6: Let P be anonzero orthogonal projection. Then ||P||= 1.

Proof: If x € H and Px # 0, then the use of the Cauchy-Schwarz inequality
implies that,

(PxPy) (x, P’x) (x, Px)
|| Px||

|| Px] <|[ x|l

| Pxl]  [|Px]|

Therefore || P||<1. If P # 0 then there is an x € H with Px # 0 and
|P(Px)|| = ||Px|, so that [|P[| > 1.

There is a one-to-one correspondence between orthogonal projections P
and closed subspaces M of H such that ran P= M. The kernel of the orthogonal
projection is the orthogonal complement of M.

Theorem 5.22: Suppose that H is a Hilbert space.

1. If Pis an orthogonal projection on H, then ran P is closed and H =ran P
@ ker P is the orthogonal direct sum of ran P and ker P.



2. If M s aclosed subspace of H then there is an orthogonal projection P on
H withran P= M and ker P = M-".

Proof:

1. Let P be an orthogonal projection on H. Then by Theorem 21, we have H
=ran P® ker P. If x =Py € ran P and z € ker P, then

<x, z> = <Py, z> = <y, Pz> =0
Soran P L ker P. Hence 'H is the orthogonal direct sum of ran P and ker P.
It follows that ran P = (ker P)*, so ran P is closed.

2. Let M be a closed H. Then H = M @ M-*. Define a projection
P:H—>HbyPx=y wherex=y+z withy e M andz € M-

Then ran P = M and ker P = M*. P is orthogonal. This completes the
proof.

If P is an orthogonal projection on H with range M and associated
orthogonal direct sum H = M ® N, then /- P is the orthogonal projection with

range N and associated orthogonal direct sum H=N® M.
5.4.2 Positive, Normal, and Unitary Operators

Theorem 5.23 (Spectral): Suppose 7 is a self-adjoint operator on a finite-
dimensional complex vector space V' with a (Hermitian) inner product (, ). Then
there is an orthonormal basis {e } for V' consisting of eigenvectors for 7.

To prove this theorem we need to prove the following:

Lemma 1: Let Wbe a T-stable subspace of V, with 7= T*. Then the orthogonal
complement W= is also T-stable.

Proof: Let v e W*andw e W. Then,

(Tv,w)= (v, T*w) =(v,Tw) =0

since Tw € W.
Proof of Theorem 5.23: For proving Theorem 5.23, we apply induction on the
dimension of V. Let v# 0 be any vector of length 1 which is an eigenvector for 7.

We know that T has eigenvectors because C is algebrically closed and so the
minimal polynomial of 7 factors into linear factors, and Vis finite dimensional.

Thus C-p is T-stable and by Lemma 1, the orthogonal complement ( C-p )*is also
T-stable. With the restriction of the inner product to (C-v )* the restriction of T'is
still self-adjoint. So by induction on dimension, the theorem is proved.

Theorem 5.24: Suppose 7'is a normal operator on a finite-dimensional complex
vector space V'with a Hermitian inner product (, ) . Then there is an orthonormal
basis {e } for } consisting of eigenvectors for 7.

Lemma 2: Let 7 be an operator on V" and W a T-stable subspace. Then the
orthogonal complement W+ of Wis T"-stable.

Proof: Let ve Wtandw € W. Then,
(Tv,w)y=(v, Tw)=0 since Tw € W.
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Proof of Theorem 5.24: We will again apply induction on the dimension of V.
Let A be an eigenvalue of T'and V, the A-eigenspace of 7'on V. The assumption of
normality is that 7’and 7° commute. So from the definition of commuting operators,

T* stabilizes V,. Then from Lemma 2, 7= T"" stabilizes '} . By induction on
dimension, the proof'is complete.

Corollary 7: Let 7'be a self-adjoint operator on a finite dimensional complex
vector space V' with inner product (, ). Let {e } be an orthonormal basis for V.
Then there is a unitary operator kon V, i.e., (kv,kw) = (v, w) forallv,welV
such that, {ke } is an orthonormal basis of 7-eigenvectors.

Proof: Let {f;} be an orthonormal basis of 7-eigenvectors, whose existence is
assured by the spectral theorem. Let & be a linear endomorphism mapping e, — 1,

for all indices i. We claim that k is unitary. If v = ziaiei and w= z/b €, then

kv, kw) = zaib_j<kei7 kej> = zaib_j<fi: f]> = zail;j<ei’ ej> =(v, w)

This is the unitariness and completes the proof.

A self-adjoint operator 7 on a finite dimensional complex vector space V
with Hermitian inner product is positive definite if,

( Tv,v) >0 with equality only for v=0.
The oeprator T'is positive semidefinite if ( 7v, v) >0 i.e., equality may
occur for non-zero vectors v.

Lemma 3: The eigenvalues of a positive definite operator 7 are positive real
numbers. When 7'is just positive semidefinite, the eigenvalue are nonnegative.

Proof: We have by now showed that the eigenvalues of a self-adjoint operator
are real. Let v be a nonzero A-eigenvector for 7. Then,

Av,vYy={(Tv,v) >0
by the positive definiteness. Since ( v, v) >0, essentially A > 0. When T'is

just semidefinite, we get only A < 0 by this argument.

Corrollary 8: Let 7= T" be positive semidefinite. Then 7"has a positive semidefinite
square root S, i.e., S'is self-adjoint positive semidefinite and

=T
If T'is positive definite, then S is positive definite.

Proof: From the spectral theorem, there is an orthonormal basis {e } for V'
consisting of eigenvectors, with respective eigenvalues A, > 0. Define an operator
S by,

Seiz\/z.-el.

Noticeably Shas the same eigenvectors as 7'with eigenvalues the nonnegative
real square roots of those of 7 and the square of this operator is 7. Now, let

V= zi ae;and w= Zib,.ei and compute



(Svowy= (v, Swy= Y ab e, e)= Y ab\A (e e) =Y ab A e, e)
i i i
by orthonormality and the realness of \/Tl . We therefore get,

2 aigj(\/)’_ieiﬂ ej> =(Sv, w)

Since the adjoint is unique, S=S". This completes the proof.

The standard (Hermitian) inner product on C” is,

(Vs ees )y (W ey Wn»:ivﬂ_"j

The n-by-n complex matrices give C linear endomorphisms by left
multiplication of column vectors. With this inner product, the adjoint of an
endomorphism 7'is, 7" =T, i.c., conjugate transpose. Certainly, we often write the
superscript “*’ to indicate conjugate transpose of a matrix and say that the matrix
T'is Hermitian. Similarly, an n-by-n matrix k is unitary if, kk"= 1 where 1 is the
n-by-n identity matrix. This is equivalent to unitariness with respect to the standard
Hermitian inner product.

Corollary 9: Suppose 7 'is an Hermitian matrix. Then there is a unitary matrix &
such that £"Tk = Diagonal, with diagonal entries the eigenvalues of 7.

Proof: Suppose {e,} is the standard basis for C". It is orthonormal with respect
to the standard inner product. Let {f} be an orthonormal basis consisting of 7-
eigenvectors. From Corollary 7, let & be the unitary operator mapping e, to f.
Then &' Tk is diagonal, with diagonal entries the eigenvalues.’

Corollary 10: Let 7'be a positive semidefinite Hermitian matrix. Then there is a
positive semidefinite Hermitian matrix S such that,

=T
Proof: 7T'is positive semidefinite self-adjoint with respect to the standard inner
product. So §*=T.

5.5 COMPLETE ORTHOGONAL SETS

Definition: Orthogonal set
A setof functions

{@y(x), @2 (), s P2, }
is called orthogonal if every function is orthogonal to every other function
Le.if

b
J- ¢; (), (x)dx=0 forizk
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Examples of orthogonal sets
1. The set of trigonometric functions
{1, cosx,sinx, cos2x, sin2x, ....,cosnx, sinnx, ... }

¢ onthe interval {—m, ). This set is one of the first and most important
examples of orthogonal sets.

2. The set of Legendre polynomials

O e
Ry = 280l dx™

¢ on theinterval {—1,1). The first few polynomials of the sequence are

Py(x)=1
P,x}=x

P09 =3 (37— 1)

Py(x) = % (5x% — 3x)

Definition: Orthonormal set

A collection of functions

(@ (x), @2 (%), D), }
is called orthonormal if it is orthogonal and if each of the functions is of
unitlength i.e.

b
J F =1 =12 e
i d
Example
The set of trigonometric functions
1  cosx sinx cosZx sin2x COSNXY sinnx
T = i A - AT L

on the interval (—m, ) is orthonormal. These functions are obtained by
dividing the functions

}

1, cosx,sinx, cosZx, sin2x, ...., cosnx, sinnx, ... .

by their lengths.
Expansion by orthogonal systems of functions

Let

plane. Then any vector f in that plane can decomposed in the direction of these
two vectors and written as

e, and e, be any two mutually perpendicular vectors of unit length in a

f=ae, +a,e,



wherea; = f- e, anda, = f- e,. Similarlyife,, ;and eg are any
three mutually perpendicular unit vectors in a three-dimensional space, then any
vector f in the space can be decomposed in the direction of these three vectors
and written as

f=ae, +ae, +aze,
wherea, = f-e;,a, =f-e,anda; = f - e;.Likewiseitis possible to
represent any function f in Hilbert space as a linear combination of an

orthonormal set of functions. For this, it is necessary for the orthonormal system
to be complete.

Definition: Complete orthogonal set

An orthogonal set of functions is called complete if it is impossible to add to it
even one function, not identically equal to zero, that is orthogonal to all the
functions of the set.

We can easily give an example of an orthogonal set that is not complete.
Suppose we are given any arbitrary orthogonal set and remove a single function

from it, the remaining set will be incomplete. For example, if we remove

COSX
from orthogonal set

{1, cosx, sinx, cos2x, sin2x, ....,cosnx, sinnx, ... }

The remaining set

{1,sinx, cos2x,sin2x, ...., cosnx, sinnx, ..... }

is orthogonal as before, but it is not complete since the function ..

which we excluded is orthogonal to all functions of the set.

5.5.1 Parseval’s Identity

The square of the length of a vector in Hilbert space is equal to the sum of the
squares of its projections onto a complete set of mutually orthogonal directions.
In other words, if

{@, (%), @2 (%), 1 Pulx), }

is acomplete orthonormal set of functions in Hilbert space and if a

function f is given by

F(x) = a9, () + ay s (X) + -+ @, ¢, (x) + -
then

iﬁ=fﬁmﬂ
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[nner Product Space Proof: Denote by r,, (x] the difference between f(x)and the sum of the first n
and Hilbert Space ] ] MENed o
terms of its series representation i.e.

(%) = f(x)— [a;¢,(x) + a, ¢, (x) + -+ a,9,(x]]
NOTES Now the function r_ (x] is orthogonal to each of the functions
@y (x), @5 (%), ¢, (x), -~ Letus show that it is orthogonal to the function

@, (x), 1.e.,

b
| n@nma=o
We have
b b
[ n@a@a= [ 10 -0t -as@ - - as,@l6 @
or
b b b
[ n@a@a= | f@od-a | ot @

where we employ the fact that, because the functions are orthogonal to
each other,

B
J- P, (qubj-{x:]dx =0 fori#j

Now in (1)

b b
[ Foamdr=a, and [ 6 @ax=1
and thus (1) becomes
[ nwewa= [ r@ema-a | o mir=a,-a=0

Hence, in the equation

f(x)=a;@(x) +az@, (x)+ -+ a,@,(x) + r,(x)

the terms on the right side are all orthogonal to each other. Now, by the
Pythagorean theorem, the square of the length of f{x) is equal to the sum of the
square of the summands on the right side of (2), i.e.

ffz (x)dx = Lb[ald?l(xj]zdx T Lb[a,lcp“[xj]zdx + f‘*’f (x)dx

Since the set of functions g, , ¢, -, @,, is normalized, we have

b b
j fz{x]dx=af+ﬂ§+"'+ai+j r> (x)dx
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Now we are dealing with functions of a Hilbert space which consists of

the functions f for which the Lebesgue integral of | £*| exists. This means that
as p approaches g, the integral

J;bfﬂ (x)dx

converges and the term

J;b re (x)dx

on the right side of (3) approaches zero. Thus (3) becomes

= o]

Z#=fﬁwﬁ

i=1

. What is self-adjoint operator?
5. Define a projection.

6. Give the statement of spectral theorem.

Check Your Progress

5.6

ANSWERS TO ‘CHECK YOUR PROGRESS’

. Let V"be an inner product space. Let v € V. Then norm of v (or length of v)

is defined as and is denoted by || v ||.

. Let Xbe a Hilbert space and ¢ € X', then there is y, € X'such that,

(x)=(x,y,) forx e X

Furthermore, the mapping ¢ - y, is conjugate linearand || /|| =|| y, || .

3. Every Hilbert space is reflexive.

. A bounded linear operator T : H — H on a Hilbert space H is said to be

self-adjoint or Hermitian if,
=T
Equivalently, a bounded linear operator 7'is said to be self-adjoint if,

(x,Ty) =(Tx,y) forallx,y e H

. A projection on a linear space Xis a linear map P: X — X such that,

P'=P.

. Suppose T 'is a self-adjoint operator on a finite-dimensional complex vector

space V' with a (Hermitian) inner product. Then there is an orthonormal
basis {ei} for V' consisting of eigenvectors for 7.
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5.7 SUMMARY

e Let J"be a vector space over field F'(where F' = field of real or complex

numbers). Suppose for any two vectors u, v € V'3 an element (u, v) € F/
such that, [(u, v) here is just an element of " and should not be confused
with the ordered pair.]

Inner product space over real field is called Euclidean space and over
complex field is called Unitary space.

Let V be an inner product space. Let v € V. Then norm of v (or length of v)
is defined as and is denoted by || v ||.

Let X'be a Hilbert space and ¢ € X, then there is y, € X'such that,
1(x)=(x,y,) forx e X
Furthermore, the mapping ¢ — y, is conjugate linearand || /|| =|| y, ||

Let (Q2, %, u) and (€2, Z, v) be measure spaces with p(€2) <+ o0 and v(QQ)
<+ oo where v is absolutely continuous with respect to L.

Lebesgue-Nikodym theorem holds if both (Q,%,u) and (Q,%,v) are
o-finite. But in this case # may not be p-integrable.

Let X'be a Hilbert space and B a bounded, positive definite and sesquilinear
functional on X x X. Then there is a unique bounded linear operator
S: X — X such that (x, y) = B(Sx, y) for all x, y — X and ||S|| < p .
Besides S exists and is bounded with ||S7|| < 7.

A set {u.} of vectors in an inner product space V'is said to be orthogonal
if (u,, u/.) =0 fori=#j. If further (u, u;)) = 1 for all , then the set {u.} is called
an orthonormal set.

An orthonormal set in an inner product space is linearly independent.

Consider a Hilbert space H and its conjugate space H*. Let y be a fixed
vector in H. Define a function fy on H by, fy(x) = (x, y) for all x in H. Then
the mapping y — fy is a norm preserving mapping of H into H*.

Every Hilbert space is isometrically equivalent to its dual.
Every Hilbert space is reflexive.

For every Hilbert space H there exists a surjective isometry W:H'—H of
the dual H" of H onto H which is additive and conjugate homogeneous.

A bounded linear operator T : H— H on a Hilbert space H is said to be
self-adjoint or Hermitian if,

=T
Equivalently, a bounded linear operator 7'is said to be self-adjoint if,
(x,Ty) =(Tx,y) forallx,y e H

Abounded linear operator T: H — H on a Hilbert space H is said to be
self-adjoint or Hermitian if, T*=T.



A bounded linear operator T: H — H on a Hilbert space H is said to be
unitary if 7'is bijective and TT* =T*T.

Abounded linear operator T: H — H on a Hilbert space H is said to be
normal if, TT*=T*T.

A projection on a linear space X is a linear map P: X — X 'such that,
P2=P.

An orthogonal projection on a Hilbert space H is a linear map P: ' H — 'H
that satisfies, P2 = P, for all x, yveH

Suppose T'is a self-adjoint operator on a finite-dimensional complex vector
space V' with a (Hermitian) inner product. Then there is an orthonormal
basis {e;} for V consisting of eigenvectors for 7.

5.8

KEY TERMS

Unitary space: Inner product space over real field is called Euclidean
space and over complex field is called Unitary space.

Norm: Let V" be an inner product space. Let v € V. Then norm of v (or
length of v) is defined as /(v, v) and is denoted by || v ||.

Orthogonal vectors: Let /' be an inner product space. Two vectors
u, v € Vare said to be orthogonal if (1, v) =0 < (v, u) = 0.
Orthogonal set: A set {ui}i of vectors in an inner product space Vis said
to be orthogonal if (ui, uj) = 0 for i # . If further (ui, ui) = 1 for all 7, then
the set {ui} is called an orthonormal set.

Self-adjoint operator: A bounded linear operator T: H — H on a Hilbert
space H is said to be self-adjoint or Hermitian if, T*=T.

5.9

SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1.

A e AN O

[
e

Define inner product space.

Define the term unitary space.

What is a linear transformation?

Define an orthonormal basis.

State Gram-Schmidt orthogonalization process.

What do you understand by conjugate space?

When is a space said to be reflexive?

What do you mean by kernel of an orthogonal projection?
Define Hermitian inner product.

What is Parseval’s identity?
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Long-Answer Questions
1. Illustrate the properties of inner product spaces.
Prove Riesz representation theorem.
Explain and prove Lebesgue-Nikodym theorem.
Describe all the operators on the Hilbert space.
Discuss the concept of conjugate space.
Show that every Hilbert space is reflexive.
Let P be a nonzero orthogonal projection. Then prove that ||P||=1.

Describe and prove spectral theorem.

A e RS  a

Explain orthonormal and complete orthonormal sets.
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