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INTRODUCTION

In algebra, which is a broad division of mathematics, abstract algebra, also
occasionally called modern algebra, is the study of algebraic structures. Algebraic
structures include groups, rings, fields, modules, vector spaces, lattices, and
algebras. The term abstract algebra was coined in the early 20th century to
distinguish this area of study from older parts of algebra, and more specifically
from elementary algebra, the use of variables to represent numbers in computation
and reasoning.

Algebraic structures, with their associated homomorphisms, form
mathematical categories. Category theory is a formalism that allows a unified way
for expressing properties and constructions that are similar for various structures.
Universal algebra is a related subject that study the different types of algebraic
structures as single objects. For example, the structure of groups is a single object
inuniversal algebra, which is called the variety of groups.

Major themes in algebraic equations include, solving of systems of linear
equations which led to linear algebra, attempts to find formulas for solutions of
general polynomial equations of higher degree that resulted in discovery of groups
as abstract manifestations of symmetry and arithmetical investigations of quadratic
and higher-degree forms and diophantine equations that directly produced the
notions of aring and ideal.

In mathematics, a canonical, normal or standard form of a mathematical
object is a standard way of presenting that object as a mathematical expression. It
provides the simplest representation of an object which allows it to be identified in
aunique way. The distinction between ‘Canonical’ and ‘Normal’ forms varies
from subfield to subfield. In most fields, a canonical form specifies a unique
representation for every object, while a normal form simply specifies its form,
without the requirement of uniqueness. The canonical form of a positive integer in
decimal representation is a finite sequence of digits that does not begin with zero.

A ‘Ring’ is a set equipped with two operations, called addition and
multiplication. Fundamentally, the ‘Ring’ is a ‘Group’ under addition and satisfies
some of the properties of a group for multiplication. A ‘Field’ is a ‘Group’ under
both addition and multiplication.

Artinian and Noetherian rings have some measure of finiteness associated
with them. In fact, the conditions for Artinian and Noetherian rings, called
respectively, the descending and ascending chain conditions, are often termed the
minimum and maximum conditions.

Leonhard Euler considered algebraic operations on numbers modulo an
integer—modular arithmetic—in his generalization of Fermat's little theorem. These
investigations were further analysed by Carl Friedrich Gauss, who considered the
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structure of multiplicative groups of residues mod n and established many properties
of cyclic and more general abelian groups.

This book is divided into five units which explains groups, canonical forms,
cyclic modules, field theory, Galois theory and extensions, Noetherian and Artinian
modules and rings, and fundamental structure theorem.

The book follows the self-instruction mode or the SIM format where in
each unit begins with an ‘Introduction’ to the topic followed by an outline of the
‘Objectives’. The content is presented in a simple and structured form interspersed
with Answers to ‘Check Your Progress’ for better understanding. A list of
‘Summary’ along with a ‘Key Terms’ and a set of ‘Self-Assessment Questions
and Exercises’ is provided at the end of each unit for effective recapitulation.



UNIT 1 GROUPS

Structure

1.0 Introduction
1.1 Objectives
1.2 Groups
1.2.1 Normal and Subnormal Series
122 Composition Series
1.2.3 Jordan-Holder Theorem
1.3 Solvable Groups
1.3.1 Nilpotent Groups
1.4 Answers to ‘Check Your Progress’
1.5 Summary
1.6 Key Terms
1.7 Self-Assessment Questions and Exercises
1.8 Further Reading

1.0 INTRODUCTION

In mathematics, a group is a set equipped with an operation that combines any
two elements to form a third element while being associative as well as having an
identity element and inverse elements. These three conditions, called group axioms,
hold for number systems and many other mathematical structures.

A group is an algebraic structure consisting of a set together with a binary
operation known as the group operation that combines any two of its elements to
form a third element. A subgroup series is a chain of subgroups which simplifies
the study of a group to the study of simpler subgroups and their relations. A Sylow
subgroup is a subgroup having order which is a power of a prime number and
which is not strictly contained in any other subgroup with the same property. The
Sylow theorems concern subgroups with maximal prime power size.

A composition series provides a way to break up an algebraic structure,
such as, a group or a module, into simple pieces. The need for considering
composition series in the context of modules arises from the fact that many naturally
occurring modules are not semisimple, hence cannot be decomposed into a direct
sum of simple modules. A composition series of a module M is a finite increasing
filtration of M by submodules such that the successive quotients are simple and
serves as a replacement of the direct sum decomposition of M into its simple
constituents.

In this unit, you will learn about the groups, normal and subnormal,
composition series, Jordan-Holder Series, solvable groups, nilpotent groups,
conjugate elements, Sylow p-subgroups and Sylow’s theorems and their simple
applications.
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1.1 OBJECTIVES

After going through this unit, you will be able to:
¢ Define groups, and normal, subnormal and composition series
e Know about the Jordan-Holder theorem and solvable groups
¢ Describe about the nilpotent groups
¢ Explain class equation for a finite group

e Know the properties of finite groups up to order 15

1.2 GROUPS

Definition: A non-empty set G, together with a binary compsition * (star) is
said to form a group, if it satisfies the following postulates
(i) Associativity: a « (b «c) =(a*b)*c, foralla,b,ce G
(it) Existence of Identity: 3 an element e € G, such that,
axe=exa=a forallae G
(e s then called identity)
(iii) Existence of Inverse: For every a € G, 3 a' € G (depending upon
a) such that,
axa =a xa=e
(a' is then called inverse of a)

Notes:

1. Since * is a binary composition on G, it is understood that for all
a,b € G, a * b isaunique member of G. This property is called closure
property.

2. If, in addition to the above postulates, G also satisfies the commutative
law
axb=bxa foralla,be G
then G is called an abelian group or a commutative group.

3. Generally, the binary composition for a group is denoted by ‘.’ (dot)
which is so convenient to write (and makes the axioms look so natural
too).

This binary composition °. is called product or multiplication (although
it may have nothing to do with the usual multiplication, that we are so familiar
with). In fact, we even drop °.” and simply write ab in place of a . b.

In future, whenever we say that G is a group it will be understood that
there exists a binary composition ‘.” on G and it satisfies all the axioms in the
definition of the group.



Ifthe set G is finite (i.e., has finite number of elements) it is called a finite
group otherwise, it is called an infinite group.

Definition: By order of a group, we will mean the number of elements in the
group and shall denote it by o(G) or | G |.

We now consider a few cases of systems that form groups (or do not
form groups).
Case 1: The set Z of integers forms an abelian group with respect to the usual
addition of integers.

It is easy to verify the postulates in the definition of a group as sum of
two integers is a unique integer (thus closure holds). Associativity of addition
is known to us. 0 (zero) will be identity and negatives will be the respective
inverse elements. Commutativity again being obvious.

Case 2: One can easily check, as in the previous case, that sets Q of rationals,
R of real numbers would also form abelian groups with respect to addition.

Case 3: Set of integers, with respect to usual multiplication does not form a
group, although closure, associativity, identity conditions hold.

Note 2 has no inverse with respect to multiplication as there does not exist
any integer a such that,2.a=a.2 = 1.
Case 4: The set G of all +ve irrational numbers together with 1 under multiplication

does not form a group as closure does not hold. Indeed 3.3 =3 ¢ G,
although one would notice that other conditions in the definition of a group are
satisfied here.
Case 5: Let G be the set {1, — 1}. Then it forms an abelian group under
multiplication. It is again easy to check the properties.

1 would be identity and each element is its own inverse.

Case 6: Set ofall 2 x 2 matrices over integers under matrix addition would be
another example of an abelian group.

Case 7: Set of all non zero complex numbers forms a group under multiplication
defined by
(a +ib) (c + id) = (ac — bd) + i (ad + bc)
1 =1+1i.0 will be identity,
a . b

—— 5 will be inverse of a + ib.
a“+b a +b

Note: a + ib non zero means that not both @ and b are zero. Thus, a + b* # 0.

Case 8: The set G of all nth roots of unity, where 7 is a fixed positive integer
forms an abelian group under usual multiplication of complex numbers.

We know that complex number z is an nth root of unity if z” = 1 and also
that there exist exactly # distinct roots of unity.
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In fact the roots are given by,
2mir

e
Where, r =1, 2, ..., n and € = cos x + i sin x.

If a, b € G be any two members, then a" =1, " = 1 thus (ab)" = a"
b"=1.
= ab is an nth root of unity
= ab € G = closure holds.
Associativity of multiplication is true in complex numbers.
Again, since l.a=a.1=a, 1 will be identity.

Also forany a € G, L will be its inverse as (—j =1 - 1.
a a

2rxir/n 3 2mi(n—r)/n

So, inverse of e ise 27i0/n — |

and identity is e
Commutativity being obvious, we find G is an abelian group.
As a particular case, if n =4 then Gis {1,— 1,1, —i}
Case 9: (i) Let G = {+ 1, £ i, = j, £ k}. Define product on G by usual
multiplication together with
P==KB=—1ij=—ji=k
Jk=—ki=1i
ki=—ik=j
then G forms a group. G is not abelian as ij # ji.
This is called the Quaternion Group.
(i) If set G consists of the eight matrices

B A e

0 ][0 —i o
{_ 0},{ . 0},wherez—\/—_l

l —1

(=]

then G forms a non abelian group under matrix multiplication. (Compare
with part (7).
Case 10: Let G = {(a, b) | a, b rationals, a # 0}. Define * on G by
(a, b) = (c, d) = (ac, ad + b)
Closure follows asa, c#0 = ac# 0
[(a, D) * (c, d)] * (e, f) = (ac, ad + b) = (e, f)
= (ace, acf + ad + b)
(a, b) = [(c,d) = (e, f)] = (a, b) = (ce, cf + d)
= (ace, acf + ad + b)

proves associativity.



(1, 0) will be identity and (1/a, — b/a) will be inverse of any element
(a, b).
G is not abelian as
(1,2)«3,4)=3,4+2)=(3,06)
(3,4) = (1,2)=(3,6 +4)=(3, 10).

a

Case 11 (a): The set G of all 2 x 2 matrices of the form { ﬂ over reals,

c
where ad — bc # 0, forms a non abelian group under matrix multiplication.

It is called the general linear group of 2 x 2 matrices over reals and is
denoted by GL(2, R).

. |10 . . .
The matrix {0 J will act as identity and

d -b

. d-b d-b ) . b
the matrix “ c d ¢ will be inverse of {a } .
—-c a c d

ad —bc ad-bc

One can generalize and prove.

(b) If G be the set of all n x n invertible matrices over reals, then G forms
a group under matrix multiplication.

Case 12: Let G= {2"|r=0, %1, £2, ...}

We show G forms a group under usual multiplication.

Forany 2,2°e G,2.2°=2"""¢ G

Thus closure holds.

Associativity is obvious.

Againas1 € G, and x.1=1.x=x forallxe G

1 is identity.

Forany2 € G,as2” € Gand 2". 27" =2"=1,

We find each element of G has inverse. Commutativity is evidently true.

Case 13: Group of Residues : Let G= {0, 1,2, 3,4}. Define a composition
®, on G by a ®; b = c where c is the least non negative integer obtained as
remainder when a + b is divided by 5. For example, 3®,4 =2,3®,1 =4,
etc. Then @, is a binary composition on G (called addition modulo 5). Itis easy
to verify that G forms a group under this.

One can generalize this result to

G=1{0,1,2,...,n—-1}
under addition modulo #» where 7 is any positive integer.
We thus notice
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a+b ifa+b<n
a+b—-n ifa+b>n

a@an{

Also, in case there is no scope of confusion we drop the sub suffix » and
simply write ®. This group is generally denoted by Z, .
Case14: Let G={x € Z | 1 <x <n, x, n being co-prime} where Z = set
of integers and x, n being co-prime means H.C.F of x and n is 1.

We define a binary composition ® on G by a ® b =c where c is the least
+ve remainder obtained when a . b is divided by n. This composition ® is
called multiplication modulo 7.

We show G forms a group under &®.

Closure: Fora,b € G,leta ® b =c. Then ¢ # 0, because otherwise
n | ab which is not possible as a, n and b, n are co-prime.

Thus ¢ # 0 and also then 1 < ¢ <n.

Now if ¢, n are not co-prime then 3 some prime number p such that, p |c
and p|n.

Again as ab = ng + ¢ for some ¢
We getplab  [p|n = p|ngq, plc = plng + ]

= plaor p|b (as p is prime)

If p|a then as p|n it means a, n are not co-prime.

But a, n are co-prime.

Similarly p | b leads to a contradiction.

Hence c, n are co-prime and thus ¢ € G, showing that closure holds.
Associativity: Let a, b, ¢ € G be any elements.
Leta®b=r,(a®b)®c=r ®c=r

then r, is given by r,c = nq, + r,

2

Also a ® b =r means
ab =qn +r,
thus ab —qn =r,

= (ab - gqn)c =r,c=ngq, tr,
= (ab)c =r, + nq, + nq,c = n(q,c +q,) +r,
or that r, is the least non-negative remainder got by dividing (ab)c by n.

Similarly, if a ® (b ® ¢) = r, then we can show that r is the least non-
negative remainder got by dividing a(bc) by n.
But since a(bc) = (ab)c, ry = r,
Hence a ® (b ® ¢) = (a ® b) ® c.
Existence of Identity: It is easy to see that
a®l=1®a=a forallae G
or that 1 will act as identity.



Existence of Inverse: Let a € G be any element then a and n are
co-prime and thus we can find integers x and y such that, ax + ny =1

By division algorithm, we can write

x=gqn+r, where0<r<n

= ax=aqn + ar

= ax t ny=aqn + ar + ny

= l=agn + ar + ny
or that ar=1+ (-aq — y)n

i.e.,a®r=1.Similarly » ® a= 1. If r, n are co-prime, » will be inverse
of a.

If , n are not co-prime, we can find a prime number p such that, p | 7,
pln
= plgnandp|r
= plgntr
= plx
= plax also p|ny
= plax+ny=1
which is not possible. Thus 7, n are co-prime and so » € G and is the
required inverse of a.
It is easy to see that G will be abelian. We denote this group by U, or
U(n) and call it the group of integers under multiplication modulo 7.
Note: Suppose n = p, a prime, then since all the integers 1, 2,3, ..., p— 1 are
co-prime to p, these will all be members of G. One can show that
G=1{2,4,6,..2(p- 1)}
where p > 2 is a prime forms an abelian group under multiplication modulo
2p.
Case 15: Let G = {0, 1, 2} and define * on G by
axb=|a->b]|
Then closure is established by taking a look at the composition table

N OO
S|

e =1l

N O *

Sincea*0=|a—-0|=a=0=a, O0isidentity

and a=#*a=|a—a|=0shows each element will be its own inverse.
But the system (G, =) fails to be a group as associativity does not hold.
Indeed 1« (1%x2)=1=x1=0

but 1x1)*x2=0%x2=2
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Groups Case 16: Let S= {1, 2,3} and let §, = A(S) = set all permutations of S. This
set satisfies associativity, existence of identity and existence of inverse conditions
in the definition of a group. Also clearly, since £, g permutations on S imply that

fog is a permutation on § the closure property is ensured. Hence S, forms a
group. That it is not abelian follows by the fact that fog # gof. This would, in
fact, be the smallest non abelian group.

NOTES

Note: Let X' be a non-empty set and let M(X) = set of all maps from Xto X,
then A(X) < M(X). M(X) forms a semi group under composition of maps. Identity
map also lies in M(X) and as amap is invertible iff it is 1-1, onto, i.e., a permutation,
we find 4(X) the subset of all permutations forms a group, denoted by S, and
is called symmetric group of X. If X is finite with say, n elements then

o(M(X)) =n" and o(S) = |» and in that case we use the notation S, for S,.

In the definition of a group, we only talked about the existence of identity
and inverse of each element. We now show that these elements would also be
unique, an elementary but exceedingly useful result. We prove it along with
some other results in
Lemma: /n a group G,

(1) Identity element is unique.
(2) Inverse of each a € G is unique.
3) (@Y'=a, forall a € G, where a’! stands for inverse of a.
4) (aby'=b'a! foralla, be G
(5) ab =ac = b =c
ba = ca = b =cforalla b,c e G
(called the cancellation laws).

Proof: (1) Suppose e and e’ are two elements of G which act as identity.
Then, since e € G and ¢’ is identity,
ee=c¢ee =e
and as e’ € G and e is identity
ee=ece' =¢
The two => e=¢'
which establishes the uniqueness of identity in a group.

(2) Leta € G be any element and let ¢’ and a’’ be two inverse elements of
a, then
aad' = a'a = e
ad’ = a"a = e
Now, a'=ade=ad'(aa'")=(d'a)a"' =ea" =a".
Showing thereby that inverse of an element is unique. We shall denote
inverse of a by a”!.

Self - Learning
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(3) Since a!is inverse of a

1

ac'=ala=e

Which also implies a is inverse of ¢!
Thus, (a ! =a.
(4) We have to prove that ab is inverse of b~ 'a™! for which we show
(ab) (b7'a™y = 'al) (ab) = e
Now, (ab) (b'a™) =[(ab) b '] a!
= [(a(bb™ )] a”!
=(ae)a'=aa'=¢e
Similarlly (5'a™!) (ab) = e
and thus the result follows.
(5) Let, ab = ac, then
b=eb=(a'a)b
=aYab)=a! (ac)
=(@'ac=ec=c
Thus ab =ac=>b=c
Which is called the left cancellation law.
One can similarly, prove the right cancellation law.

Case 17 (a): LetX= {1,2,3} and let S, = A(X) be the group of all permutations
on X. Consider f, g, h € A(X), defined by

f=2,  f@=3  f3=1
gM=2, g2=1, gB)=3
h(l) =3, h(2)=1, h(3)=2

It is easy then to verify that fog = goh

But f#h.

(b) If we consider the group in case 10, we find
(1,2)*(3,4)=(3,6)=(3,0) = (1, 2)

But 3,4)=(3,0)

Hence we notice, cross cancellations may not hold in a group.

Theorem 1.1: For elements a, b in a group G, the equations ax = b and
va = b have unique solutions for x and y in G.

Proof: Now, ax =5
= al(ax)=a'b
= ex=a'b
or x=a'b

which is the required solution of the equation ax = b.
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Suppose x = x, and x = x, are two solutions of this equation, then
ax, = b and ax, = b
= ax,= ax,
= x, =x, byleftcancellation
Showing that the solution is unique.

Similarly y = ba! will be unique solution of the equation ya = b.

Theorem 1.2: 4 non-empty set G together with a binary composition *.’
is a group if and only if
(1) a(bc) = (ab)c foralla, b,c € G
(2) For any a, b € G, the equations ax = b and ya = b have solutions in
G.

Proof: If G is a group, then (1) and (2) follow by definition and previous theorem.

Conversely, let (1) and (2) hold. To show G is a group, we need prove existence
of identity and inverse (for each element).

Let a € G be any element.
By (2) the equations ax = a
ya=a
have solutions in G.
Let x=e and y =f be the solutions.
Thus J e, f € G, such that, ae = a
fa =a

Let now b € G be any element then again by (2) 3 some x, y in G such

that,
ax=b
ya=b.
Now, ax=b = f.(a.x)=f.b
= (f.a).x =f.b
= a.x=f.b
=>b=f.b
Again, v.a=b = (y.a).e=b.e
= y.(a.e)=b.e
= y.a=be
= b =Dbe
thus we have b=fb .(L1.1)
b= be ..(1.2)
for any be G

Putting b=e in Equation (1.1)and b=/ in Equation (1.2) we get
e=fe



Jf=se
= e=f.
Hence, ae=a = fa = ea
1.e., d e € G, such that, ae=ea=a
= eisidentity.
Again, for any a € G, and (the identity) e € G, the equations ax = e and
ya = e have solutions.

Let the solutionsbe x =a,, and y = qa,

then aa, =e, a,a=e
Now, a, = ea, = (a,a)a, = a,(aa,) = a,e = a,.
Hence, aa, =e=aa foranyae G

i.e., foranya € G, 3 some a, € G satisfying the above relations = a
has an inverse. Thus each element has inverse and, by definition, G forms a

group.
Note: While proving the above theorem we have assumed that equations of the

type ax = b and ya = b have solutions in G. The result may fail, if only one type
of the above equations has solution. Consider for example:

G to be a set with at least two elements. Define .’ on Gbya.b=5b
foralla, b € G.
then a.b.c)=a.c=c
(@a.b)y.c=b.c=c
shows associativity holds.
Againas ab=>b, the equation ax=», hasasolution foranya, b € G.
We notice that G is not a group, as cancellation laws do not hold in G.
Aslet a, b € G be any two distinct members, then
ab=>b
bb=b= ab=bb
But, a# b.
Definition: A non empty set G together with a binary composition “.” is called
a semi-group if
a.(b.c)y=(a.b).cforalla,b,ce G

Obviously then every group is a semi-group. That the converse is not
true follows by considering the set N of natural numbers under addition.

The set G in Case 15 is not a semi group.
Theorem 1.3: Cancellation laws may not hold in a semi-group

Proof: Consider M the set of all 2 x 2 matrices over integers under matrix
multiplication, which forms a semi-group.
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If we take A=F 0},B={O 0},C={0 0}
0 0 0 2 30

thenclearly AB = AC = {g g}

But, B = C.

Set of natural numbers under addition is an example of a semi-group
in which cancellation laws hold.
Theorem 1.4: A4 finite semi-group in which cancellation laws hold is a
group.
Proof: Let G= {a,, a,, ..., a,} be a finite semi-group in which cancellation
laws hold.
Let a € G be any element, then by closure property
aa,, aa,, ..., aa,
areallin G.
Suppose any two of these elements are equal
say, aa;=aa, for some i # j
then a, = a, by cancellation
But, a; # a asi#j
Hence no two of aa,, aa,, ..., aa, can be equal.
These being n in number, will be distinct members of G (Note o(G) =n).
Thus, if b € G be any element then
b =aa; forsomei
i.e., for a, b € G the equation ax = b has a solution (x = a,) in G.
Similarly, the equation ya=5b will have asolution in G.
G being a semi-group, associativity holds in G.
Hence G is a group (by Theorem 1.2).

Note: The above theorem holds only in finite groups. The semi-group of natural
numbers under addition being an example where cancellation laws hold but
which is not a group.

Theorem 1.5: A finite semi-group is a group if and only if it satisfies
cancellation laws.

Proof: Follows by previous theorem.

Definition: A non-empty set G together with a binary composition ‘.’ is said
to form a monoid if

(@) a(bc)=(ab)c VY a b,ceG



(i) 3 an element e € G, such that, ae=ea=a VaeG
e is then called identity of G. It is easy to see that e is unique.
So all groups are monoids and all monoids are semi groups.

When we defined a group, we insisted that 3 an element e which acts
both as a right as well as a left identity and each element has both sided inverse.
We show now that it is not really essential and only one sided identity and the
same sided inverse for each element could also make the system a group.

Theorem 1.6: 4 system < G, . > forms a group if and only if
(@) a(bc) = (ab)c foralla, b,c € G
(@) A e € G, such that,ae=a  foralla e G
(iii) for all a € G, 3 a' € G, such that, aa' = e.

Proof: If G is a group, we have nothing to prove as the result follows by definition.
Conversely, let the given conditions hold.

All we need show is that ea =a foralla e G

and a'a=a foranya e G

Let a € G be any element.

By (iii) Ja' € G, such that, aa’' = e
. For a' € G, 3a" € G, suchthat, a’'a’""=e (using (iii))
Now a'a= d'(ae)=(a'a)e=(a'a)(a'a"")

= ad'(aa")a" =a'(e)a"’ = (d'e)a’’ =a'a" =e.
Thus forany a € G, 3 a' € G, suchthat, aa’' =ad'a=-e
Again ea = (aa")a=a(d'a)=ae=a
ae=ea=a forallae G
i.e., eisidentity of G.
Hence G is a group.
(Refer Example 1.6 for another proof).
Theorem 1.7: A system < G, . > forms a group if and only if
(@) a(bc) = (ab)c foralla, b, c e G
(@) 3 e € G such that, ea=a forallae G
(iii) for all a € G, 3 some a' € G, such that, a'a = e.
Proof: A natural question to crop up at this stage would be what happens,
when one sided identity and the other sided inverse exists. Would such a system
also form a group? The answer to which is provided by the following illustration.
Let G be a finite set having at least two elements. Define .’ on G by
ab=>b foralla,be G
then clearly associativity holds in G.
Let e € G Dbyany fixed element.
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Then as ea=a forallae G

e will act as left identity.

Again a.e=e forallae G

= eisrightinverse for any elementa € G.

But we know G is not a group (cancellation laws do not hold in it).

Hence for a system < G, . >to form a group it is essential that the same
sided identity and inverse exist.

A Notation: Let G be a group with binary composition *.”. If a € G be any
element then by closure property a . a € G. Similarly (a . a) . a € G and so
on.

It would be very convenient (and natural!) to denote a . a by a* and
a.(a.a)or (a.a). abyad and so on. Again a'. a~! would be denoted by
a2. Andsince a . a”! = e, it would not be wrong to denote e = a°. It is now
a simple matter to understand that under our notation

m m+n

a.a"=a
(@)= ™"

where m, n are integers.

In case the binary composition of the group is denoted by +, we will talk
of sums and multiples in place of products and powers. Thus here 2a =a +a,
andna=a+a+ ...+ a (ntimes), if n is a +ve integer. In case » is negative
integer then n =— m, where m is positive and we define na =—ma = (—a) +
(—a)+ ...+ (- a) m times.

Example 1.1: If G is a finite group of order n then show that for any
a € G, 3 some positive integer v, 1 <r < n, such that, a" = e.
Solution: Since o(G) = n, G has n elements.

Let a € G be any element. By closure property a?, @, ... all belong to G.

Consider e, a,d ..., d"

These are n + 1 elements (all in G). But G contains only z elements.

= at least two of these elements are equal. If any of a, a, .., a"

equals e, our result is proved. If not, then ' = & for some i, j, 1 <i,j < n.
Without any loss of generality, we can take i > j

then a =d

= d.al=d.a

= a7 =e where 1 <i—j<n.
Putting, i —j =rgives us the required result.

Example 1.2: Show that a finite semi-group in which cross cancellation
holds is an abelian group.



Solution: Let G be the given finite semi-group. Let a, b € G be any elements.
Since G is a semi-group, by associativity

a(ba) = (ab)a
By cross cancellation then ba=ab = Gis abelian.

Since G is abelian, cross cancellation laws become the cancellation laws.
Hence G is a finite semi-group in which cancellation laws hold.

Thus G is a group.

Example 1.3: If G is a group in which (ab)’ = a'b’ for three consecutive
integers i and any a, b in G, then show that G is abelian.

Solution: Letn, n + 1, n+ 2 be three consecutive integers for which the given
condition holds. Then for any a, b € G,

(abY'= a"b" (1)
(aby™! = g 1pr! )
(aby™2 = g2 .3
Now, (ab)n+2 =q" +2bn+2

= (ab)(ab)™'=a"? p?
— (ab)(an+1bn+l) — an+2 bn+2

= ba"!'=a™b (using cancellation) ..(4)
Similarly, (ab)"' = g 1pr]
gives (ab)(ab)"= " 1p""!
ie., (ab)(d"'b")= """

= ba"=a"b

= ba"™'= a"ba

= a""'b=a"ba using Equation (4)

= ab= ba.

Hence G is abelian.

Note: Conclusion of the above result may not follow if the given result holds
only for two consecutive integers.

~ Consider, for example, the Quaternion group. One can check that
(ab)' = a'b' for i = 4, 5 but the group is not abelian.
Example 1.4: Suppose (ab)" =a"b" foralla, b € Gwheren > 1is a fixed
integer.
Show that, (a) (ab)"' = b"'a"!
b) @ b = bl
(¢) (aba'byn-D=p¢ foralla, b e G
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Solution: (a) We have,
[b~Y(ba)b]" = b~ (ba)"b
and [b~1(ba)b]" = (ab)"
(ab)" = b} (ba)"b
= (ab)y"lab = b'(b"a")b

= (aby"'=p"1g"!  foralla,be G
(b)Now,  (a'b7lab)y’ = a"b"a"b"
and (a'b7lab)" = a(b 'ab)"
=a"b'a"b
a"b"d"b" = a"b 'a"b
= a'b ! = plg” foralla, b € G

(¢) Consider (aba'p1y"D
= [(aba by ']
= [(ba by by ()
= [ba " Dp Y = [B(a "D )
= D@ Dp gy = b D!
= a " Vpp gl by (i)
=e¢ foralla,beG.
Example 1.5: Let G be a group and suppose there exist two relatively
prime positive integers m and n such that a”b" = b"a™ and a"b" = b"a"
for all a, b € G. Show that G is abelian.
Solution: Since m, n are relatively prime, there exist integers x and y such that,
mx + ny = 1.
For any a, b we have
(@"b™y™ = (a"b")(a™b")......(a"b") mx times
= a"(b"a"b"......b"a")b"
= "B "y b
= a"(b"a"™y"™(b"a™) "
= a"c"(b"a™) 'b" where ¢ = (b"a™)*
= "a"(b"a™) ' b"
=" ad"a"b"b" = " = (b"a™)™
Similarly, (a™b")"” = (b"a™)"
giving (ambn)mx+ny: (bnam)mx+ny
= a"b"=b"a" foralla,be G (1)
Now, ab= """ pmxrny
= a™ . (a” b")b"



= a"™(a" K")b"™Y where d = a’, k= b"

= a™ (k" d")b"™ by (1)

=a™ . bp"™ . av. bV

(@)" . (B)" . (a)" . (P

= )" (@)". (). (@)

b"™ (@™ . b"™y . a"” = b"™ (Y. a™) . aV

+ +
= P g = pg,

Hence G is abelian.

Note: In the following Theorem, we give another proof to Theorem 1.6 done
earlier.

Subgroups

We have seen that R, the set of real numbers, forms a group under addition,
and Z, the set of integers, also forms a group under addition. Also Z is a subset
of R. It is one of the many situations which prompts us to make

Definition: A non empty subset A of a group G is said to be a subgroup of
G, if H forms a group under the binary composition of G.

Obviously, if H is a subgroup of G and K is a subgroup of H, then K is
subgroup of G.

If G is a group with identity element e then the subset {¢} and G are
trivially subgroups of G and we call them the t7ivial subgroups. All other subgroups
will be called non-trivial (or proper subgroups).

Notice that Z; = {0, 1, 2, 3, 4} mod 5 is not a subgroup of Z under
addition as addition modulo 5 is not the composition of Z. Similarly, Z is not
a subgroup of Z, etc.

We sometimes use the notation H < G to signify that H is a subgroup of
G and H < G to mean that H is a proper subgroup of G.

It may be a little cumbersome at times to check whether a given subset
H of'a group G is a subgroup or not by having to check all the axioms in the
definition of a group. The following two theorems (especially the second one)
go a long way in simplifying this exercise.

Theorem 1.8: A non-empty subset H of a group G is a subgroup of G iff
(@)a,be H=>abe H
() aec H=a' e H.

Proof: Let H be a subgroup of G then by definition it follows that () and (7)

hold.

Conversely, let the given conditions hold in H.

Closure holds in H by (7).

Again, a,b,ce H=>a,b,c e G = a(bc)=(ab)c
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Hence associativity holds in H.

Also for any a € H,a! € Hand so by (i)
aa'e H=>ec H

thus A has identity.

Inverse of each element of H is in H by (ii).

Hence H satisfies all conditions in the definition of a group and thus it forms a
group and therefore a subgroup of G.

Theorem 1.9: 4 non-void subset H of a group G is a subgroup of G iff a,
beH=ab'eH

Proof: If H is a subgroup of G then, a, b € H= ab~' € H (follows easily by
using definition).
Conversely, let the given condition hold in H.
That associativity holds in H follows as in previous theorem.
Let a € H be any element (H # @)
thena,a e H=>aa ' e H=> e € H.
So H has identity.
Again, foranya € H,ase € H
eale H=>a'le H
1.€., H has inverse of each element.
Finally, for any a,be H,
a, b e H
= abhY'eH=abec H
1.e., H s closed under multiplication.
Hence H forms a group and therefore a subgroup of G.

Note: If the binary composition of the group is denoted by +, the above condition
would read as a, b € H = a— b € H. Note also that e is always in H.

The following theorem may not prove to be very useful in as much as it
confines itselfto finite subsets only but nevertheless it has its importance.

Theorem 1.10: 4 non empty finite subset H of a group G is a subgroup
of G iff H is closed under multiplication.

Proof: If H is a subgroup of G then it is closed under multiplication by definition,
so there is nothing to prove.

Conversely, let H be a finite subset such that,
a,be H= abec H
Now, a,bce H=a,b,c e G
= a(bc)=(ab)c
.. Associativity holds in H.
= Hisasemi-group.



Again, trivially the cancellation laws hold in A (as they hold in G) and thus
H s a finite semi-group in which cancellation laws hold. Hence H forms a group.
Aliter: Let H be a finite subset such that, a, b € H =>ab e H
We show acH=a'eH.

Ifa=ethena'=aec H
Let a # e, then by closure a, a>, ... e H

Since H is finite, for some n, m, a"=a", n>m

1e., a™=e, n-m>lasaze
ie., a™la=e
— anfmfl — afl

where n—m—1 > 1 and therefore,

n—m—1

a € H. Hence a € H = a! € H and thus H is a subgroup of G
(Theorem 1.8).
Definition: Let G be a group. Let
Z(G)={x e G|xg=gx forall g € G}
then Z(G) is called centre of the group G.
Theorem 1.11: Centre of a group G is a subgroup of G.
Proof: Let Z(G) be the centre of the group G.
Then Z(G) # ¢ as e € Z(G)
Again, x,y € Z(G) = xg = gx

yg =gy forallge G
1

= gl yl=xl gl
glyl=ylgl forallge G
Now, gy = (gx)y ' = (xg)y!
= (xay ' (g9
= xg(v' g g = xgle' y e
= x(gg ' W'g
= (xy g forallge G
= xy ! e Z(G)
Hence Z(G) is a subgroup.

Note: Obviously, G is abelian iff Z(G) = G.

Definition: Let G be a group. a € G be any element. The subset

N(a) = {x € G | xa = ax} is called normalizer or centralizer of a
inG.

It is easy to see that normalizer is a subgroup of G.
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Example 1.6: Find centre of S,.

Solution: We have, S, = {/, (12), (13), (23), (123), (132)}
Centre of §;, Z(S;) = {c € §;|c0=0c forall 6 € S,}

(12)(13) = (132)

(13)(12) = (123)

We find (12), (13) do not commute.

= (12) and (13) do not belong to Z(S,)

(23)(132) = (12)

(132)(23) = (13)

= (23), (132) do not belong to Z(S,)

Since

Again,

Also,  (123)(12) = (13)
(12)(123) = (23)
Shows (123) ¢ Z(S,)

Hence Z(S,) contains only /.

Example 1.7: Let G be the group of all 2x2 non singular matrices over
the reals. Find centre of G.

Solution: If {a Z} be any element of the centre Z(G) of G then it should
C

commute with all members of G. In particular we should have,

fa b][0 1] [0 1][a b

c d|[1 o] |1 0f[c 4

= b=c, a=d

(a b1[1 0] [1 O][a b] .
= gives
lc d|1l 1] |1 1]|lc d

[a+b b _|a b
lc+d d a+c b+d

=>atb=a, b=c=0

Also,

Hence any member {a Z} of Z(G) turns out to be of the type B 0} .
C a

In other words, members of the centre Z(G) are the 2x2 scalar matrices of G.

Example 1.8: Let G be a group in which
(ab)’ = a’p®
(aby’ = a’b°, foralla,b e G
Show that G is abelian.
Solution: We first show that »*> € Z(G) forallb € G.

We know (a'ba)’ =a! ba

Bygivencondition  (a'ba)’ = a7 (ba)’ = a3 b*d>



al b’a=a>bd’

a’hd =b3a* foralla,be G
Similarly, (@' ba)y’ =a'ba
(a! ba)’ =a” bd®

al ba=aba’

Uy

=
= a*b’ = ba* = *’h? = vt
= (@®)? b°b? = b’a* = b’a*h® = ba*
= a*b? = b*a* = ad’h® = b*a*
= ab*a’® = b*a*
= ab’> =b*a foralla,be G
s b* € Z(G) forallbe G
Now, (ab)* = (ab)’ (ab)™' = ’b°b! a7
= a°b*a”! = aa'b*, as b* € Z(G)
= g*p*

. (ab)' = a'b’ for three consecutive integers i = 3, 4, 5
So, ab=ba foralla, b € G, byexample done earlier.
Hence G is abelian.

Example 1.9: Show that union of two subgroups may not be a subgroup.

Solution: Let, H, = {2n|n € Z}
H,={3n|nel}
where (Z, +) is the group of integers. H, and H, will be subgroups of Z.
Indeed
2n—2m=2(n —m) € H,
Now H, U H, is not a subgroup as 2, 3 € H, U H,
but 2-3=-1¢H,VUH,
Theorem 1.12: Union of two subgroups is a subgroup iff one of them is
contained in the other.

Proof: Let H, K be two subgroups of a group G and suppose H < K
then H U K = K which is a subgroup of G.
Conversely, let H, K be two subgroups of G such that, H U K is also
a subgroup of G. We show one of them must be contained in the other. Suppose
itisnot truei.e.,
Hz K, Kz H
Then, dx e H suchthat, x¢ K
Jdye K suchthat, y¢ H
Also thenx,y € H U K and since H U K is a subgroup, xy € H UK
= xye Horxyek
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Ifxy € H,thenasx € H,x! (xy) € H=y e H, which is not true.
Again, ifxy € K, thenas y € K, (xy)y ' € K= x € K which is not true.
i.e., either way we land up with a contradiction.

Hence our supposition that H ¢ K and K ¢ H is wrong.

Thus one of the two is contained in the other.

Definition 1: Let H be a subgroup of a group G. Fora, b € G, we say a is
congruent to b mod H ifab™! € H.

In notational form, we write a = b mod H.

It is easy to prove that this relation is an equivalence relation. Corresponding
to this equivalence relation, we get equivalence classes. For any a € G, the
equivalence class of a, we know will be given by

clla)={x € G|x=amod H}.

Definition 2: Let H be a subgroup of G and let a € G be any element.
Then Ha = {ha | h € H} is called a right coset of H in G.

We show in the following theorem that any right coset of H'in G is an
equivalence class. To be exact we state:

Theorem 1.13: Ha = {x € G |x = a mod H} = cl(a) for any a €G.

Proof: Let, x € Ha
Then, x=ha forsomeh e H
= xal=h

= xaleH
= x=amod H
= x € cl(a)

Thus, Ha c cl(a).
Again let x € cl(a) be any element.
Then, x=amod H

= xa'leH
= xa'=h forsomeh e H
= x=ha € Ha
thus cl(a) c Ha
and hence Ha = cl(a).
Having established that right cosets are equivalence classes, we are free
to use the results that we know about equivalence classes. We can, therefore,

say now that any two right cosets are either equal or have no element in
common and also that union of all the right cosets of H in G will equal G.

Note: Note that a coset is not essentially a subgroup. If G be the Quaternion
group then H = {1, — 1} is a subgroup of G. Take a =i, then Ha = {i, — i}
which is not a subgroup of G. (it doesn't contain identity). Refer Theorem 1.15
ahead.



Lemma: There is always a 1 — 1 onto mapping between any two right
cosets of H in G.

Proof: Let Ha, Hb be any two right cosets of H in G.

Define a mapping f: Ha — Hb, such that,
f(ha)=hb
Then hia=ha = hy=hy, = hb=hb

= f(ha) =f(hya)
re., fiswell defined.
f(ha)=f(h,a)= hb=hb=h =h, = ha=h,a

Showing fis 1-1.

That f'is onto, is easily seen, as for any hb € Hb, ha would be its pre
image.

The immediate utility of this lemma is seen, if the group G happens to be
finite, because in that case the lemma asserts that any two right cosets of H in
G have the same number of elements. Since H = He is also a right coset of H
in G, this leads us to state that all right cosets of H in G have the same number
of elements as are in H (G, being, of course, finite). We are now ready to prove

Theorem 1.14 (Lagrange’s): If G is a finite group and H is a subgroup of
G then o(H) divides o(G).
Proof: Let o(G) = n.

Since corresponding to each element in G, we can define a right coset of H in
G, the number of distinct right cosets of H in G is less than or equal to 7.

Using the properties of equivalence classes we know
G=Ha, VY Ha, ...V Ha,
where, ¢t = Number of distinct right cosets of Hin G.
= o(G) =o(Ha,) + o(Ha,) + ... + o(Ha,)
(Reminding ourselves that two right cosets are either equal or have no
element in common).

= 0o(G)=o0o(H)+o(Ha) +...+ o(H) usingthe above lemma

t times
= o(G)=t. o(H)
or that o(H) | o(G)
and we have proved a very important theorem.

But a word of caution here. Converse of Lagrange's theorem does not
hold.

Note: If G is a group of prime order, it will have only two subgroups G and
{e}. Refer Theorem 1.25 also.

We have been talking about right cosets of H in G all this time. Are there
left cosets also? The answer should be an obvious yes. After all we can similarly
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talk of

aH={ah|h € H}, foranyae G
which would be called a lef coset. One can by defining similarly an equivalence
relation (a=b mod H < a' b € H) prove all similar results for left cosets.
It would indeed be an interesting ‘brushing up’ for the reader, by proving these
results independently.

We now come to a simple but very important

Theorem 1.15: Let H be a subgroup of G then,
(Ha=H<aeH, aH=H&ae H
(i) Hi=Hb < ab' €e H, aH=bH < a'bec H
(iii) Ha (or aH) is a subgroup of G iff a € H.
Proof: (i) Let Ha=H
Since e € H,ea € Ho => ea € H=a € H.
Let aeH, weshow Ha=H.
Let xe Ha=x=ha forsomehe H
Now he H acH=hacH=>xcH=>HacH
Again, let ye H,sinceae H

ya'e H
= ya'=h forsomeheH
= y=ha € Ha
= Hc Ha
Hence Ha=H.
(@) Ha = Hb
< (Ha)b™'' = (Hb)b™!
& Hab'=He
& Hab'=H
& ab™' € H using (i)

(iii) If a € H then Ha = H which is a subgroup. Conversely, if Ha is a
subgroup of G then e € Ha and thus the right cosets Ha and He have
one element e in common and hence Ha = He=H = a € Hby (i).

Corresponding results for left cosets can be tackled similarly.

Definition: Let G be a group and H, a subgroup of G. Then index of Hin G
is the number of distinct right (left) cosets of H in G. It is denoted by i (H) or
[G:H].

A look at the proof of Lagrange's theorem suggests that if G is a finite
0(G)
o(H)

It is, of course, possible for an infinite group G to have a subgroup
H (#G) with finite index.

group, then i ,(H) =



Case 18: Let < Z, + > be the group of integers under addition.

Let H= {3n|n € Z} then H is a subgroup of Z. We show H has only
three right cosets in Z namely H, H+ 1, H+ 2.

Ifa € Zbeany element (%0, 1, 2) then we can write (by division algorithm),
a=3n+r, 0<r<3
which gives
H+a=H+Q@Gn+r)y=H+3n)+r=H+r
where 0<r<3
Hence H has only 3 right cosets in Z and thus has index 3.
Notice, H—-1=(H+3)-1=H+3-1)=H+ 2, etc.
Case 19: Let G=<R - {0}, . >, i.e., let G be the group of non zero real
numbers under multiplication. Let H= {1, —1}. Then H is a subgroup of G
where i (H) is infinite. Notice / has infinite number of right cosets in G, these
being {2, -2}, {3, -3}, {4, -4}, ..., etc.
Definition: Let A be a subgroup of a group G, we define
C(H)={x € G |xh=hx for all h € H} then C(H) is called centralizer of H
nG.
Also the set
NH)= {x € G| xH = Hx}
= {xe G|xHx'=H}
is called normalizer of Hin G.
It is an easy exercise to see that both C(H) and N(H) are subgroups of G.
Againas, xe€ C(H) = xh=hx forallhe H

= xH = Hx
= x € N(H)
we notice C(H) < N(H).

However, C(H) need not be equal to N(H) as consider the Quaternion
group G = {*1, +i, +j, +k} and let H = {1, +i}.

Then N(H) = G and C(H) = {£1, +i}.

Showing that C(H) # N(H)

Note: One can define C(H) or N(H) in the same way even if H happens to be
only a non-empty subset of G.

Example 1.10: Show that C(H) = G << H < Z(G).

Solution: Let C(H) = G. Let h € Hbe any element. Then,x € G = x € C(H)
= xh=hx = anyelement / in H commutes with all elements of G=#h €
Z(G) = Hc Z(G).

Conversely, let Hc Z(G). Let x € G. Since H  Z(G) each element of
H commutes with every element of G.
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= xh=hx forallhe H
=>xe(CH) = Gc CH) = G=C(H).
Example 1.11: Show that there exists a one-one onto map between the set
of all left cosets of H in G and the set of all right cosets of H in G where
H is a subgroup of a group G.
Solution: Let, J = Set of all left cosets of Hin G.
R = Set of all right cosets of Hin G.
Define a mapping 6 : 3 — R, such that,
0@H) =Ha' acG
0 is well defined as aH = bH
= albeH
= Ha'=Hb"
= 0(aH) =06(bH)
Taking the steps backwards, we find 0 is 1-1. Again, for any Ha € ‘R,
a 'H is the required pre-image under 0 proving that 0 is onto.

If G is finite, then the above result reduces to saying that number of left
cosets of H in G is same as the number of right cosets of H in G.

Example 1.12: Let H be a subgroup of a group G and N(H) = {a € G |
aHa™' = H}. Prove that N(H) is a subgroup of G which contains H.

Solution: N(H) # ¢ subset of G as
eHe' =H = e € N(H)
Let now a, b € N(H) be any two elements, then

aHa ' = H
bHb'=H
then, bHb ' =H = b (bHb )b = b'Hb
= (b"'b)Hb'b=b"'Hb
H=b"'Hb

aHa™' = a(b”™' Hb)a™!
aHa™' = ab'Hba™
H = (ab™") Hab™")!
ab™! € N(H) i.e., N(H)is a subgroup of G.
Sinceh e H= hHh''=H (Ha=H < a € H, etc.)

we find & € N(H) showing that H < N(H).
Example 1.13: Suppose that H is a subgroup of a group G such that whenever
Ha = Hb then aH = bH. Prove that gHg ' < H for all g € G

Solution: Itis given that if Ha# Hb then aH+bH
thus if aHH = bH then Ha = Hb. (D)
Letnow g € G, h € H be any elements, then

(g'WH=g ' (hH)y=g'H (h € H)

tu Uy



. By Equation (1) H(g™' h)=Hg!
= (g'h)(gh'eH (Ha=Hb=ab' e H)
= g'hge H forallhe H

= g Hgc H.
Example 1.14: If G = S, and H = {1, (13)}, write all the left cosets of H
in G
Solution: , /1 = {(12)/, (12)(13)} = {(12), (132)}

= (123)H (Show!)

(23)H = {(23), (23)(13)} = {(23), (132)} = (132)H
(13)H =Has(13)e H
IH=H
are all the left cosets of Hin G.
Definition: Let H and K be two subgroups of a group G. We define

HK={hk|h € H, k € K} then HK will be a non-empty subset of G (Sometimes,
called the complex of Hand K). Will it form a subgroup? The answer is provided by

Theorem 1.16: HK is a subgroup of G iff HK = KH.

Proof: Let HK be a subgroup of G. We show HK = KH
Let, x € HK be any element
Then, x'e HK (as HK is a subgroup)
— x'=hk forsomeh e H ke K
= x=0Mk"'=k'"n'"eKH

Thus, HK < KH

Again let y € KH be any element

Then, y=kh forsomeke K, heH
= y'l=h'k'eHK
= yeHK (as HK is a subgroup)
= KHc HK

Hence, HK=KH.

Conversely, let HK = KH.
Let, a, b € HK be any two elements, we show ab™' € HK
a,b e HK = a=hk, forsomeh, h, e H

b= h,k, ki, k, e K
Then, ab™'= (hk) (hk) ' = (hk) 5'h5")
= (k') '
Now, (kk;')hy' e KH=HK
Thus, (kks'y hy' = hk  for some h € H, k € K
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Then, ab™' = h (hk)= (h,h)k € HK
Hence, HK is a subgroup.

Notes: 1. HK = KH does not mean that each element of H commutes with
every element of K. It only means that for each 2 € H, k € K, hk = k,h, for
some k, € K and h, € H.
2. If G has binary composition +, we define

H+K={h+k|heH,keKj}.

Theorem 1.17: If H and K are finite subgroups of a group G then
_ o(H).o(K)
HK) = 2UD-o8)

o(HK) o(HNK)

Proof: Let D = H n K then D is a subgroup of K and as in the proof of

Lagrange's theorem, 3 a decomposition of K into disjoint right cosets of D in
K and

K= Dk, v Dk, U ... U Dk,
B o(K)
~ o(D)

andalso ¢
t
Again, HK= H(u Dk;) and since D c H, HD = H
i=1

Thus, HK= v Hk;, = Hk, U Hk, U ... U Hk,

Now no two of Hk,, Hk,, ..., Hk, can be equal as if Hk. = Hki for i, j
then kk;' € H = kk;' e HNK = kk;' € D= Dk;= Dk,

which is not true.
Hence, o(HK) = o(Hk,) + (Hk,) + ... + o(Hk)
= o(H)+ o(H) + ... + o(H)
= t.o(H)
_ o(H).o(K)
o(HNK)
which proves the result.

Aliter: We have HK = {hk | h € H, k € K}.
Let H N K = {x,, x,, ..., x,} and suppose o(H) = r, o(K) = s
Now hk = (hx)(x'k) e HK Vi=1,2,..,n
Also, hx,e H, x;' ke K asx; e Hand K
Thus, hk = (hx,) (x,.—l k) eHK Vi=1,2,..n

or that 4k can be written in at least n different ways. We show these are
the only n ways that 4k can be expressed as an element of HK.

Suppose hk = hk,



= h'h =k e HNK

= h’lh1 =X;
and kki' =x, forsomei=1,2,..,n
or that hy, = hx,
k,= Xk
and thus hk= hk, = (hx)(x'k)

Hence each Ak can be written in exactly n different ways.
Since 4 can be chosen in » ways, k can be chosen in s ways, we find ik

. rs
can be chosen in — ways.
n

o(H).o(K)
o(HNK)
Noteo(HNK)>2lasHNnK#@ase e HNK.
Corollary: If H and K are subgroups of a finite group G such that o(H) >
Jo(G), o(K) > Jo(G) then o(H N K) > 1.
Proof: We have,
o(G) > o(HEK) = 2 oK) | Jo(G) o(®) _  o(G)
o(H N K) o(H N K) o(HNK)
= o(H N K)>1.

Thus, o(HK) = 5=
n

Example 1.15: Suppose G is a finite group of order pq, where p, q are
primes and p > q. Show that G has at most one subgroup of order p.

Solution: Suppose H, K are two subgroups of order p.
Then, as o(H N K) | o(H) = p, we find
o HNK)=1lorp
If, o(HNK)=1,then

o(HK) = AR = PP = 12> g = o(G)

o(H N K) 1
[p>q = p*>pql
which is not possible. Hence o(H N K) = p = o(H)
andas HNKc H wefindHNK=H
Similarly, H N K= K and hence K = H.

There exists at least one subgroup of order p. A group of order 15 will
have only one subgroup of order 5.

Note: We have defined the product HK of two subgroups H and K. The same
definition can be used for the product, even if H, K happen to be subsets of G.

Example 1.16: Let H, K be subgroups of G. Show that HK is a subgroup
of G if and only if HK = KH.
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Solution: Suppose HK is a subgroup of G.
Then, HK = (HKY'=K'H'=KH
Conversely, let HK = KH
(HKYHK)" = (HK)(K 'H™)

= (HK) (KH) = HKK)H

= H(KH)=H(HK)

= (HH)K = HK
Then, HK is a subgroup of G.
Cyclic Groups
Definition: Order of an element : Let G be a group and a € G be any element.
We say a is of order (or period) » if n is the least +ve integer such that,

a" = e. If binary composition of G is denoted by +, this would read as na =
0, where 0 is identity of G.

Ifit is not possible to find such n, we say a has infinite order. Order of a will
be denoted by o(a). It is obvious that o(a) =1 iff a = e.

Cyclic Group: A group G is called a cyclic group if 3 an element a € G, such
that every element of G can be expressed as a power of a. In that case a is
called generator of G. We express this fact by writing G =< a > or G = (a).

Thus G is called cyclic if 3 an element a € G such that, G= {a" |n € Z}.
Again, if binary composition of G is denoted by +, the words 'power of a'
would mean multiple of a.

Note we are not saying that generator is unique. Indeed if a is generator so
would be a'. A simple example of a cyclic group is the group of integers under
addition, 1 being its generator.

Again the group G = {1, -1, i, —i} under multiplication is cyclic as we can

express its members as i, i%, i°, i*. Thus i (or — i) is a generator of this group.

Case 20: The group Z, = {0, 1, 2, ..., n — 1} addition modulo n(n = 1) is
a cyclic group. 1 and —1 = n — 1 will be its generators. But it can have more
generators besides these. (Refer Theorem 1.30 ahead).

Consider, Z; = {0, 1, 2,...7} addition modulo 8

Then we can check that 1, 3, 5, 7 will be generators of Z

Notice that,

31=3,32=3@®3=6, 3=303@®3=1

3 =3@®3®3®3=4andsoon

ie,<3>=1{3,6,1,4,7,2,5,0} or that 3

is a generator of Zg. Observe also that 1, 7 and 3, 5 are each others
inverses.

On the other hand, U, the group under multiplication modulo 7 is not
cyclic for every n. For instance Us is cyclic. But Uy is not cyclic.



Theorem 1.18: Order of a cyclic group is equal to the order of its generator.
Proof: Let G =<a >1i.e., G is a cyclic group generated by a.

Case (i): o(a) is finite, say n, then n is the least +ve integer such that, a" =e.
Consider the elements a° = e, a, &>, ..., "
These are all elements of G and are n in number.
Suppose any two of the above elements are equal
say a =d withi>j
Then, o .a7=e = d7=e
- But0<i—j<n-1<n,thus 3 a positive integer i — j, such that,
a'’ = e and i —j <n, which is a contradiction to the fact that o(a) = n.

Thus no two of the above n elements can be equal, i.e., G contains at
least n elements. We show it does not contain any other element. Letx € G
be any element. Since G is cyclic, generated by a, x will be some power of a.

Let x=a"
By division algorithm, we can write
m= ng+r where 0<r<n

+
Now, a"=a"l"=(@".ad =¢el.d =ada
= x=a where 0 < r<n
ie,xisoneofa’=e, a,d> ..., a""!

or G contains precisely n elements
= o(G) =n=o(a)

Case (ii): o(a) is infinite.
In this case no two powers of a can be equal as if a" = a” (n > m)

then @™ = e, i.e., it is possible to find a positive integer n — m such that,
n-m __

a" " = e meaning thereby that @ has finite order.

Hence no two powers of a can be equal. In other words G would contain
infinite number of elements.

Example 1.17: If a € G be of finite order n and also a™ = e then show
that n | m.

Solution: Let o(a) = n, then by definition # is the least positive integer such
that, a" = e.

Suppose a™=e forsomem
By division algorithm, m =ng +r, where 0 <r<n
a™=q" +r
= e=d".ad=@@").ad=e.ad=ada
where 0<r<n

Since 7 is such least positive integer, we must have » =0
ie., m=nq or thatn|m.
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Example 1.18: If G is a finite abelian group then show that o(ab) is a
divisor of l.c.m. of o(a), o(b).

Solution: Let o(a) = n, o(b) = m, o(ab) = k.

Let [=1l.c.m. (m, n)
then ml|l, n|l = l=mr, 1= nr,
Now, (ab))  =d'b' (G is abelian)
=a"2p" =e.e=¢
= o(ab) |l
= k|l

Example 1.19: If in a group G a° = e, aba™ = b for a, b € G then show
that o(b) = 31.
Solution: We have b* = aba ™
= b* = (aba™) (aba™")
= ab(a'a)"b* ab™" = ab*a”!
= a(aba™) a!
= b* = a*ba?
= b= (a*ba?) (i®ba?) = a*b’a
= a*(aba MYa? = a’ba>
= b'%=4*ba (as above)
= b2 =aba’=b asa’=e
= bl=e = 31isamultiple of o(b)
Since 31 is a prime number, it is the least positive integer such that 5°! = e
= o(b) =31.
We are, of course, taking b # e.
Theorem 1.19: A4 subgroup of a cylic group is cyclic.

Proof: Let G=<a >and let H be a subgroup of G. If H= {e}, there is nothing
to prove. Let H # {e}. Members of H will be powers of a. Let m be the least
positive integer such that, " € H. We claim H=<a" >.
Letx € Hbe any element. Then x = ¢* for some k. By division algorithm,
k=mq+rwhere 0 <r<m
= r=k—mq
=a'=d.a™M=x.)"eH
But m is the least positive integer such that, @ € H, meaning thereby that
r=0.
Thus, k = mgq

or that x =d'= (a1



i.e., any member of H is a power of a™.
or that H is cyclic, generated by a”.

Note: Any subgroup of < Z, + > will therefore, be of the type nZ = set of
multiples of n, where 7 is an integer (> 0). We write nZ =<n >.

Also mZ < nZ. if and only if n|m. So mZ =nZ if and only if
m = £n.
Case2l: Let H=<a>= {an|n € Z} = al
K=<b>={bm|m e Z} = bZ
be two subgroups of < Z, + >, then Z being abelian, H+ K=K + H
= H + K is a subgroup of Z.
[Note here HK = H + K].
We show H + K = <d> = dZ, where d = g.c.d.(a, b)
Now, xe H+ K
= xe<a>+<b>
= x=an + bm, n,me 7L
= xe<d>lasdl|a,d|b=d|an+bm = d|x]
Thus H+ K < <d>.
Again,y € <d> = y=td
= y=tax +by)=atx+ bty e H+ K
Hence H+K=<d>
ie., al. + bZ. = (a, b)Z.

Theorem 1.20: A4 cyclic group is abelian.

Proof: Let G=<a>. Ifx, y € G be any elements then x = a", y = a™ for
some integers m, n.

m ntm _— mtn _ _m
=da =a .

Now xy =d".d" =a al=y.x

Hence G is abelian.

Note: In view of the above result, all non abelian groups are non-cyclic.
< Q, + > the group of rationals under addition serves as an example of an

abelian group which is not cyclic. For, suppose - € Q is a generator of Q,
n

then any element of Q should be a multiple of . Now 3L e Q,andif 2 is
n n n

a generator, we should be able to write 3L =k , for some &
n n

= = km

W | —

Which is not possible as k, m are integers, whereas % is not. Hence no

element can act as generator of Q.
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Klein’s four group would be an example of a finite abelian group which is not
cyclic. It is the group of matrices F 0}, {1 0} , {_1 O} and {_1 O} under
0 1 0 -1 0 1 0 -1
matrix multiplication.
Theorem 1.21: I G is a finite group, then order of any element of G divides
order of G.
Proof: Let a € G be any element.
Let H= {a" | n an integer}
then H is a cyclic subgroup of G, generated by a, as
x,ye H= x=d",y=ad"
S~ xy'l=d".a"=a"ecH
By Lagrange’s theorem o(H) | o(G). But o(H) = o(a)
' o(a) | o(G).
Corollary: If G is a finite group then foranya € G
a’® =e¢

Proof: o(a) | o(G) = o(G) = o(a)k For some k
Now, @ = qo@k = (go@)k = o = ¢
Thus any element of a finite group, has finite order (which is less than or

equal to the order of the group). Converse is, however, not true.

Case 22: The group < Z, + > of integers is an example of a group in which
each non identity element is of infinite order.
As another example consider G = {2": r=0, £1, ...}

then we know G forms a group under multiplication. No non-identity element
in G has finite order as

2n" =1 iff 2" =1

iff r=0o0rn=0.
Note: If G is a finite group of order » and 3 an element a € G, such that,
o(a) = n then G is cyclic, generated by a. Clearly o(a) = n gives a" = e, and
lesser powers not equal to e and thus G = {a, d?, ..., " = e}.

Example 1.20: Let G be a finite group whose order is not divisible by 3.
Suppose (ab)’ = a*b® for all a, b € G then show that G is abelian.
Solution: Let a, b € G be any elements.
Then as, (ab)® = a’b°
we get ababab = a’b’
= baba = a’b? (cancellation)
= (ba)? = a*b? (1)



Again as, (ba)’ = b*a’
we get (ba)(ba)*= b’a’
= (ba)a*b* = b*a’ using Equation (1)
= b =0’ ..(2)

Considernow, (¢ 'b72ab*’= (a')® (b7%ab?)’ = a> (b 2ab?)?
a (b2a’b?)
= a7 (b~2b*a’) from Equation (2)
= a3 =e
=  o(a'b?ab?) |3
= o(a'b2ab?) =1 or3
If o(a'b2ab?) = 3 then 3 | o(G) which is not true.

Hence o(a'b?ab*) =1
= a'bab’=e
= ab*=b*a ..(3)

Again from, (1) (ba)*=a*b? = a(ab®) = a(b*a) using Equation (3)
= (ba) (ba) = ab*a
= bab = ab* = ba = ab
or that G is abelian.
Theorem 1.22: Converse of Lagrange's theorem holds in finite cyclic groups.

Proof: Let G =< a > be a finite cyclic group of order n.
Then, o(G)=o0(a)=n
Suppose m | n. We show 3 a subgroup of G having order m.
Since m | n, 3 k such that, n = mk
Let H be the cyclic group generated by a*
then H is a subgroup of G and o(H) = o(a")

We show o(@) =m
Now, (@™ =a""m = g" = e, as o(a) =n
Suppose now, that (@ =e
Then, a'=e

= o(a) |kt = n|kt
= kml|kt > m|t
thus o(d" =m
which proves the result.
Note: One can go a step further here and show that such a subgroup (as taken
above) would also be unique. Suppose H' is another subgroup of G such that,
o(H") = m. Since H' is a subgroup of a cyclic group G = <a >, H' will be
generated by some power of a.
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Let H = <agf>

By division algorithm,
p=kq+r 0<r<k
= mp = mkq + mr 0 < mr < mk

= "= g"katmr = (amk)q La™
= a"" (o(a) = n = mk)
Now, o(H")=o(a?) =m
= (@ "=e

thus a =e where 0 < mr<n
Butthis = mr=0 (as o(a) =n)

= r=0 asm=#0
hence p=kq
Thus H'=<a?>=<d">c<d>=H
But o(H")= o(H)

= H=H'.
We thus conclude:

Theorem 1.23: If G is a finite cyclic group of order n then the number of
distinct subgroups of G is the number of distinct divisors of n, and there
is at most one subgroup of G of any given order.

Proof: So subgroups of G are of the type < a* > where k is a divisor of n and
< a"™ > is the unique subgroup of order m. As a particular case, suppose
G = <a > has order 30. Since divisors of 30 are 1, 2, 3, 5, 6, 10, 15, 30, 3
eight subgroups of G, namely

<a>={e,a, a, ... a29} =G
<a’>= {e, a’, at, ..., a28}
<ad>= {e, a, ab, ..., a27}

5 6 10 15

<a><a®><a
30, 15, 10, 6, 5, 3, 2, 1.

Consider again, the cyclic group Z,, = {0, 1, 2, ..., 29} under addition
modulo 30 . o(Z,,) = 30 and as 30 has 8 divisors 1, 2, 3, 5, 6, 10, 15, 30,
Z,, will have eight subgroups namely

<1>=10,1,2,..,29} = Z,,
<2>=1{0,2,4,..28}
<3>=1{0,3,6, .., 27}
<5>,<6><10> <15>, <30>= {0}
having order 30, 15, 10, 6, 5, 3, 2, 1.
In view of the above theorem these would be the only subgroups of Z .

> < qa' >and < @®* > = {e} having order



Theorem 1.24: 4 group G of prime order must be cyclic and every element
of G other than identity can be taken as its generator.

Proof: Let o(G) = p, a prime

Take anya € G,a # e

and let H = {a" | n an integer} then H is a cyclic subgroup of G.

o(H) [ o(G) = o(H)=1orp

But, oHy#lasae Ha#e,

Thuso(H)=p = H=G,i.e., Gisacyclic group generated by a. Since
a was taken as any element (other than e), any element of G can act as its
generator.

Corollary: A group of prime order is abelian.

Theorem 1.25: 4 group G of prime order cannot have any non-trivial
subgroups.

Proof: If H is any subgroup of G then as o(H) | o(G) = p, a prime
Wefind o(H)=1orp
ie., H={e} or H=G.
Theorem 1.26: 4 group of finite composite order has at least one non-
trivial subgroup.
Proof: Let o(G) =n=rs where 1 <r,s<n
Sincen>1,3e+#a € G. Consider a’.

Case (i): a" =e¢

then o(a)<r,leto(a)=k
then l1<k<r<nm (k>1,asa#e)
Let, H={a, at, d, ..., d = e}

then H is a non-empty finite subset of G and it is closed under multiplication,
thus H is a subgroup of G. Since o(H) = k < n, we have proved the result.
Case (ii): a” # e, then since (')’ =a* =a"=a" D =¢
o(@a”)y<s.Leto(a")=tthen 1 <t<s<n.
If we take K = {a”, a*’,..., a” = e} then K is a non empty finite subset

of G, closed under multiplication and is therefore a subgroup of G. Its order
being less than n, it is the required subgroup.

Theorem 1.27: If G is a group having no non-trivial subgroups then G
must be finite having prime order.

Proof: Suppose G has infinite order.
Then we can find a € G, such that, a # e.

Let H=< a >, then H is a cyclic subgroup of G and H # {e}. But G has
no non-trivial subgroups.

Thus, H=G
= GG=<ag>
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Consider now the subgroup K = < a® >
Now a ¢ < a®>, because if a € < a? > then a = a* for some integer ¢
= a*l'=e = o) <2t-1
meaning thereby that o(«) if finite, which is not true. Thus a & < a® >.

Again < a® > # {e}, because then a*> = e would again mean that o(a) is
finite (< 2).

Thus < a” > is a non-trivial subgroup of G which is not possible. Hence
o(G) cannot be infinite.

2

So o(G) is finite and as it cannot be composite by previous theorem, it
must be prime.

Summing up, what we have done above proves

Theorem 1.28: The only groups which have no non-trivial subgroups are
the cyclic groups of prime order and the group {e}.

All this time we have been talking about cyclic groups and their generators
without being very sure as to how many generators a cyclic group could have.
To resolve this, we consider

Theorem 1.29: An infinite cyclic group has precisely two generators.

Proof: Let G =< a > be an infinite cyclic group.
1

As mentioned earlier, if a is a generator of G then so would be a .
Let now b be any generator of G,
Then as b € G, a generates G, we get b = a” for some integer n
Again as a € G, b generates G, we get a = b™ for some integer m
= a=b"=([@d")" =a"
= a"!'=e = o(a) is finite and < nm — 1
Since o(G) = o(a) is infinite, the above can hold only if
nm—1=0= nm=1

1 .
= m= — orn==1 as m, n are integers.

n
1e., b=aora

In other words, a and a ™! are precisely the generators of G.

Question to be answered now is how many generators a finite cyclic
group would have. Before we come to the answer we first define what is popularly
known as the Euler's ¢ function (or Euler's totient function).

For any integer n, we define ¢(1) = 1 and for n > 1, @(n) to be the
number of positive integers less then # and relatively prime to n. As an example
o(6) =2, o(10) = 4, etc.

Note 1, 5 are less than 6 and relatively prime to 6 and 1, 3, 7, 9 (four
in number) are less than 10 and relatively prime to 10, etc. Obviously, ¢(p) =
p—1,ifpisaprime. The following two results can be helpful at times.



() Itp,, p,, ..., p, are distinct prime factors of n (>1), then

w32

(i) If m, n are co-prime then

o(mn) = ¢(m) @(n), (m, n 2 1)
We are now ready to prove

Theorem 1.30: Number of generators of a finite cyclic group of order n

is o(n).
Proof: Let G = <a > be a cyclic group of order n
then o(a)=0o(G)=n

We claim a™ is generator of G iff (m, n) = 1, i.e., m, n are relatively
prime.

[For instance, if n = 8, then ¢(8) = 4 will be number of generators as

we will show a, @°, @°, a” will generate G and no other element can generate

G. So here m can have values 1, 3, 5, 7].
Let now a” be a generator of G for some m
Since ae G, a=(a™)' for some i
=d"=e = o(a)|mi—1

=>n|mi-1

=>mi—1=nj for some integer j
ie., mi—nj =1

= (m, n) = 1.

Conversely, let (m, n) = 1
Then 3 integers x and y such that,
mx +ny =1

=a™ "t =g
=d"™.adV =a
=a" @y =a
=d%=a

=a=(@")

as o(a)=n

Since every element of G is a power of @ and a itself is a power of a”,
we find @ generates G, which proves our result.

Note: We thus realize that if a is a generator of a finite cyclic group G
of order n, then other generators of G are of the type a” where m and n are
coprime.

In fact an integer k will be a generator of Z, if and only if k and n are
coprime, and thus generators of Z, would indeed be the elements of U,
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Theorem (Euler’s) 1.31: Let a, n (n > 1) be any integers such that g.c.d.
(a,n)=1. Then
a®? =1 (mod n).
Proof: Let U = {x|x is an integer, (x, n) = 1, 1 <x <n}
Then U, is a group under multiplication modulo 7.
By definition of Euler’s ¢-function,

o(U,) = ¢(n).
If n=1, then o(n) = (1) =1 and a®™ =a' =1 (mod 1) (as 1 divides
a-1)
Let n>1

Now by Euclid's algorithm
a =ngq + r, for some integers ¢, » where 0 < r <n.
Ifr=0thena=nqg = n|a = (a,n)=n>1, a contradiction

S l1<r<n
Also (r,ny=d = d|r,d|n = d|a-nq,d|ng
= dla,d|n
= dl(a,n)=1
= d=1
(r,n)=land 1 <r<n
=>rel,
Also a=nqg+r = a=r(modn)

It follows from Lagrange's theorem that,
r®r® ... ®r=identity of U, =1 [a°©) = ¢]
where ® is composition multiplication modulo 7 in U, and ¢(n) is order
of group U,.
: o _pg , = 1, for some integer ¢,
= ™ =1 (mod n)
= a®" =1 (mod n)
S0, a=r(modn)= a®*"™ =r*" (mod n).
Theorem (Fermat’s) 1.32: For any integer a and prime p,
a? = a (mod p).
Proof: If (a, p) = 1, then by Euler's theorem
a®?) =1 (mod p)
= P! =1 (mod p) as o(p) =p—1
= a?=a (mod p)
If (a,p)=p,thenp|a = p|d’

pla’ —a



= a” =a (mod p).
(Note (a, p) = 1 or p as 1 and p are only divisors of p).

Example 1.21: Show that if G is a group of order 10 then it must have a
subgroup of order 5.

Solution: By Lagrange's theorem such a subgroup can exist.
We first claim that all elements of G cannot be of order 2. Suppose it is so.
Let a, b € G be two different elements with order 2.
Let H=<a>, K= <b> be the cyclic subgroups generated by a and b
then o(H)=2,0(K)=2
Since all elements of G are of order 2, it must be abelian.
HK = KH = HK is a subgroup of G
o(H).o(K) _ 2x2 _
o(HNK) 1
[Note H N K = {e} as a # b]
By Lagrange's theorem o(HK) would divide o(G)

1.e.,4 | 10 which is not true hence our assumption is wrong and thus all elements
of G cannot have order 2.

and as o(HK) =

Again, since G is finite, o(a) | o(G) foralla € G

= d at least one element a € G, such that, o(a) =5 or 10.
If o(a) =5, then H=<a > is a subgroup of order 5.

If o(a) = 10, then H = < a* > is a subgroup of order 5.

In any case our result is proved.

Example 1.22: Let G be a group such that intersection of all its subgroups
which are different from {e} is a subgroup different from {e}. Prove that
every element of G has finite order.

Solution: Let a € G be any element.

Ifa=e, 0(a)=1

Let a # e and suppose o(a) is not finite.

Consider the cyclic subgroups <a >, <a’>,<a’>>, ...
Since each < a' > # {e} as o(a) is not finite
<a>nN<a*>n<a’>n .. = {e} by given condition.
As intersection of cyclic subgroups is cyclic subgroup

N <a'>=<qa"> for some integer m
i

Again, <a">c <a'> forall i
Inparticular, <a"> c <a*">
But <> c <a">

(multiples of 2m are multiples of m)
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= <g">=<g"m>
Thus, a”" € <d"> = a" € <a*" >
= 4" = (a2m)k
— gmCk-D =,
= o(a) is finite, a contradiction.

Hence the result follows.

Theorem 1.33: If G is a finite group of order n and for every divisor d of
n 3 unique subgroup of order d, then G is cyclic.

Proof: Letd | n.
Define A(d) = {x € G |o(x) =d}
Suppose A(d) # ¢. Then 3 x € G such that, o(x) = d.

Let H=<x>. Then o(x) = o(H) = d. This gives ¢(d) generators of H
or ¢(d) elements of orderdin H. If 3y € G,y ¢ H such that, o(y) =d, then
K=<y >isasubgroup of order d. It is given that G has unique subgroup of
orderd. So, K=H = y € H, acontradiction. Thus, the number of elements
in G of order d is ¢(d).

So, o(A(d)) = o(d) if A(d)# ¢
and o(A(d))=0 ifA(d)=c¢ foralld|n
Clearly, G = ;lJ A(d)

Letd,, ..., d be all divisors of n.

Suppose A(d,) = @, ..., A(d) = ¢

and Ad, ) #¢, ..., Ad)# ¢

(Note, if A(d) = ¢ for all d | n, then o(G) =0, a contradiction. So, A(d)
# ¢ for some d | n)

o(A(d))) = ... = o(A(d))) = 0
and  o(A(d)) = ¢d,, ) ..., o(A(d)) = ¢(d)
Now G= E;A(d) = 0o(G) = ). o(A(d))

d|n
=>n=0d, )+.. +od)
By Example 1.21, n= o)
dln
= od)*..tod) T o(d, )t..Tod)=0d, )T ..+od)
= o(d,) * ... T ¢(d) =0, a contradiction
So, A(d) # ¢ for all d | n. In particular
An)#¢ = Ixe€ A(n) = Ix € Gsuchthat,o(x)=n=0(G) = G
is a cyclic group.
Example 1.23: Show that in a cyclic group of order n, 3 ¢(m) elements of

order m for every divisor m of n. Deduce that n = Zw(d).
dln



Solution: Let m divide n. Then 3 a unique subgroup H of G such that o(H)
=m.

Let H=<b>

Then m = o(H) = o(b)

The number of elements of order m in H equals the number of generators
of H. But the number of generators of H is ¢(m). So, the number of elements

of order m in H is ¢(m). If k € G such that, o(k) = m, then K=< k > has order
m. Since G, has unique subgroup of order m, K = H.

. k € H. So, all elements of order m belong to H.

This gives total number of elements of order m in G to be @(m).

Let a € G such that, o(a) =d. Then d | o(G) = n.

From above 3 ¢(d) elements of order d in G. In this way, count all elements
of G to get n = ) o(d).

dln

Example 1.24: Let G be a group.

Show that o(a") = _oa) foralla e G

(o(a), n)

where n is an integer and (o(a), n) = g.c.d. (o(a), n).

Solution: Let o(a) = m.

Let d=(m,n) = %, g are integers

(an)m/d — (am)n/d — en/d =e

Let @y =e= d" =e
= o(a) |nr
= m|nr
min
= —|—=r
d|d
m m n
= —|r as (—,—J =1
d d d
N
=2
O(an) - m _ o(a)
d  (o(a),n)
Example 1.25: Let G be a group. Suppose a, b € G, such that,
(a) ab = ba

(b) (o(a), o(h)) = 1.
Show that o(ab) = o(a) o(b).

Solution: Let o(a) =m, o(b) =n
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Then, (ab)™ = a™'b™ as ab = ba
— (am)n (bn)m

=e
Let, (ab)'=e = a'b"=e

= ar=>b"

= @)Y =BTy =G =e

= o(a)|rn

= m|rn

> m|r as (m, n) =1
Similarly, nlr

= lem.of (m&n)|r

= mn|r > mn<r

o(ab) = mn.

1.2.1 Normal and Subnormal Series

Definition: A normal subgroup H of a group G is called a maximal normal
subgroup of G if H# G and there exists no normal subgroup K of G such that,
HcKcG.

Thus H # G is a maximal normal subgroup of G if whenever K < G such
that, H c K < G then either K= H or K= G.

In fact, a subgroup H # G is called maximal subgroup of G if whenever
H < K < G then either K = G or K = H.

Case 23: 4, is a maximal normal subgroup of S;. o(4,) = 3 whereas o(S,)
= 6. Clearly there cannot be any subgroups of order 4 or 5 in S;. We also notice

S

S
that O[A_j =2, aprime and thus A_z is a simple group.

Case 24: If G is a simple group then it has no non-trivial normal subgroups and
so {e} will be a (and only) maximal normal subgroup in G.

Theorem 1.34: H is a maximal normal subgroup of G iff G/H is simple.

Proof: Let H be maximal normal in G. Any subgroup of G/H is of the form

K/H where K < G and H < K and also K/H i1s normal in G/H < K < G.
Thus any subgroup K/H will be non trivial normal subgroup of G/H if H <
K <1 G, which isnot true as H is maximal normal. So G/H has no non trivial normal
subgroup and is, therefore, simple.
Conversely: Let G/H be simple. Suppose H is not maximal normal, then 3 a
normal subgroup K of G such that,
H c K c G and thus K/H will be normal subgroup of G/H where K/H —
G/H, a contradiction as G/H is simple.



Example 1.26: Any finite group G (with at least two elements) has a maximal
normal subgroup.

Solution: If G is simple then it has no proper normal subgroup except {e} and
thus {e} is a maximal normal subgroup of G.

Suppose G is not simple. Then it has at last one normal subgroup N # G,
N# {e}.If Nis maximal normal, we are done. If not, then 3 at least one normal
subgroup M where N cMcG. If M is maximal normal, we are done. If not, we
continue like this. Since G is finite, it can have finite number of subgroups and
hence the above process must end after a finite number of steps. Hence G will
have a maximal normal subgroup.

Example 1.27: Let H, K be two distinct maximal normal subgroups of G
then G = HK and H N K is a maximal normal subgroup of H as well as K.
Solution: Since H, K are normal, HK is normal in G.
Since H ¢ HK < G and HK is maximal normal.
We must have HK=H or HK=G
Similarcly, HK = K or HK =G
Hence HK=G (as HK# G = HK=H, HK = K = H = K).
Again by isomorphism theorem
HK _ K
'H HnK
K G
HnK H

Thus,

I

Since H is maximal normal, % is simple

ie.,

is simple
= H N Kis maximal normal in K
Similarly, it is maximal normal in .

Example 1.28: Show that (Q, +) has no maximal normal subgroup.
Q

Solution: Suppose H is a maximal normal subgroup of (Q, +), then o is simple

Q

and so o has no non trivial normal subgroup i.e., it will have no non trivial subgroup

Q

(Q being abelian, all subgroups are normal). Thus o is a cyclic group of

prime order p.

Q

Let H+x e o be any element

Then p(H+x)=H

NOTES

Self - Learning
Material

Groups

47



Groups

48

NOTES

Self - Learning
Material

1e., H+px=H orthat pre H VxeQ

Let now y € Q be any element, then Y e Q
p

IfL=x then y=px = y € H or that
p

Qc Hc Q= H=Q, a contradiction.
Hence the result follows.
Definition: Let G be a group. A sequence of subgroups
e} =G, c G, cG,c........ cG = ..(1.3)
is called a normal series of G if G, is a normal subgroup of G, |,

vVi=0,12,.n-1.

i+1

. G
The factor (quotient) groups C

(Vi) are called the factors of the normal

1

series.

Here each G, isnormal in G, |, although it may not be normal in G. Also
itis possible that G;= G, , for some i. The number of distinct members of Equation
(1.3) excluding G is called the length of the normal series.

The above is expressed in short by saying that N = (G, G, ......... ,G,)
i1s a normal series of G. If N and M are two normal series of G such that,
N < M then M is called a refinement of N (a proper refinement if N < M).

Note: Some authors prefer to call the above a subnormal series. It is then called
anormal series if G, is normal in G V i.
If G is any group then
e} =G,c G, =G
is an obvious example of a normal series.
Case 25: {I} ¢ 4, c S, is a normal series of S;.
I} cEcCcK,c A, cS,1s anormal series of S,, where
E= {1, (12)(34)}, K, = {I, (12)(34), (13)(24), (14)(23)}

1.2.2 Composition Series

Definition: Let G a group. A sequence of subgroups
e} =G, c G, cG,c ... cG =G
of G is called a composition series of G if
({) Each G, is normal subgroup of G, (i =0, 1, ....... n—1),
(i) G;#G

., for any i and

Gi+1

(i) is a simple group V i.

1



Gy
The factor (quotient) groups _g are called factors of the series.

The condition (iii) can be replaced by ‘G, is a maximal normal subgroup
of G,,’ Vi

We notice that a composition series is a normal series (converse being not
true) and that a composition series has no ‘Gaps’.

A group can have more then one composition series.

Case 26: {0} c<8>c<4>cZ

is anormal series of the group (Z, +), but it is not a composition series as < 4 >

is not maximal normal in Z. Notice <4 >c <2 >cZ.

Case 27: Consider the quaternion group G. Then
{1}y c{l, -1} c{1,-1,i,—i} c G
{I}y < {l,-1} c{1,-1,j,—j} <G
{Bc{l,-1}c{l,-1,k,-kl cG

are all composition series of G. If we write the first series as G, < G, < G,

c G then
[gj _8 (G_] _4 EQJ _»
G, 4 G, 2 G,

1.e., all the factor groups are of prime order and thus have no trivial normal subgroups
and hence are simple.

The existence of a composition series is ensured by
Theorem 1.35: Every finite group G (with more than one element) has a
composition series.
Proof: We use induction on o(G).

If o(G) = 2 then {e} = G, < G, = G is (only) composition series of G.

Notice % = {—G} =~ G and as o(G) =2, a prime it is simple group and, therefore,
0 e

G is simple
Go pic.

Suppose now that the result holds for groups with order less than o(G). We
show result holds for G. If G is a simple group then {e} — G is the composition
series for G. Suppose G is not simple.

Since G is finite, it has a maximal normal subgroup N # G and as o(N)
< 0(G), result holds for N which then has a composition series, say,

ey cNcN,c..cN
Then the series
{e} €N, c N, c...c Nc G will be a composition series for G.
Hence the result holds.
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Note: If o(G) = 1, we sometimes say that the result holds trivially as then (G) is
a composition series of G (without factors).

Definition: Two composition series.
C,: {e}=N,c N, cC..... cN =G ..(1.4)
C,: {e=HycH c... cH =G ..(1.5)
of a group G are said to be equivalent if 3 a 1-1 onto mapping between the
factors of Equation (1.4) and factors of Equation (1.5) such that the corresponding
factor groups are isomorphic. In other words (1.4) and (1.5) will be equivalent
if #=m and each factor group of Equation (1.4) is isomorphic to some factor
group of Equation (1.5).
Also in this case, we write C, ~ C,. Itis easy to see that ~ is an equivalence
relation.

We have seen that a finite group can have more than one composition series.
The next theorem shows the equivalence of any two such composition series.

1.2.3 Jordan-Holder Theorem
Theorem 1.36 (Jordan-Hoélder): Let G be a finite group. Let

C,:{ej=N,cN c..cN_cN=G ...(1.6)
C,:{ey=HycH c..cH, cH =G .(1.7)
be two composition series of G. Then m = t and there exists a permutation
. . Ni+1 Hi’+1 .
i—>1i0of0,1,2, .., t-1 such that, = ,0<i<t-1
N H

i i’
ie., C, and C, are equivalent.

Proof: Let o(G)=n. We use induction on 7.

If n=2, we have seen (Theorem 1.35) G has only one composition series.
Hence result holds in this case.

Let now the result hold for groups with order less than o(G).
Case (i) N, = H,_,. Consider the series
e} =N,cN,c..cN,, ..(1.8)
ley=HycH c..cH, =N, ..(1.9)
Then these are composition series for finite group N, | and as o(N, )

< 0(G), the result holds for Equation (1.8) Equation and Equation (1.9), i.e.,
Equation (1.8) and Equation (1.9) are equivalent.

Thus, t-1=m-1 = t=m
and also factors of Equation (1.8) and Equation (1.9) are isomorphic under
some permutation.

Now, N, N, H,, H



Thus, Equation (1.6) and Equation (1.7) will be equivalent (as =m and
factors of Equation (1.6) and Equation (1.7) are isomorphic). Hence result holds
in this case.

Case (i) N,, #H, . LetK=N,, NnH,

Then K is a finite group and has a composition series. Let

{e} =K,c K, < ... c K, = K be a composition series of K.

SinceN, |, H,  arenormalinG,K=N, NH, ,
of G

Again,as N, ,, H , are maximal normal subgroups of G

=G
1

N . H,
and N, N H, , = K is maximal normal subgroup of N, , and H,_

m—1

(Refer Example 1.27)
So, KcN,,, KcH,
Consider now the series,
{e} =K, cK, C ... cK =KcN_,cN=G ..(.10)
le} =K,cK, C ... cK=KcH, cH, =G..(.11)

We show these are composition series of G. For this we need show that

will be normal subgroup

1

N, H .
L and 7L are simple.
K K
By isomorphism theorem
Ny N Hyy G
Nt—l N Hm—l Hm—l Hm—l
N, G .. H G
So, =l ~ and similarly ml o~ (1.12)
NiaOHyy Hy Ny Hyp o Ny
G H, . . . . . .
Now, = is simple as Equation (1.7) is a composition series
Hm—l Hm—l
of G
= . is simple
Ny O Hyyy p
e Ny is simple
£. 1% ple.
Similarly, I”g‘ is simple.

Now Equation (1.10) and Equation (1.11) would be equivalent as
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t .
K H,, and N K from Equation (1.12)

Also lengths of Equation (1.10) and Equation (1.11) are equal both being
s+ 2

N¢=G=Hp
VRN

No=te} =Hp =Ko
Now Equation (1.6) and Equation (1.10) are two composition series of N,

= G and applying case (i) to these (second last terms are equal = N, ,) we find
they are equivalent. Hence they have same length, i.e., =5+ 2

Similarly, (1.7) and (1.11) give m=s + 2
= t=m
Now  Equation (1.6) ~ Equation (1.10), Equation (1.10) ~ Equation
(1.11) = (1.6) ~Equation (1.11)
Also Equation (1.7)~(1.11) thus Equation (1.6) ~ Equation (1.7)
as ~is an equivalence relation.
Hence the theorem is proved.

Example 1.29: Find all the composition series of G = < a >, a cyclic group
of order 6 and show they are equivalent.

Solution: G = {e, a, a*a’, a*, as}. Since o(G) = 6 has four divisors 1, 2, 3,
6, G will have four subgroups, namely {e}, G and < a® >= {e, a?, a*},< a’ >
= {e, @’}
Composition series of G will be
{el c<d’>c G
2

{e} c<a>c G
3
Notice 0( j =6 =3,0 <4 > = o(< @’ >) =2 which are primes
<a*>) 2 {e}

and so the factors are simple groups.

3

. G <a >
Again, —3;Z3, E<c13>;Z2
<a > {e}
G <a2> 2
=4 =<q >;Z3

<a® > z {e}



G ~<c12> <a3>~ G

<a3>_ {e} {e} _<a2>

Hence the two composition series are equivalent.

=

2

Example 1.30: Find all the composition series of Ly, and show they are
equivalent.

Solution: Z,,= {0, 1,2, ..., 29} addition modulo 30. Besides {0} and Z,, the
other subgroups of Z,  are
<2>=1{0,2,4,6, ..28}
<3>=1{0,3,6, ..., 27}
and <5><6><10><15>
Composition series will be
{0} c<15>c<5>c G {0} c<15>c<3>c G
{0} c<10>c<5>c G {0}c<10>c<2>cG
{0} c<6>c<3>c G {0} c<6>c<2>c G

G; ..
Here each G’—“, factor group is simple.

1

<5>
<15>

For instance, 0( <5> j _ o(<5>)

=5 3, aprime and so
o(<15>) 2

<15>
is simple.

Equivalence of any two composition series can be shown as in the previous
example.

Theorem 1.37: An abelian group G has a composition series iff G is finite.

Proof: If G is finite, we have already shown that (Theorem 1.35) G has a
composition series.

Conversely, let G be an abelian group and suppose it has a composition series
le} =G, G, G, ... cG, =G

Gi
then since ?—1 is an abelian simple group Vi=1,2, ...k
it will be a group of prime order, say, p,
(G )
Th — | =p.
us, 0 L G D,

and by above problem then o(G) = p,p, ... p,
Hence G is a finite group.

Corollary: An infinite abelian group has no composition series.
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1.3 SOLVABLE GROUPS

Definition: A group G is said to be solvable (or soluble) if 3 a chain of subgroups

le}y=HycH cH,cC ... anZG .(1.13)
such that, each H, is a normal subgroup of and is abelian

vVi=0,1,2,..,n—1.
Also then, the series Equation (1.13) is referred to as solvable series of G.

Thus G is solvable if it has a normal series (H,, H,, ..., H ) such that, its
factor groups are abelian.

Case 28: Any abelian group G is solvable. Since {e} = G, c G, = Gisanormal

series for G where, {—G} =~ (G is abelian.
e

Case 29: Every cyclic group is solvable.

Case30: §;and S, aresolvable. Since {/} < 4, < S, is anormal series for S,
: S 4 . .
where its factor groups A—3 and ﬁ are abelian as these are of prime order.
3

So S, is an example of a non abelian group that is solvable.
{1} cK,c A, S, will serve as the required normal series for S,. Notice

that m =K,=o ( 5}] =o0(K,) =4 and we know a group of order 4 is abelian.

Note: Any non abelian simple group is not solvable. If G is simple, it has no
proper normal subgroup except {e}. So {e} — G isthe only normal series of G

and as {G} =G, — { is not abelian as G is non abelian. Hence G is not solvable.
e e

We have defined commutator subgroup G’ of a group G.

Now let G’ be commutator subgroup of a group G.

And let (G') = G" = G® be commutator subgroup of G’ and G® be
commutator subgroup of G® and so on then G is called the nth commutator
subgroup of G We use this to provide us with an equivalent definition of a solvable

group.
Theorem 1.38: 4 group G is solvable iff G = {e} for some positive
integer n.

Proof: Let G be solvable. Then there exists a normal series
e} =G, c G, cG,c ... cG =G



Groups

such that, Ggl isabelian Vi=0,1,2, ..... ,n—1

1

. G . .
Since C == GG is abelian, we get G' = G, | NOTES
n—1 n—1
= ()Y <G,
ie., G®ca,

Again as Gt g abelian, we getG! , < G, , = G? < G, ,
n-2

Continuing like this, we will get G" < G, = {e}
which gives G™ = {e}.
Conversely, let G™ = {e}. Consider the series
{e} = G - ey - G2 .. C G? - G - GO =G

which will be a normal series for G, where
GGT(:) = (gT(zl)))/ is abelian V i
and, of course, G? <« GV v i
= Gissolvable
That solvability is hereditary follows by.
Theorem 1.39: A subgroup of a solvable group is solvable.
Proof: Let H be any subgroup of a solvable group G.
Since, G is solvable, G™ = {e} for some positive integer n.
Now, Hc G = H c G' = (H) < (G, i.e., HY ¢ G?
Continuing like this, we get H" ¢ G™ = {e}
= H™ = {¢}
= Hissolvable.
Theorem 1.40: Homomorphic image of a solvable group is solvable.

Proof: Letf: G— H be an onto homomorphism, where G is solvable. Then 3
a positive integer n such that, G = {e}

Let a, b € G be any elements, then f(a), f(b) € H
= f@f®) f@)' (fb)' e

Also, a,b e G=aba'b! € G’ and as
flaba™ b7 =f(@) f(b) (f (@) (f(b))" € H', we find
f(GYcC H as aba’'b! € G
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Since fis onto, we find f(G") = H'
Again f: G — Honto means f(G)=H
and, therefore, f(G) =H
ie., (f(G) =f(G)
So H =1(G")
= (H) = (f(G) = [[(G)Y]=f(G") = f(G?)
or that H® = £(G?)

Continuing like this we get
H" =f(G")=f({e}) = {e,} where e, is identity of H
1.e., His solvable.
Theorem 1.41: Quotient group of a solvable group is solvable.

Proof: Follows from above as a quotient group is a homomorphic image of the
group under the natural homomorphism.

Example 1.31: Let H be a subgroup of a solvable group G. If

e} =N, N,c..c N, , N, =G be a solvable series of G then
show that

ey =NynHc N NnHc..cN, ,nHcN,NH=His asolvable
series of H. Hence show that H is solvable.

Solution: Letusput H.=N.nH, i=0,1,2,..,n.
Then we show that
ey =H,cH cH,c ... c H

is a solvable series for H.

cH=H (1)

Since N, < N,,, wefind NN H SN, " H
ie., H, < H,

i+1

i=0,1,2,..,n—-1

We show now isabelian Vi=0,1,2,...,n-1

i+1

N.
Defineamap 6:H, , — ]\’;“1 , such that,

0(x)=xN, (=0,1,2,..,n-1)
eri+1=N. NH =>xeN. ,xeH

i+1 i+1°

N;
Thus xN, e — and 8 is well defined

Now 0(xy) =xyN,=xN; yN, = 0(x) 0(y) shows 0 is a homomorphism
Again, x € Ker0 < 0(x) =N,



& XN = N,
<:>xeNl. <:>xeNl.mH
HenceKer6=NimH=Hi

By Fundamental theorem,
H,
O(H. ~ i+l
(H.) Ker6
. Hl' ~
Le. H.l = 0(H,,)

1

where O(H_ ) is a subgroup of %, which is abelian and so O(H ) is

1

1

. . . H,_ . .
abelian and hence because of the above isomorphism H;H is abelian.

Thus series Equation (1) is a solvable series of H.

Example 1.32: Let G be a solvable group and suppose H# {e} is a subgroup
of G then show that H’ # H.

Solution: Suppose H' = H, then
HY =HY=H =H# {e}
If H" = H, then H"™V = H' = H # {e}
Thus by induction H” = {e} V r>1

But G solvable = H is solvable = H") = {e} for some r> 1, a contradiction.
Hence H' # H.

Example 1.33: Show that a simple group is solvable if and only if it is abelian.

Solution: Let G be a simple group. Since G' < G we find either G’ = {e} or
G' = G. If G is solvable then G’ # G so G' = {e}. Thus G is abelian.

Conversely, if G is abelian then G’ = {e} and so G is solvable.
Example 1.34: Show that S, (n > 5) is not solvable.

Solution: IfS issolvablethen 4, issolvable. ButA (7> 5)is simple. Thus by
above problem 4 is abelian which is not true. [Notice (123)(234) = (234)(123)].

Hence S, is not solvable for n > 5.

Theorem 1.42: Let N be a normal subgroup of G such that, N and % are

solvable then G is solvable.

Proof: Let e} =N,c N, c..cN =N ..(1.14)
and {N} NENENE TSN SN TN ..(1.15)
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. G .- . G G
be solvable series of N and N By definition of solvable series then Wl <—itL
G +1/ N . . .
and isabelianVi=0,1,2,...,n—1
which gives G, 2 G, Vi
Again by Third theorem of Isomorphism we have
Gi+1 ~ Gi+1/ N
Since % is abelian, we find —* is abelian V i. Consider now the
i i
series

e} =Nyc N, c..cN=N=G,cG,c..c(G,=GC

then it satisfies all conditions in the definition of a solvable series and hence it is
required solvable Equation of G showing thereby that G is solvable.

When we consider the series Equation (1.15), it is clear that G, G, ...,
are all subgroups of G containing H.

Note: We thus conclude that a group G with a normal subgroup N is solvable
if both N and G/N are solvable.

Example 1.35: Show that a finite p-group is solvable, where p is prime.
Solution: Let G be the given finite p-group, then o(G) = p" for some n > 0.

If n=1, then G is a group of prime order and thus it is abelian and so G
is solvable.

Suppose now n> 1. We use induction on n. Suppose that the result holds
for all groups with order p™ where m < n, then o(Z(G)) > 1.

Let o(Z(G)) = p', t = 1 (Notice o(Z(G)) | o(G) = p™)

Thus, o(%] = % =p"'=p° where s <n

Since result holds for groups with order p™ where m < n we find %

is solvable.
Also Z(G) is solvable as it is abelian.
Hence by above theorem G is solvable.

Example 1.36: Show that a solvable group contains at least one normal
abelian subgroup H.



Solution: Let G be asolvable group. If G is abelian then H= G is the required
subgroup.

Let now G be non abelian. Since G is solvable G™ = {e} for some positive
integer n.

Now G’ # {e} as if G’ = {e} then G is abelian, which is not true. Hence
G = {e}, n=#1

Let H= G"V then H is a subgroup of G.

and as H' = G" = {e}, we find H is abelian and also as G is normal
subgroup of G, we find H is the required subgroup.

Example 1.37: Show that a group of order pq is solvable, where p, q are
primes.

Solution: Let o(G)=pq.If p=¢then o(G)=p” and thus G is an abelian group.
Hence G is solvable. Let now p > ¢g. Then number of Sylow
p-subgroups of G is 1 + kp where (1 + kp) |g,1e., 1 +kp=1orgq.

Ifl+kp=qgthenkp=qg—1= p|(q—1) which is not true, as p > q.

Hence 1 +/kp =1 and there exists a unique normal Sylow p-subgroup, say
H, of order p.

Since p is prime, H will be cyclic and so abelian and hence solvable.
. G) _ G . . G . .
Again 0[—) =g = — isabelian= — issolvable = Gis solvable.
H H H

Example 1.38: Show that the following two statements are equivalent:
(a) Every group of order p"'q", where p, q are primes, is solvable.
(b) Simple groups of order p®q” are cyclic groups of order p or q.

Solution: (a) = (b)

Let G be a simple group of order p*¢P. Since G is normal in G, we find
either G' = {e} or G' = G.

Since G is solvable, by (a) G' = {e} and so G is abelian.

Let H be a Sylow p-subgroup of G. Then H will be normal as G is abelian
and o(H) = p*

Again, G simple means either H= G or H= {e}

If H= G, there a =1, B =0 and so G is cyclic of order p

If H= {e} then if K is sylow g-subgroup of G, it will be normal and as
before, either, K = G or K = {e}

IfK=G,thena =1, =0and so G is cyclic of order g.

If K= {e}, we get the case where a. = 0, = 0 forcing G = {e} which
isnot true as G is simple. Hence the result follows.
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We now show that (b) = (a).
Let G be a group of order p"'q".

Consider a composition series of G (which exists as G is finite) then every
composition factor of this series will be a simple group of order p*gP for some
a, B. By (b), each factor would, therefore, be cyclic and so abelian. Hence G
is solvable.

Note: There is a famous theorem of Burnside in which it is proved that every
group of order p”¢q" where p, g are primes, is solvable.

1.3.1 Nilpotent Groups

Definition I: A group G is called nilpotent if it has a normal series

{e} =G, c G, G, C ... c G, =

such that, igz[ij Vi=1,2,..,n
i-1 Gi

Definition II: We first define what we mean by nth centre of a group. Let G be

a group and Z(G) be its centre. We call Z(G) the first centre of G and put

G

Z(G)=Z,(G). Consider now the group % , then centre Z(ij of 20

Z(G)

i l sub f
1S a normal su gI'OLlpO Z(G)
(G ) G

. Az6)*z20

Since any normal subgroup of % is of the form % for a unique normal

is of the type

subgroup H of G, we find any normal subgroup of
B g Bz 2,G)

where H < G
We write H = Z,(G) (Called second centre of G)

Then Z,(G) < G such that, z[ G J= Z,(G)
Z,(G) 7,(G)

Continuing like this we get Z (G) 2 G, (called nth centre)

such that, G . 4 _G n>1
Zn—l (G) Zn—l (G)

Let us write Z(G) = {e}, and thus



Z,(G) G
L =7 Vn=1,2, ..
Z,1(G) [zn_mc)] "

Alsothen Z (G) = Z,(G) = Z,(G) < ... are normal subgroups of G. This
is called the upper central series or ascending central series of G.

We say a group G is nilpotent if Z, (G) = G for some m. Also in that case
the smallest m such that, Z_(G) = G is called the class of nilpotency of G.

We first show the equivalence of the two definitions.
Definition I = Definition II
Let G be nilpotent according to Definition I. Then G has a normal series
e} =G,cG,cG,c..c(G, =G
such that, igz[i] Vi=1,2,..,n
Gi i-1

Leti=1, then

If x € G, be any element, then
G, (G)
0 Go = Gyx € Z LG_O J

G
Gyx.Gyy=GyGyx V G,y e G_o

U

= Gyxy = Gyyx

= xyx'yle G, = e}
=>xy=yx VyeG
= x € ZG) = Z,(G)
Hence, G, c Z,(G)

Let, i=2, then

ﬂgz[g\
Gl Gl

If x € G, be any element then proceeding as above we get
xy x e G,
and as G, < Z,(G)
xyx 'yl e Z(G) VyeG
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= 2(G)xy=Z(Gyx = Z(Gx Z(G)y = Z,(G)y Z,(G)x

G ) _ 2,6
(G) Z(G)

= Z,(G)x € Z[Z
1

= x € Z,(G)
Hence, G, c Z,(G)
Continuing like this, we get
G, cZ(G) Vi=12,.,n
Hence, G = G, c Z (G)
or that G is nilpotent according to Definition 1L
Definition II = Definition I
Suppose G is nilpotent of class n then Z (G) = G. Consider the series
te} =2,(G) < Z,(G) = Z,(G) < ....... cZ((G)=G

26 _, [ G )

which is a normal series and L J
Zi—l(G) Zi—l(G)

1.e., G is nilpotent according to Definition I.
Case 31: An abelian group is nilpotent. Since G abelian
= G=2G),ie., Z,(G)=G.
Also then all cyclic groups will be nilpotent.

However, a nilpotent group need not be abelian and thus cyclic. Consider
G, the quaternion group. Then

G():{l}gGlz{la_l}ngz{la_lala_l}gG

and o[i] =2, o[i] =4 = 6 G are abelian

G, Gy G’ G,
= Z[EJ = E, Z(ij =5 Also Z(i) =1{Gym), G-} is
Gy Gy Gy Gy Gy
abelian
G G . .
Thus Z (G—j = — and so G is nilpotent but not abelian.
0 0

Case 32: A finite p-group is nilpotent.
Theorem 1.43: Every nilpotent group is solvable. Converse is not true.
Proof: Let G be anilpotent group, then G has a normal series

e} =G,cG,cG,c..c(G, =G



where GG_igZELJ' Vi=12, .., n
i-1

i—1

Which implies that Gi is abelian Vi
i—1

Hence Gissolvable.

S, is solvable but not nilpotent. Notice that Z(S,) = {/} andso Z (G) =G
holds for no m.

(In fact S is not nilpotent, for n > 3).
Theorem 1.44: Any subgroup of a nilpotent group is nilpotent.

Proof: Let H be a subgroup of a nilpotent group G. Since G is nilpotent, there
exists a normal series

e} =G, c G, cG,c ... cG =@G
G, .
such that, —’ng—J, i=1,2,..,n
Gil i—-1
Consider the series
ley=GyN"nHc G NnHcG,nHc ..cG,NnH=GNnH=H
It is easy to see that G, |, " H 2 G, H V i. We show

GoH _f GoH ) i) whichwould establish
Gi—l NH L(;i—l N HJ

that H is nilpotent.

G nnH
Let (G, , N H)x € m be any element

then x e GNnH=xe Gl.ander.

Now, (G, , N H)x € Z[ GAH j

G_ NnH

GnH
if (G,_; N H)x commutes with all elements of 7~/ NH
i

e, (G, NnHx(G ,NnHy=(G, ,nHy(G, ,NnHx Vye

GNnH
ie., (G, , " Hxy = (G, N Hyx
iLe., xy x yle G,"nH VyeGnH
ie., xy x 1yl e G, , and xy xYyleH VYyeGnH

Now, xeHyeH=xyxy'eH
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Again, since i [ } and x € G, we find that

G,

G, (G
G xe —+—=G. xe 7| —
i—1 Gi—l i—1 L

< 6 xG ,y=G_yG  x VyeG
< G xy =G, yx
e xyxlyle G, VyegG
and hence over assertion is proved.
Theorem 1.45: Homomorphic image of a nilpotent group is nilpotent.

Proof: Let 0 : G — H be an onto homomorphism and suppose G is nilpotent.
Then there exists a normal series

e} =G, c G, cG,c ... cG =G
such that,

We claim
0(e) =0(G,)) = 0(G,) = 0(G,) < ... < 6(G,) = B(G) = H is the required

0(G) _ Z( 0(G) )
0(G,.) — \6(G))

normal series for H where

Itis easy to see that 0(G, |) 2 0(G,) Viand we leave it for the reader
to try and prove it.

Let 0(G)=H, i= 1, 2, . n

we show —cZ(

H.
Let H.,x € —— be any element,
Hi—l

we have to show that H, ,x € Z [i\

. H
LC., (I_]l;l x) (I—Il;l )= (I_]l;l ») (I_]l;l x) vV H_ ye H_l
ie., H_,xy=H,_ yx

1e., xy x y e H, VyeH

Now, xeH, =xe€0(G) = 3JaecG; suchthat,0(a)=x
yveH =y=06(G) = 3be G, suchthat, 6(b)=y



Thus, xyx 'y =0(a) 0(b) (B(a))" (0()) ! =0(aba'b!) 0
(G

Since aeG, GllaeicZ( J
ll Gzl

andso G, ,a.G_b=G,_bG,  a
1e., G,,ab=G,, ba
1e., ab a’'b € G,,
ie., &ab a'b) e AG, ) =H
Hence the result follows.
Theorem 1.46: Any quotient group of a nilpotent group is nilpotent.

Proof: Follows from above theorem as any quotient group of a group is its
homomorphic image.

. Sy . . .
Converse is, however, not true as = is abelian and so nilpotent, but S,
3

is not nilpotent.

Example 1.39: If H and K are nilpotent groups then show that H x K is also
nilpotent.

Solution: Let A and K be nilpotent. Then 3 normal series

{el}=H0§H1§H2§ ------ cH,=H such that, If [ }
i=1,2,...,n
{ez} = Ko c K1 < Kz S e - Kn =K such that, KL ( ]

We can repeat terms in the series with lesser terms.
Consider the series
te} X{e,y =Hy x Ky c Hy XK, c H, K, C ... cH xK =HxK

Then one can check that this is a normal series in which

H, xK, ( HxK )
<A )
H; | xK;_, H; | xK;

1 1

H; xK;
Let(H_, x K, ) (h, k) € T be any element

i—1 i-1

. ([ HxK )
then (., x K, ,) (h. k) will belong to 2| 2===—)
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Groups if (H_, < K, )) (h, k) .(H_ * K, )) (x,y) = (H_ *xK_))
) (Hy < K ) (B, k)
fenif (1K) (6 y) (R (o) € Hyy <K

—

L -1 -1 1 -1
NOTES ie,if (Wxhx ,hyk'y')eH  xK
ie,if hxhlx'e H,
ky k'ly ™t e K.,
which is true.

We leave the first part (that /, x K, @ H., < K, ,) for the reader to try
as an exercise.

Example 1.40: If H is a proper subgroup of a nilpotent group G then show
that H is a proper subgroup of N(H).

Solution: Since G is nilpotent, it has upper central series
le} =2,(G) < Z,(G) € Z,(G) < ....... cZ((G)=G
Now H < G, let i be the largest integer such that, Z(G) ¢ H
Then we get
Z(G)cHcZ,, (G)c ..

Zi+1(G) _ Z( G \

Again since 2.G) LZ,- S J

Zin(G)
Z(G)

is abelian.
Let g € Z,,,(G) and he H be any elements, then

h e Hc Z, (G) and so Z(G)g, Z(G)h e %g) and thus

Z(G)g Z(G)h = Z(G)h Z(G)g
= Z(G)gh = Z(G)hg
= ghg'h! e Z(G)c H
= ghgleH VgeZ (G),heH
= gHg'!cH Vge Z.(G)
ie., eHg'=H VgeZ,(G)
= any g € Z,_(G) is such that g € N(H)
or that Z_ (G) < N(H)
But H < Z..,(G) and hence H is a proper subgroup of N(H).
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Check Your Progress
Give the postulates for a group.
When set G is called finite or infinite?
Define subgroup.
When a group G is called cyclic?
When maximal normal subgroup of G no exists normal subgroup of K?

When can you say that a group of order pgq is solvable?

What is a nilpotent group?

1.4 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. A group satisfies the following postulates.

(1) Associativity: a * (bxc) =(a*b)*c, foralla,b,ce G
(ii) Existence of Identity: 3 an element e € G, such that,
axe=exa=a forallae G
(eis then called identity)

(iii) Existence of Inverse : Foreverya € G, 3 a’ € G (depending upon
@) such that,

axa =a xa=e

(a' is then called inverse of a)

. Ifthe set G is finite (i.¢., has finite number of elements) it is called a finite

group otherwise, it is called an infinite group.

. A non empty subset H of a group G is said to be a subgroup of G if H

forms a group under the binary composition of G.

. A group G is called a cyclic group if 3an element a G such that every

element of G can be expressed as a power of a.

. A normal subgroup H of a group G is called a maximal normal subgroup

of G if H# G and there exists no normal subgroup K of G such that, H
KcG.

6. A group of order pq is solvable if p and ¢ are primes.

7. A group G s called nilpotent if it has a normal series

{e}=G, <G, c....c G, =G suchthat,

i C Z[i) Vi=12,..,n
Gifl i-1
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1.5

SUMMARY

e Anon-empty set G, together with a binary compsition * (star) is said to

form a group, if it satisfies the postulates of associativity, existence of identity
and existence of inverse.

Let G be a group. A sequence of subgroups
{e}=G,c G, cG,C ... cG =G

is called a normal series of G if G, is a normal subgroup of G,, ,,

A group G'is called a cyclic group if 3 an element a € G, such that every
element of G can be expressed as a power of a. In that case a is called
generator of G. We express this fact by writing G =< a > or G = (a).

Let G a group. A sequence of subgroups

{e} =G, c G, cG,c..... cG,=G

of G is called a composition series of G if

(i) each G, is normal subgroup of G, (i=0, 1, ....... n—1),

(@) G,;# G, foranyiand

(7ii) 1sasimple group Vi.

If G 1s a finite group, then order of any element of G divides order of G.
A normal subgroup H ofa group G is called a maximal normal subgroup

of G if H # G and there exists no normal subgroup K of G such that, H
cKcaG.

A group G is called nilpotent if it has a normal series
{e}=G,c G, c G, C ... cG, =G
such that, Vi=1,2,...,n

A group G is called nilpotent if it has a normal series

1.6

KEY TERMS

Finite group: If a group has finite number of elements then it is called finite
group.

Subgroup: A non-empty subset of a group is said to be a subgroup if it
forms a group under the binary composition of the group.

Cyeclic group: A group G is called a cyclic group if 3 an element a €
G, such that every element of G can be expressed as a power of a. In
that case a is called generator of G. We express this fact by writing G
=<a>or G = (a).



e Nilpotent groups: A group G is called nilpotent if it has a normal series

{e} =G, c G, G, C ... c G =

1.7

SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1.
. Specify the term cycle group.

AN W A~ LN

Define a group.

. What is the difference between normal and subnormal series?
. Define the term composition series?

. State the Jordan-Holder theorem.

. Define the term solvable group.

7.

What can you say about the nilpotency is an abelian group?

Long-Answer Questions

I.

Check whether the following systems form a group (a semi-group) or not

(a) G=Setofrational numbers under composition * defined by a *
b= %b ,a,beG

(b)) G={x1,+i}, wherei= /-1 under multiplication.

(¢) G={1,w,w?}, where wis cube root of unity under multiplication.

(d) Setofall 2 x 2 matrices over integers under matrix multiplication.

cos O sin O

(e) Setofall matrices of the form { .
—sin® cos O

}, 0 € R, under matrix
multiplication.

() O=Setofall rational numbers under * wherea * b=a+b—ab.

(g) G=1{2,4,6, 8} under multiplication modulo 10.

(h) G=1{1,2,3} under multiplication modulo 4.

@) G=1{(a,b)|a, be Z} under * defined by

(a, b) = (c, d) = (ac + bd, ad + bc).

2. Let G be the set {+ e, = a, + b, + ¢} where

S T X A S

Show that G forms a group under matrix multiplication.
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10.

I1.

12.

13.

14.

15.
16.

17.

18.

19.

. Show that a group G is abelian iff (ab)* = a*b>.
. Ina group G, an element « is called Idempotent if a> = a. Show that a

is idempotent iff a = e.

. Show that if G be a group of even order then it has at least one element

(# e) which is its own inverse.

. (a) Show that the power set of a finite set X is a finite semi group under

intersection, has identity and all elements are idempotent.

(b) Show that a finite semi-group G with identity is a group iff G contains
only one idempotent.

. Show that a monoid is a group if and only if cancellation laws hold in it.
. Let G be the Quaternion group. Find centre of G. Find also the normalizer

ofiin G.

. If H is a subgroup of G, show that

g 'Hg= {g"'hg | h € H} is a subgroup of G.
Show further that g ™' Hg is abelian if H is abelian.
Let G be the group of all 3 x 3 invertible matrices over reals. Show that

1 a b
H=:10 1 c¢|a,b,ceRy isasubgroup of G.

0 0 1
If N(H) be the normalizer of H in a group G then show that Z(G) < N(H),
where H < G.

If o(G) = 6 and H # K are subgroups of G each of order 2 then show
that HK cannot be a subgroup of G. Show also that G cannot have two
subgroups of order 3.

If a finite group possesses an element of order 2, show that it possesses
an odd number of such elements.

Show that every element in Uy is its own inverse and hence Uy is not
cyclic and let G be a finite group. Let a € G be such that o(a) = o(G).
Show that G is cyclic, generated by a. Hence show that a group of order
n is cyclic iff it has an element of order n.

Show that a subgroup (# {e}) of an infinite cyclic group is infinite.

If G is a cyclic group of order p, a prime then show that any non identity
element of G is of order p.

Find all the subgroups of the quaternion group G and show that 3 no two
non-trivial subgroups H, K of G such that, H n K is identity only.

Show that a finite cyclic group with three or more elements has even
member of generators.

Write down all the 12 subgroups of Z, ). How many generators it has?



20.

21.

22.

23.
24.

25.
26.

27.

Let G be a finite group acting on a finite set S. For any g € G, define
S&€={s e §|g=*s=s}. Prove (Burnside's formula)

0(G) x Number of orbits = > o(S¥)

geG

Show thatAn 1s maximal normal in Sn and write all the maximal normal and
maximal sbgroups of S;,.

Let G be a finite p-group of order p”. Show that it has a normal series
le}=G,cG,c..cG, =G

where o(G)=p' i=0,1,2,..,n

Show that a simple group is solvable iff'it is cyclic.

If all proper subgroups of a non solvable group G are solvable, show that
G =G'. (A group G such that G = G’ is called a perfect group).

Show that a finite p-group is nilpotent.

Suppose that in a non abelian simple group, {e} is the only conjugate class
whose order is prime power. Show that a group of order p™¢" (p, g primes)
is a solvable group.

Show that every sylow subgroup of a nilpotent group G is normal in G.

1.8
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2.0 INTRODUCTION

In mathematics, a module is one of the fundamental algebraic structures used in
abstract algebra. Amodule is an additive abelian group. In a simple module the
submodules are the module itself and the module that consists of the element zero.

A canonical, normal, or standard form of a mathematical object is a standard
way of presenting that object as a mathematical expression. Often, it is one which
provides the simplest representation of an object and which allows it to be identified
in aunique way. The distinction between ‘Canonical’ and ‘Normal’ forms varies
from subfield to subfield. In most fields, a canonical form specifies a unique
representation for every object, while a normal form simply specifies its form,
without the requirement of uniqueness.

Linear transformation is a function between two vector spaces that preserves
the operations of vector addition and scalar multiplication. Transformations satisfying
these two conditions simultaneously are called similarity transformations. A nilpotent
transformation is one with a power that is the zero map. A Jordan block is a matrix
having zeros everywhere except along the diagonal and superdiagonal with each
element of the diagonal consisting of a single number and each element of the
superdiagonal consisting of'a 1. A Jordan form consists of one or more Jordan
blocks.
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In this unit, you will study about the similarity of linear transformations,
invariant subspaces, nilpotent transformation, the primary decomposition theorem
and Jordan block’s and Jordan forms.

2.1 OBJECTIVES

After going through this unit, you will be able to:
e Know about the similarity of linear transformations
¢ Define invariant subspaces and reduction to triangular form

¢ Describe the nilpotent transformations, index of nilpotency and invariants of
nilpotent transformations

¢ Analyse the primary decomposition theorem

e Explain about the Jordan blocks and Jordan forms
e Elaborate on the cyclic modules

e Understand the simple modules and schur’s lemma

e State and prove fundamental structure theorem for modules

2.2 SIMILARITY OF LINEAR TRANSFORMATIONS

In mathematics and computer science, a ‘Canonical, Normal’, or ‘Standard
Form’ of a mathematical object is a standard way of presenting that object as a
mathematical expression. Often, it is one which provides the simplest representation
of'an object and which allows it to be identified in a unique way. The distinction
between ‘Canonical’ and ‘Normal’ forms varies from subfield to subfield. In most
fields, a canonical form specifies a unique representation for every object, while a
normal form simply specifies its form, without the requirement of uniqueness. The
canonical form of a positive integer in decimal representation is a finite sequence
of digits that does not begin with zero. More generally, for a class of objects on
which an equivalence relation is defined, a canonical form consists in the choice of
a specific object in each class. For example:

¢ Jordan normal form is a canonical form for matrix similarity.

e The row echelon form is a canonical form, when one considers as equivalent
amatrix and its left product by an invertible matrix.

In computer science, and more specifically in computer algebra, when representing
mathematical objects in a computer, there are usually many different ways to
represent the same object. A canonical form is a representation such that every
object has aunique representation (with canonicalization being the process through
which a representation is put into its canonical form). Thus, the equality of two
objects can easily be tested by testing the equality of their canonical forms. Canonical
forms frequently depend on arbitrary choices (like ordering the variables), which



introduce difficulties for testing the equality of two objects resulting on independent
computations. Therefore, in computer algebra, normal form is a weaker notion: A
normal form is a representation such that zero is uniquely represented. This allows
testing for equality by putting the difference of two objects in normal form. Canonical
form can also mean a differential form that is defined in a natural (canonical) way.

Given a set S of objects with an equivalence relation R on S, a canonical
form is given by designating some objects of S to be canonical form, such that
every object under consideration is equivalent to exactly one object in canonical
form. In other words, the canonical forms in S represent the equivalence classes,
once and only once. To test whether two objects are equivalent, it then suffices to
test equality on their canonical forms. A canonical form thus provides a classification
theorem and more, in that it not only classifies every class, but also gives a
distinguished (canonical) representative for each object in the class.

Formally, a canonicalization with respect to an equivalence relation R on a
set §'is amapping c: § — Ssuch that forall s, s ,s, € S:

1. c(s)=c(c(s)) (Idempotence),
2.5, Rs,ifand onlyifc(s,) =c(s,) (Decisiveness), and
3.5 Rc(s) (Representativeness).

In practical terms, it is often helpful to be able to recognize the canonical
forms. There is also a practical, algorithmic question to consider: how to pass
from a given object s in S'to its canonical form s*? Canonical forms are generally
used to make operating with equivalence classes more effective. For example, in
modular arithmetic, the canonical form for a residue class is usually taken as the
least non-negative integer in it. Operations on classes are carried out by combining
these representatives, and then reducing the result to its least non-negative residue.
The uniqueness requirement is sometimes relaxed, allowing the forms to be unique
up to some finer equivalence relation, such as allowing for reordering of terms (if
there is no natural ordering on terms).

A canonical form may simply be a convention, or a deep theorem. For
example, polynomials are conventionally written with the terms in descending
powers: it is more usual to write x*> +x + 30 than x + 30 + x2, although the two
forms define the same polynomial.

Definition: Let /" and U be two vector spaces over the same field F, then a
mapping 7' : V— U s called a homomorphism or a linear transformation if

Tx+y)=Tkx)+ T(y) forallx,y eV
T(ox) = allx) o e F

One can combine the two conditions to get a single condition
T(ox + By) =allx) + BT(y) x,ye Vo, P e F

It is easy to see that both are equivalent. If a homomorphism happens to
be one-one onto also we call it an isomorphism, and say the two spaces are
isomorphic. (Notation V'= U).
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Case 1: Identity map 1:V — V,such that,
Iv)=v
and the zero map O : V— V, such that,
ow)=0

are clearly linear transformations.
Case 2: For a field F, consider the vector spaces F2 and F°. Define a map
T:F — F, by
I(a, B, ) = (o, B)
then T'is a linear transformation as
foranyx,y € F°, if x = (o, By 1))
= (0, By 1,)
then T(x +y)= T(OH +o,, B1 + Bza T T Yz) = (OH o, B1 + Bz)
= (o, By * (ay, By = T(x) + T(y)
Ta (o, By 1)) = T((aet,, 0B, orp,)
= (a0, af,) = afo,, B,) = al(x)
Case 3: Let V'be the vector space of all polynomials in x over a field F. Define
T:V — V, such that,

T () = £ f ()

and T(ox)

then I(f+g) = %(}”rg): %f+%g= I(f) + T(g)

d d
Taf) = L (af) = o= a1()
x dx
shows that 7'is a linear transformation.
In fact, if @: V' — V be defined such that

o) = |, 1@ dt

then Awill also be a linear transformation.

Case 4: Consider the mapping
T:R? > R, such that,
T(x), x5 X3) = XF 4+ x5 + X3

then 7'is not a linear transformation.

Consider, for instance,

7((1,0,0)+ (1,0, 0)) = 7(2,0,0) = 4
71,0,0)+ 7(1,0,0) =1+ 1 = 2.



The term similarity transformation is used either to refer to a geometric
similarity or to a matrix transformation that results in a similarity.

A similarity transformation is a conformal mapping whose transformation
matrix 4" can be written in the form
A'=BAB',
where 4 and A" are called similar matrices. Similarity transformations
transform objects in space to similar objects.

Hypercompanion Matrix: Let {p())}?be one of the elementary divisors of the
characteristic matrix of some A-matrix and C(p) be the companion matrix of p(A.).
The hypercompanion matrix H associated with the elementary divisor {p(1)}?is
given by

C(p) M 0 .. 0 0
0 C(p) M ... 0 0
H=cp)  Ifg=1 H=| o o o o u |V
0O 0 0 .. 0 Cp]

where M is a matrix of the same order as C(p) having the element 1 in the
lower left-hand corner and zeros elsewhere. The diagonal of the hypercompanion
matrix H consists of ¢ identical C(p) matrices. There is a continuous line of 1s just
above the diagonal.

Note: Every square matrix 4 over F is similar to the direct sum of the
hypercompanion matrices of the elementary divisors over F of A/ —A4.

Jacobson Canonical Form: The Jacobson canonical form of a square matrix A
consists of the direct sum of the hypercompanion matrices of the elementary divisors
over FFof AI—A,i.e., the matrix J,

H 0 0 .. 0 0
0 H, 0 .. 0 0
0 0 0 .. H, 0
0 0 0 .. 0 H,

where H. is the hypercompanion matrix associated with the i-th elementary
divisor.

Jordan Canonical Form: Let the elementary divisors of the characteristic matrix
of'a matrix 4 be powers of linear polynomials. Then the canonical form is the
direct sum of hypercompanion matrices of the form
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00 0 .. aq 0 -20)
0 0 0 .. 0 gq

corresponding to the elementary divisor {p(A)}9=(A—a)’. The diagonal
contains g identical a,‘s. This special case of the Jacobson canonical form is known
as the Jordan or classical canonical form.

e Let F'bethe field in which the characteristic polynomial of a matrix 4 factors
into linear polynomials. Then 4 is similar over F to the direct sum of
hypercompanion matrices of the form in Equation (2.1), each matrix
corresponding to an elementary divisor (A —a )’ .

e An n-square matrix 4 is similar to a diagonal matrix if and only if the
elementary divisors of A/ — A4 are linear polynomials, i.¢e., if and only if the
minimum polynomial of 4 is the product of distinct linear polynomials.

Rational Canonical Form: Let 4 be an nxn matrix 4 andletC,, C, C,,,, ..., C,
be the companion matrices of the non-trivial invariant factors of A/— A4. Then the
rational canonical form for all matrices similar to 4 is

cC 0 .. 0
S_ 0 C[+l O
0 0 ..cC

n

In other words, the rational form is the direct sum of the companion matrices
c,C,Cyy, ..., C,:

S=diag (C, C, C,

oy C )
¢ Every square matrix 4 is similar to the direct sum of the companion matrices

of the non-trivial invariant factors of A/—A4.

Second Canonical Form: Given an nxn matrix 4, let be the companion matrices
of the elementary divisors of A/— 4. Then a canonical form for all matrices similar
toA4is

C 0 0
S= 0 C, 0
0 0 C

We can say that, the form is the direct sum of the companion matrices
c,C, Cyy ..., C,,

S=diag (C,C,C_, .., C )



¢ Every square matrix 4 over F'is similar to the direct sum of the companion
matrices of the elementary divisors over F of A/— A4.

2.3 INVARIANT SUBSPACES AND REDUCTION TO
TRIANGULAR FORM

Definition: Let 7 be a linear operator on a vector space V. If Wis a subspace
of V such that, T(W) < W, we say W is invariant under T or is T-invariant.

Case 5: Since 7(0) = 0 and 7(V) = V, both zero subspace and } are invariant
subspaces of V.

Case 6: Let v € Ker T'then T(v) =0 € Ker 7= Ker T'is invariant subspace
of V.Alsow € ImT =>w=TV) = Tw=T(Tv), Tv € V= Tw € ImT.

ImT is an invariant subspace of V.
Case 7: Let f(#) be any polynomial. Let v € Ker (f(7)) then f(T) v=10

Since () . t=tf(0)
JT=TAT)
Thus, AT Tv=TA(T) v=20
= Tv e Ker f(7)

= Ker f(7) is invariant under 7.

Example 2.1: Let T be a linear operator on R?, the matrix of which in the
standard ordered basis is

4= {1 1}
2 2
Prove that the only subspaces of R? invariant under T are R? and

zero subspaces.

Solution: Characteristic polynomial of 4 (or 7) is xi =x>—3x+4,

x—2

whose roots are not real. Thus elgen values of 4 (or 7) do not existin R. If W
is an invariant subspace of R? such that, W= 0, R then dim W= 1. Let W be
spanned by v. Then Tv e W= Tv = ay, v # 0 = ais an eigen value ofT(oc
€ R), a contradiction. Hence O and R? are only invariant subspaces of R?.

Theorem 2.1: Let W be an invariant subspace of linear operator T on V.

A B
Then T has a matrix representation {0 C} , Where A is matrix of restriction

T, of TonW.
Proof: Let {w,, ..., w, } be abasis of W. Let B = {w,, ..., w,v,,.., v} bea
basis of V, obtained by extending basis of V.

Since T(w) € Wiorallw e W, wedefine T, : W— Wby T (x) = T(x)
forallx € W.
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Then T is operator in V.
T (w)=Tw)=aw +..+a,w,
T w)=Tw)=aw +. +aw,
T(v)) =bw, + .. +bw +c v, +..+tc,v

N

fayy @, by by
. . . oL laq - oa, by - by
Thus matrix of T with respect to basis B is | "' ol "
0 “en 0 cl 1 s Cls

| 0 0 ¢y Cys |

= {‘; ﬁj where 4 = (al_j)’ B= (bij)’ C= (Cij)

are of order » X r, r X 5, s X 5 respectively

Clearly, 4 is matrix of 7 with respect to {w, ..., w,} =basisof W. T is
called restriction of 7on W.

We now show that the matrix C obtained in Theorem 2.1 is the matrix of

some linear operator on % induced by 7.

Define 7 : 1 - 1 such that,
w w

TOW+v) =W+ T, veV

Then T is well defined as W+ v =W+’
= v—Vv eW

= Thv-V) eW

=>TWv)-1T(") e W

= W+ TW) =W+ T()

Since T'is linear transformation, sois 7'. Let {w,, ..., w,} be abasis of IV.
Then it can be extended to form a basis of V. Let {w, ..., w_, v, ..., v }

be a basis of V. Then {W+v,, ..., W+ v} is a basis of %



Now, T (W + v,) = W + T(v,)
=W+ b“w1 + ...+ brlwr Tyt teg

N
=W+ vyt T ey

IA"(W+ v)=W+Tv)=W+bw +.. +bw +cw +..

+ Cy Vs

=W+cwv t..tew (asin Theorem 2.1)

MRS

. matrix of 7 with respect to basis {W+v,, ..., W+v} of % is

Cll e cee ClS

C C

s1 SS

A special situation where B =0 in theorem is obtained when Vis a direct
sum of two invariant subspaces under 7.
Example 2.2: If W and U are invariant subspaces of a linear operator on a
Finite Dimensional Vector Space (F.D.V.S). Vover Fand V =U® W, then 3

.14 0
a basis B of V such that the matrix of T with respect to B 'S {0 C} » where

A is the matrix of T, on W and C is the matrix of T, on U.

Solution: Let {w,, ..., w,} be abasis of Wand {u, ...,u } be abasis of U. Then
Wy s WUy, ., uf isabasisof WO U=V
Now T (w)=T(w,)=aw, +..+ a,

T (w,) = T(w,) = a,w, + ..+ a,,w,

w
”

T w)=Tw)=aw +..+taw,
as T(w) e Wioralli=1,..,r
Similarly, 7 (u,) = T(u,) = cyyu, + ... + cu,

T (u,) = T(uy) = cppuy + ... + cyu,

T (u)=T(u)=cu +..+cu
as T(uj) e Uforallj=1, ..s

So matrix of 7" with respect to B = {w, ..., w, u,, ..., u,} of V'is
given by
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‘all a0 e 0]
ay - a, 0 - 0| [4 0
0 DY 0 cll DY Cls 0 C
_0 DY 0 csl DY CSS_

where 4 = (al.j), Cc= (cl.j) are r X rand s X s matrices, respectively. Clearly 4 is
the matrix of 7, on W and C is the matrix of 7 on U.

Example 2.3: Let V be the vector space of all polynomials in x over F, of
degree < 5. Let T: V — V be defined by T(1) = x> + x*, T(x) =x + 1, T(x?)
=1, T =x> + x> + 1, Tx*) = x*, T(S) = 0. If W is the linear span of
{19 xza 4}7
(a) Show that Wis invariant under 7.
(b) Find the matrix of 7 in a suitable basis of W.
r
W
(d) Find the matrix of 7'in a suitable basis of V.
Solution (a): Let w € W. Then w = a + bx*> + cx* where a, b, ¢ € F.
T(w)=a . T(1) + bt(x*) + cT(x*
= a(x2 + x4) + b+t
=b+ax*+(a+c)x*
€ Wiorallwe W

W is invariant under 7.

(¢) Find the matrix of ]A" in a suitable basis of

(b): Notice that {1, x% x*} is linearly independent set over F and so forms a

basis of ¥, and it can be extended to form a basis, namely {1, 2 x,

x>, x°} of V.
Now, T(MH=T1)=x*+x*=0.1+1.x>+1.x*
T H=Tx)=1=1.1+0.x*+0.x*
T(H=TaH=x*=0.1+x+1.x*
. matrix of 7| with respect to basis {1, x?, x*} of W is given by
010
A=11 0 0].
1 0 1

V
(c): Now {W+x, W+ x>, W+ x°} is basis of 7

TOW+x) =W+ Tx)=W+x+ 1
=W+x=1.W+x)+0W+ x>+ 0W+ x°)



TOW+¥) =W+ T
=W+ +x+1
=W+
= 0(W + x) + L(W + x>) + O(W + x°)

TOV+x5) =W+ TR
V
=W+0= W=zer00fW
= 0(W + x) + O(W + x°) + O(W + x°)

. AN . V.
. matrix of 7 with respect to basis {W+x, W+ x>, W+x°} of w s

given by
1 0 0
C=|010
0 0 0
d: Tx)=x+1=1.14+0.x2+0.x*+1.x+0.x°+0.x°

T =x"+x*+1=1.14+41.24+0.x*+0.x+1.x°+0.x°
T(x*) =0=0.140.x*+0.x*+0.x+0.x°+0.x

. matrix of T with respect to basis {1, x% x* x, x>, ¥} of Vis given by

[0 0 1 0]
0 0 0 0
1 0 S0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0]
B 1 10
= ,where B=0 1 0].
0 C

000

Example 2.4: Let T be a linear operator on a FD.V.S. V over F. Let W be
an invariant subspace of T. Show that the characteristic polynomial p(x)
of T is given by

pr(X) = pp (x) pp (), where p, (x), p; (x) are the characteristic

polynomials of T, and ZA“ ,, respectively.
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Solution: Characteristic polynomial p(x) of 7'is given by

A B
—xI
{0 C}
|| 4-xI B Here 4 = matrix of 7,, on W
0 C—xI szatrixoff"onl
w
=|A—x1||C—x]|

= (characteristic polynomial of 7' )
x (characteristic polynomial of 7')

= pTW(x) Py OF

A natural question arises ‘What is the minimal polynomial for 7'in terms of
minimal polynomial for 7, ’? As we saw in above problem that the characteristic
polynomial of T’ divides the characteristic polynomial of 7, we have a similar
result about minimal polynomial of 7. We prove

Theorem 2.2: The minimal polynomial of T, divides the minimal polynomial
for T, where W is an invariant subspace of V and T is a linear operator on
V.

Proof: Let p(x) be the minimal polynomial for 7.
Let p(x)=a0+oclx+...+ocn71x”’1+x”
Since T(w) =T (w)forallw e W
1(w) = T(T, (w))
=T (T (w)asT (w)eW
Inthisway T'(w) =T, (w)forallwe W
p(T,)(w) =p(T) (w) forallw e W
=0asp(T)=0forallwe W

p(T,) =0
Let g(x) be the minimal polynomial for 7' . Then p(x) = g(x) r(x) + h(x)
where h(x) = 0 or deg h(x) < deg g(x).
0 =p(T,)=¢(T,) HT,) + (T,
WT) =0

If 2(x) # 0, then A(x) is non zero polynomial satisfied by 7' of degree less
than deg g(x), a contradiction as g(x) is minimal.
h(x) = 0 = g(x) divides p(x).
Definition: A linear operator Tona F.D.V.S. V(F) is said to be triangulable or
triangularizable over F if there exists an ordered basis 3 of V" such that [T][3 is

triangular.



Theorem 2.3: Let T be a linear operator on a FD.V.S. V(F). Then T is
triangulable if and only if the characteristic polynomial for T is a product
(not necessarily distinct) of linear factors on F|x]. (Equivalently, T is
triangulable if and only if the eigen values of T are all in F).

Proof: Let the characteristic polynomial of 7'be product of linear factors in F'[x].
Letc,, c,, ..., ¢, be eigen values of T'in F.
We use induction on 7.
If n=1, then the result is obvious as 1 % 1 matrix is always triangular.

Let n > 1. Assume that the result is true for all vector spaces over F of
dimension less than n.

Letdim V' = n. Let v, be an eigen vector of T with respect to c,, then
I(v)) = c,v,
Let W=<vy >

Then Wis T-invariant subspace of V. Consider % dim 2 =n-1
Then YA“ : 14 - 4 such that,
w w

T (W+v) =W+ T()

is well defined linear operator on % . Let f(x) be the characteristic polynomial

for 7'and g(x) be the characteristic polynomial for f . Then g(x) divides f(x) by
Example 2.4.

So, g(x) is also product of linear factors in F[x].

By induction hypothesis 3 a basis g = {W+v,, ..., W+v } of % such

that,
) Ay e ay,
{T}: o . ,a.€F
B : . ij
0 0 a,
T(W+v) =ay, (W+v,) +.ta, (W+v)
= W+ T(yi) = azj(WJr vy) ot anj(WJr v)
=W+ UVt ta,,
= T(vj) =ayv,t..ta,v, ta,v , a;€ F
Now, B ={vy, vy ..., v, } is a basis of V
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: a
[Tl =] . ) o where a,, = ¢,

0 0 a

which is triangular matrix and so 7'is triangulable. So, result follows by
induction.

Conversely, if T is triangulable then 3 a basis 3 of V" such that, [ 7]
is triangular and eigen values of 7 are diagonal entries in 4.

B:A

.". Characteristic polynomial for 4 or 7'is product of linear factors in F]x].

Note: We thus realise that 7'is triangulable if and only if minimal polynomial for
T'is product of linear factors in F'[x].

Corollary.: If 4 is n x n matrix over the field of complex numbers, then 4 is
triangulable.

Proof: By fundamental theorem of algebra (i.e., Every polynomial over the field
C of complex numbers has all roots in C), the minimal polynomial p(x) of 4 has
the form p(x) = (x —¢))"" ... (x —¢,) "k, where ¢, € C. By above theorem 4 is
triangulable.

Example 2.5: Let T be a linear operator on a finite dimensional vector space
V(F). Suppose all eigen values of T are in F. Show that every non zero.
T-invariant subspace of V contains an eigen vector of T.

Solution: Let /' be a non-zero T-invariant subspace of V. Then the restriction
T  of T on Wis alinear operator on W. Since the characteristic polynomial of
T divides the characteristic polynomial of 7, eigen values of 7 also belong to F.
Let ¢ € Fbe an eigen value of 7. Then 3 0 # x € Wsuch that T (x) = cx =
T(x) = cx = x is also an eigen vector of 7.

Example 2.6: Let T be a linear operator on V. If every subspace of V is
invariant under T, show that T is a scalar multiple of the identity operator.

Solution: Let 0 # v € V. Let W be a subspace of V' spanned by V. Since Wis
invariantunder 7,ve W=T(v) e W=T(v)=av.w € W=w=av= T(w)
=aT(v)=aov=oav=ow. Letv' ¢ W,Vv' € V. Then, v, V' are linearly inde-
pendent. Let /' be the subspace spanned by v'. Since W' is invariant under
T, (V) e W',

s T(V)=a'v. Let V' be the subspace spanned by v — v'. Then as
before T(v — V') = B(v — V')

=>TW)-TV)=Bv-BV = av—aV' = Bv - BV
= (a—Byv=(a'- PV = a=p=0a'as v, are linearly independent
= T(V') = a().
forallv e V, T(v) = av
= T=oal



Example 2.7: Let T be a linear operator on a finite dimensional vector space
over the field of complex numbers. Prove that T is diagonalisable, if and only
if T is annihilated by some polynomial over C which has distinct roots.

Solution: Suppose 7'is a diagonalisable. Let p(x) be the minimal polynomial for
T. By theorem 10 p(x) has distinct roots and p(7) = 0.

Conversely, let g(x) be a polynomial over C such that, ¢(7) =0 and roots
of g(x) are distinct.

p(x) divides g(x)
and thus roots of p(x) are distinct.
Hence T'is diagonalizable.

Example 2.8: If A4 is nilpotent, show that A is similar to a triangular matrix
whose entries on the diagonal are all zero.

Solution: 4 is nilpotent = 4™ = 0 = the minimal polynomial p(x) of 4 is x",
r<m. So, 0 is only eigen value of 4. Since 0 € F', by theorem 2.3, 4 is similar
to a triangular matrix B. .. 4=P'BP

Since eigen value of 4 is only 0, eigen value of B is only 0 and these are
diagonal entries on B.

Projections

We recall, by a projection E of a vector space V, we mean a linear operator on
¥ such that, E> = E.

Let now E be a projection on V, then E: V— V.
We show V'=R @ N, where R = Range of £ and
N = Null space of E = Ker E.

Let v € V' be any element, then

E*=E
= E*(v) = E(v)
= EWVv-EWv)=0
= v—EWVv) e Ker E=N
Thus v=EWw)+(Vv—-EWV) e R+N
1e., V=R+N

Again, letx e RN Nthenx € Randx € N
X €R = 3y € Vsuch that, E(y) = x
xeN = Ex)=0

So, E*)=EE@y)=E(Xx) =0
= Ey)=0=>x=0=RnNnN={0}
Hence V=R® N.
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Suppose now V=4 @ B, where A, B are subspaces of V.

Define E : V— V, such that,
E(v)=a
where veV=v=a+b(unquely)a e 4,b € B

Then E is easily seen to be a linear operator
Also E2(v) = EEv)=E(@)=E(@+0)=a=EV) YveV
shows that E2 = E and thus E is a projection.
We claim 4 = range of £ and B = Ker E
veKerE=EWV)=0 = E(a+b)=0wherev=a+5b
>a=0=>v=a+b=beB
Agan be B=b=0+5b = EDb)=E0+b)=0=>b e KerE
So B=KerkE
It is easy to see that 4 = range of E.

We thus notice that when there is projection £ on V, then Vis direct sum
ofrange E and Ker E and conversely, if V' is direct sum of two subspaces then
there exists a projection £ on V such that these subspaces are range and Ker of
E.

If V=R ® N corresponding to a projection £, we say E is projection on
R along N (R =range E, N = Ker E).

Suppose again that '=A4 @ B and let's define
F : V— Vsuch that,
F(v)=b where v € Vis such that, v=a + b

then as before we can check that F'is a projection on ¥ and A = Ker F, B =
Range F.

Hence if £ was projection on 4 along B, then F'is projection on B along
A. Is there a direct relation between £ and F?

Consider (E+F)(v)=EW)+FW)=a+b=v,
=I(v)Vv

andthus E+F=1

or that E=1-F

We can sum up and say that £ is a projection iff / — £ is a projection and
if £ 1s a projection on R along N then /— E is a projection on N along R.

We give another ‘Proof” of this result in Example 2.9.
Let us now consider the general result through

Theorem 2.4: If V=W, ® ... ® W,, then Tk linear operators E, ..., E, on
V such that,



(i) Each E. is a projection Canonical Forms
(@) EiEj =0foralli=j
(@) [ =E + .. +E,
(iv) the range of E; is W, NOTES
and conversely.
Proof: Letv e V'be any element then
v=x, +x,+..+x, x. € W being uniquely determined
Define E, .V — V, such that,
E(x, +..+x)=x foralli
Then E, is linear operator such that,
Ef (x, +..tx) = E(x)=x,=E(x; +..tXx)
= E?=El. for all i
This proves (7).
Let i #j. Then El.Ej(x1 +.tx)= El.(xj) =0
EiEj =0 for all i #.
This proves (if).
Let veV.Thenv=x,+..+x,x, €W,
(B, +..+tEW=Ev+..+Ey

=X, + ...+xk
=v=1v)
E1 +...+Ek=l

This proves (ii).
By definition of £, range of £, is I, which proves (iv).
Conversely, letv e V. By (iii)[=E, + ... + E,
> v=Iv)=EW+ . +tEWV)=x+.Tx,x, € W (x;=Ey)
V=W +.+W,
Let v=y,t..ty, y, € W =RangeofE,
= y,=E(z)
EW)=E) + ..+ E®)
= EJ E@z)+..+ E]Ek(zk)
=EE) = E) =,
X;=Y; forallj=1, ..,k
.. Each v € V' can be uniquely written as sum of elements of W/, ..., W,.
Hence, V=W, @ .. ® W,
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Example 2.9: Prove that if E is the projection on R along N, then I-E is the
projection on N along R.

Solution: Let x € Rthenx=Ey,y € V
= {[-E)yx=x—-Ex=Ey—Ey=0
= x € null space of - F
Alsox e N=> Ex=0
= ([-E)x=xforallx e N
veV=v=r+nreR neN
= (-E)yv=(U-E)yr+(U-E)n
=0+n=n
.. Range space of I — E'is N
Also (I-Ef=I+E*-2E=I—-E
.. I — E is the projection on N along R.

Example 2.10: Let V(F) be a vector space. Let E| be a projection on R,
along N, and E, be a projection on R, along N,. Assuming that 1 +1# 0
in F, show that

(@) E, + E, is projection iff E,E, = E,E, = 0.
(b) E, + E, is a projection on R, ® R, along N, " N,.
Solution: (a) We have V=R, ® N, and V=R, ® N,
Let E, + E, be a projection. Then (£, + Ez)2 =E +E,
= EX+ES+EE,+EE =E +E,
= EE,+EE =0 ()
= E\EE,+EEE =0= EE,=-EE/LE,
and EE,E, + EEE, =0= E,E, =—EEE,
Thus E\E, = E,E, and so (a) gives
(I1+D)EE=0=>EE =0
Hence EE,=EE =0
Conversely, E\E, = E,E, =0 gives
EE,+EE =0
= E}+E5+EE,+EE =E +E,
= (E, +E) =E, +E,
(b)We have to show that Range of £, + E, is R, ® R, and Ker (£, + E,)
=N, N N,.
Let x € Ker (E, + E)) = (E, + E;))x =0
> Ex+E,x=0= EFE X +EEx)=0



= E/(x) + EE,(x) =0
= E/(x)=0as EE,(x) =0
Similarly we get E,(x)=0
Hence x € Ker =N, x € Ker E, =N,
andso xe N, NN, = Ker(E, +E)c N NN,
Agan, ye N NN, =>yeN &yeN,
= E,(y)=0,E,(y) =0
= (E, TE)y=0=y e Ker (E, + E,)
So N, NN, c Ker (E, " E,))
or that Ker (E, + E,) = N, " N,
We leave the rest of the proof for the reader as an exercise.
Theorem 2.5: Any projection E on a vector space V is diagonalizable.

Proof: Suppose {v,, v,, ..., v} is a basis of range space R of £ and {v, |,
..., v, } is a basis of null space N of E.

Then {v;, v,, ..., Vo Vi, 15 -or V) IS @ basis of RON =V

Now, E(v)=E(r,+tn) r,eRn eN
=  E*v)=E®)) =E(r, +n)=E@r)+ En)=Er)
= E(v,)= E(r))
= E(v,-r)=0=v,—-r e KerE=N

Also vieERrneR=v -r eR
and thus v, —r € RN N=1{0}

= v,=T1
Again n=v,—r=>0

Thus E(v,) = v,. Similarly E(v) =v, Vi=1,2,.,k
Also E(vj) =0 Vj=k+1,..,n

. . . . .. |1 0
Showing matrix of £ with respect to this basis is [0 0}

which is clearly a diagonal matrix.
Hence the result follows.

Example 2.11: If diagonal operator has eigen values 0 and I only then show
that it is a projection.

Solution: Since T'is diagonal operator, 3 abasis B = {v,, ..., v} of V'such that
[T] b= diagonal. Since eigen values of T'are 0 and 1, let first m entries in diagonal
be 1 and others be 0.

Letve V.Thenv = a,v o tay o

™ +..taov

m+1vm+1 n'n
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T*(v)= T(Tv)

= Tav, + ..+ o v ) as Tv.=v. foralli,1<i<
m m 1 1

ij=0f0rallj>m
=Toy, +..to,y, ta
=T() forallveV
=T

Hence T'is a projection.

Vs T T anvn)

Theorem 2.6: Let T be a linear operator on the space Vand V =W, ® ...
® W,. Define E(v) = E(x, + ...+ x,) =x, € W.. Then each E, is a projection
on V such that, EI.EJ. =0foralli zjand I =E + ..+ E_. Also then each
W.is invariant under T iff TE, = ET for all i = 1, 2, ..., k.

Proof: Let TE,=ET
Letx; € W, Then by definition, £(x,) = x,
T(x,)= T(Ex,)
= E(Tx)
= T(x,) € Range of E, = W,
. W.is invariant under T forall i=1, ..., k
Conversely, let W, be invariant under 7. Thenv € V
= I(v)=(E, +..+E)WV)
= v=E@W+..+tE®D)
= T(v) =TE,() + .. + TE,(v)
Since E(v) € W, and W, is T- invariant = T(E,(v)) € W..
So, E[TE)] = T(E(v)) ifj=i

=0ifj#i
E(TW) = T(E(v) VYveV
= ET =TE,V j.

Definition: Let /" be a vector space and £, E, ..., E, be a collection of pro-
jections on V, then this collection is called orthogonal collection if EI.EJ. =0V
i # j. Consider the space R%. Define

E, : R? - R?, such that,and E,: R? - R?, such that,
E\(a, b) = (a, 0) E(a, b) = (0, b)
thenclearly  E|, E, are projections and
E\E(a, b) = E (0, b) = (0, 0)
E,E \(a, b) = E,(a, 0) = (0, 0)



Shows E|E,=E,FE, andthus E|, E, is an orthogonal set of projections.
The above theorem could be restated as

Let T be a linear operator on the space V and let V =W, @ W,
@... @W, be determined by orthogonal projections E , E,, ..., E, on V. Then
each W, is T-invariant if and only if ET = TE, i = 1, 2, ..., k.

Theorem 2.7: Let T be a linear operator on a F.D.V.S. V. If T is diagonal-
izable and c,, ..., ¢, are distinct eigen values of T, then T linear operators E ,
... E_on V such that,

(@) T=cE +..+tckE,
(@ I=E +..+E
(iii) E,-Ej =0foralli+j
(iv) EZ=E,
(v) Range of E, is the eigen space of T associated with eigen value
c,of T

Conversely, if Fdistinct scalars c, ..., ¢, and k non-zero linear opera-
tors E,, ..., E, satisfying (i), (ii), (iii) then T is diagonalizable, c, ..., ¢, are
eigen values of T and (iv) and (v) are also satisfied.

Proof: Let T'be diagonalizable and c,, ..., ¢, be distinct eigen values of 7. Let WV,
be eigen spaces of T corresponding to eigen values c..

Thendim V= dim W, +..+ dim W,
and V=W +..+W,
Hence V=W, ®..D W,

Asin Theorm 2.7, let £, ..., E, be the projections associated with this
decomposition. Then (ii) to (v) are satisfied. Letv € V'

Then, I(v)=v=(E, +..+E)v
=E W +.. +E(®W
= T(v)=TE,(v) + ... + TE (v)
=c,E\(v) + ..+ E(v)as E(v) € Range of E, = WV,
=(cE, t ..t E)y
=> T=ckE +..T¢kE
This proves (7).

Conversely, suppose T along with distinct scalars ¢, and non-zero opera-
tors E; satisfy (i), (i) and (iii). Also T=c E, + ... + ¢, E,

Then  TE,= ¢k, for all i
= (I'-c)E.=0foralli
Since E,#03v, € Vsuchthat, E,(v) # 0
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(T—c; D) (E(v)) =0 forall i
= T(E(v)) = c(E(v)), E(v,) # 0 for all i
= ¢, is an eigen value of T'for all 7, (£, v; is an eigen vector).
If ¢ is any scalar, then
(T—ch) = (B + ... T¢,E)—cE, +..1TE)
=(c, —0E, + ..+ (¢, - OF,
If ¢ is an eigen value of 7, then 3 0 # v € V' such that,
Tv=cv=(T—-cv=0
(c,—0) EjEl(v) Tt (-0 EjEk(V) =0
= (cj -0) Ej(v) =0forallj=1, ..,k
Iij(v) =0forallj, then/=FE + .. +E,
>v=Iv)=EW+..+tEM»®=0
Ej(v) # 0 for some j
¢ =c for some j
. €y, ...y ¢ are only eigen values of T.
Let W.=range of E,,i=1, ..., k.
By(@i) I=E +..+E,
> v=lv=Eyv+..+tEveW +. . +WforallveV
= V=W +.+W,
Asin Theorem 2.4, V=W, @ ... ® W,
dim V'=dim W, + ... + dim W,
= T'is diagonalisable if W, = eigen space of T corresponding to c;,.
Let x € eigen space of T. Then T(x) =cx, 1 <i<k
= (E t .. tgE)x=cllx)=c(E + ..+ E)x
= E )+ ..+ E(x)=cE(X) Tt ..+ cE(x)
= (- EXx)+ ..+ (—c)EMHx)=0
= (cj— c) Ej(x) =0forallj=1, ..k

as Ej(x) € Range of EJ = WJ

and W,, ..., W, are independent.

we get Ej(x)=O,j¢iascj—cl.¢0forallj¢i
Since I=E +..+E,

x=E\(x)+ ..+ E(x) = E((X)
= x € Range of £, = WV,

.". eigen space corresponding to ¢, is contained in .
1 1



Also OzxeW =>x=E(y)=0
But (T—c¢DE, =0
= TE() = ¢E®X)
= T(x) = ¢,x = x € eigen space corresponding to c;
W.= eigen space corresponding to c,.

Suppose T'is a linear operator with minimal polynomial p(x) = (x—c¢,) ...
(x—c,) suchthat, c, ..., ¢, € F are distinct. To show T is diagonalizable.

(x—¢) .
Proof: Letp(x) = —,j=1, .,k
roof: Let p (x) ,Uj ) J =1

Then plc) = 817

Let V= space of all polynomials over F of degree less than .

Then p,, ..., p, € V and are linearly independent as o,p, + ... + a,p, = 0
= oyp(c)t ..+t oplc)=0
= o, =0forall:

Since dim V =4k, {p, ..., p,} 1s a basis of V.

Now leV=l=ap +..+top

Put x = ¢, on both sides to get
1 =, foralli

= 1=p +..+p, (2.1
xeV=x=Bp,+ ...+ By,
Put X =c
Then c; =, forall i

= x=cp,t..tep, ..(2.2)
Let p(D =,

Put x =TinEquation (2.1) and Equation (2.2) above to get

I=p(M+..+p(D=E +..1TE
T'=ckE +..¢E,
Since p(x) divides pl.(x)pj(x) foralli#j
p{Dp 1) =p(D)q(T) forall i = j
= EiEI.ZOforalli;tj
If Ei: 0 for some j, then pl.(T) =0 and
degree of pl.(x) <deg p(x), a contradiction
EJ #z0forallj=1, ..,k

. Tis diagonalizable.
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Example 2.12: Let E be a projection of V and let T be a linear operator on
V. Prove that the range of E is invariant under T if and only if ETE = TE.
Prove that both the range and null space of E are invariant under T if and
only if ET = TE.
Solution: Let R =range of £
N =null space of £
Then V=R®N

We have shown before that / — E is also a projection. x € N = Ex =0
= (I- E)x=x = x e range of ] — E. .. Range of E = R, Range of (/ — E)
= N.

Also E(I-E)=E—E*=E—E=0. Suppose R is invariant under 7 then
S>TEVCEV=TIU-EW=TV-EV)cV-EV=I-E)V=N=
(/- E)Vis invariant under 7.

.. By Theorem 2.6, TE =ET
— ETE=ET=ET=TE.
Conversely, suppose ETE = TE

Let E(v) € R =range of £
Then E(TEWv) eRasT: Vo>V, E: V>V
= TE(v) € Rsince ETE = TE

= Ris invariant under 7.

Further, if both R and N are invariant under 7, then by Theorem 2.7,
TE = ET.

Conversely, suppose TE = ET = ETE = TE
From above then, R is invariant under 7.
Also n e N= E(n) =0= (ET)(n) = (TE)(n)
= I(E(n))
=T7(0)=0
E(T(n)) =0foralln e N
= T(n) € null space of E foralln e N
= Nisinvariantunder 7.
Example 2.13: Let V =R? and T be the linear operator on V whose matrix
relative to standard ordered basis is [g ﬂ for same non-zero a, b € R.
Show that
(a) W, the subspace generated by (1, 0) is T-invariant
(b) W, the subspace generated by (0, 1) is not T-invariant
(¢) 3 no T-invariant subspace W of R* such that, R* = w, e w.



Solution: Wehave W, = {(x, 0) | x € R}
T(W)) = {a(x, 0) | x € R} € W,
and thus W, is invariant under 7.

Suppose now Wis T-invariant subspace of R? such that, R? = w,ow.
Since dim W, = 1, dim W must also be 1.

Define E : R?> > R? such that,
E(x, y) = (x, 0)
then E is a projection of R? onto w,.
By Example 2.12, we should have TE = ET.
But TE(1, 1) =1T(1, 0) = (a, 0)
ET(1,1)=E(@a+b,a)=(a+ b, 0)
Showing that ET # TE and thus there does not exist any 7-invariant sub-

space W such that, R? = W, @ W. We leave part (b) and (c) for students to
complete.

Theorem 2.8: Let T be a linear operator on the F.D.V.S. V(F). Suppose that
the minimal polynomial for T decomposes over F into a product of linear

polynomials. Then 3 a diagonalizable operator D on V and a nilpotent
operator N on V such that (i) T =D + N (ii) DN = ND.

Proof: Letp(x)=(x—c,)! ... (x—c,)*be the minimal polynomial for 7 where
Cys .. € are distinct scalars in F.
By Primary decomposition theorem, V=W, @ ... ® W, where W,=null

space of (T'—cl)'i. LetE,, ..., E, be the corresponding projections. Then IV, =
range of .

Let D=cE +..+ckE,
By Theorem 2.7, D is diagonalizable.
Since I=E +. +E,
IT=TE +..+TE,D=ckE + . +ckE,
Let N=T-D=(T~-cDE +.. +(T-clE,
Then N*=(T—-c¢E,+ ..+ (T—-c])*E, as TE,=ETV i

and in general that, N" = (T—c )'E, + ... + (T—c )" E,
Since (x—c,)"iis the minimal polynomial of Ton W, (T—cl)i=0on W,
forall i.
= (T—cI)) =0on W, forall r>r,
: N" =0 for all r > r, for each i
N is nilpotent operator.

T=D+ N, D is diagonalizable and N, nilpotent operator.
Now DT = (c\E, + ... + ¢, k) (TE, + ... + TE))
=c,TE, + ..+ ¢ TE,
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Canonical Forms as Ws are invariant under 7' = TE, = E.T for all i
=T(c\E) + ... T (¢, E)

=(TE) (c,E) + ... T (TE)) (¢, E)

= (TE, + ... + TE,) (¢,E, + ... + ¢,E,)

NOTES
=T1D
D(D + N) =(D + N)D
= DN = ND.

2.4 NILPOTENT TRANSFORMATIONS

A linear transformation NV : U — U'is called nilpotent if there exists a k € Nsuch
that N*=0 for some positive integer k. The smallest such & is sometimes called the
degree of N.

A nilpotent transformation is a linear transformation L of a vector space
such that L*= 0 for some positive integer . A nilpotent transformation naturally
determines a flag of subspaces

{0} ckerN' c kerN* .... kerN* ! < kerN*= U and a signature,
0=n,<n<n,<n_ <n=dim U, n=dimker V.
The signature is governed by the following constraint, and characterizes N
up to linear isomorphism.

Theorem 2.9: A sequence of increasing natural numbers is the signature of a
nilpotent transformation if and only if

n.,—n < n-n
forallj=1,...., k—1 . Equivalently, there exists a basis of U such that the matrix of
Nrelative to this basis is block diagonal

N 0O 0 .. 0
0O N, 0 .. 0
0 0 N, 0
0 0 0 .. N,

with each of the blocks having the form

010 .. 00
0 0

000 .. 10
000 .. 01
000 .. 00

Letting d, denote the number of blocks of size 7, the signature of Nis given by
n=n_+td+d, + +d,i=l,.. )k
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Theorem 2.10: Theorem NJB
Nilpotent Jordan Blocks
The Jordan block J (0) is nilpotent of index .

Proof: While not phrased as an if-then statement, the statement in the theorem is
understood to mean that if we have a specific matrix J (0) ) then we need to
establish itis nilpotent of a specified index. The first column of J is the zero vector,
and the remaining 7 — 1 columns are the standard unit vectorse, 1 <i<n—1.

which are also the first 7 — 1 columns of the size n identity matrix / . As
shorthand, write J=J

J = [[} |ei e, | |EH_J

We will use the definition of matrix multiplication together with a proofby
induction to study the powers of J. Our claim is that

€,

I = [U 0]... [0 ey le |--. |‘3.-rr—k]

for 1 < k< n. For the base case, k = 1 and the definition of J' = J (0)
establishes the claim. For the induction step, first note that Je, =0 and Je = e,  for
2 <i<n. Then, assuming the claim is true for k, we examine the k + 1 case,

I =g
=J[ofol.. [0]e le |... le,]
= [70|70 |... |70 lre, e, |... Ve,.]
=[olo ... lolole les ... le,sei]

= [0 lo|... |o |91 Iez |... “?n—uﬂ)]

This concludes the induction. So J,_has a nonzero entry (a one) in row
n—kand column #, for 1 <k<n-1, and is therefore a nonzero matrix. However,

J"=[o]o|... [o] = 0. Jisnilpotent of index n.
Theorem 2.11: ENLT
Eigenvalues of Nilpotent Linear Transformations

Suppose that T : V— V is anilpotent linear transfromation and A is an eigenvalue
of 7. Then A =0

Proof: Let x be an eigenvector of 7 for the eigenvalue A, and suppose that 7'is
nilpotent with index p.
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Then
0 =17 (x)
= MPx
Because x is an eigenvector, it is nonzero, and therefore Theorem SMEZV

tells us that A»=0 and so A =0.

Paraphrasing, all of the eigenvalues of a nilpotent linear transformation are
zero. So in particular, the characteristic polynomial of a nilpotent linear
transformation, 7', on a vector space of dimension 7, is simply p (x) = x".

Theorem 2.12: DNLT
Diagonalizable Nilpotent Linear Transformations

Suppose the linear transformation 7': ¥’— Vis nilpotent. Then 7'is diagonalizable
ifand only 7'is the zero linear transformation.

Proof: We start with the easy direction. Let n =dim (V).

(«=) The linear transformation Z : '— V' defined by Z(v)=0forallv e V'
is nilpotent of index p =1 and a matrix representation relative to any basis of V'is
the n x n zero matrix, O. Quite obviously, the zero matrix is a diagonal matrix and
hence Zis diagonalizable.

(=) Assume now that 7'is diagonalizable, so y,(A) = a(}) for every
eigenvalue A. By Theorem ENLT, 7'has only one eigenvalue (zero), which therefore
must have algebraic multiplicity # (Theorem NEM). So the geometric multiplicity
of zero will be n as well y.(0) = n.

Let B be a basis for the eigenspace e (0). Then Bis a linearly independent
subset of V of size n, and by will be a basis for V. For any x € B we have

T(x) =0x
=0
So Tis identically zero on a basis for B, and since the action of a linear

transformation on a basis determines all of the values of the linear transformation,
it is easy to see that 7(v) =0 foreveryv € V.

So, other than one trivial case (the zero matrix), every nilpotent linear
transformation is not diagonalizable.

Theorem 2.13: KPLT
Kernels of Powers of Linear Transformations

Suppose T': V' — Vis a linear transformation, where dim (V) = n. Then there is an
integer m, 0 <m < n, such that

{o} =k(T°) k(1) SK(T7) & - SK(T™) =K (T™") = K(T™?) =---



Proof:

There are several items to verify in the conclusion as stated. First, we show that

k(7%) <k (7*") for any k. Choose z€EK (Tk). Then

) 1)
=7(0)
=0
So by Definition KLT, z€K (T ok 1) and by Definition SSET we have
K(T%) ek (T,

Second, we demonstrate the existence of a power m where consecutive
powers result in equal kernels. A byproduct will be the condition that m can be
chosen so that m < n. To the contrary, suppose that

{0} =k(1°) eK(T") <K(T?) & - SK(T"") SK(T") K (T™) & -
Since
K(1%) k(7). dim (K(T*)) = dim (K(T7)) + 1.
Repeated application of this observation yields
Kim (K(T”H)) > dint (K(T”)) 28 |
>dim (K(T7)) +2

> dim (K(Tﬁ}} +(n+1)
= dim ({{)}) i i |
=n+1

Thus, K (T ":_1) has a basis of size at least n + 1, which is a linearly
independent set of size greater than n in the vector space of dimension 7.

This contradiction yields the existence of an integer k such that
K ( T* ) =K (THI ). so we can define m to be smallest such integer with this

property. From the argument above about dimensions resulting from a strictly
increasing chain of subspaces, it should be clear that m < n.
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It remains to show that once two consecutive kernels are equal, then all of
the remaining kernels are equal. More formally, if K (T ’”) =K (T e ), then
K(T7) =K(T"7 )forall /> 1.

Theorem 2.14: KPNLT

Kernels of Powers of Nilpotent Linear Transformations

Suppose T : V' — V is a nilpotent linear transformaton with index p and
dim (V)=n.Then0<p<n,and

{0} =k(7°) ek(1") eK(T°) & - <K (1) =K (177 ) ==V

Proof: Since 77 = 0 it follows that 7?7 =0 all j > 0 and thus K(777) = V for
7 2 0. So the value of m guaranteed by Theorem KPLT is at most p. The only
remaining aspect of our conclusion that does not follows form Theorem KPLT is
that m = p. To see this we must show that K(7¥) < K(7*") for 0 <k <p 1.
If K(T*) = 1. For some k < p, then K(7*) = K(7?) = V. This implies that 7*=0,
violating the fact that 7"has index p. So the smallest value of m is indeed p, and we
learn that p <n.

Theorem 2.15: CFNLT
Canonical Form for Nilpotent Linear Transformations

Suppose that 7': V"— Vis anilpotent linear transformation of index p. Then there
is a basis for V' so that the matrix representation M”, , is block diagonal with
eachblock being a Jardan block, J (0). The size of the largest block is the ndex p,
and the total number of block si the nullity of 7, n(7).

Proof: We will explicitly construct the desired basis, so the proof is constructive
and can be used in practice. As we begin, the basis vectors will not be in the
proper order, but we will rearrange them at the end of the proof. For convenience,
define n, = n(T"), so for example, n, = 0, n, = n(T), and n,= n(Tp). Define
s.=n—n_,for 1<i<p, so we can think of as “how much bigger” K(T') is than
K(T™). In particular, Theorem KPNLT implies that si>0 for 1 <i<p.

We are going to build a set of vectors z, p1Sisp 1<j<s, Each z,, , will
be an element of K(7%) and not an element of K(T 1. In total, we will obtam a

linearly independent set of ¥¥_s, = ¥ n-n_, = n,~ny = dim (V) vectors that form a
basis of V. We construct this set in pieces, starting at the “wrong” end. Our procedure
will build a series of subspaces, Z,, each lying in between K(7"") and K(T"),

havingbases z, , 1 <j <, and which together equal /" as a direct sum.

We build the subspace Z, first (this is what we meant by “starting at the
wrong end”). K(77") is a proper subspace of K(77) = V' (Theorem KPNLT).
There is a subspace of V' that will pair with the subspace K(77 ') to form a direct
sum of V. Call this subspace Zp, and choose vectors Z, 1<5< S,asa basis of



Zp , which we will denote as Bp. Note that we have a fair amount of freedom in
how to choose these first basis vectors. Several observations will be useful in the

nextstep. First 7 = K (77 ""®*» . Thebasis B, = {zpl,zp 292530 Zps. } is linearly

independent. For 1 <j < 8,2, € K(7T7). Since the two subspaces of a direct sum
have no nonzero Vectors 1n common for1 <;j< S, 2, € K(T7"). That was
comparably easy.

If obtaining Z was easy, getting Z,, will be harder. We will repeat the next
step p— 1 times, and so will do it carefully the first time. Eventually, Z, will have
dimension S, - However, the first s, vectors of abasis are straightforward. Define
z, =Tl (z ) 1<j<s,. Notice that we have no choice in creating these vectors,
they are a consequence of our choices for z,. - Inretrospect (i.e. on a second
reading of this proof), you will recognize thls as the key step in realizing a matrix
representation of a nilpotent linear transformation with Jordan blocks. We need to
know that this set of vectors in linearly independent, so start with a relation of

linear dependence and massage it,

0 =ayZp ) T @y o T35 37 " Fag T,

=aqyT (:p.l) +a,T ( ) a;T (hpj) + e e, T (:pugp)
=T (alszl + AyZ,5 F a3z, gt +ﬂ:p:psp)

Define x=a;z,, +ayz,, + a3z, 5+ - +a5,7,5,. The statement just above means
that ex(7) <k (77"). As defined, x is a linear combination of the basis vectors B ,
and therefore x € Z, Thus xex(777") NZ,. Because ¥ = K(17") @z,. that x = 0.
Now we recognize the definition of x as a relation of linear dependence on the
linearly independent set Bp, and therefore a; = @, =--=a,, = 0, This establishes the
linear independence of z,, 1 ;. 157=5p.

2.4.1 Index of Nilpotency

Nilpotent element is an element a of a ring or semi-group with zero 4 such that,
a" =0 for some natural number n. The smallest such 7 is called the nilpotency
index of a. For example, in the residue ring modulo p” (under multiplication),
where p is a prime number, the residue class of p is nilpotent of index 7.

In the ring of (2x2) matrices with coefficients in a field K the matrix,

0 1
0 0
is nilpotent of index 2.

In the group algebra Fp[ G|, where F is the field with p elements and G the
cyclic group of order p generated by o, the element 1 is nilpotent of index p.
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2.4.2 Invariants of Nilpotent Transformations

Lemma 1: A linear transformation whose only eigenvalue is zero is nilpotent.

Proof: If ¢: V"— V" hasall A=0, then c(x) =x" and from Cayley-Hamilton
Theorem ¢’ = zero map.

Note: If T'is a square matrix with characteristic polynomial c(x) then ¢(7) = O.

Canonical form for nilpotent matrices is one that is all zeroes except for
blocks of subdiagonal ones. This can be made unique by setting some rules for the
arrangement of blocks.

Lemma 2: If the matrices 7—AJ and N are similar, then Tand N + A/ are also
similar, via the same change of basis matrices.

Proof: N=P (T—A) P''=PTP'— A\l
= PITP'=N+M\

Definition: Invariant Subspace: Let #: V'— V' be a transformation. Then a
subspace Mis tinvariantif m ¢ M= t(m) e M

Example 2.14: N _(¢) and R _(¢) are both ¢invariant.
Solution: If ve Noo(f), then 3 k suchthat, t"(v)=0wn=>k.
t"t W) =t"(t () =0 = t(v) e N_(¥).

If ve R (#), then 3w such that, v=1¢"(w).
Then t(v) =¢""(w)=t"(t (w)) € R ().

Hence, N (¢t—A,)and R (¢—A,) areboth #—A, invariant. By definition,
t—AX, isnilpotenton N (1-21.).
Lemma 3: A subspace M is ¢t invariant iff it is #—A invariant for any scalar A.
In particular, where A is an eigenvalue of a linear transformation ¢, then for any
other eigenvalue 7»}. , the spaces N (1— X )and R (¢—A,) are both 7— }»].
invariant. '
Proof: If M is t— A invariant for any scalar A, then setting A=0 means Wis ¢
invariant.

If Mis tinvariant, then meM = t(m) e M.

Since M s a subspace, it is closed under all linear combinations of its members.
Hence, t(m)Am e M, ie.,meM = (t—-L)(m)eM.

Now since N (1—2 )and R (£—A,) are ¢{— A, invariant, they are ¢
invariant and hence also 7- 1 invariant.
Lemma 4: Givent: VV— V and let Nand R be ¢ invariant complementary

subspaces of V. Then ¢ can be represented by a matrix with blocks of square
submatrices 7, and 7, :

[T, OJ (dim N) rows

O |T,) (dimR)rows



Proof: Let the bases of Nand Rbe B, =<vl,....,vp> and B, =<p1,....,pq>,

respectively. Nand R are complementary
= B= <vl,....,vp,p1,....,pq> 1s a basis for V.

Then #,,, = (((v)); | .| /(p, ) ;) has the desired form.

T, | O
Lemma S: If T'is a matrix with submatrices 7, and 7, suchthat, 7" = [OL*?J
2

Then |T1= [T ||T})

Proof: Let the dimensions of 7, T, and T, be nx n, r X r and (n—r) % (n-r)
respectively.

Then
P
Z(_) th(l)""trP(r)trHP(rH)""tnP(n)
P

R P
= Z(_) 1t1}1(1)----tr}1(r)2(_) 2tr+1P2(r+1)""tan(n)
B B

= LT, |
2 0 0 0
1 2 00
Example 2.15: Solve o0 0 3 0
00 0 3
2 0 0 0
1200 2030 .
Solution: 0 0 3 of |1 2[0 3
0 0 0 3

Lemma 6: Ifalinear transformation ¢ : J”— V has the characteristic polynomial
c(x)=(x—=A)" o (x=A, )
Then,
V=N_{t-A)®D...ON_(t—A,)and dim N _(¢—1,) = p,
Proof: Since dim(V)-p, +....+p,
Therefore V' =N_(t—A,)®...®N_(t—A,)ifdim N_(t—X,)= p, and
N, (t=A)NN, (t=k;)={0} Vi#j
Accordingto Lemma3, N_(t—X,)j and N_(t—A ;)J aretinvariant.
Since the intersect of # invariant subspaces is ¢ invariant, the restriction of ¢
toM=N,(t-4)NN,(t—2,) isalinear transformation.
Now both /A and t—?»j are nilpotent on M.
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Therefore the only eigenvalue A of 7 on M must satisfy A=A and A = Kj.

Toprove dim N (1 —A.) = p, fix the index / and write
V=N,t-24)OP.(t-4)

T, | O
From Lemma4 T = [OL%J and from Lemma 5 |Tx/=|T —xI|| Tl
2
From the uniqueness clause of the fundamental theorem of arithmetic,
| T, —xI |=(x—=A)" ....... (x—A4,)"
And
\T,—xI |=(x—4)"....... (x—A4)"
Then, q,tr, =pjj=l, ek
i.e., therestriction of ~Ai M to isN_(¢—A) nilpotent on M.
The only eigen value of  on M is hence Ai.
Hence c(x) = (x - A, )on M, i.e., q,=0~j#i
Consider next the restriction of z—A to R=R _(1—1,).
Since ¢—A, isnonsingular on R, A is not an eigenvalue of R.

Hence, g, =p..
Check Your Progress
1. Define linear transformation.
2. Write the hypercompanion matrix.
3. What do you mean by rational cononical form?
4. Whatisnilpotent element?

2.5 PRIMARY DECOMPOSITION THEOREM

Theorem 2.16: Let T be a liner operator on a finite dimensional space V
over F. Let p(x) be the minimal polynomial for T such that,

px)=p,(x)" ...... Dyx)*
where the p (x) are distinct irreducible monic polynomials over F and

r, are +ve integers. Let W, be the null spaces of p(T)"i, i = 1, . . ., k. Then
@OV=we....ow,
(it) Each W, is invariant under T (i.e., T(W) c W, V'i)
(iti) If T, is operator induced on W, by T, then the minimal polynomial q (x)

Sor T, is p(x)"i.



Canonical Forms

Proof: Let f(x) = P i=1,2,..k

i)
Then g.c.d. (f,(x), ..., f,(x)) = 1
o3 g(x), ..., g(x) € F [x] such that, NOTES

() /1) + o+ g(0) i) = 1
=S gD+ .+ g(D) (D=1
Let, v € V, then
v =D AD) + ... + (D) f(D)
Now p(T)i f(T) g(T) = p(T) g(T) = 0
(D) f(DE) = f(Dg (D)
pATY 1 g(T) f(D() =0
(D) (D) € Ker p(TYi=W,
ve W +..+W,
= V=w+..+W
orthat V=W @ ..® W,
Forletx, +..+x,=0, x, €W,

4

U

then X ==, ..+ x)
=>f(Dx,=0asViz#l, fi(T)x,=0
Now g.c.d. (f,(x), p,(x)"1) = 1
So 3 ¢,(x), r;(x) € F[x] such that,
[0 4,0+ py(a)1 ry(x) = 1
= I=q,(T) () + r,(T) p,(1)"
=>x =0
Similarly x, =0V i
This proves (7).
Let x, € W,=Ker p(T)"
Then  p/TYi (x) =0
= Tp(TYi (x) =0
= p(TY (T(x)) =0
= Tx) e W.Vi
= W.is T-invariant V i
which proves (if).
Again,since  p(T)i(x) =0 Vx eW,
(1Y =0on W,
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= p{T)" =0 as Trestricted to W, is T.
= q(x) [p ()" = q(x) =p ), s, <,
Let [ @) = f{x)p )

andletv e Vthenv =w, + .. +w, w e W,
S(D)©) =f(T) p(T)w,
(D) w; = 0 Vj#i
S(Dv) =f(DgDw;

=) q(T) w,
=0asq,(T)=0

= (D=0

px)|fix)

=px)1| px)

= 1,55,

r=S,
So, q,(x)= p,(x)'i
which proves (iii).

Corollary: If 7'is a linear operator on a finite dimensional space V over F'and
minimal polynomial p(x) of T is a product of distinct linear factors, then 7'is
diagonalisable.

Proof: Let p(x) = (x—c,) ... (x —c,), where ¢, are distinct roots of p(x) in F.
By primary decomposition theorem

V=W, ®..® W, where each W. = Null space of (T - c/])
veW. = (T-c¢lv=0
= T(v) = cy

. every non-zero vector in W, is an eigen vector of T corresponding to
eigen value ¢, of 7. If B, is a basis of W, then {B,, ..., B} is abasis of V. . consists
of eigen vectors of 7= {B,, ..., B,} = B consists of eigen vectors of T"and is
a basis of V= T'is a diagonalisable.

Example 2.16: Let T and S be linear operators on V(F), each having all its
eigen values in F such that, TS = ST.

Show that they have a common eigen vector.

Solution: Let cbe aneigen value of T. Let W = {ve V ‘ T(v)=cv} be the eigen
space with respect to eigen value c.

Let vew.
Then T(S(v)) = (IS)(v)
= (ST)(v)



= S(T(v))
= S(cv)
=cS(v)
DSWeWNveW =S W > W.
. §'is a linear operator on J¥..
Let o € F be an eigen value of S as linear operator on 7.
- 3w e W_such that,
Sw)y=ow, w=0
we W = T(w)=cw
.. wis a common eigen vector of 7’and S.
Example 2.17: Let N be 2 x 2 complex matrix such that N* = 0. Prove that

) 0 0
either N =0 or N is similar over C to L O]

Solution: Let 7: V— V be a linear operator such that,
[T]B: N, B = {v,, v,} is a basis of V.
Now, 0=N?>=N.N= NS [TZ]B
= T2=0.
Suppose N # 0, i.e., T # 0.
Let A be an eigen value of 7.
Then there exists 0 # v € V' such that,

T(v) = kv
= T%(v) = MT(v)) = Ay
= 0 =A%
= AMP=0asv=0
= A=0

= 0is the only eigen value of 7.
Let W be the eigen space of T with respect to eigen value 0.
Then W= {xe V|T(x)=0} =Ker T
Since 0xve W, W={0}
So,dim W =1 or 2.
Ifdim W =2, thendim W =dim V'

o

= W=V = Ker T=V = T=0, which is not true.

o

Therefore, dim W = 1.
Let W=<w,>

S
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Canonical Forms There exists a subspace W' of V'such that,
V=weWw
Sincedim V' =2,dim W =1, dim W' = 1.
NOTES Let W' =< w, >

Then {w,, w,} is a basis of V.
Let T(w)) = a,w, + a,w,
T(w,)) = 0w, + 0w, asw, € Ker T.
But T’=0=0=T"(w)
= a,T(w)) + a,T(w,)
=a,T(w))
= oy(ayw; + aw,)
= ajw; +a,onw,
= o, =0(a,#0aso,=0 = w eKerT
>w e nWw={0}
= w, = 0 which is not true).
So, T(w)) = a,w,.
Now {oCZ1 w,, w,}= B’ is also a basis of V'

-1 _
as ao , w, + bwz— 0

=ao3=0,b=0
=a=0=bh.
= {0(21 wy, w,p =B isa L.l set
= B’ is a basis of Vas dim V=2
Therefore, T (o, w) =a, T (w))
= o) 0w, = W,

_ el
—0a2w1+ lw2

= Py {(1) 8}
Also [T][3 =N

. 00
= N is similar to L 0} over C.

Example 2.18: Show that if A is a 2 x 2 matrix over C then A is similar to

. 0 0
a matrix of the type {a } or {a } over C.
0 b 1 a
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Solution: Let f(x) be the characteristic polynomial of A. If the roots of f(x) are
distinct, then A4 is diagonalisable.

So, A=P'BP,B= {g 2} a.beC.

.. 0
= A is similar over C to B b}

If the roots of f(x) are same, let f(x) = (x — a)?
Then 0 =/(4) = (4 - al)’
Let N=4-al

By above problem either N =0 or N is similar over C to ﬁ g} .

IFN=0, then A =of {O‘ O}
0 o

. 0
= A4 is similar over C to {(g }

If Voot

Then A—aI=Q1_(1) gQ

- et
R IR
o[t 7

L. ) 0
= A is similar over C to the matrix of the type ﬁ } .
o

Example 2.19: Give an example to show that AB is diagonalisable and BA
is not diagonalisable, where A and B are n X n matrices over F.

Solution: Let A= {0 1} B= F 0}
0 0 0 0

Then ="

_O O_

So, AB is a diagonal matrix. 4B is a diagonalisable matrix.

0 1]

Now BA = 0 0 and (BA)* =0
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= minimal polynomial of BA is x°.
So, the minimal polynomial of B4 is not product of distinct linear factors.
.. B4 isnot diagonalisable.

Example 2.20: [ T is an idempotent linear operator (i.e., T> = T) then show
that 0 or 1 are only eigen values of T and T is diagonalisable.

Solution: Let f)=x@x-1)=x>—x

then f(H=T*-T=0

If p(x) is the minimal polynomial of 7, then p(x) | f(x).
px)=xorx—1orx(x—1)

The eigen values of T are the roots of the minimal polynomial of 7.

.. 0 or 1 are only eigen values of 7.

In each case p(x) =x or x — 1 or x(x — 1),

p(x) is product of distinct linear factors. So, 7'is diagonalisable.

Example 2.21: Give an example of a linear operator T having eigen values
0 and 1 but T is not idempotent.

Solution: Let 7' be a linear operator on V' where dim V= 3 such that matrix of
T with respect to a basis of V'is

A=

O =

1
1
1

(=Rl -]

Then eigen values of 4 (or 7) are entries on the diagonal as A is a triangular
matrix.

.. eigen values of T'are 0, 1, 1.

01 170 1 1
But A*=10 1 1]]0 1 1
0 0 1|0 01
(0 1 2
=10 1 2|=#4
0 0 1

.. A isnot idempotent.

So, T'is not idempotent.

2.6 JORDAN BLOCKS AND JORDAN FORMS

A Jordan block is a matrix with zeros everywhere except along the diagonal and
superdiagonal, with each element of the diagonal consisting of a single number A,
and each element of the superdiagonal consisting ofa 1. For example,



A1 0 0 0
0 A 1 0 0
0 0 2 0 0
0 0 0 1 0
. |
0 0 0 - 0 A

The degenerate case of a 1 X1 matrix is considered a Jordan block even
though it lacks a superdiagonal to be filled with 1s. Any Jordan block is thus
specified by its dimension  and its eigenvalue A and is indicated as J, ,.

For an arbitrary square matrix 4 over an algebraically closed field & there
always exists a square non-singular matrix C over k such that C'4C is a Jordan
matrix or A is similar over & to a Jordan matrix. This assertion is valid under
weaker restrictions on k. For a matrix A4 to be similar to a Jordan matrix it is
necessary and sufficient that £ contains all roots of the minimum polynomial of 4.
The matrix C'4C mentioned above is called a Jordan form or Jordan normal
form of the matrix 4.

The Jordan form of a matrix is determined only up to the order of the Jordan
blocks. More exactly, two Jordan matrices are similar over & if and only if they
consist of the same Jordan blocks and differ only in the distribution of the blocks
along the main diagonal. The number C (1) of Jordan blocks of order m with
eigen value ) ina Jordan form of a matrix 4 is given by the formula

C (W) =rk(A=NEy~ =2 rk (A= N EY"+ rk (A= E) ™,

where E is the unit matrix of the same order n as 4, tk B is the rank of the
matrix B, and rk (4 —\ E)°is n, by definition.

Theorem 2.17: There exists a basis of V' such that the matrix of 7'is in block-
diagonal form with Jordan blocks. If a is an eigenvalue of T, # the sequence (7,
Lot ,....) With £, = dim ker(T—a) and (s, 5 ,...., 5 ,....) ==R(L — 1)*(2),

1
where R and L are the left and right-shift operators on R*, then s. is the number of
Jordan blocks of size i with eigenvalue a.

As an illustration, let 7'be the linear operator on F,° whose matrix with
respect the standard basis of F,°is

O = = = OO
[ s J o S SR SR )

S O O O o =
S O O O = o=
S O O = = =
S O = O = =
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We have,

01 1 1 0 O] 0 01 1 0 1]
001 1 01 000 0O0 O
000 0 1 1 , {0000 00

A-1= (A4-1)7 = . (A-1)’ =0.

000 0 1 1 000 0O0 O
000 0O0O0 000 0O0 O
00 0 0 0 0] 00 0 00 0

It follows that (7— 1)*=0and 1 is the only eigenvalue of 7. We also have
rank(7 — 1) = 3, rank(T — 1)* = 1, rank(7 — 1)’ = 0 so that 7, = dim ker(7— 1)
=3, t,=dimker(7T—1)*=5, t,=dim ker(T— 1)’ = 6. Hence  is the sequence
0,3,5,6,6,...,6,..).

Now (L-1)(#=(3,2,1,0,0,...,0,..), (L-1)*($)=(-1,-1,-1,0,0, ...,
0,..)and so —R(L-1)(t)=(0, 1,1, 1,0, 0, ..., 0, ...) which, according to the
above Theorem , implies that there is one Jordan block of'size 1, one of size 2 and
one of'size 3. Hence there is a basis of F*,° such that the matrix of 7' with respect to
this basis is

1 00 00O
011000
001 00O
000110
0 00 011
0 00 0 01

If Wis a T-invariant subspace of Vand f=(f,, £, ..., f,) is a basis of ¥, the
matrix (with respect to this basis) of the restriction of 7'to W is the Jordan matrix
J (@) ff T(f)) = af,, T(f)) =aof, + 1, .... T(f)) =af, + . ... T(f)=af + [ _ or,
equivalently, (T - a)(f)) =0, (T —a)(f)) = f,, ... (T—=a)f) =f , ... (T—a)
() =/

For such a basis we have f, = (T—a)"(f)) withf e Ker((T-a)")-Ker((T-
a)" ). Conversely, if ge Ker((T — a)") — Ker((T — a)"') the sequence
g (T—-a)g), (T-a)¥(g), ...., (T—a)"'(g) is a basis for a T-invariant subspace of
V'such that the matrix of this mapping with respect to the basis f, = (T—a)"'(g),
f,= (T —a)y *(g), .... (T—a)(g), g is the Jordan matrix Jn(a). The vector g is
called a cyclic vector of cycle length n for the eigenvalue a. Each Jordan block
corresponds to a cyclic vector. The subspace generated by a cyclic vector g and
its images under the powers of 7'is called the cyclic subspace generated by g.

We now illustrate how to find cyclic vectors that give decomposition into a
direct sum of cyclic subspaces in the case of the above illustration. We first find
bases for ker(T— 1), ker(T — 1)*, ker(T - 1)°.



Ker(T—1)=Span(e, e, +e, e, e, +e +e),

Ker((T—-1)")=Span(e, e, e, e, +e, e, +e,),

Ker((T—-1)’) =Span(e,, e,, e, e, e, e).

The next step is to complete the basis of Ker(T— 1)*to a basis of (7T—1)°.
We find that g, = e, completes the given basis of Ker((7T-1)) to a basis of Ker((7-
1)’). Now (T—1)(e,) = e,*e,+e, is in the kernel of (T— 1)* but not in the kernel of
T—1.Thuse, e, +e, e, te,te +e,e +e, +e,islinearly independent and
we can complete this sequence to a basis of Ker((7—1)*) with the vector g, =e..
Now (T—1)(g,) = e (T - 1)(g,) = e, * e, are in the kernel of 7— 1 and are
linearly independent. We complete these two vectors to a basis of ker(7—1) by
means of the vector

g,=e, T e +e +e.Now, the sequence of vectors

g =e, (T-1(g)=e,te+e, (T-1)g)=e,

g =e, (I'-1)g)=e te,g,=e te te +e

is linearly independent and the basis

f=8 [,=(T-1)g,). f;=8, /,=(T—-1)g) f,=(T-1)g) f, =g,

yields the above Jordan canonical form for 7. If v, v,, ..., v e Vand Wis

a subspace of V', we say that the sequence v, v,, ..., v _is linearly independent
mod Wif
av, tav,t...tayv e W=a =a,=..=a =0

This is equivalent to saying that the images of the vectors v, in the quotient
space V=W form a linearly independent sequence. Similarly, we say thatv , v,,
..., v_generate 'mod Wifeveryv € V canbe written inthe formv=a v +a,v,
+....+ayv withw e W.This is equivalent to saying that the images of the
vectors v.in V=W span V=W.

Lemma 7: If Ker((T—a)) = Ker((T— a)™") then Ker((T—a)*') = Ker((T—a)™*?).

Proof: Letv € Ker((T—a)*?). Then (T—a)(v) € Ker((T—a)*")= Ker((T—a)) which
implies that (7—a)*"'(v)=(T—a)(T—a)(v)=0 and hence that v € Ker((T—a)"").

This lemma shows that, for an eigenvalue a of 7, there is an integer p > 0
such that

where ¢, = dim(7 - a)'.

Lemma 8: If i >2 and v € Ker((T— a)’) — Ker((T— a)™") then
(T-a)v) € Ker((T—a)™") — ker((T — a)?).

Proof: If v € Ker((T— a)’) and (T— a)(v) € Ker((T —a)"?) then
(T-ay'(v)=(T-ay(T-a)(v)=0
which implies that v € Ker((T—a)™).
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This Lemma is simply the assertion that the linear mapping

S, : Ker((T — ay)=Ker((T — a)"") = Ker((T — a)"")=Ker((T — a)"?)

definedby S, (v+Ker((T—a)™")=(T—a)(v)+Ker((T—a)™")is injective.
This yields the following result.
Lemma 9:Ifi>2 and v, v,, ..., v € Ker(T-a)i is linearly independent mod
Ker((T-a)™") then

(T-a)v), (T-a)v,), ..., (T—a)v,) € Ker((T - a)™)

is a linearly independent sequence mod Ker((T—a)?).

Iftr=(,r,..r,..)= (L~ 1)) then

r,=dim(Ker(T—-a),, ) — dim(Ker(T —a)) = dim(Ker((T —a)*")=Ker((T
—a))).
Lemma 7 shows that 7 is a decreasing sequence of natural numbers which are zero
fori>p,i.e.,

P2 P 2Py 2 L2 S ST == 0.

The above Theorem states that the number of Jordan blocks of size i > 1 is

—~(r, —r~1) = r~1 —r, = dim(Ker((T-a))=Ker((T-a)"")—dim(Ker((T—
a)")=Ker((T-a)))

Following is the proof of the above stated Theorem:

Proof: Without loss of generality, we can assume that the minimal polynomial of 7is
(A-a)"' (A-a,)" ..(A=a,)" =0

By the primary decomposition theorem, Vis a direct sum of the subspaces
V(a)=Ker((T—a)i)with {a, ..., a } beingthe setof eigenvalues of 7. The
integer k. is the smallest integer > 0 such that, Ker (7—a,)") =Ker (T—a,)""")

andso V(a,)= U ker(T —a,)’,

=0
This subspace is called the generalized eigenspace for the eigenvalue a..
Let a be any eigenvalue of 7. If z, = dim ker(T— a)', then we have
O=t,<t,<...<t=t,

forauniquep>1.

Given below is an algorithm for decomposing ¥ (a) into a direct sum of

cyclic Subspaces:
Step 1: Find a basis for Ker((T—ay) mod Ker((T—ay ), 1.c., find a sequence
of vectors in Ker((T — ay’) which complete some basis of ker
(T—ay ' to a basis of Ker((T — a)).
Step 2: If p = 1 stop, if p > 1 take the image, under 7 — a, of the basis of
Ker((T—ay) mod Ker((T—ay ") obtained in the previous step and
complete it to a basis of Ker((T—a)’') mod Ker((T—a)’ ).



Step 3: Repeat Step 2 with p replaced by p— 1.

The vectors obtained in this way are a basis of V' (a) and the vectors which,
for each i> 1 complete to a basis of Ker((T—a)’) mod Ker((T—a)") the image
of'the basis of Ker((T—a)*") mod Ker((T—a)) obtained in the previous step, are
cyclic vectors of cycle length i. The number of these cyclic vectors is dim(ker((T
—a))=Ker((T— a) ")) — dim(Ker((T — a)"*")=Ker((T — a))).

Moreover, Vis the direct sum of the cyclic subspaces generated by the
cyclic vectors so obtained.

Corollary 1: Let V'be a finite-dimensional vector space over a field K and let 7
be a linear operator on ¥ whose minimal polynomial is a product of linear factors.
If dim(¥") = n, there are T-invariant subspaces

{0y=V cV cV, c.... cV =Vwithdim(V)=i.

Corollary 2: If 4 is an n X n matrix over a field K whose minimal polynomial is a
product of linear factors then there is an invertible matrix P € K" such that
P'APis upper triangular.

Corollary 3: (Cayley-Hamilton) If A (1) is the characteristic polynomial of the
matrix 4 € C""then A (4)=0.

Corollary 3 is true for a matrix 4 over any field K since it is possible to find
afield F, containing K as a subfield, such that the minimal polynomial of 4 is a
product of linear factors A —c with ¢ € F.

Let (A —a)"(A—a,)” ...(A—x,)" be the characteristic polynomial of
alinear operator 7 on a finite-dimensional vector space V'witha , a., ..., a,distinct.
The integer n_ is called the algebraic multiplicity of the eigenvalue a.. n_is the
dimension of the generalized eigenspace V' (a) for the eigenvalue a.. The dimension
of the eigenspace Ker((T—a,)) is called the geometric multiplicity of the eigenvalue
a. Thus T'is diagonalizable if and only if the geometric multiplicity of each eigenvalue
is equal to its algebraic multiplicity.

Example 2.22: I[f 4 € C°*° with characteristic polynomial A(2) = (1 — 1)}
(A — 2)* and minimal polynomial m(A) = (A — 1)(A — 2)?, what is the Jordan
form for A?

Solution: The generalized eigenspace for the eigenvalue 2 has dimension 3 and
there is a cyclic vector of cycle length 2. It follows that there is one Jordan block
of'size 1 and one of size 2. On the other hand the cyclic vectors for the eigenvalue
1 have cycle length 1 and so there must be 2 Jordan blocks of size 1 for the
eigenvalue 1 since the generalized eigenspace for this eigenvalue has dimension 2.
The Jordan form (up to order of the blocks) is therefore

S O O O N
S O O N O
S O N = O
S = O O O
—_ o O O O
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Example 2.23: Find the possible Jordan normal forms for a complex 6 x 6
matrix with minimal polynomial 2. Show that two such matrices having the
same nullity are similar.

Solution: The only eigenvalue is 0 and there must be one Jordan block of size 3.
It follows that there must be either (i) 2 Jordan blocks of size 3 or (ii) 1 of size 3,
one of size 2 and one of size 1 or (iii) one of size 3 and 3 of size 1. The corresponding
possible Jordan forms for A4 are:

01 00O0O 01 0000 01 0000

001 00O 001000 001 000

00 0O0O0O 00 0O0O0O0] 00 O0O0O0O0
@) (i) un)

00 0O0T1FPO0 000O0T10P0 00 0O0O0O0

00 0O0O0°1 00 0O0O0O 00O0O0O0O©O

00 0O0O0O 00 0O0O0O 10 00 000

Since the nullity of 4 is respectively 2, 3, 4 in cases (i), (ii), (iii), we get that
two such matrices with the same nullity are similar.

Example 2.24: If N is an n x n matrix withn 22, N' = 0, N*! =0, show that
there is no complex n x n matrix A with A> = N.

Solution: Suppose that 4= N for some 4. Then 42" = N"=0 and so the characteristic
polynomial of 4 must be A”. Hence 4" = 0 which implies N""'= 4?2 = since
2n—-22>n.

This contradicts the assumption that N*-!' = 0.

Check Your Progress

5. When is a linear operator on a finite dimensional space V over F'
diagonalizable?

6. Whatis Jordan block?

2.7 CYCLIC MODULES

A group we noticed is a system with a non-empty set and a binary composition.
One can of course talk about non-empty sets with two binary compositions also,
the set of integers under usual addition and multiplication being an example. Though
this set forms a group under addition and not under multiplication, it does have
certain specific properties satisfied with respect to multiplication as well. We single
out some of these and generalize the concept in the form of a ring. We start with
the formal definition.

Definition 1: A non-empty set R, together with two binary compositions + and
. 1s said to form a Ring if the following axioms are satisfied:

@a+b+c)y=(a+b)+c foralla,b,ceR
@ya+b=b+a fora,b eR



(iii) 3 some element O (called zero) in R, such that,a +0=0+a=a forall
a€Rr

(iv) For each a € R, 3 an element (— a) € R, such that, a + (—a) =(—a) + a
=0
Wa.(b.c)y=(.b).c foralla,b,c eR
vi)a.(b+c)=a.b+a.c
(b+c)y.a=b.a+tc.a foralla,b,ceR

Notes: 1. Since we say that + and . are binary compositions on R, it is understood
that the closure properties with respect to these hold in R. In other words,
foralla,b € R,a+banda. b areuniquein R.

2. One can use any other symbol instead of + and ., but for obvious reasons,
we use these two symbols (the properties look so natural with these). In
fact, in future, the statement that R is a ring would mean that R has two
binary compositions + and . defined on it and satisfies the above axioms.

3. Axiom (v) is named associativity with respect to . and axiom (vi) is referred
to as distributivity (left and right) with respect to . and +.

4. Axioms (i) to (iv) could be restated by simply saying that <R, +> forms
an abelian group.

5. Since 0 in axiom (iii) is identity with respect to +, it is clear that this element
1S unique (see groups).

Definitions 2: A ring R is called a commutative ring if ab = ba for all a, b €
R. Again if 3 an element e € R such that,

ae=ea=a forallaeRr

we say, R is a ring with unity. Unity is generally denoted by 1. (It is also
called unit element or multiplicative identity).

It would be easy to see that if unity exists in a ring then it must be unique.

Note: We recall that in a group by ¢ we meant a . @ where “.” was the binary
composition of the group. We continue with the same notation in rings as well. In
fact, we also introduce similar notation for addition, and shall write na to mean
a+a+ ..+ a(ntimes), n being an integer.

Case 8: Sets of real numbers, rational numbers, integers form rings with respect
to usual addition and multiplication. These are all commutative rings with unity.

Case 9: Set E of all even integers forms a commutative ring, without unity (under
usual addition and multiplication).

Case 10: (a) Let M be the set of all 2 x 2 matrices over integers under matrix
addition and matrix multiplication. It is easy to see that M forms a ring with unity

1 0 . .
{0 J, but is not commutative.
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(b) Let M be set of all matrices of the type [g Z} over integers under matrix
addition and multiplication. Then M forms a non commutative ring without unity.
Case 11: The set Z, = {0, 1, 2, 3, 4, 5, 6} forms a ring under addition and
multiplication modulo 7. (In fact, we could take » in place of 7).

Case 12: Let F'be the set of all continuous functions /: R — R, where R = set
of real numbers. Then F forms a ring under addition and multiplication defined by:

for any f,geF
(f + gx=f(x) forallx e R
(f @x= f(x)g(x) forallx e R
zero of this ring is the mapping O : R — R, such that,
O(x)=0forallx e R

Also additive inverse of any f € F'is the function (—f) : R - R such that,
—/x=—-f(x)

In fact, /" would have unity also, namely the function i : R — R defined
by i(x) =1 for all x € R.

Note: Although the same notation fg has been used for product here it should not
be mixed up with fog defined earlier.

Case 13: Let Z be the set of integers, then Z[i] = {a + ib | a, b € Z} forms a
ring under usual addition and multiplication of complex numbers. a + ib where a,
b € Z is called a Gaussian integer and Z[{] is called the ring of Guassian integers.

We can similarly get Z, [] the ring of Gaussian integers modulo n. For
mstance,

Zjil]={a+ibla, b e Z,=10,1,2} mod 3}
=1{0,1,2,i, 1 +i,2+14,2i, 1 +2i,2+2i}

Case 14: Let X be a non-empty set. Then . /(X) the power set of X (i.e., set of
all subsets of X) forms a ring under +and - defined by

A+B=(AUB)—(ANB)

A.B=ANB

In fact, this is a commutative ring with unity and also satisfies the property

A*=Aforall 4 € .7(X).
Case 15: Let M =set of all 2 x 2 matrices over members from the ring of integers
modulo 2. It would be a finite non-commutative ring. M would have

a

. . b .
2% =16 members as each element a, b, ¢, d in matrix { d} can be chosen in

[

2 ways. Compositions in M are given by

ab+xy:a€ir)xb€l-)y
c d z u c®z dOu



where @ denotes addition modulo 2 and Canonical Forms

a bilx y|_ |a®x®b®z a®y®b®u
c d cxBd®z c®yDdQu

® being multiplication modulo 2. NOTES

zZ U

That M is non commutative follows as E H{O 0} = F 1}

1 1] 11
ut {0 0}{1 1}{0 0}
1 1][1 1] [0 0

Case 16: Let R = {0, a, b, c}. Define + and . on R by

+ 0 a b ¢ . 0 a b c
0 0 a b c 0O 0 0 0 O
a a 0 ¢ b a 0 a b c
b b ¢ 0 a b 0 a b c
c ¢ b a O c 0 O 0 O

Then one can check that R forms a non commutative ring without unity. In
fact it is an example of the smallest non commutative ring.

Theorem 2.18: In a ring R, the following results hold
@Ha.0=0.a=0 forallaeR
(@) a(=b) = (—a)b=—ab forall a,b € R
(@#ii) (—a) (~b)=ab. ¥ a, b 1 R
(iv)ya(b—c)=ab—ac.V a,b,c € R
Proof: (i) a.0=a.(0+0)
= a.0=a.0+a.0
=a.0+0=a.0+a.0
= 0=a.0
using cancellation w.r.t + inthe group <R, +>.
(i) a.0=0
= a(-b+b)=0
= a(=b)+ab=0
= a(—b) =—(ab)
similally, (—a) b =— ab.
@) (—a)(=b) =—[a(=b)]=-[-ab]=ab
() a-c) =a(d+ (o)
=ab+a(—c)
=ab — ac.
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Notes: 1. If R is a ring with unity and 1 =0, then since foranya € R, a=a.l =
a.0 =0, we find R = {0} which is called the trivial ring. We generally
exclude this case and thus whenever, we say R is a ring with unity, it will
be understood that 1 # 0 in R.

2. If n, m are integers and a, b elements of a ring, then it is easy to see that
n(a + b) = na + nb
(n +m)a =na + ma
(nm)a = n(ma)
am a" =a" "
( am)n = g™
We are so much used to the property that whenever ab = 0 then either
a =0 or b=0 that it may need more than a bit of convincing that the result may
not always be true. Indeed in the ring of integers (or reals or rationals) this property
holds. Butif we consider the ring of 2 x 2 matrices over integers, we notice, we
can have two non zero elements 4, B s.t, AB=0, but 4 # 0 B # 0. In fact, take

0
this notion through

Definition 1: Let R be aring. An element 0 # a € R is called a zero-divisor,
if 3 an element 0 # b € R such that, ab =0 or ba = 0.

A:{g 1} andBZB 8} thenA;tO,B;tO.ButAB:{g g}.Weformalise

Definition 2: A commutative ring R is called an Integral domain if ab=01in R
= either a =0 or b= 0. In other words, a commutative ring R is called an integral
domain if R has no zero divisors.

An obvious example of an integral domain is < Z, +, - > the ring of integers
whereas the ring of matrices, talked about above is an example of a ring which
is not an integral domain.

Note: Some authors do not insist upon the condition of commutativity as a part
of the definition of an integral domain. One can have non commutative rings without
zero divisors.

The following theorem gives us a necessary and sufficient condition for a
commutative ring to be an integral domain.

Theorem 2.19: A commutative ring R is an integral domain iff for all a, b,
ceR@=#0)

ab=ac = b=c.

Proof: Let R be an integral domain

Let ab=ac (a+0)
Then ab—ac=0
= alb-c)=0



= a=0or b—c=0

Since a#0,wegeth=c.

Conversely, let the given condition hold.

Let a, b € R be any elements with a # 0.

Suppose ab =0

then ab =a.0

= b= 0using given condition

Hence ab =0 = b =0 whenever a # 0 or that R is an integral domain.
Note: Aring R is said to satisfy left cancellation law if forall a, b,c € R,a+ 0

ab=ac = b=c.

Similarly we can talk of right cancellation law. It might, of course, be
noted that cancellation is of only non zero elements.

Definition 1: An element a in a ring R with unity, is called invertible (or a unir)
with respect to multiplication if 3 some b € R such thatab =1 = ba.

Notice, unit and unit element (unity) are different concepts and should not
be confused with each other.

Definition 2: A ring R with unity is called a Division ring or a skew field if non
zero elements of R form a group with respect to multiplication.

In other words, aring R with unity is a Division ring if non zero elements
of R have multiplicative inverse.

Definition 3: A commutative division ring is called a field.

Real numbers form a field, whereas integers do not, under usual addition
and multiplication. Since a division ring (field) forms groups with respect to two
binary compositions, it must contain two identity elements 0 and 1 (with respect
to addition and multiplication) and thus a division ring (field) has at least two
elements.

Case 17: A division ring which is not a field. Let M be the set of all 2 x 2 matrices
b — .
of the type { c% _} where a, b are complex numbers and a,b are their
— a
. .. . _ . . . . . 1 0
conjugates, i.e., ifa=x+iy then @ =x—iy. Then M is a ring with unity {0 1}

under matrix addition and matrix multiplication.

Any non zero element of M will be { Xhwoous W}

—(u—iv) x-iy

where x, y, u, v are not all zero.
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x—1iy u+iv

One can check that the matrix | ¥ , k'
u—iv  x+iy
k k

where k= x? + y* + 1> + v*, will be multiplicative inverse of the above
non zero matrix, showing that M is a division ring. But M will not be a field as
it is not commutative as

R
o L1

Case 18: Consider
D={a+bi+c+dk|a, b,c,de R} with i* =j*>=k* =—1, then D
forms a ring under multiplication.
Sincei=0+1i+ 0j + 0k, j =0+ 0i + 1 + Ok gives ij = k, ji = —k,
we find D is not commutative and hence is not a field. D has unity 1 =1+ 0i +
07 + Ok.
If a + bi + ¢j + dk be any non zero element of D (i.e., at least one of a,
. . . (a—bi—cj—dk) _
b, ¢, d is non zero) then (a + bi + ¢j + dk)—+2——+=
) ( / ) a?+b* P +d?
Hence D is a division ring but not a field.
Theorem 2.20: 4 field is an integral domain.
Proof: Let<R,+,.>be afield, then R is a commutative ring.

Let ab =0 in R. We want to show either @ =0 or » = 0. Suppose a # 0,
then ¢! exists (definition of field)

thus ab =0
= a'(@)=da'0
= b=0.

which shows that R is an integral domain.
A ‘Partial Converse’ of the above result also holds.
Theorem 2.21: 4 non-zero finite integral domain is a field.
Proof: Let R be anon zero finite integral domain.
Let R’ be the subset of R containing non zero elements of R.
Since associativity holds in R, it will hold in R'. Thus R’ is a finite semi group.

Again cancellation laws hold in R (for non zero elements) and therefore,
these holdin R'.



Hence R’ is a finite semi group with respect to multiplication in which
cancellation laws hold.

.. <R',.> forms a group.

In other words <R, +, - >is a field (it being commutative as it is an integral
domain).

Aliter: Let R = {a,, a,, ...., a, } be a finite non zero integral domain. Let

0 # a € R be any element then aa, aa,, ....., aa, areall in R and if aa, = aa;
for some i #, then by cancellation we geta, = a, which is not true. Hence aa,,
aa,, ...., aa, are distinct members of R.

Since a € R, a = aa, for some i
Let x € R be any element, then x = aa; for some j
Thus ax = (aa)x = a(ayx)
ie., X =ax
Hence using commutativity we find
X=ax = xa,
or that a, is unity of R. Leta, = 1
Thus for 1 € R, since 1 = aa, for some k

We find a, is multiplicative inverse of a. Hence any non zero element of R
has multiplicative inverse or that R is a field.

Case 19: An infinite integral domain which is not a field is the ring of integers.
Definition: A ring R is called a Boolean ring if x> = x for all x € R.
Case 20: Thering {0, 1} under addition and multiplication mod 2 forms a Boolean
ring.
Example 2.25: Show that a Boolean ring is commutative.
Solution: Let a, b € R be any elements
Then a + b € R(closure)
By given condition
(a+bl=a+b
a?+b*+ab+ba=a+b

=
=atbtab+ba=a+b

= ab+ba=0

= ab =—ba (1)
= a(ab) = a(-ba)

= a’b = — aba

= ab =—aba ..(2)
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Again Equation (1) gives,
(ab)a = (-ba)a
= aba = — ba* = —ba ..(3)
Equations (2) and (3) give,
ab = ba (= — aba)
or that R is commutative.

Example 2.26: (a) Show that a non zero element a in Z, is a unit iff a and
n are relatively prime.

(b) If a is not a unit then it is a zero divisor.
Solution: (a) Z, = {0, 1, 2, ...... ,n—1} modn
Leta € Z, be a unit, then 3 b € Z, such that,

a®b=1
1.e., when ab is divided by n, remainder is 1, in other words,
ab=ng+ 1

or ab—ng =1
= aandnarerelatively prime.
Conversely, let (a, n) = 1, then 3 integers u, v such that,
au +nv =1
= au=n(-v)+1
Suppose, u=ng+r, 0<r<n, relZl,
Then au=anqg +ar =n(-v)+1
= ar =n(v-aq)+1, rel,
1e., a®r=1, relZ,
1e., ais a unit.
(b) Let a be not a unit and suppose g.c.d(a, n) =d > 1
Since d|a, a = dk for some k. Also d |n = n = dt

:M=&3=M=Mmm

1.€., a is a zero divisor.

Example 2.27: Show that Zp =1{0, 1, 2, ....., p =1} modulo p is a field iff
p is a prime.
Solution: Let Zp be a field. Suppose p is not a prime, then 3 a, b, such that
p=ab,1<a,b<p

= a ® b =0 where a, b are non zero = Zp has zero divisors.

ie. Z, is not an integral domain, a contradiction as z, being a field is an
integral domain.



Hence p is prime.

Conversely, let p be a prime. We need show that Zp is an integral domain
(it being finite will then be a field).

Let a®b=0 a,beZp
Then  abisamultiple of p
= plab
= plaorp|b (pbeing prime)
= a=0or b=0 (Notice a, b eZp:>a,b<p)
= Zp is an integral domain and hence a field.

Example 2.28: Ifin a ring R, with unity, (xy)> =x** for all x, y € R then
show that R is commutative.

Solution: Let x, y € R be any elements
then y+leR asleR
By given condition
(v + DY =2 (v +1)?
= +xP=x*@+1)7
= () + 2 +Fxox+xay=x30%+1+2y)
= x2y2 + X2+ Xyx + xxy = x2y2 + X%+ 2x2y
= xyx = x°y (1)

Since Equation (1) holds for all x, y in R, it holds for x + 1, y also. Thus
replacing x by x + 1, we get

(@ + 1) ylx +1) = (x +1)%y
= (y+y) (c+1) = (@ +1 +2x)y
= xyx+xy+yx+y=x2y+y+2xy
= yx=xy using Equation (1)
Hence R is commutative.

Example 2.29: Show that the ring R of real valued continuous functions on
[0, 1] has zero divisors.

Solution: Consider the functions fand g defined on [0, 1] by

1 1
= ——x, <x<—
f(x) 5 O_x_2

=0, lesl
2

and g(x) =0, Ost%
11

= x-—, —<x<I1
27 2
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then f'and g are continuous functions and f# 0, g # 0
whereas g £(x) = g(0)f(x) =0. g_ ] if0<x<
= [x—l] .0=0 iflesl
2 2

e, gf(x)=0forall x
ie., gf=0butf=0,g=0.

Definition: A non-empty subset S of a ring R is said to be a subring of R if S
forms a ring under the binary compositions of R.

The ring <Z, +, - > of integers is a subring of the ring <R, +, - > of real
numbers.

If R is aring then {0} and R are always subrings of R, called #7ivial subrings
of R.

It is obvious that a subring of an integral domain will be an integral domain.

In practice it would be difficult and lengthy to check all axioms in the definition
of aring to find out whether a subset is a subring or not. The following theorem
would make the job rather easy.

Theorem 2.22: A non-empty subset S of a ring R is a subring of R iff a, b
eS=ab,a-bes.

Proof: Let Sbe a subring of R
then a, b €S = ab e S (closure)
a,beS=>a-beS
as < §, +>is a subgroup of <R, + >.

Conversely, since a, b € S= a—b € §, we find < §, + > forms a
subgroup of <R, +>. Again for any a, b € S, since S < R

a,beR
= at+b=b+a
and so we find S is abelian.

By asimilar argument, we find that multiplicative associativity and distributivity
hold in S.

In other words, S satisfies all the axioms in the definition of a ring.
Hence S is a subring of R.

Definition: A non-empty subset S of a field F'is called a subfield, if S forms a
field under the operations in £ Similarly, we can define a subdivision ring of a
division ring.

The simple modules over aring R are the (left or right) modules over R,
which have no non zero proper submodules.



Module

A left R-module M over the ring R consists of an abelian group (M, +) and an
operation R x M — M called scalar multiplication, such that forall 7, s € Rand x,
y € M, we have:

L.rix+y)=rx+ry

2. (r+s)x=rx+sx

3. (rs)x = r(sx)

4. 1 x=x,if R has multiplicative identity 1 ..
A right R-module is defined in the similar way but the ring acts on the right, i.e.,
we have a scalar multiplication of the form M x R — M, and the axioms are

written with scalars 7 and s on the right of x and y. If R is commutative, then left R-
modules are the same as right R-modules and are called R-modules.

Submodule

Suppose M is a left R-module and N is a subgroup of M. Then N is a submodule
or R-submodule if, for any n € N and any » € R, the productrn € Nornr e N
in the case of right R-module.

Quotient Module

Given amodule 4 over aring R, and a submodule B of 4, the quotient space A/B
is defined by the equivalence relation

a~bifandonlyifb—a € B,

for any a and b € A4. The elements of A/B are the equivalence classes
[al={a+b:binB}.

The addition operation on A/B is defined for two equivalence classes as the
equivalence class of the sum of two representatives from these classes as,

[a]l+[b]=[a+b] for a,b e Aandr € R

and the multiplication by elements of R as,

r-la]=[r-a],foralla,b € Aandr € R

In this way, A/B becomes itselfa module over R, called the quotient module.

2.7.1 Simple Modules

Definition 1: Amodule is an algebraic object in which things can be added together
commutatively by multiplying coefficients and in which most of the rules of
manipulating vectors hold. If a module takes its coefficients in a ring R then it is
called a module over R or an R-module. If a and b are two integers then the
smallest module containing a and b is the module for their greatest common divisor.

Definition 2: The left R-module M is said to be finitely generated if there exist

m,m, ..., m M suchthat, M= Z; Rm..

1°
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In this case, we say that { m ,m, ..., m } isaset of generators for M.
The module M is called cyclic if there exists m € M such that M = Rm. The
module M is called a free module if there exists a subset X < M such that each

elementm € M canbe expressed uniquely as a finite sum m = Zln =1 a x,with

a,...,a Randx,...,x € X

1
Definition 3: Let R be aring and let M be a left R-module. For any elementm € M,
the leftideal

Ann(m)={reR|rm=0}

is called the annihilator of m. The ideal

Anmm (M)={reR|rm=0forallme M}.
is called the annihilator of M.

The module M is called faithful if Ann(A)=(0).

A module is simple if it is non-zero and does not admit a proper non-zero
submodule. Ifa module M is simple then the following are equivalent:

e Am = M for every m non-zero in M. simple module
o M — A/m for some maximal left ideal of 4.

In particular, simple modules are cyclic and the annihilator of any non-zero
element of a simple module is a maximal left ideal.

The annihilator of a simple module is called a primitive ideal. The ring 4 is
primitive if the zero ideal is primitive or equivalently, if 4 admits a faithful simple
module.

e A module may have no simple submodules. Simple submodules of 4 are
minimal left ideals.

e Themodule 4 is simple if and only if 4 is a division ring. In this case, any
simple module is isomorphic to A.

e The Z-module Z/p"Z where p is a prime is indecomposable. It is simple if
andonlyifn=1.

e Let A=End, V' fora field k and a k-vector spaceV. The set a of finite rank
endomorphisms is a two-sided ideal of A. Let B be the subring 4 generated
by the identity endomorphism and a. Then V'is a simple B-module, in
particular a simple 4-module and B A4 if dim, V'is infinite. Let W be a
codimension 1 subspace of V. The endomorphisms killing ¥ form a minimal
leftideal in 4 and in B. Thus 4 and B when dim, Vis infinite give examples
of primitive rings that admit non-trivial proper two-sided ideals.

Definition 4: A uniform module is anon-zero module M such that the intersection
of any two non zero submodules of M is non-zero or equivalently such that every
non zero submodule of M is essential in M.

Note: An essential submodule of a module B is any submodule A which has non-
zero intersection with every non-zero submodule of B.



2.7.2 Semi-Simple Module

In mathematics, particularly in the area of abstract algebra known as module
theory, a semi-simple module or completely reducible module is a type of module
that can be understood easily from its parts. A ring that is a semi simple module
over itselfis known as an Artinian semi simple ring. Some important rings, such as
group rings of finite groups over fields of characteristic zero, are semi-simple rings.
An Artinian ring is initially understood via its largest semi-simple quotient. The
structure of Artinian semi-simple rings is well understood by the Artin—
Wedderburn theorem, which exhibits these rings as finite direct products of
matrix rings.
Definition: A module over a (not necessarily commutative) ring is said to be semi
simple (or completely reducible) if it is the direct sum of simple (irreducible)
submodules.

For amodule M, the following are equivalent:

1. Mis semi-simple; i.e., a direct sum of irreducible modules.

2. M is the sum of its irreducible submodules.

3. Every submodule of M is a direct summand: for every submodule N of
M, there is a complement P such that M=N @ P.

The most basic example of a semi simple module is a module over a field,
1.e., a vector space. On the other hand, the ring Z of integers is not a semi simple
module over itself, since the submodule 2Z is not a direct summand.

Semi-simple is stronger than completely decomposable, which is a direct
sum of indecomposable submodules.

Let 4 be an algebra over a field K. Then a left module M over 4 is said to
be absolutely semi simple if, for any field extension F'of K, F — &, M is a semi-
simple module over F — @ 4.

Properties of Semi-Simple Module

e [f Mis semi simple and N is a submodule, then N and M/N are also semi
simple.
¢ Anarbitrary direct sum of semi-simple modules is semi-simple.

e Amodule Mis finitely generated and semi-simple if and only if it is Artinian
and its radical is zero.

2.7.3 Schur’s Lemma

Schur’s lemma is a fundamental result in representation theory, an elementary
observation about irreducible modules, which is nonetheless noteworthy because
ofits profound applications.

Lemma 10: Let G be a finite group and let /" and Wbe irreducible G-modules.
Then, every G-module homomorphism f: ’/— W is either invertible or the trivial
Zero map.
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Proof: Both the kernel, ker /" and the image, im /" are G-submodules of V" and W,
respectively. Since V'is irreducible, ker fis either trivial or all of V. In the former
case, im fis all of W also because W is irreducible and hence fis invertible. In the
latter case, f1s the zero map.

Given below is one of the most important consequences of Schur’s lemma:

Corollary: Let V'be a finite-dimensional, irreducible G-module taken over an
algebraically closed field. Then, every G-module homomorphism f:V— Vis equal
to a scalar multiplication.

Proof: Since the ground field is algebraically closed, the linear transformation
f:V—V has an eigenvalue A, say. By definition, f—A is not invertible, and hence
equal to zero by Schur’s lemma. In other words, f/=A , i.e., a scalar.

2.7.4 Free Modules Fundamental Structure Theorem

In a principal ideal domain, the generators of an ideal is unique up to associates. If
a e R, then the generator of ann(a) (= {r € R|ra=0}) is called the order of a,
denoted by o(a). Now we attach a weight P(a) to a € R. Since R is a unique
factorization domain, we denote the number of prime factors (counting multiplicity)
of a by P(a). By convention, P(0) = 1. Thus, a|b in R implies that P(a) < P(b),
where the equality holds if and only if @, b are associates.

Lemma 11: Let M be a finitely generated module over a principal ideal domain R,

say M= {m,...,m }.Suppose that there is arelationam +...+am =0,
where not all the a, are zero. Then there are elements m’ , ... ,m’ € M, such that,
M= {m',... m'},andthe order of m' divides everya.

Proof: If one of the a, is a unit then the proof follows.

If @, is a unit, then m, is a linear combination of the other m.. So take
m =0,m" =m,i>1l.

Let s = Z P(a;)where a,# 0. We will prove this by induction on s. If s =0,
every a, is zero or a unit and at least one ¢, is a unit.

Ifonly one a, is non-zero, the result is easy to establish, so letus assume a,,
a, are nonzero and non-unit. Letb=g.c.d.(a,, a,),a, =bc,a,=bc,,and b c, +
bc,=1.

Now,

M={m,m,...m;

¢, b
=<(m;,m,) Sy, M,
-¢ b,

0=b(bm +bm)+am +...+am
Now P(b) < P(a, < P(a,) + P(a,). By induction, M= {m' , ... ,m’' }, with

o(m' )| b,and o(m' )|a, fori > 3. But bla, bla,, hence o(m’ )|a, for alli.



Theorem 2.23: Every n-generated module M over a principal ideal domain
R is a direct sum of n cyclic modules M == @ Rm, . Equivalently, M = {m ,
....m }, and Zaimi =0 implies am.= 0, for all i.

Proof: If n =1, this is true, as R is a principal ideal domain. Now letn > 1. We
induct on n.

Amongst all possible set of generators of M having n elements choose one

which has an element m with least P(m). Let M= {m=m,m’',, ... m' }.If
M=R,® ;Rm; , then by induction the submodule ;Rm hasabasis {m,, ...,
m }.Butthen {m ... ,m } is abasis of M.

We show that Rm is indeed a direct summand of M: If not, one has a
relationam +...+am =0,witham, #0.Letb=g.c.d.(a,,o(m))=ca, +
c,0(m,). Since am #0,a, and o(m,) are not associates. Hence, P(b) < P(o(m,)).

Note that bm +c a,m +.. +c.am =0.Byabove Lemma M= {m',...
'}, with o(m' )b, o(m'))|c,a,, for i > 2. Since P(o(m'))) < P(b) < P(o(m,)),
this contradicts the minimality of {m , ... ,m }.Thus, R, m isa summand of M and
the result follows.

Check Your Progress

7. WhenaoringR is called a Boolean ring?
8. State the Schur's lemma.

2.8 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Let Vand U be two vector spaces over the same field ', then a mapping
T: V— Ul s called a linear transformation if

T(x+y)=T(x)+ T(y) forallx,y €V
T(ox) = ol(x), o € F

2. Let {p(A)}“be one of the elementary divisors of the characteristic matrix of
some A-matrix and C(p) be the companion matrix of p(L). The
hypercompanion matrix H associated with the elementary divisor {p(1)}

is given by
C(p) M 0 - 0 0 |
0 C(p) M -~ 0
H=c(p) ifqg=1 H=| -- e ifg>1
0 0 0 - C(p) M
L 0 o 0 - 0 C(p)]
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where M is a matrix of the same order as C(p) having the element 1 in the
lower left-hand corner and zeros elsewhere. The diagonal of the
hypercompanion matrix H consists of ¢ identical C(p) matrices.

. Let 4 be an nxn matrix 4 and let C,, C, C,,,, ..., C, be the companion

1

matrices of the non-trivial invariant factors of A/—A4.

. Nilpotent element is an element a of a ring or semi-group with zero 4 such

that @" = 0 for some natural number 7.

. If T'is alinear operator on a finite dimensional space } over F and minimal

polynomial p(x) of T is a product of distinct linear factors then T is
diagonalizable.

. A Jordan block is a matrix with zeros everywhere except along the diagonal

and superdiagonal, with each element of the diagonal consisting of a single
number A, and each element of the superdiagonal consisting of a 1.

. Aring R is called a Boolean ring if x* =x for all x € R.

8. Let G be a finite group and let /" and W be irreducible G-modules. Then,

every G-module homomorphism f: V'— Wis either invertible or the trivial
Zero map.

2.9

SUMMARY

A similarity transformation is a conformal mapping whose transformation
matrix 4% can be written in the form

A'=BAB,
where 4 and 4? are called similar matrices.

Every square matrix 4 over F is similar to the direct sum of the
hypercompanion matrices of the elementary divisors over F of A/ — 4.

The Jacobson canonical form of a square matrix A consists of the direct
sum of the hypercompanion matrices of the elementary divisors over F of
M —A.

An n-square matrix 4 is similar to a diagonal matrix if and only if the
elementary divisors of A/ — 4 are linear polynomials, i.e., if and only if the
minimum polynomial of 4 is the product of distinct linear polynomials.

Let T'be a linear operator on a vector space V. If Wis a subspace of V'such
that, T(W) < W, we say Wis invariant under T or is T-invariant.

Every square matrix 4 is similar to the direct sum of the companion matrices
of the non-trivial invariant factors of A/—A.

A linear transformation N : U — U is called nilpotent if there existsak € N
such that N*= 0 for some positive integer £.



¢ Nilpotent element is an element a of a ring or semi-group with zero 4 such
that " = 0 for some natural number n. The smallest such 7 is called the
nilpotency index of a.

e Canonical form for nilpotent matrices is one that is all zeroes except for
blocks of subdiagonal ones.

¢ A Jordan block is a matrix with zeros everywhere except along the diagonal
and superdiagonal, with each element of the diagonal consisting of a single
number A, and each element of the superdiagonal consisting of a 1.

e The Jordan form of a matrix is determined only up to the order of the
Jordan blocks. More exactly, two Jordan matrices are similar over k if and
only if they consist of the same Jordan blocks and differ only in the
distribution of the blocks along the main diagonal.

¢ A non empty set R, together with two binary compositions +and . is said
to form a Ring if the following axioms are satisfied:

@Ha+bB+c)y=(@+b)+c foralla,b,c e R
@a+b=b+a fora,b eR

(iii) d some element O (called zero) in R, such that,a+0=0+a=a for
alla e R

(iv) For each a € R, 3 an element (—a) € R, such that, a + (—a) = (-
a)+a=0

Wa.(b.c)y=(a.b).c foralla,b,c eR
vi)a.(b+c)=a.b+a.c
(b+c)y.a=b.a+tc.a foralla,b,ceR

2.10 KEY TERMS

e Canonical form: The canonical form of a positive integer in decimal
representation is a finite sequence of digits that does not begin with zero.

¢ Jacobson canonical form: The Jacobson canonical form of a square matrix
A consists of the direct sum of the hypercompanion matrices of the elementary
divisors over Fof A/—A

¢ Nilpotent froms formations: A linear transformation N : U — U'is called
nilpotent if there exists a k € N such that N*=0 for some positive integer k.
The smallest such £ is sometimes called the degree of V.

¢ Jordan blocks: A Jordan block is a matrix with zeros everywhere except
along the diagonal and superdiagonal, with each element of the diagonal
consisting of a single number A, and each element of the superdiagonal
consistingofa 1.
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o Simple modules: A module is an algebraic object in which things can be
added together commutatively by multiplying coefficients and in which most
of'the rules of manipulating vectors hold.

2.11 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions
1. Whatis the significance of linear transformations?
. What does Jordan canonical form
. How will you define a minimal polynomial?
. Define nilpotent transformations.
. State the primary decomposition theorem.
What is Jordan blocks used for?
What are simple modules?

Specify the term submodule.

I R N A

What is the significance of Schur’s lemma?

p—
e

State the fundamental structure theorem for modules.
Long-Answer Questions

1. Let V' be the vector space of all polynomials of degree < 6 over F. Let W
be the subspace of V spanned by {1, x?, x*, x®}. Let D be the differential

operator on V. (i.e., D (f(x)) = %f (x) . Show that W is not invariant
under D.

2
2. In (1) show that W is invariant under D? where D? (f (x)) = 5—2 f(x).LetT
X
= D?. Find
(i) The matrix of 7 in a suitable basis of V.

. . A . . V
(71) The matrix of T in a suitable basis of 7

(iii) The matrix of 7'in a suitable basis of V.

02 0 0
0012 0 060 4 0
i) A= i) C=10 0 20| (7
© 00 o0 30| @ (){0 C}
00 0
00 0 0

3. Let V'be the vector space of all polynomials over the field of real numbers
R. Let W be the subspace of V spanned by {1, x, x*}. Let T'be the linear



operator on V defined by 7'(f (x)) =x f(x). Show that /¥ is not invariant
under 7.

. Let T'be a linear operator on a vector space V over F. If W, ..., W, are

k k

T-invariant subspaces of ¥, prove that >, and (|W; are T-invariant
i=1 i=1

subspaces of V.

. Let ¢ be a characteristic value of 7"and W be the space of characteristic

vectors associated with the characteristic value c¢. What is the restriction
operator 7, ? (T, = cl)

. Let T'be alinear operator on a finite dimensional vector space V. Prove that

T is diagonalisable if and only if V' is a direct sum of one dimensional
T-invariant subspaces.

. Let T'be a linear operator on a finite dimensional vector space V and let

Wbe a T-invariant subspace of V.
(i) Show thatif A is an eigen value of T’ , then A is an eigen value of 7.

(if) Show that the eigen space of 7, corresponding to eigen value A of
T is W, N W, where W, denotes the eigen space of T'corresponding

A

to A.

(it) Prove thatif T'is diagonalizable, thensois 7.

(Hint: T'is diagonalizable <> V=W, + ...+ W, where W. denotes
eigen space corresponding to eigen value A ; of T. Use (if)).

. Let Wbe a proper T-invariant subspace of ¥, where T'is a linear operator

on a finite dimensional vector space V.
V
Letn:V— 7 such that,
n(v) = W+ v be a linear transformation. Show that n"7= 71 where T

is a linear operator on % defined by 7(W+v)= W+ T(v).

Further, if T'is diagonalizable, show that 7 is also diagonalizable.

(Hint: T'is diagonalizable = J abasis {x,, ..., x } of V' consisting of eigen
vectors of 7. AlsonT'= 7n = {nx,, ..., x,} are eigen vectors of 7 =

{W+x,, .., W+x } are eigen vectors of 7. If {W+v, .., W+v} is

a basis of %, then it can be replaced by {W +x,, ..., W+ x } such that

. . 14 .. . 14
it forms a basis of A consisting of eigen vectors of A ).

. Let T'be a linear operator on a finite dimensional vector space and suppose

that V=W, ® ... ® W,, where W.is a T-invariant subspace of V' for each
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10.

I1.

12.

13.

14.

15.

16.

17.
18.

i=1, .., k. If f(#) denotes the characteristic polynomial of 7" and f(7)
denotes the characteristic polynomial of T’ i (1 £i<k), then show that

@) =@ . f,@) ... £,() (Hint: Use induction on k).
If E,, E, are projections onto independent subspaces, show that £, + £,
is also a projection.

Let 7'be a linear operator on a finite dimensional vector space V. Let R be
the range of 7 and let NV be the null space of 7. Prove that R and N are
independent if and only if V=R @ N.

Let Tbe a linear operator on a F.D.V.S.V. Suppose T'is diagonalizable.
Show that 7= Ker T @ ImT

Show that the eigen values of 4 =

0
(1) are the fourth roots of unity.

— o O O
S O =
- o O

0 00

Let 7'be a linear operator on ¥ such that 7'is diagonalizable. Show that
(T-AD'"(v)=0,veV,he F=(T-M)v)=0.

Let T'be a linear operator on ¥ such that, 7" = I. Let char /"= 0. Suppose
Thas all eigenalues in F. Show that T'is diagonalizable.

[Hint: If g.c.d. (f, /') = 1, then roots of fare simple.]

Show that aring R is commutative iff

(a+b)y=a’>+b*+2abforalla,b € R.

Ifin aring R, x* = x for all x then show that 2x=0andx +y=0=x=y.
If R is aring with unity and (ab)* = (ba)* foralla, b € R and 2x=0

= x =0 then show that R is commutative.
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3.0 INTRODUCTION

In mathematics, a field theory studies the properties of fields. A field is a
mathematical entity for which addition, subtraction, multiplication and division are
well defined. Fields are important in algebra since they provide the proper
generalization of number domains, such as, the sets of rational numbers, real
numbers and complex numbers. Field extensions are an object of study in field
theory in which we start with a base field and construct a larger field containing the
base field and satisfying additional properties. A field extension L/K is called
algebraic if every element of L is algebraic over K| i.e., if every element of L is a
root of some non-zero polynomial with coefficients in K. Field extensions that are
not algebraic, i.e., which contain transcendental elements, are called transcendental.

In this unit, you will study about the field theory, algebraic and transcendental
extensions, separable and inseparable extensions, normal extensions, finite fields,
algebraically closed fields, automorphism of extensions, Galois extension and solution
of polynomial equations by radicals.
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3.1 OBJECTIVES

After going through this unit, you will be able to:
e Know about the field theory
¢ Define algebraic, transcendental, separable and inseparable extensions

o Describe perfect fields, normal extension, finite fields and algebraically closed
fields

e Understand automorphism of extensions, primitive elements, Galois
extensions and fundamental theorem of Galois theory

¢ Solve polynomial equations by radicals

o Justify the insolvability of the general equation of degree 5

3.2 FIELD THEORY

In mathematics, a field is a set on which addition, subtraction, multiplication, and
division are defined and behave as the corresponding operations on rational and
real numbers do. A field is thus a fundamental algebraic structure, which is widely
used in algebra, number theory, and many other areas of mathematics.

The best known fields are the field of rational numbers, the field of real
numbers and the field of complex numbers. Many other fields, such as fields of
rational functions, algebraic function fields, algebraic number fields, and p-adic
fields are commonlyused and studied in mathematics, particularly in number theory
and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e.,
fields with finitely many elements.

The relation of two fields is expressed by the notion of a field extension.
Galois Theory, initiated by Evariste Galois in the 1830s, is devoted to
understanding the symmetries of field extensions. Among other results, this theory
shows that angle trisection and squaring the circle cannot be done with a compass
and straightedge. Moreover, it shows that quintic equations are, in general,
algebraically unsolvable.

Fields serve as foundational notions in several mathematical domains. This
includes different branches of mathematical analysis, which are based on fields
with additional structure. Basic theorems in analysis hinge on the structural propetties
of'the field of real numbers. Most importantly for algebraic purposes, any field
may be used as the scalars for a vector space, which is the standard general
context for linear algebra. Number fields, the siblings of the field of rational numbers,
are studied in depth in number theory. Function fields can help describe properties
of geometric objects.



Definition: Informally, a field is a set, along with two operations defined on that
set: an addition operation written as a + b, and a multiplication operation written
as a + b, both of which behave similarly as they behave for rational numbers and
real numbers, including the existence of an additive inverse —a for all elements a,
and of amultiplicative inverse 5! for every non-zero element b. This allows one to
also consider the so-called inverse operations of subtraction, a — b, and division,
a/ b, by defining:

a—b=a+(-b),
al/b=a.b—-1.
3.2.1 Extension Field

Definition: Let K be a field and suppose F'is a subfield of K, then K is called an
extension of F.

Suppose S'is a non-empty subset of K. Let F(.S) denote the smallest subfield
of K which contains both ' and S. (In fact F(.S) would be the intersection of all
subfields of K that contain F and S). The following theorem is then an easy
consequence.

Theorem 3.1: If'S, T are non-empty subsets of a field K and K is an extension
of a field F then F(S U T) = F(S) (T) (Where, of course, if F(S) = E, then by

F(S)(T) we mean E(T)).
Proof: F(SuU T)is the smallest subfield of K containing SU T, F

ie., SST,FCcFSuT
= FS) cFSuUT),TcFSuUT)
=  FS)D) cFASUT

Again, F, S, T < F(S)(T)

= F,SuTcF®S) (T

= FSUT) cFES)D)
or that FSu T =FOS) T

Corollary: F(SU T)=F(T' v S) = F(S)(T) follows clearlyas SU T=T U S.

Note: If S is a finite subset {a,, a,, ..., a,} of K we write F(S) = F(a,, a,,..., a,).
The order in which a; appear is immaterial in view of the above Corollary as

Fa,, a,,...,a) =F({a}lay as, ..., a,})
=F({a,, ag, ....., a,} U {a,})
= F(ay, as, ..., a,, a,)
Also then, F(a)(b) = F(a, b) = F(b, a) = F(b)(a)
Again, if K = F(a), K is called simple extension of F and we say K is
obtained by adjoining the element a to F.

Example 3.1: Let Q be the field of rationals then show that
QW2.43) =Q(W2+43).
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Now,

Also

Again,

Equation (1)
=

Again,

1e.,

Hence

Kover F.
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or that

If K is an extension of F, then we know that K can be regarded as a vector
space over F. In that case dimension of K over F'is called degree of K over F’
and we denote it by [K : F]. Our next theorem is about the degree of extension
fields. If [K : F] is finite, we say K is finite extension of F.

V2,43 € Q(W2.43)

2+ € QW2,43) (Closure)
Q(2+43) € Q(2.43)
V2+43 € Q2+43)
2+3) € Q(2+43)
2+3+ 2243 € QW2++3)
5 € Q(2+43)

5+ 242483 =5 = 2243 € QW2 +3)
2 € QW2+43)

2X%\/§\/§ V243 € Q2 +43)

2 +BW23 234342 € Q2+43) (1)
V23 € QW2+43)
22+3) € Q2+3)
2N2+23 € Q2+43)

2V3+32) — 2V2+23) € Q(2++3) by using

V2 € Q(V2+43)
V243 € Q(V2+43) = 32 +43) € Q(V2+43)

and using Equation (1) we get

G2 +33)-(2V3+3v2) € Q2 +3)

V3 e QW2+43)
V2,43 e Q(2+3) = Q(2.43) cQ(2++3)
Q(2,43) =QH2++3).

Theorem 3.2: Let K be a finite extension of F and L, a finite extension of

K. Then L is a finite extension of F and [L : F] =[L:K][K:F].
Proof: Let [L : K]=m, [K: F]=n
Let {a,, ...., a,} be a basis of L over K and {b,, ...., b,} be a basis of



We show that {aibl. |1<i<m,1<j<n} is abasis of L over F.

a €L, b‘eK = bjeL. aibjeLforalli,j
Let, > D ayab; =0, o, € F

i=1j=1 i
Then D> D (azba; =0, Za,jbj ek

i=1j=1
Since {a,, ....,a, } are linearly independent over K,

z ayb; =0 foralli=1,..,m
j=1
Also b,, ...., b, are linearly independent over F.
o, = 0 foralli=1,...m j=1,..,n
" {al.bj| 1 <i<m,1<j<n} isalinearly independent subset of L over
F.Leta € L. Since {a,, ..., a,} isabasisof L overK,a=o,a, +.. + o, a,,
o. € Kand {b,, ..., b } is a basis of K over F

= o, =p,0 + B0, BijeF

m

'ME

a = o;a; z Bllbl +Binbn)ai
i=1 i=1
Z ZBy'“ibj’ ByeF
A, b |1<i<m,1<j<n} spans L over F' and so forms a basis of

LoverF
[L:Fl=mn=[L:K][K:F]

Note: If[L : K] is infinite, then [L : F] is also infinite because [L : F|=r = every
subset of L having »+ 1 elements is linearly dependent over F. Since [L : K] is
infinite, 3 a,, ..., a, ., € L which are linearly independent over K. Now 1 € K
and 1 is linearly independent over F'as 1 #0. Asin Theorem 3.2, a,.1, a,.1, ...

a, . .1 are linearly independent over . We find a, ..., a, , | € L are linearly
independent over F, a contradiction.

.. [L: F]is infinite. Similarly, [K : F] is infinite.

Corollary 1: If L is a finite extension of F'and K is a subfield of L which contains
F, then [K : F] divides [L : F].

Proof: Byremark above [K : F] is finite as [L : F| =finite. Also [L : K] is finite.
By Theorem 3.2, [L:F]l=[L:K][K:F]
: [K : F]divides [L : F]
Corollary 2: If K is an extension of F, then K = F if and only if [K : F] = 1.
Proof: If K=F,then [K: F]=[K:K]=1

r+1
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If[K: F]=1,let {a} be a basis of K over F.
le K = l=o0aaq,aeF,a#z0as1=0
= a=a'leF
Let, beK = b=Ba, BeF,aekF
= beF = KcF = K=F.
Corollary 3: If L is an extension of F'and [L : F] is a prime number p, then there
is no field K such that, Fc K c L.
Proof: Suppose 3 a field K such that, Fc K c L.
Then p=I[L:F]=[L:K][K:F]byTheorem 3.2
= [L:K]=1 or [K:F]=1
= K =L or K=FbyCorollary?2 acontradiction.
Hence the result.
Trivially then, if K is an extension of F of prime degree then for every
aeckK Fla=F or F(a)=K.

Example 3.2: Let D be an integral domain. Let F be a field such that,
F < D. Suppose unity 1 of F is also unity of D. Then D can be regarded as
a vector space over F. Show that D is a field if [D : F| = finite.

Solution: Let [D : F]=r. Let {a, ..., a } be a basis of D over F.
Let 0 # a € D. We show that a is invertible. Consider {aa,, ..., aa,}.

Let a,(aa)) + ... +ofaa)=0,0 € F.

Then a(oa, +..+aoa)=0

= o,a, +...+toa =0,asa#0and D is an integral domain.
= a,=0foralli=1,...,ras {a,,..,a,} islinearly independent over F.
= {aa,, ...,aa } is linearly independent over F.

But[D: F]=r = {aa,, .., aa,} is abasis of D over F.
leD = 1=Baa, +..+Baa, P,eF
=aBa, +..B,a)
=ab, b=Ba, +..+Ba €D
= aisinvertible.
= Disafield.

3.3 ALGEBRAIC AND TRANSCENDENTAL
EXTENSIONS

Suppose K is an extension of /' and a € K.
Let Fla]={(@)|f(x)=a,+tax+..+ax" € F[x]}, a,eF
then as f(a) =a,+aa+ .. +aa" € K, we find Fla] € K

One can show that F[a] is an integral domain.



Let E'be its field of quotients. Then E is the smallest field containing Fla].
We show

Fla] c F(a) C E.
Now, x=0+1x+0x*+ ... € Flx] and so
a=0+1l.a+0d*+ .. e Fld
ie., a€ Fla]c E
Again if a € F'be any element then
a=a+0x+ 0>+ .. eF[x]
gives a € Fla] or that Fc Flalc E
Hence F(a) C E, as F(a) is the smallest field containing /" and a.
If f(a) € F [a] be any member where
fl@=o,taa+..tad, o ecF
then as a € F(a), o, € F' < F(a), we find f(a) € F(a)
Hence Fla] < F(a) and so
Fla]c F(a)c E
But £ is the smallest field containing F [a].
: E < F (a). Hence F(a) = E.
So, we have explicitly determined the field F(a). It is the field of quotients
of Fla].

We write, F(a) = {M|g(a) 20, f(x), g(x) eF[x]}
g(a)

In general, one can show that

_ S, a,) (x5, x,) €F[x]
Py - a) {g(al,., ey, ay) S )20 g(xl,...,xn)eF[x]}

A natural question arises. When is Fla] = F(a)? To answer this, we first
define what is an algebraic element. Let K be an extension of F. a € K is said
to be algebraic over F if 3 non-zero polynomial f(x) € F[x] such that,

f(a)=0. Otherwise, it is called transcendental element. For example, V2 eR=

real field, is algebraic over Q =rational field as ~/2 satisfies non-zero polynomial
f(x)=x>-2 e Q[x]. However, m, e € R are not algebraic over Q. An extension
K of F'is called an algebraic extension if every a € K is algebraic over F.

If for some a € K, a is not algebraic over F, then K is called transcendental
extension of F. For example, R is transcendental extension of Q. We shall see in
the following theorem that finite extensions are algebraic. So, C = the field of
complex numbers is algebraic over Ras [C : R] =2, {1, i} being a basis of C
over R.

We sometimes use the notation K/F to express the fact that K is an extension
of F. Similarly, K/F is algebraic would mean K is an algebraic extension of F.
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Theorem 3.3: A4 finite extension is algebraic.

Proof: Let K be a finite extension of F. Let [K : F] = n. Let a € K. Then
1,a, ..., a" are linearly dependent over F. Thus 3 o, o, ..., &, € F'such that,
a1 +oya+ ... +oa" =0 for some a, # 0.

Let f(x) = oy, + a,x + ... + a x". Then f(x) is non-zero polynomial in
F[x] as some o, # 0. Also f(a) = o, + oya + ... + o a" =0

.. ais algebraic over F.

.. K is algebraic over F.

Note: Converse of Theorem 3.3 is not true.
Corollary: a € K is algebraic over F if [F(a) : F] = Finite.

Proof: By Theorem 3.3, F(a) is algebraic over F.
.. a € F(a) is algebraic over F.

Converse of the above corollary is also true. But we will prove it after the
next theorem.

Theorem 3.4: Let a € K be algebraic over F. Then
(?) 3 a unique monic irreducible polynomial p(x) € F[x] such that,

p(a)=0

(7i) 3 non-zero polynomial q(x) € Flx] such that, g(a) =0, then p(x) divides
q(x),

(iii) F(a) = Flal].
Proof: (i) Since a is algebraic over F, 3 a non-zero polynomial /' (x) € F[x], such
that,

f(a)=0.
Let #(x) be the non-zero polynomial of smallest degree over F such that,
t(a) = 0 and suppose
(x)=a,+ax+.. +ax", a ekl
If #(x) is not monic [ By monic polynomial, we mean a polynomial in which
coefficient of highest degree term is 1], then let
px)= an’lao + an’lalx + ...+ X" = an’lt(x)
Now deg p(x) =n=deg #(x) and p(a) = 0 and p(x) is a monic polynomial.
Thus 3 a monic polynomial p(x) of least degree such that, p(a) =0.
Suppose p(x) = p,(x)p,(x), where p, and p, are polynomials with lesser
degree than deg p.
Then 0 =p(a) = p,(a)p,(a)
= py(@) =0 or pya)=0 [asF[a]isanlD.]
But that would lead to a contradiction as p(x) is such polynomial with least
degree.
Hence p(x) is irreducible polynomial.



To show uniqueness of p(x), suppose g(x) is any irreducible monic
polynomial over /' such that, g(a) = 0. Since F[x] is a Euclidean domain, 3 /(x)
and 7(x) such that, g(x) = p(x)h(x) + r(x)

where either rix) =0 or degr<degp

Now, 0 = g(a) = p(a)h(a) + r(a)

= ra)=0 as p(a)=0

Since p(x) is of least degree such that, p(a) =0, we find deg r <degp is

not possible. Hence r(x) =0

ie., q(x) = p(x)h(x) ..(3.1)
Since g(x) is irreducible, /(x) must be a constant polynomial, say /(x)=c
Then q(x) = cp(x)

Since g(x) is monic, coefficient of highest degree term in L.H.S. is 1 and
therefore it is 1 on R.H.S. also

R.H.S. being cp(x) = can’lao + can’lalx +...+tcx' givesc=1
Hence g(x) = p(x), proving the uniqueness of p(x)
(it) Follows by Equation (3.1)
(7ii) Define a mapping 0 : F]x] — F[a], such that,
0(f(x)=f(a)
then 0 is onto homomorphism (verify!)
By fundamental theorem then

~ Flx]
Fla] = Ker 0
Since F[a] is an integral domain, so would be % which implies Ker 6
er

is a prime ideal. Since a is algebraic over K, 3 a non-zero polynomial f (x) €
F[x] such that, f'(a) = 0.

= 0(f(x) =f(@) =0
= f(x) € Ker 6 = Ker 0 # (0)

1.e., Ker 0 is anon-zero prime ideal of F]x] which being a Euclidean domain
is a PID.

Thus Ker 0 is a maximal ideal.

= 14 g a field.
Ker
= F [a]isafield.
But F(a) is the smallest field containing /" and a and thus F(a) < Fla]
Also Fla] < F(a)
Hence F(a) = Fla].

Note F(a) is field of quotients of F]a] and when Fla] is itself a field, F[a]
= F(a).
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Note: 1. p(x) determined in Theorem 3.4 is denoted by p(x) = Irr(F, a). It is the
unique monic irreducible polynomial over F'satisfied by a. Since p(x) is of least
degree such that, p(a) =0, p(x) is called the minimal polynomial for a.

where F(x) = {f(x; f.8 eK[x]}.

g(x g#0

2. If a € K is transcendental over F then F(x) = F(a).
Proof: Define ¢ : F(x) — F(a) such that,
(f(X)j _ J(@)

g(x) ga)’
Then ¢ is well defined onto homomorphism.
(f(x))
Also =0
i\ g(x)

N f@ _

g(a)
= f(a)=0
= f(x) =0, for otherwise @ would be algebraic over F.
— ™ _y

g(x)
= ¢is 1-1.
Hence F(x) = F(a).

Corollary 1: Let a € K be algebraic over F. Then [F(a) : F] = finite = deg Irr
(F, a) and so F(a) is an algebraic extension of F.
Proof: Let p(x) = Irr (F, a). Let n = deg p(x).

We show that 1, @, @, ..., "' form a basis of F(a) over F.

Let0 # f(a) € Fla] = F(a). Then f(x) € F[x].

Now for f(x), p(x) e Flx], 3 g(x), r(x) € F[x] such that,

f(x) =p(x)q(x) + r(x) where either 7(x) =0
or degr <degp.
But rx) =0 = f(x) = px)q(x)
= f(a)=p(a)g(a)=0 as p(a)=0

which is not possible as f'(a) # 0

Thus  r(x) # 0. Hence deg » < deg p.

Suppose r(x) =B, + Bx + ... + anlx”’l, B,eF, where some 3, could
be zero.

Again as f(a) =p(a) q(a) + r(a) and p(a) =0

we find f(a) =r(a)



Thus fla) =By +Ba+ B+ ..+, a""
ie, {l,a, a, .., a"’l} spans Fla] = F(a) over F.
We show these are L.1.
Suppose these are L.D., then 3 y,, not all zero, such that,
Yo v, + yzaz + ...+ ynfla”’l =0
= Hx) =7y, Ty x+ ..+ ynflx”’l
is non zero polynomial (some v, # 0) with #(a) = 0.
A contradiction to the fact that p(x) is such polynomial with least degree.
Hence 1, a, ..., " ! are Linearly Independent (L.1.) and thus form a basis of F(a).
Hence [F(a): F] =n.
3. Using Corollary to theorem 3.3 we conclude a € K is algebraic over F iff
[F(a): F]=finite.

Definition: An element a € K is said to be algebraic of degree n over F if it
satisfies a polynomial of degree n over F and does not satisfy any polynomial of
lesser degree (than n).

Thus a is algebraic of degree n over F'if deg Irr (F, a) = n. Also in that
case, [F(a) : F]=nand {1, a, &, ..., a"'} is a basis of F(a) over F.

Corollary 2: If a,, ..., a, € K are algebraic over F then F(a,, ..., a,) is finite
extension of F'and so is algebraic over F.

Proof: We prove the result by induction on n. If n = 1, result follows from
Corollary 1. Assume it to be true for naturals less than n. Leta, ..., a, € K'be
algebrai cover F. Now a, is algebraic over F'= a, is algebraic over F (a, ...,
a, ) as F c Fa,, a,, ..., a, ).

.. ByCorollary 1, [F(a,, ...,a, |)(a,):F(a,,...,a, ,)]isfinite. By induction
hypothesis, [F(a,, ...,a, ,):F]is finite.

-~ [Fay, ..., a) : Fl=[Fa,, .., a,): Fa,, .., a, )] [Fa,, .., a,,):
F]=finite

.. Result is true for n also.

By induction, result is true for all n > 1.
Corollary 3: If a, b € K are algebraic over F, then a + b, ab, ab™! (ifb#0)

are algebraic over F. In other words, the elements of K which are algebraic over
F form a subfield of K (and this subfield is called the algebraic closure of F

over K).
Proof: By Corollary 2, F(a, b) is algebraic over F.
. a+b,ab,ab! € F(a, b) are algebraic over F.
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Notes 1.: If K is an extension field of a field F and S < K, then

f.geFlx,...,x,]

F(S) = EACTER) gluy,.yu,)#0,n eN

(uy,...,u
gl - ty) Upyoostly, €S

Proof: Let L denote the R.H.S. We first show that L is a subfield of K.

Let fuy,...,u,) c L S v,) c L
g(ula--'aum) gl(vla-"’ vn)
Let y = Sy, s uy)  [i0 0 V)
g(“l""’um gl(vlﬁ”'ﬂvn)

_ Sy ty) &0V s ) = 10 ) 8y s 1y,)
gy, ty,) g (Vs v,)
Define  h(x;, ..., X, ,,) = f (X5 s X,) & (X, 1 15 o0 Xy 1)
=80y, e X,) [1(X, s s X))

FXps s X0 ) = 85 v X,) &1(X, 005 s Xy 1)

Then Y= h(uyy oo Uy, V)5 ooy V) c L
P(Upy eees Uy s V]y oeer Vyy)
Suppose SO V) #0
g, .v,)
Let 7 = fuy,...,u,) .gl(vl,...,vn)

gy, .stty,)  fi(Vy s vy)
Define  h,(x,, ..., xmw) =f(xp e xm) gl(xmﬂ, o X )

Py e X, ) = 8O0, e X)) [1(X 4 s X, )

Then _ MUy Uy, Vi s V) c L
Ry s ooy Uy s V]s eos V)
So, L is subfield of K.
Letu, € . Define f(x) =x, g(x) = 1.
Then fu) = uy, glu) =1
S @) el > UNel = u el
g(uy) 1
So, Sc L.

Leta € F. Define f(x) = a, g(x) = 1.
Letu € §. Then f(u) =a, g(u) = 1.

S(w)
g(u)

el = %:OLEL.

Now,

So, F c L.
But F(S) is the smallest field containing ' and S, F(S) c L.



LetYeL Then ¥ =J01et) o cg
g(ul:'-':un)

Since u; € §'and coefficients inf, g belong to F, f (u,, ..., u,) € F(S) and
gluy, ..., u,)) € F(S).

So, Y € F(S), then L < F(S).

Hence F(S) = L.
2. If K is an extension field of F, and K is generated by algebraic elements (i.e.,

K = F(S), where S ¢ K is a set of algebraic elements over K), then K is an
algebraic extension of F.

Proof: Let C € K, then C = M, u, € S.
gluysosuty) !

where f(x,, ..., x,), g(x;, ..., X,) € F[x,..., x,].

Clearly C € F(u,, ..., u,). But u,, ..., u, are algebraic over F = F(u,,
..., u,) s an algebraic extension of F = C'is algebraic over F.

Hence K/F is algebraic.
Theorem 3.5: If L is an algebraic extension of K and K, an algebraic
extension of F, then L is an algebraic extension of F.
Proof: Leta € L. Since L is algebraic over K, a is algebraic over K.

- 30 # f(x) € K[x] such that, f(a) = 0. Let f(x) = oy + o;x + ... +
ax’, a € K.

Since K'is algebraic over F, each o, € K is algebraic over F. By Corollary 2
Theorem 3.4, [F(a, oy, ..., &) : F]] = finite.

Let M = F(a, a, ..., o)

Then [M : F] s finite and so M is algebraic over F. Clearly, each o.. € M.
Thus, f(x) € M[x].

i.e., a is algebraic over M.

By Corollary 1, M(a) is finite extension of M.

= [M(a): F]=[M(a): M] [M : F] = Finite.

= M(a) is algebraic over F.

= a € M(a) is algebraic over F.

Since a is an arbitrary element of L, L is an algebraic extension of F.
Definition: A complex number is said to be an algebraic number if it is algebraic
over the field of rational numbers.

An algebraic number is said to be an algebraic integer if it satisfies an
equation of the form x" + alx”’l +...+a, where a, ..., o, are integers (i.e.,
amonic polynomial over integers).

Example 3.3: If a is any algebraic number, prove that 3 a positive integer
n such that na is an algebraic integer.
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Field Theory Solution: Since a is an algebraic number, a is algebraic over the field of rationals.
Thus 3 a non-zero monic polynomial f(x) € Q[x] such that, / (a) =0, where Q

= Field of rationals.
NOTES Let fx)=x"+ alxm’l to.ta, xto,oE=EQ
Let o = Pi where D;» 4, are integers, g, > 0

1
"+ Pl 4 Bmoly Peo—

q Im—1 dm

Letn=gq,... q,. Then n is a positive integer
-1 —
and na" + pq,..q,a" + . +pq,..q,,=0
= n"d" +pgq,.. qma’”’ln’”’1 t ..t P4, quln’"’l =0
= na satisfies the polynomial
-1 -1 _
X"+ pgy g, X" g g, 0" =0

where coefficients are integers.
.. na is an algebraic integer.

Example 3.4: [f the rational number r is also an algebraic integer, prove that
r must be an ordinary integer.

Solution: Let = £, where q>0,(p,q9)=1
q

Since r is an algebraic integer
r’"+oclr’”’1+...+oc o, =0
m m
o are integers.

Self - Learning
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.. 2 cos % is algebraic number for all integers m.

.. COS % is algebraic number for all integers m.

.. cos m° is algebraic number for all integers m.

Also cos '™ and cos 7% + sin T s algebraic number = i sin % g
180 180 180 180

algebraic number = sin% is algebraic number as 7 is also algebraic number =

sin m° is algebraic number.

Example 3.6: Find a basis of Q (\/3,~/5) over Q.

Solution: We have,

[Q(3.45) : QI =[Q(3)¥5): Q]
=[Q(3) (%) : Q(3)1[QV3 : Q]
=[L(5) : L] [Q(3) : Q] where L =Q(+/3)
=deg Irr (L, /5) x deg Irr (Q, 3)
= deg (x* - 5) x deg (x* - 3)
=2x2=4
Thus basis has 4 elements.

Also if [(F(a) : F)]=nthen 1,a, d?, ..., a" ! is basis of F(a) over F, and
thus

Basis of L (\/5) over L is {1,/5}

Basis of Q (+/3) over Q is {1,+/3}

Thus basis of [L (/5) : L] [Q(/3) : Q] =[(Q(3,+5) : Q]

is 1.1, 14/3, 14/5, /3 +/5 [Refer Theorem 3.2]

ie., 1, V3,45.415.
Example 3.7: Find the minimal polynomial for N2 +/3 and use it to show
that Q(\2,3) = Q2 +~3). Find a basis for Q(/2,/3).
Solution: Now, 2 +3)? =5+26;

2 +3)* =49+ 2046 .
So, 2+B3)* —102+3)? +1=0

Therefore, a = \/2 +/3 satisfies
f(x) =x*—-10x* + 1 over Q.
Let px) =1rr(Q, a)
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Then ~/2 —+/3, —/2 ++/3, —/2 =+/3 are also roots of p(x). So, degree of
p(x) is at least 4. But f(a) = 0 and f(x) € Q[x]

= p(x) divides f'(x)

= px) =f().

So, f(x) is the minimal polynomial for /2 ++/3.
Therefore, [Q2++3): Q]=4.

Also, [QV2 : Q] =degIrr (Q, \2)

=deg (x* - 2) =2.
Now, Q < Q(v2) = Q(v2, \3).
Consider gx) =x* =3 € Q(+2) [x].
Then g(\3) =0

deg Irr (Q(N/2), /3) < deg g(x) =2
= [(Q(V2,+3):Q]<2.
So, [Q(V2, 3):Q] <4
Clearly, Qc Q2 +3) = Q2 V3).
[Q(V2, V3)1: Q1=[Q(V2, V3) : Q(~2 + /3)]
< [Q(v2 ++/3): Q]
= [Q(v2,V3)]: Q(+2 +3)]=1
= Q(+2,3)=0Q(2 +3)
Since [Q(+2 +3):Q]=4
{1, V2 + 3, (N2 + 3, (V2 + /3)°} is a basis for Q(+/2 + /3)
=Q(~2, 3) over Q.

Example 3.8 : Let F(x) be the field of rational functions in an indeterminate
x. Show that every element of F(x) which is not in F is transcendental
over F.

Solution: Let 0 # L € F(x),i g F, (f,g)=1
g 8

S

Suppose < is not transcendental over F.

Then A is algebraic over F.
g

o 2]l

Consider £ e F {1} =F (LJ
S g g



(Note 0 # /e F{i} andF{i} is a field, £ < F(ij =F {1})
g g 4 f g g

Therefore, £ = o, t o, (iJ + ... + ocn[qu, o € F.
A g g
So, g"l'=(og" toa . af") f
Since  (f,8) =1, f1&" "' = /g = /= unit
S _

= g =1unit = = =unit € F, a contradiction.
g

So, A is transcendental over F.
g

Example 3.9: Let K be an extension of F and let a eK. Then F[a] can be
regarded as a vector space over F. If the dimension of F[a] over F is finite,
show that Fla] = F(a).
Solution: Let 0 # ¢ € F[a]. Define
T : Fla] - Fla] such that,
1(b) = bc
Then T'is a linear transformation.

Let b € Ker T. Then 7(b) =0 = bc =0 = b =0 as ¢ # 0 and Fla] is
an integeral domain.

Thus Ker 7'= {0} forcing 7"to be 1-1.

Since Fla] is a FDVS over F, T is also onto.

Nowl € Fla]= 3 b € Fla] st., T(b) =1

= bc =1 or that c is invertible.

So Fla] is a field containing F'and a. But F{(a) is the smallest field containing
F & a and so F(a) < Fla], However Fla] < F(a) giving Fla] = F(a).
Example 3.10 : Let K be an extension of F. Show that K/F is algebraic if and
only if every ring R, such that, F c R < K is a field.
Solution: Let K/F be algebraic and let R be a ring such that, F c R c K.

Since R < K, R will be commutative and also unity of K will be unity of R
asFc RcKk.

LetO#a e R thenae K=a' ek
KJ/F algebraic = a is algebraic over F

= 30 #f(x) € F(x) such that, f(a) =0

Let S =yt ox+ o +ax’, o el

Then o, + a,a + azaz + o +a,a" = 0 with some o # 0. Suppose
a, =0

1

-1 _ n+l
Then oy =-(a, +to,a+..+od")eRrR
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= a’leRasocalngR

So, every non zero element is invertible in R.

Conversely, leta € K. Let R =F[a], then R is aring such that, FC R <
K. By hypothesis R is a field.

Suppose a # 0, then a!' € R = F[a]

Thus al = a, toat..+tad, o el
Let S&X) =0y tax+ .. +ax"e Flx]
Now 1 =04+ oa+..+aad"!

gives oa + o, @® + ..+ o @ —1=0
showing that a satisfies x f(x) — 1 € F[x].
Clearly x f(x) — 1 is anon zero polynomial.
Hence, a is algebraic over F and so K/F'is algebraic.

3.3.1 Separable and Inseparable Extensions

This section deals with those polynomials which have simple roots and the fields
generated by these simple roots.

A root o of f(x) € K[x] is called simple if x — o divides f(x) and (x — ot)
does not divide f(x). Similarly, a root a of f(x) € K[x] is said to be a root with
multiplicity m, if (x — o)™ divides f(x) but (x — o) * ! does not divide f(x).

Let  f(x) =a,+ax+..+ax" e K[x].

Define f'(x) = a, + 2a, + ... + nanx”’1 e K[x].

Then f'(x) or /" is called the derivative of f.

If f, g € K[x], then it can be easily proved that

) (e =/ *g

@ (g =fgt/sg

@) (af) =af',aekK

(iv) x' =1.

It can be easily checked that a is a simple root of f(x) € K[x] iff

f'(a) # 0. In other words, a is not a simple root of '€ K[x] iff f'(at) = 0.

Theorem 3.6: Suppose all roots of f(x) € K[x] in a minimal spitting field of
fover K are simple. Then the roots of fin any minimal splitting field of f over
K are simple.
Proof: Let f(x) =ayx-a) .. (x—-a,), o €kE.
where £ = K(a,, ..., o) is a minimal splitting field of fover K.

Suppose each a., is a simple root of /.

Let £’ be another minimal splitting field of fover K.

Then E' = K(B, ..., B,) where Bs are roots of /.

Then there exists a K-isomorphismc : £ — E'.



Since a., is a root of f; o(a;) is also a root of f/in £.

Therefore {o(a,), ..., o(a,)} = {B,, ... B,}-
Since o is 1-1 and o s are distinctroots of f, o(a)s are all distinct. So 3 s
are all distinct.

Thus, the roots of fin £’ are also simple roots.
Note: By the above arguments, we can also prove that if there is a root of mul-

tiplicity m in a minimal splitting field of fover K then every minimal splitting field
of fover K will have a root of fof multiplicity m.

Theorem 3.7: Let F be an extension of K. Let f, g € K[x]. Then the g.c.d.
of fand g regarded as polynomials in K[x] is same as that of f and g regarded
as polynomials in F[x], upto associates.

Proof: Let d be the g.c.d. of /; g € K[x] and d, be the g.c.d. of f, g € F[x].

Now d|f,d|gmK[x]=4d|f d|gin F[x]
= d|d, in F[x] =d, =du, ue F[x].
Also, d=ff, +gg. ff € K[x]

Since  dy| fi d, | g d, | ff,. 4] gg,.

Therefore, d, | ff, + gg, = d in F[x].

= d=dyv v e Flx].

So,d=duv = uv=1= u,vareunits in '= d, d, are associates. Thus
d and d| are same upto associates.

Theorem 3.8: Let F be an extension of K.Then f and g are relatively prime
regarded as elements of K[x] iff f and g are relatively prime regarded as
elements of F|[x].

Proof: Suppose fand g are relatively prime regarded as elements of F[x].

Then (f, g) =g.c.d. of f, g € Flx]isaunitd € F.

Let (f,g) =gcd off, g € K[x] bed,

Then d and d, are associates

= d =ud,u=Unitin F

= d, =u'ld="Unitin F

Since d| € K, d| is a unit in K.

The converse follows similarly.
Theorem 3.9: Let F be an extension of K. Let f(x) € K[x], o € F. Then f
can be written as f = (x — a)’g + (x — a) f(o) + f(o) for some g € F[x].
Proof: Now (x — o) € Flx].

Let f=@-a)Yg+h g heFx]

and h=x-o)g, +h, gh eF

So, f(a) = h(a)=h, (deg h <2)
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Also, fr=2@x-a)g+t@x-—aPg+n

and h' =g

= fla) =W () =g,

Theorem, f = (x — a)’g + (x — &) f'(a) + f(av).
Theorem 3.10: Let f € K[x]. Then the roots of f are simple iff fand ' are
relatively prime.

Proof: Suppose the roots of fare simple. Let (f, /') =d.

If d is a non-constant polynomial in K[x], then d has a root o in some
extension ' of K.

Now f=df, [ =dg, f,g € K[x]

= flo) =d) fi(), [f'(o)=d(a) g (a)

= fla)=0=f"().

Using above result, we get

f=-a) g+ (x—0)f(a)+flo)
= (x - 0)g

= a is not a simple root of £, a contradiction.

So, d = constant € K.

Since f#0,dis anon zero element in K.

Therefore, d is a unit = f, /' are relatively prime.

Conversely, let fand f” be relatively prime. Then (f, /') =d = unitin K.

Let o be a root of /' such that a is not a simple root of /. Let o € F D K.

Then f(a) = 0= f"(a)

= x — o divides fand /' in F]x] 2 K[x]

= x — o divides d

Butd €e K= degd=0 (d=#0).

and x — o divides d

= deg (x — a) < deg d = 0, a contradiction.

So all roots of fare simple.
Definition: A polynomial is said to be separable it all its roots are simple. In view
of the above theorem, the following result follows.
Theorem 3.11: 4 polynomial f(x) € F[x] is separable iff f and f' are rela-
tively prime.

Corollary 1: If f(x) € F[x] is irreducible over F such that, f’ # 0, then fis
separable.
Proof: Let g.c.d. (f, /') =d thendegd < deg (' <degf.

Since fis irreducible over F and d is a factor of f'such that deg d < deg
£, we find d is (non zero) constant and thus a unit. So, fand f” are relatively prime.



By above theorem, fis separable.

Corollary 2: Let f(x) € F[x] beirreducible over F.. If characteristic of F'is zero,
then f'is separable. (In other words, an irreducible polynomial over a field of
characteristic zero is separable).
Proof: Letf=aqa,+ax+..+ax"e Flx].

Then f"=a, +2a,+ ..+ nanx”’l.

If /" =0, thenra, =0 forall »=1,2, ..., n. Since char F'=0, a, = 0 for
allr=1,2, ..., n = f=a,, a contradiction as F is irreducible (deg /> 1).

Thus, ' # 0. By Corollary 1, fis separable.
Theorem 3.12: Let F be a field of characteristic p. Then for any polynomial
f(x) € Flx], f' = 0iff f(x) = g(xP) for some polynomial g(x) € F[x].
Proof: Let f(x) =a,+ax+..+ax"and f" = 0.

Then ra. =0 Vr=1,2,..,n.
= a. =0 or p divides r as char F' = p.
Thus, f=a,+ apxp + ..+ aspxsl’

g(x), where g(x) = a, + axt ..+ aspxs e Flx].
Conversely,let f = g(x’), where
gx) =by+bx+..+bx" e Flx]
Then, S =by+bx+ .. +b x"
= I =pb1xp’1+...+npbnx”p’1=0 aspa=0VacekF.
Theorem 3.13: Let f(x) € Flx] be irreducible over F. Then all its roots have

the same multiplicity.

Proof: (i) Let char F'=0. Then by corollary 2 to Theorem 3.11 fis separable.
So, all roots of fare simple.

(if) Let char F'=p. If f* # 0, then by corollary 1 to Theorem 3.11 f'is
separable. So, all roots of fare simple.

If /" = 0, then f(x) = g(x”), for some g € F[x].
Since fis irreducible over F, so is g over F.
If g" # 0, then g is separable over F. Let a be a root of 1.
Then 0 =f(a) = g(o) = g(x) = Irr (F, o).
Now, g(x) = (x — o) h(x), h(c) # 0 as o is a simple root of g(x).
So,  f(x) =g(") = (" — o) h(x")
= (x— o hy(x)

[7,(x) = h(xF) = h (o) = h(a?) # 0]
= x— o appears exactly p times in f(x).
This is true for all roots of f(x).
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If g’ = 0, then g(x) = q(x”), ¢ € F[x]

= f() = q().

Proceeding in this way, since, deg f7is finite, after finite number of steps we
get f(x) = r(xpe), r' #0. Then r is separable over F and every root of fappears
exactly p© times.

Hence all roots of fhave same multiplicity p° (e > 0).
Aliter: Let a be a root of fof multiplicity m.
Then f(x) = (x — )" g(x), g(a) # 0 g(x) €K[x], K = k(o)
Let B the another root of /. Then 3 an F-isomorphism
G : F(a) = F(P) such that,

o(a) =P
Now J =0o(f) = (x—P)" o(g(x))
Let gx) =a,tax+..+ax" a ek

Then o(g(x)) =ol(ay) +o(a)x+ ..+ o(a,) x"
= o(g(B)) =ol(ay) +o(a)p + .. +o(a,) p"
= ala,) + afa,) o(a) + ... + o(a,) o(a”)
=o(a, + a0, + ... + a,a")
= o(g(a)) # 0 as g(a) = 0
= Bisarootof fof multiplicity m, showing that all roots of / have same
multiplicity.

Corollary: Iff e Fp[x] isirreducible over k) and fis not separable, then p divides
n, where n = deg f. (Fp deotes the field {0, 1, 2, ..., p— 1} mod p).
Proof: By above theorem, all roots of fhave same multiplicity p¢, e> 0 as fis
not separable.

So, deg f =mp°

= pdividesn =deg /. (Note, char F = p).
Theorem 3.14: Let X’ — a € F|x], where p = char F. Then either X’ — a is
irreducible over F or X — a is a p-th power of a linear polynomial in F.

Proof: Let fx) =x-a.
If b is a root of f(x), then f(b) =0 = a = .
= f(x) =xP —bP = (x—- D),

If b € F, then f(x) is p-th power of linear polynomial x — b € F[x].
Suppose b ¢ F. Let p(x) be a monic irreducible factor of f(x) in F[x].
Since p(x) divides f(x), p(x) = (x — b)" for some m, 1 <m < p.
So, p(b) =0. Thus, p(x) = Irr (F, b).
If g(x) is another monic irreducible factor of f(x) in F|x], then

g(x) = Irr (F, b) = p().



So, J&x) =(px))"

Since degf =p,p=rm.

Ifr>1,thenm=1= p(x) =x—b €F[x] = b € F, a contradiction.

So, r =1 = f(x) = p(x) is irreducible over F.
Case 1: We give an example of an irreducible polynomial which does not have
distinct roots.

Let K= F,(1), F,= {0, 1} mod 2 and  is an indeterminate over F,. Let
f(x) =x*>—t € K[x].

If fis reducible over K, then there would be an element a € K such that,

f(a) = 0.

= t=a2.ButaeK:>a=&.
h(t)
_ (g’ 2 >
So, t = 2> = deg (g(t))” = deg t(h(r))".
(h(1))

= 2degg(t) =degt+2degh(f)=1+2deg h(f), which is not true.

So, fisirreducible over K.

If o is a root of f; then f/"(a) = 0 (as char K = 2 = char F,) = o is not
a simple root of /.

So, f=x-w?

Thus, f1is an irreducible polynomial having no simple roots.

Definition: Let F'be an algebraic extension of K. Then a € F'is called separable
over K if Irr (K, a) is separable.

Thus, a € F'is separable over K iff a is a simple root of Irr (K, a). Further,
if each a € F'is separable over K, then F'is called a separable extension of K.
(We write F/K is separable).

In the case above, x> — ¢ = Irr (K, o) and o. is not a simple root of x> — 7.

If F is a minimal splitting field of f=x? — t over K, containing o then
F/K is algebraic and a. € F'is not separable over K.

So, F'= K(a) is not separable over F.

However, if char K =0 then every algebraic extension of K is separable
by Corollary 2. to Theorem 3.11.

Theorem 3.15: Let char K = p. Then every algebraic extension of K is sepa-
rable iff K = K?.

Proof: Suppose every algebraic extension of K is separable. Let a € K. Let
f(x) =x" —a and b be a zero of f(x). Then 0 =f(h) =V -a=a=V =
f(x)=x" -0 =(x—b).If b ¢ K then f(x) is irreducible over K.

So, X —a =1Irr(K, b).
But fx) =x—a
= f'x) = pxP~!
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= f'(b) =0ascharK=p
=b is not a simple root of f(x)

= K(b)/K is not separable, contradicting the given fact that every algebraic
extension of K is separable.

So,be Kanda=5b" € KX = K C K?.
However, K?” < K. So K =K? (Note, K = {a” | a € K}).
Conversely, let K = K?. Let F/K be algebraic.

Let a € F, f(x) = Irr (K, o). If f'is not separable, then ' = 0. So,
f=g(x*) for some g € K[x].

— n
Let g =a,tax+ .. tax" a ek
Then f =gy =a,+taxl+..+ax"”
Since K =K? a,=b", b, € K.

=pr PP P P
So, f=bl+blx+ .. +blx

=y +bx+..+bx"V, b ek
contradicting that fis irreducible over K.
Thus f'is separable = a is separable.
Since a is an arbitrary element of F, F/K is separable.

3.4 PERFECT FIELDS

Definition: 4 field K is called perfect field if every algebraic extension of K is
separable.

A field of characteristic zero is perfect by Corollary 2 to Theorem 3.11. So,
Q, R, C, are perfect fields.
Theorem 3.16: Let char K = p. Then the following are equivalent:
(i) K is perfect.
(ii) K = K?
(iii) Every element in K is a p-th power of some element in K.
(iv) 0 : K > K such that 0(a) = a” is an automorphism.
Proof: (i) = (ii) follows by Theorem 3.15
(1) = (iii) obvious
(iii) = (iv): Since char K =p, 0 is clearly a homomorphism and is 1-1.
Also, be K=>b =a’, a € K by (iii).
= b=0(a) = 0 is onto. So, O is an automorphism.
(iv) = (i): Now 0(K) = {6(a) | a € K}
={a’|a € K}
= K?.



Since 0 is onto, K = K?.
By Theorem 3.15 then K is perfect.

Theorem 3.17: Let F — K — L be a tower of fields. Suppose L/F is separable.
Then L/K is separable.

Proof: Leta € L,p(x) =1Irr (K, a)
g(x) =Irr(F, a)

Then q(x) € K[x] and g(a) = 0.

So, p(x) divides g(x) in K[x]

= q(x) = p(x) r(x), r(x) € K[x]
= q'(x) =p'(x) r(x) + p(x) r'(x)
= q'(a) =p'(a) r(a).

Since L/F is separable, a is separable over F.
So a is a simple root of g(x) = ¢'(a) # 0
= p'(a) # 0 = ais a simple root of p(x)
= ais separable over K

= L/Kis separable.

Corollary: Every finite extension of a perfect field is perfect.

Proof: Let F'be aperfect field. Let K/F be finite extension. Then K/F'is algebraic.
Let L/K be algebraic. Then L/F is algebraic. Since F'is perfect, L/F is separable.
From above, L/K is separable. So, K is perfect.

Example 3.11: Let F be a perfect field. Show that the set of elements fixed
under all automorphisms of F is a perfect subfield.

Solution: Letchar F=p, K= {a € F|c(a)=a V o € G}, where G is the group
of all automorphisms of F. Then K is subfield of F.

Define 0 : F — F such that,

0(a) = o

Then 0 is a homomorphism. Since F'is perfect, 0 is onto. So, 6 € G.

Leta € K. Theno(a)=a VoeG

= 0a) =a=>d’=a=aec K = KcK"

= K =K’ = K is perfect.
Example 3.12: Let K/F be a finite extension and suppose K is perfect then
show that F is perfect.
Solution: Let char ' = p, then char K = p.

Let [K:F] =nand {a, a,, .., o, beabasis of K over F.

Since K is perfect, K = K”. We show F = F?.

Now, F? < F c K. So we show that

[K : FP] =[K : F] which would give F'= FP?.
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_ P P P _

Let S={a, 05, .,0 K=K
Py P Py P Py P =

If afaf +afaf + .. +alal =0, aeF

then (a0, + a,o, + ... + a0 ) =0

= a0, +ao, +..+tao =0

= a,=0 Vi

= Sis L.L. set in K (over F?)

Let b e K,thenb=a’,a € K as K=K?

Now, a e K=>a=bo,+ba,+..+bo,b el
= b=ap=bf(xfj+b2p(x§+...+bfaf

= S spans K over F?

Hence S is a basis of K over F?

= [K:FP]=0)=n=[K:F]
= F = F? or that F is perfect.

3.4.1 Normal Extensions

Iff(x) € K[x] is irreducible over K, then 3 an extension £ of K containing a root
of f(x). In this section we consider those extensions of K which contain all roots
of f(x) and study properties of such extensions.

Definition: Let £ be an extension of K. E is called normal extension of K if
(i) E/K is algebraic (i) o € E = p(x) = Irr (K, o) splits in E[x] or E.
Case 2: A quadratic extension is a normal extension.
Let E be a quadratic extension of K. Then [E : K] =2.
Since E/K is finite, E/K is algebraic.
Leta € E, px) =Irr (K, o).
Now Kc K(a) cE.Since2=[E: K]=[F: K(o)] [K(a) : K].
Either [E:K(a)] =1or[K(a): K]=1.

If [K(a): K] =1,then K(o) =K => a € K

= p(x) =x — a splits in K[x] < E[x].

If [E: K(a)] =1, then E = K().

So, 2 =[E:K]=[K(a): K]=degIrr (K, o) =deg p(x).
Now a is a root of p(x) = x — o divides p(x) in E[x].

= px) = (x —a) g(x), q(x) € E[x].

Since deg p(x) =2, deg g(x) = 1. So g(x) = (x — B), B € E.
Therefore, p(x) = (x —a) (x — B) splits in E[x].

Thus, E£/K is normal.

Case 3: Let f(x) = x° — 2 € Q[x]. Let a be the real root of f(x). Consider
Q(a)/Q. We show that Q(ca.)/Q is not normal.



Now f{(x) is irreducible over Q by Eisenstein's criterion (take p = 2). So, f(x)

=Irr (Q, o).

Since a is algebraic over Q(being root of f(x) € Q[x]), Q(a)/Q is alge-
braic.

If /() splits in Q(av), then Q(av) contains a minimal splitting field £ of f(x)
over Q.

So, Qc Ec Q).

But [E:Q]=6and [Q(a) : Q] =deg Irr (Q, o) = deg fix) = 3.

Since 3=[Q(a):Q]=[E: Q]=6,we get a contradiction.

So, Q(0)/Q is not normal.

Similarly, Q(aw)/Q and Q(aw?)/Q are not normal extensions.

Note: We have seen in above case that an extension of degree 3 need not be
normal. We can, however, have a normal extension of degree 3. Consider
f)=x+x*+1¢ F,[x], where F, = {0, 1} mod 2. Let o be a root of f(x).
Then o2, 1 + o.+ o are also roots of f(x). So F. ,(a) is a minimal splitting field
of f(x) over F,. Thus F(a)/F, is normal and [F,(a) : F,] = deg Irr (F, o) =
deg f(x) = 3.

Theorem 3.18: Let F < K < E be a tower of fields. If E/F is normal, then
so is E/K.

Proof: Since E/F is normal, E/F is algebraic. So, E/K is algebraic.
Let a € E, p(x) =Irr (K, o) , g(x) = Irr(F, o).
Then g(x) € F[x] < K[x] = ¢q(x) € K[x] and g(a) = 0.
So, p(x) divides g(x) in K[x].
Since E/F is normal and o € E, g(x) splits in E[x].
So, p(x)splits in E[x]. Thus, E/K is normal.

Note: In above theorem K/F need not be normal. Consider f(x) = x> — 2
€ Q[x]. Let a € R be aroot of f(x). Then Q(a)/Q is not normal by Case 3.
However, Q(a, w)/Q is normal by Theorem 3.19 and Q < Q(a) < Q(a., w).
Notice Q(a, w) is a minimal splitting field of /(x) over Q.

Theorem 3.19: 4 minimal splitting field of a non-constant polynomial f(x)
€ K[x] over K is normal extension of K.

Proof: Let £ be a minimal splitting field of f/(x) over K. Then E/K is algebraic
and finite. Let f(x) = o)(x — a)) ... (x — ), o, € E.

Then E = K(o, @, ..., )

Let a € E, p(x) = Irr (K, o) € K[x] < E[x].

Then p(x) splits in some extension of £.

Let B be a root of p(x) in some extension of £. We show that } € E.

Now a., B are roots of p(x) = 3 a K-isomorphism & : K(or) > K(p) such
that, o(a) = B.
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Then, a minimal splitting field of fover K(a) is K(a) (o), ., ..., O
= K(a,, a,, ..., o) (1)
= E(a)
=F asoaek
Also, a minimal splitting field of o(f) =fover K(B) is
KPB) (o, oy, .oy @)
= K(o, 01, ..y @) (B)

= E(P).
So, 3 an isomorphism 0 : £ — E(J) such that, 0(a) = o(a) V a € K(a)
= 0(a) = o(a) = P.
Now, K c K(o) c E < E(B)

= [E:K()] =[0(F): 0(K(o)]
= [E(P) : o(K(a)]
= [E(P) : K(P)]
So, [E(B): K] =I[EP): K(P)] [K(PB): K]
= [E : K(o)] deg p(x)
=[£: K(o)] [K(a) : K]
=[E: K].
Since E c E(P) and E, E(P) as vector spaces over K have same dimension,
E=E(B). So, B € E. Thus, p(x) splits in E. This proves E/K is normal.

Theorem 3.20: A finite normal extension is a minimal splitting field of some
polynomial.

Proof: Let £/K be a finite normal extension.

E/K is finite = E = K(a, o, ..., O ).

Let p(x) =1Irr (K, o). Since o, € E and E/K is normal, each p (x) splits
inkE.

Letf=pp, .. p, € K[x].

Then, a minimal splitting field of fover K is

K(a,, o, ..., o, roots of ps in E) = E.

So, E is a minimal splitting field of fover K.

Corollary: Let K c E|, C E, K C E, C E be towers of fields such that, £/K,

E /K are finite normal extensions. Then E' E,,, the smallest subfield of £ containing

E VE, is finite normal extension of K.

Proof: Since E,/K is finite, £, = K(a.,, ..., a).

So, E\E, = K(a,, ..., o )E,
=E (o, ..., @), a8 K C E,
= KE, = E,



Thus [E\E,: E)] = [Efay, ..., o) : E] Field Theory
=[E, (o, s ) D ES(Oy, s 0, )] e [Ex(04) 1 ES]
< [K(ay, ... ocn) Koy, o, ] [K(ay) 2 K]
= [K(a, -.r @,) K] NOTES
=[E, : K].
Therefore,
[E\ E,: K] =[E\E,: E)]][E,: K]
< [E, K] [E, : K] = Finite
= [E\E,: K] =Finite.
Now E,/K is finite normal = £ is a minimal splitting field of /, over K
Also, E,/K is finite normal = £, is a minimal splitting field of £, over K

Let f =5/ E =Ky, .., a), E,= Kb, .., b).
Then, a minimal splitting field of fover K is K(a,, ..., a,, b, ..., b )
=E/b,, ... D)
= EK(b,, .., b) as EK=E,
= E\E,.

Thus, E | E,/K is finite normal extension.

(Note, we have also shown above that £,/K, E,/K are finite = E|E,/K
is finite).
Case 4: We now give an example to show that a normal extension of a normal
extension need not be a normal extension.

Consider the tower of fields Q = Q(/2) = Q(2'%).

Now  [Q(2):Q] =deglrr (Q, v2) = deg(x* —2) =2

and [Q(2"): Q2"H)] = deg Ir'(Q(2), 2') = deg (x* —v2) =2

S0, Q(2)/Q, Q(2"*)/Q(~2 ) are normal.

If Q(24)/Q is normal, then

f(x) =Irr(Q, 2"*) = x* — 2 must split in Q(2"4).

So, Q(2!"4) contains a minimal splitting field £ of f(x).

But [E:Q] =8and Q c E c Q2%

= [Q2""): Q] =4>[E: Q] =S8, acontradiction.

Therefore, Q(2"4)/Q is not normal, proving our assertion.
Theorem 3.21: Let K < F C E be a tower of fields such that, E/K is finite

normal. Then any K-homomorphism of F into E can be extended to K-au-
tomorphism of E.

Proof: Since E/K is finite, £ = K(a,, Q.,, ..., &,). Also E/K is finite normal
= F is a minimal splitting field of some f(x) € K[x] over K. Let ¢ be a K-
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homomorphism of F'into £. Then G is a K-isomorphism from F onto 6(F)=F".
f=p,p, ... p,, Where p, = Irr (K, o) splits in E.

So, a minimal splitting field of fover F'is

F(a,, o, ..., a,, roots of f'in E)

= E(roots of fin E) = F
(E =Ko, a,, ..., o) < Fla,, a,, .., 0) € E

= E = Fa, a,, ..., o))

Also, aminimal splitting field of o(f(x)) = fover F" is

F'(ay, o, ..., o, roots of f'in E)

= E(roots of f(x) in E)
=F
[E = K(a, a,, ..., o) < F(a,, oy, ..., Q)
= F'(o, Oy, ooy Q)
c Flo,, oy, ..., o) = E
= E =F'(a, o, ..., o )]

Therefore, 3 an isomorphism 0 : £ — E such that,
0(a) =c(a)VaekF
= 0(a) =o(a) =a V o € K = 6 is a K-automorphism of £
extending . This proves the result.
Normal Closure: Let E/K be a finite extension. Then £ = K(a,, o, ..., ).
Let p; =Irr(K, o) and f=p,p, ... p, € K[x].
Then E' the minimal splitting field of fover K is
K(a,, ..., a,, root of fin some extension of E)
= E(roots of fin some extension of )
= F < F’ and E'/K is finite normal
(as aminimal splitting field of fover K is finite normal extension of K)
Suppose K ¢ E < F such that, F/K is finite normal.
We show that £' can be embedded in F.
o eEcF=>o eFVi Also F/K is normal.
So, p(x) splits in F[x] V i = f'splits in F[x]
= F contains a minimal splitting field £, of fover K.
= E, C F. But E' is also a minimal splitting field of fover K.
Therefore, £’ = E, < F = E’ can be embedded in F.
Thus, E’ is the least finite normal extension of K such that, K c £ C E'.
E' 1s called the normal closure of E/K.
Case 5: Let fx) =x*-2
= (x - a) (x—aw) (x — ow?)



We find the normal closure of Q(a)/Q.
Now [Q(a): Q] = degf(x)=3.
where f =1Irr (Q, o).
Then, a minimal splitting field of fover Q is Q(a., ow, aw?) = Q(at, w).
So, Q(aw)/Q is the normal closure of Q.
3.4.2 Finite Fields

A field having finite number of elements is called a finite field or a Galois field.

Theorem 3.22: If F is a finite field, then o(F) = p" for some prime p and an
integer n > 1.

Proof: Let P be the prime subfield of F.

Since F'is finite, so is P. Therefore, P = for some prime p.
<p>
But —2— ={0,1,2, ..,p—1)modp=F = P=F.
<p> P P

Since P c F, we can regard Fp c F. Now Fis a vector space over Fp.
Since F'is finite, [F': Fp] = n = finite.

Let {u, ..., u,} be a basis ofF/Fp.

Then F = {ou, + .. tou, | o € Fp}.

Now each o, can be chosen in p ways and Zou, = ZBu, = o, = B,
therefore o(F) =p".

Theorem 3.23: Let p be a prime and n > 1 be an integer. Then there exists
a field with p" elements.

Proof: Let f(x)=x7—x € Fp[x], g =p". Let F be a minimal splitting field of
f(x) over Fp.

Then F =Fp (zeros of f'in F).

Let S = {zeros of fin F7}.

Now [ =gxi'—1=—1aschar F=p
= g-1=p"—1=-1.

Therefore, (f, /") =1
= all zeros of fin F" are simple and so distinct.
So, o(S) =gq.
Now 0 eS=S85=#o0.
Also a, b qu:>aq=a,bq=b
= (axb) =a’#bl=azxh,
(ab)! = a%b? = ab, (ab ") = a%b 9 =gb~!
= a+b,ab,ab! (ifb=0) e S.
Thus, S'is a subfield of .
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Leta € Fp. Thena” ' =1
= @ =a=a" =a=a=a
= aisazeroof finF=a € S:>FpgS.
So S'is a field containing F, and S.
But F'is the smallest field containing Fp and S.
= Fc S AlsoScF.So, S=F = o(F)=0(S) =q.
We now prove the following results from group theory.
Lemma 1: Let G be an abelian group under multiplication. Let a, b € G be
such that o(a) = m, o(b) = n and (m, n) = 1. Then o(ab) = mn
Proof: Now (ab)™ =a™ b™ = (a")'(b")" = 1 = identity of G
If (ab) =1, thena'd’ = 1.
= d=b'd"=b"=>b"=1
= b"=1=o0b)mt=>n|mt=n|tas(n m)=1l.
Similarly, m | ¢. So, mn | t = t > mn = o(ab) = mn.
Lemma 2: Let G be an abelian group under multiplication. Let a, b € G be

such that, o(a) = m, o(b) = n. Then there exists ¢ € G such o(c) = l.c.m. of
m and n.

Proof: Let (m, n) > 1.

Let m =p*..p%
n =pll31 _._prBr
where p,, ..., p, are distinct primes and o, B, are non negative integers.
Let I =p° .. p% pffl' ...prBV

where o, 2 B, fori =1, ..., s and Bj > o forj=s+1,..r
Then / is the l.c.m of m and n.

Let x =abst 1™ per,y= piPi pbs
ro IR o)
Then o(x) =p,*..p%

B+
o) = p,Y ...prBV

and (o(x)), o(y))= 1.
ByLemma 1,
o(xy) =lc.m.of mandn
=p1a1 psots plzs:ll . prBr

Lemma 3: With the hypothesis of lemma 2, if n + m, then the l.c.m. | of m
and n is greater than m.

Proof: Nowm | = m <[ If m =1 then n |/ = n | m, a contradiction.
So [ > m.



Lemma 4: Let G be a finite abelian group under multiplication. Let o. € G
be of maximum order. Then o(B) | o(a) for all B € G
Proof: Let o(a) = m, o(P) = n.

Suppose n + m. By lemma 3, /=1.c.m. of m, n>m. By Lemma 2, there

is y € G such that o(y) =/ > m contradicting o € G is of maximum order. So,
n|lm = o(P)|o(a) forall B € G.

Theorem 3.24: Let F be a finite field. Then F*, the set of non zero elements
of F forms a cyclic group under multiplication in F.
Proof: Now F* is an abelian group under multiplication.

Let o € F* be an element of maximum order m.

Then by Lemma 4, o(B) | m for all B € F*

So, m=o(PB)r

= B"=pPr=1 forall p e F*.

= P satisfies x” — 1 over F.

Since F' can't have more than m zeros of X" — 1, o(F*) < m.

But o € F* and o(at) = m

= 1, a, o ..., o !are distinct elements of F*

= o(F*)>2m = o(F*)=m=o(a) = F* =<a>.

The generators of F* are called primitive elements of F.
Theorem 3.25: Let F be a finite field of order p". Then F is a minimal split-
ting field of x?" — x over Fp.
Proof: We can regard F as an extension of Fp. Letg=p".

Now F* =<a>, o(a)=o(F*)=qg—1.Alsoa? "= 1.

= o? =aq.

= Elements of F are zeros of f(x) = x? — x over F,

So, f(x) splits in F.

Therefore, f(x) =x(x —a) ... (x —af™ )

= Minimal splitting field of / over F, is F (o, o, ..., &', 1, 0) =
F(F)=F.
Theorem 3.26: Any two finite fields with the same number of elements p"
are Fp-isomorphic.

Proof: Let /|, F, be finite fields such that o(F',) = p" = o(F,). Then, by above
theorem £}, F’, are minimal splitting fields of f(x) = x” " _xover F,=FF,
are Fp-isomorphic.

The above theorem shows that there is unique field of order ¢ = p” upto
an isomorphism. It is denoted by GF(p") or GF(q) or Fgq.
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Example 3.13: Show that x™ — 1 divides X" — 1 over a field F if and only if
m divides n.
Solution: Let n=km +r, 0 <r <m.

k=1

The ¥ — 1 = xr[le""] o= 1)+ @~ 1).

i=0
Therefore, x” — 1 divides x" — 1 if and only if x"— 1 = 0.
Also x"— 1 =0 if and only if = 0.

So x™ — 1 divides x" — 1 if and only if m divides n.

Example 3.14: Show that x”"—x divides x""—x if m divides n.

Solution: Let n = mu.
Then p"'—1=p™ -1
— (pm)u ~1
= (p™ — 1) (integer)
= p" — 1 divides p" — 1

By above problem
xP" -1 1 divides x?" "1 — 1
= xP" — x divides x?" — x.

Theorem 3.27: Let F be a field with p" elements. Then F has a subfield k
with p™ elements if and only if m divides n.

Proof: Suppose kis a subfield of F. Then k can be regarded as an extension of
Fp such that [k : Fp] =m. Similarly, ' can be regarded as an extension of Fp
such that [F : Fp] =n. Now [F: Fp] =[F:k][k: Fp] = m divides n.

Conversely, let F be a field such that, o(F) = p". Suppose m divides n.
Now F is a minimal splitting field of x”" — x over Fp.

Let f(x) = x*" — x and g(x) = x*" — x.

Since m divides n, by above problem g(x) divides f'(x).

Consider F' = {zeros of g(x) in F7}.

Then F” is a subfield of F.

Since g(x) has p™ distinct zeros, F”’ is a subfield of F' with p™ elements.

If & is another subfield of F such that o(k) = p™, then o(k) = o(F") = p™.

=k, F' are Fp-isomorphic.

Thus, there is exactly one subfield of F' (up to isomorphism) with p™ elements.
Example 3.15: Determine the algebraic closure of F »
Solution: We know m! divides ! for all positive integers m < n. By above theorem
Fpm! is a subfield of Fpn! . Thus, there is an ascending chain of subfields

F ngnQFyQ...
p pe P>



and FpoO = qun! is a field such that Fp,, c Fpn! c FpOO for any positive

integer n.
Let S be the set of all polynomials over F . Let fes.
Then the minimal splitting field of fover Fp is a finite field Fpn.
So, each f € § splits in F .
Thus, the minimal splitting field of S over Fp is
Fp (zeros of f € S'in FPOO) c Fpoo.

. n
Also, a € Fpoo =ac Fp,, for some n = a is zero of x”" — x over Fp.

Now f=x'"—x eS= aiszeroof f e SianoO

= FpoO c Fp (zeros of f € S'in FPOO)

= Minimal splitting field of S over F, is F

= FpoO is the algebraic closure of Fp.
Theorem 3.28: Every finite extension of a finite field is Galois.
Proof: Let K be a finite extension of a finite field . Then K is also a finite field.
So, char k£ = char K = p, for some prime p. Let o(k) = p”, o(K) = p".

Now K is a minimal splitting field of x*" — x over Fp = K/Fp is finite
normal.

Also F, is finite = F, is perfect = every algebraic extension of F, is
separable = K/Fp is separable = K/Fp is Galois. Now, F c kc Kand K/Fp
is Galois = K/k is Galois.

Corollary: F q/Fp is Galois, g =p".

Theorem 3.29: Let F be a finite field. Then there exists an irreducible poly-
nomial of any given degree n over k.

Proof: Let o(F)=p", p being a prime.

Let g =p™ and let f(x) =x? — x

Then F ; is the minimal splitting field of /(x) over F,

Since m/nm, Fpm = F can be imbedded in Fq.

Now Fp cF = Fpm - Fpmn =FE.

Then [E:F] =n.

Let £* be the multiplicative group of non zero elements of £ and let
E* =<q>

Then E=Fa) aaFcE aek

So, n =[E:F]=[F(a): F]=degIrr(F, o)

= Irr (F, o) is an irreducible polynomial of degree n over F.

Theorem 3.30: Let G be the group of Fp-automorphisms of EF. T hen G is
a cyclic group generated by Frobenius map of order n, where q = p".
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Proof: Let ©O: Fq - Fq such that,
0 (b) =b.
Then 0 is called Frobenius map.
Since char Fp = char Fq = p, 0 is a homomorphism.
Also 0 is 1-1.
Since F’ . is finite, O is onto.
Ifb er,thenbp=b
= 0(b) =bforallb e F,
So, 0 is an Fp-automorphism of F = 0edG.
By Artin's theorem, o(G) = [F’ pE Fp] as Fp is the fixed field of G.

= o(G) = n. We show that o(0) = n.
Let g =[,leth*=<a>.
Then ' =l=d=a=d"=a
Now, 0" =I=>0"(a)=a=d" =a=a" " 1=1.
= oa|p -1=>qg-1|p-1
= pt —-1|p-1=p'-1<p -1=>n<r
Also 0'(b) =b”n=bforallber:>6”=I.
So, 00) =n=G=<06>
Example 3.16: Show that for any integer a and prime p, &’ = a (mod p).
Solution: Let a=pqg+r, 0<r<p.

Then a =r (mod p)
Now, 0Sr<p:>rer

=>r,r, F=r

p times
= w—pu=r
= r? =r (mod p)
= r? =a (mod p)
So, a=r (mod p)
= a? =r’ (mod p)
= a’ = a (mod p)

(The above result is known as Fermat's theorem)

Example 3.17: Show that every irreducible polynomial f(x) € Fp[x] is a
divisor of x*" — x for some n.

Solution: Let deg f(x) = d and a be a zero of f(x) in an extension of Fp.
Then, [Fp(oc) : Fp] =deg Irr (Fp, o) = deg f(x) = d.
So, O(Fp((x)) =p? Then a € Fp(a)



d . d
= of” = o = a is zero of x¥ —xer[x]
= 7(x) divides ¥ — x.

Example 3.18: Show that x"" — x is the product of monic irreducible poly-
nomials in Fp[x] of degree d, d dividing n.

Solution: Let f(x) =x? — x, g = p". Let p(x) be a monic irreducible factor of
f(x) over Fp. Let abe a zero of p(x) in F, where F'is a minimal splitting field of
f(x) over Fp. Then F = Fq and p(x) = Irr (Fp, o)
Now Fp (- Fp(oc) - Fq
and n = [Fq : Fp] = [Fq : Fp(oc)] [Fp(oc) : Fp]
= [Fq : Fp(a)] deg Irr (Fq, o)
= [F, : F(@)] deg p(x)
= deg p(x) divides n.
= Any monic irreducible polynomial dividing x — x is of degree
dividing n.
Example 3.19: Contruct a field of order 9.

Solution: Let F be the field of order 9. Let F; = {0, 1, 2} mod 3. Then
[Fy: F]=2. Letf(x)= x”—x. Then F, , is a minimal splitting field of /(x) over
F;. Let p(x) be an irreducible factor of /(x) over F;. Let o be a zero of p(x) in
Fy. Then o is a zero of f(x). If a € F;, then p(x) = x —a = deg p(x) = 1. If
a ¢ Fy, then Fy c Fi(a) c Fy = [Fy: Fy] =2=[F,: Fi(a)] [F5(a) : F;].
Since o ¢ F, [Fy(a) : F3] # 1
= [Fy(a) : F5] =2
But  [Fy(o) : Fy] =deg Irr (F, o)
= deg p(x)
Thus deg p(x) = 2.
Hence any irreducible factor of f(x) over F; has degree 1 or 2.
Now, ¥ —x =xx®-1)
=x(x* - 1) @*+ 1)
=x(x—-D)@E+DHE+D)E*-x-1)*+x-1)
Note, x> + 1, x> — x — 1, x> + x — 1 are irreducible over F. 5 as none of
0, 1, 2 are zeros of these factors.

Let p(x) =x>+ 1. Let o be a zero of p(x).
Then {1, a} is a basis of Fy = F;(a) over F.
So, Fy ={a+bala, b e Fs

={0,1,2, 0,0+ 1,0+ 2,20, 2a + 1, 200 + 2}.
Letu=a+1.Thenu2=2oc,u4=—l,u8=1.So,0(u)=8

= Fy* =<u>.
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Therefore, Fy ={0,1=u%2=u", a=ua+1=u,
a+2 =u,20=u’ 200+ 1 =1, 20+ 2 =’}

Now multiplication is defined by element #' in F, o- We wish to define ad-
dition in Fy with the help of /"

If W+ 1 %0, letu” + 1 =",

Define u' +ub =4O if b + 1 20 where a > b

=0ifu’ °+1=0

Let'sfind u’ + u'

Now w+1 =a+l=u'=0.

So, 2(6) = 1. Therefore, u’ + u' = u#®*1 =42

Also, y6 +u?=0asu*+1=—1+1=0. In this way addition is defined
in terms of u/'.

Let a=1. Then write log a=1i. If b=u’, then ab =1'®/, where @® denotes
the addition modulo 9.

So, logab =i ® j=1loga® logb.
Such a logarithm is known as Zech logarithm.

3.4.3 Algebraically Closed Fields

In this section, we give a characterization of normal extensions. Also, we show
that given a tower of fields k ¢ F < K such that K/k is normal, any k~~homomor-
phism of Finto K can be extended to a k-automorphism of K. We have already
seen this result when K/k is finite normal. We also show that given a field £, there
is an algebraic extension k of k such that & has no algebraic extension other that
k itself. k is called an algebraic closure of k. We define the product of two
subfields of a field and show that the product and the intersection of two normal
extensions of k is again a normal extension of k.

Let S be a set of polynomials over k. Suppose each f'e S splits in a field
E containing k. Then E is called a splitting field of S over k and k(zeros of
f e SinE) is called a minimal splitting field of S over k. For a finite set S, it
is very easy to show the existence of a minimal splitting field of S over £. For, let

S={f1 Lo - [, | f; € KIx]}.

Let E, be aminimal splitting field of/; over &, £, be aminimal splitting field
of f, over E, and so on, E, be a minimal splitting field of f over E_,. Then
E,cE,c..cE, andeachf splitsin £, E, = S splits in £ . So, k(zeros
off.in E ) is aminimal splitting field of S over £. It is also a minimal splitting field
of f=f, 1, ... f, over k.

Definition: A field k is called algebraically closed if every polynomial fover k
splits in £.

By fundamental theorem of algebra, every polynomial over C, the field of
complex numbers splits in C. So, C is an algebraically closed field. However, R
the field of reals is not algebraiclly closed as x* + 1 € R[x] does not split in R.
We have the following characteriszations of algebraically closed fields.



Theorem 3.31: A4 field k is algebrically closed iff every irreducible polyno-
mial over k has degree one.
Proof: Suppose kis algebraically closed.

Let f'be an irreducible polynomial over £. Since £ is algebrically closed,
fsplits in k.

So, /=1, /, ... f, where each f; is linear over k.

Since fis irreducible over k, = f; = f'is linear over k = deg /= 1.

Conversely, let g € k|x].

Theng=g,g, ... g,, Where each g, is irreducible over £.

By hypothesis, deg g, = 1 = g; is linear over k for each

= g is a product of linear factors over k = g splits in .

So, k is algebraically closed.
Theorem 3.32: A4 field k is algebraically closed iff every algebraic extension
of k is k itself.
Proof: Let k be algebraically closed. Let K/k be algebraic.

Let o € K, p(x) = Irr (k, o).

By above theorem deg p(x) =1 = p(x)=x—-a € k[x] > o €k =
K=k

Conversely, let f € k[x]. Let K be a minimal splitting field of fover .

Then K/k is algebraic. By hypothesis, K = k.

So, f(x) splits in k[x] = k is algebraically closed.

Summarizing the last two results, we have the following

Theorem 3.33: Let k be a field. Then following are equivalent
(i) k is algebraically closed.
(if) Every irreducible polynomial over k has degree one.
(iii) Every algebraic extension over k is k itself.

Theorem 3.34: A finite field is not algebraically closed.

Proof: Let k be the finite field {a,, a,, ..., a,}

Let f=1+(x-a)x-ay)..(x-a,) e klx]

Since  f{(a,) # 0 for all i, we find f does not split in £.

Hence kisnot algebraically closed.
Definition: Let & be a field. An extension £ of & is called algebraic closure
of kif

(i) E/kis algebraic.

(if) E is algebraically closed.

The following result is now an immediate consequence of Theorem 3.32.
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Theorem 3.35: Let E be an algebraic extension of k. Then E is algebraically
closed iff E has no algeraic extension other than E itself.

Example 3.20: Since [C : R] =2, C/R is algebraic. Also, C is algebraically
closed, So, C is an algebraic closure of R. However, C is not an algebraic closure
of Q as C/Q is not algebraic (1 € C is not algebraic over Q).

Theorem 3.36: Let K/k be algebraic. Let k denote an algebraic closure of
K. Then k is an algebraic closure of k such that
kcKck.

Proof: Since k isanalgebraic closure of K, k/K is algebraic. Also, K/k is algebraic.
So, k /kis algebraic. But & is algebraically closed. Thus & is also an algebraic
closure of k.

Theorem 3.37: Let K be an algebraically closed field such that K is an ex-
tension of k. Let F' = {a € K|a is algebraic over k}.
Then F is an algebraic closure of k.

Proof: We know that
k< F < K is a tower of fields.
Also, by definition of F, F/k is algebraic.
Let f'e F[x]. Then f e K[x]. Since K is algebraically closed, f'splits in K.
Letf=a(x-a)..(x-a), o € K.
Since a,, is algebraic over F, F(a,)/F is algebraic for all i.
Also F/k is algebraic. So, F(a,)/k is algebraic for all i.
a. € K is algebraic over k
o €F
fsplitsin F/
Fis algebraically closed

VR

F is an algebraic closure of k.

From above theorem it follows that F'= {a € C | a is algebraic over Q}1is
an algebraic closure of Q.

‘We now show the existence of aminimal splitting field of a set of polynomials
over k.

Theorem 3.38: Let S be a set of polynomials over k. Then there is a minimal
splitting field of S over k.
Proof: Suppose S = {f|f; € k[x], i € I}.

Let A =i, iy, .., 1} be afinite subset of /.

Put S =101 fln € k[x].

Let E , be a minimal splitting field of f, over k.

Suppose B < 4. Then f, divides f,. So, f;, splits in £ ,.



Let F, = k(zeros of f, in E ). Field Theory

Then F; is a minimal splitting field of f, over k. So, Fy = E,. But Fy
E ,. Therefore, we can regard E, c E,. So, wehave Bc A => E, C E,.

LetE=UE,.Leta,b e E. Thena € E,, b € E, for some finite sets NOTES
4,Bcl

Let C=4 U B. Then 4, B c C.

So,E ,E,cE.=a,bek,

= atb,ab,ab’, (ifb+0)areinE.c E

= E is a field.

Therefore, for each f; € S, f; splits in £, where 4 = {i}.

= each f; € S splits in E.
= Eis a splitting field of S over .
= k(zero of f;in E) is a minimal splitting field of S over k.

Using Zorn's lemma or otherwise one can prove the following result.

Theorem 3.39: Any two minimal splitting fields of a set of polynomials over
k are isomorphic.

We can now show the existence of an algebraic closure of a field .

Theorem 3.40: Let S be the set of all polynomials over k. Then a minimal
splitting field of S over k is an algebraic closure of k.

Proof: Let ' be a minimal splitting field of S. Since F'is generated by zeros of
f €S, Fis generated by algebraic elements over k. So, F/k is algebraic.

Let f=a,tax+..+ax" e Flx].

Let E =Kay ay, ..,a,)cF.

Then f € E[x]. Let £” be a minimal splitting field of fover E.
Let f=ax-a).. x-a) a € E".

Then E = E(oy, ..., o).
Since each a., is algebraic over E, E'/E is algebraic. Also, each a, € F'is
algebraic over k = E/k is algebraic. So, E'/k is algebraic.

Let g, = 1Irr(k, o)

Let g =88, -8, € klx]

Now g = (x—o)f, f; € E'[x].

Therefore, g = (x—a,) ... (x — o )f; ... ,
=ox — o) ... (x— ocn)oflf1 o f
=/, =o' f .. [, € Ex]

Let g =Xcx, [ =2bx, f=Yax

where ¢, € k, b, € E', a; € F.

Now ¢ =Xab,

i
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Let a, be the first non zero coefficient in f(x).

_ _ -
Therefore, ¢ = ajbo = b, = a; ¢ € F.
Suppose b, by, ..., b, € F.

Then cj+r+1 b0+aj+rb1+aj+1br+ajb

— -1
= br+1 — 4 (Cj+r+1_aj+ r+1b0"'_aj+ibr)EF

By induction, each b, € F'= [ € F[x].
By hypothesis, g € k[x] = g splits in F.

=a.

jrr+1 r+1

Let g =x-B)..x=-B,) B, eF

Suppose f € F[x] splits in some extension F’ of F.

Let f=dx—-d)..x-d), deF' cF.

Now f' € F[x] < F'[x] = f" splits in some extension F'' of F"".
Let [l =e(x—e)..(x—e), eecF"2F OF

So, g =ff" =g(d)=0foralli

= d - Bj = 0 for some j depending on i

= d. = bj e F

= d. e Fforalli

= fsplitsin F.

Thus, F'is algebraically closed.

Hence F'is an algebraic closure of k.
Converse of above theorem is also true.

Theorem 3.41: Let F be an algebraic closure of k. Then F is a minimal
splitting field of the set S of all polynomials over k.

Proof: Now F'is an algebraic closure of &

= Fisalgebraically closed

= Eachfe Ssplitsin F.

Let F' = k(zeros of f € Sin F) C F.

Let a € F'. Then a is algebraic over k as F/k is algebraic.

Let p(x) = Irr(k, o)

Then a is a zero of p(x) € Sin F.

So, acF'=>FcF.

Therefore, F' = F = F'is a minimal splitting field of F’ of the set of all
polynomials over k. The following is then immediate.

Theorem 3.42: Any two algebraic closures of a field are isomorphic.

Proof: Let k be a field and F'}, F, be algebraic closures of k. Then F',, F, are
minimal splitting fields of the set of all polynomials over k. So, F', F*, are isomorphic
by Theorem 3.39.



Theorem 3.43: Algebraic closure of a countable field is countable.

Proof: Let k be a countable field. For each integer n > 1, there is a countable
set of polynomials of degree n over k. Thus, the set S of all polynomials over &
is countable. Let S= {f, f,, ..., /., ...} . Let E, = k, and E| be a minimal splitting
field of /| over E, = k. In this way, let £, be a minimal splitting field of f; over
E, . ThenE  cE foralln.

So, E=VE, isafield = each f; splitsin £
= Eisasplitting field of S over .
Let F = k(zeros ofﬁ inE)cCE.

Then k  F < Eis atower of fields and F'is a minimal splitting field of §
over k. So, F'is an algebraic closure of k = F'is algebraically closed = F'is not
finite. Since E is countable, F'is also countable. Thus, any algebraic closure F’
of k being isomorphic to F'is also countable.

Lemma: Let E be an algebraic extension of k and let 6 : E — E be a
k-homomorphism. Then & is a k-automorphism.

Proof: Let a € E, p(x) = Irr (k, o).

Let o =, o, .., o, be zeros of p(x) lying in E.
Let E'" =Koy, a,, .., a) C E.

Then E'/k is finite.

Let px) =(x—0a)qx), qx) e k(o)x].

Since o(a) =aforall a €k, o(p(x)) = p(x).
Therefore, p(x) = o(p(x)) = (x — o(a,)) o(g,(x))
= o(a,) is a zero of p(x) for all .

But c:E - E=o(a) e Eforall i

So, 6(a,) is a zero of p(x) in E for all .

= o(a;) € E' foralli.

= 6 : E' — E'is k-homomorphism.

Also E'/k is finite. Since c is also 1 — 1, 6 : E’ — E’" must be onto (See
below).

Therefore, E' =o(E') = a=o0o(B), forsomeP} € £' c E
= 6:E — Eisonto = o is a k-automorphism of E.
That 6 : E — FE'is onto follows from the result

‘If Vis a finite dimensional vector space over Fand T': V'— Vis a linear
transformaion, then 7'is 1-1 iff T'is onto’. Here 6 : £ — E’ is a k-homomorphism
= o is a linear transformation as o(af) = o(a) o(B) =ac(P) foralla e k, B €
E'. Also E' as a vector space over k is finite dimensional.

We now give two characterizations of normal extensions. These are very
useful in finding whether the given extension is normal or not.
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Theorem 3.44: Let K be an algebraic extension of k. Let k denote an al-
gebraic closure of 'k such that k < K < k. Then K/k is normal iff every k-
homomorphism of K into k is a k-automorphism of K.

Proof: Let K/kbe normal. Let o : K— k be a k-homomorphism. Leta € K.
Since K/k is algebraic, a is algebraic over k. Let p(x) = Irr (k, o). Let o(a)
= b. Since o(p(x)) = p(x), b is a zero of p(x) in k¥ 2 K.

Since K/k is normal, p(x) splits in K[x]. So, b € K.

Therefore, 6 : K — K is k-homomorphism.

By above lemma, o is a k-automorphism of K.

Conversely, let o € K and p(x) = Irr(k, o).

Since £ is an algebraic closure of k, p(x) splits in & [x].

Let B be a zero of p(x) in k.

Then there exists a k-isomorphism o : k(o) — k() such that (o) = .

Since B € k, k(B) < k. So, c is a k-homomorphism from k(o) into %.

Thus o can be extended to k~-homomorphism 6 : K — K.

By hypothesis, 5 is a k-automorphism of K.

So, 5(K) = K. Also 5(a) = c(a) for all a € k(o). In particular (o) =
o(o) = P.

Since a € K, 5(a) es(K) =K = € K.

Therefore, p(x) splits in K[x].

Hence K/k is normal.

Theorem 3.45: Let K be an algebraic extension of k. Then K/k is normal iff
K is a minimal splitting field over k of a set of polynomials in k[x].

Proof: Let K/k be normal. Let o € K. Letf, (x) = Irr (k, a). Then f_(x) splits
in K[x] for all o € K. Let § = {f, | o € K}. Let F' = k(zeros of f, in K,
o € K).

Then F'is a minimal splitting field of S over £.

Clearly, F c K. Also o € K = ais a zero of f, = a € F. So, FF =K.
Thus K is a minimal splitting field of S over £.

Conversely, let K be aminimal splitting field of a set S of polynomials over
k. Let k be an algebraic closure of & such that, k < K < &.

Let 6 : K — k be a k-homomorphism.

Let a € K be a zero of some f € k[x] in S.

Then o(a) is also a zero of fas G is a k-homomorphism.

As f'splits in K[x], we can write f= a(x — o)) .. x—a ), o € K, o € k.

Since o(a) is a zero of ffor all , o(a) € &, {a, ..., & } = {o(a)), ...,
G(ocn)} as k can't have more than n zeros of /. So, o(a,) € K for all i.

Let 7= {zerosof fin K, f € S}. Thenc : T—>T.Alsoc: T —> Tis
l-lasc:K— kis1—1.



Let b € o(K). Then b = o(c), ¢ € K.

Now, ceK:c=H,BieT.
Then b — f(G(Bl)b“'a G(Bn)) — f(Y199Yn) , Yi c T

g(G(Bl)a'"a G(Bn)) g(Yla"‘n Yn)
So, be K= oK) K.

Ao deK = d =1000n)
g1(51,...,5m)
fl(G(ul)""aG(um))
S, eT=d = T
e O i M
O G(fl(ul,---,um j
o1 o tty) (&1 tty)

= deolK)=K colK)= oK) =K.

So, 6 : K — K is onto Thus, G is a k~automorphism of K. By previous
result, K/k is normal.

u T

> 7

=

Summarizing, the last two theorems we get

Theorem 3.46: Let K be an algebraic extension of k. Then following are
equivalent:

(1) K/k is normal.

(ii) Every k-homomorphism of K into k is a k-automorphism of K where
k is an algebraic closure of k.

(iii) K is a minimal splitting field of a set of polynomials over k.

Theorem 3.47: Let F/k be algebraic. If every finite extension of k admis a
k-homomorphism into F, then F is an algebraic closure of k.

Proof: Letf=a,+ax+..+ax" € k[x]. Let E be a minimal splitting field
of fover k. Then E/k is finite.

By hypothesis, there is a k-homomorphism o : £ — F.

Let f=ax—-a)..x-a) o €k

Then f =of=alx-o(a)) .. (x—o(a,))

= fsplitsin F

= every polynomial over & splits in F.

Let F'' be aminimal splitting field of the set of all polynomials over .
Then F' =k(zeroof fe k[x] n F)c F

Also, o € F = ais algerbraic over k.
Let p(x) =Irr(k, o). Then a € F'is a zero of p(x) € k[x]
= o eF  =>FcF =F=F'

So, F'is an algebraic closure of k.
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Theorem 3.48: Let K/k be an algebraic extension. Let k be an algebraic
closure of k such that k — K < k. Let F be an algebraically closed field such
that k < F. Then any k-homomorphism from K into F can be extended to
a k-homomorphism from k into F.

Proof: Let o : K — F be a k-homomorphism.

Let S = {(E, g)

Eisasubfieldof k and K c E }

g E > F is a homomorphism extending ¢

Define arelation < on S as follows:
(E, g) <(E), g,)if E, C E, and g, is an extension of g, to E,.

Then < is a partial order on S.

Let {(E, g)};be achainin S. Let £= UE, and define g : E — F such
that, g(a) = g(o) if o € E.. l

Then (£, g) € S and is an upper bound of the chain {(£, g))}.

By Zorn's lemma S has a maximal element, say (£, g,).

We show that £, = k. Suppose E, # k.

Thenwe canfinda € k suchthata ¢ E. Since & /kalgebraic, a is algebraic
over k.

Let f= Irr (k, a). Now k ¢ E, = f € E[x]. Since F is algebraically
closed, g,(f) € F[x] splits in F[x].

Let b be a zero of g,( /) in F. Then there exists an isomorphism 0 : £ (a)
— Ej(b) extending g, where Ej = g (E).

Butb € F, By F = Ej(b) C F. So, 0 : E(a) > F'is ahomomorphism
extending g

Therefore, (E,, g,) < (E,(a), 0) and E, # E(a) = (E,, g, #
(E((a), 0).This contradicts the maximality of (£, g).

So, E,= k . Therefore, g, : k — F is a homomorphism extending c.

Corollary: Let K/k be algebraic such that k = K < k. Then any k-homomor-
phism of K into & can be extended to a ~-homomorphism of # into .

Proof: Take F = k in above theorem.
Corollary: Any two algebraic closures of a field & are k-isomorphic.
Proof: Let K, K, be algebraic closures of k.

Now kc K|, K,. Let 6 : kK — K, be the inclusion map i.e., o(a) = o for
all a € k.

By taking K=k, k= K,, F'=k,, in above theorem, ¢ can be extended
to a k-homomorphismn : K, — K.



As K, =n(K,) and K, is algebraically closed we find n(K,) is algebraically
closed.

Also k ¢ K, = n(K,) can be regarded as an extension of k.

So, we have k c n(K,)) c K.

Since K /k is algebraic, K /m(K,) is also algebraic.

Butn(K,) is algebraically closed = n(K,) has no algebraic extension other
than itself = K, = n(K,) = n is onto = 1 is a k-isomorphism.

Hence, K, K, are k-isomorphic.
Theorem 3.49: Let k, E, K be fields such that, k ¢ E < K and K/k is normal.

Then any k-homomorphism & : E — K can be extended to a k-automorphism
of K.
Proof: Since K/kis normal, K is minimal splitting field a set of polynomials over
k. Let k denote an algebraic closure of .
Then & is aminimal splitting field of the set of all polynomials over 4.
So K can be regarded as a subfield of .
Now G : E — K is a k-homomorphism.
Thus o : E — k is a k-homomorphism.
Since K/k is algebraic, so is E/k. Now k < E < k , E/k is algebraic.

By previous theorem, ¢ can be extended to a k-homomorphism 7 :
k — k. Therefore, 1 : K — k is also a k-homomorphism.

Again, K/k is normal = 7 is a k-automorphism of K.

This proves the result.
Product of Fields: Let M, N be extensions of a field £ such that M, N are contained
in a field L. Then MN is defined as the smallest subfield of L containing M
and N.

Let MIN] ={ab,+..+ab, |a € M,b, € N}.

n =Finite

Then M[N] is an integral domain. Let K be field of quotients of M[N].
Clearly, M < M[N], N < M[N].

So, M, N < M[N] c K.

But MN is the smallest field containing M, N, MN c K.

Also, > ab,eM[N], foralla, e M, b, € N
i=1

= Zal»bl» € MN, as aieM:aieMN}
o b, e N=b; e MN

= M[N] < MN.

But K is the smallest field containing M[N] = K < MN

= K =MN
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= MN is a quotient field of M[N].
Lemma: Let K, K, be extensions of a field k contained in a field K and let
G be a k-homomorphism of K in some field L. Then

o(K,K,) = o(K,) o(K,).

ab +...+a,b,

Proof: Let ek K,
a'b'+ ..+a, b,
where a,a' € K,b, b/ €K,
Then o(a) = o(ay)o(b) +...+o(a,) o(b,) co(K,)o(K,)

o(a;Yo(b') + ...+ o(a,") o(b,")
= o(K,K,)) co(K,)o(K,)
Let B € oK) o(K,).
o(c)o(d)) +...+o(c.)o(d,)

Then B =
o(c)o(d)") +...+ o(c,")o(d,")
= o(a), where o0 = G+t ¢d, eKK,
o'd) +...+c'd
= B € o(KK,)

= o(K)o(K) < o(K,K))
= o(K,K)) =o(K,)o(K)).

Theorem 3.50: If E, F are normal extensions of k, then EF and E "N F are
normal over k.

Proof: (i) Let & denote an algebraic closure of k. Let & be a ~-homomorphism
from EF into k such that, kc EF C k.

Now o(EF) = o(E)o(F) by above lemma.

Since E, F < EF, o is also k-homomorphism from E into & and F
into k. Also E, F are normal over k = 6 : E — E and 6 : F — F are k-
automorphisms

= o(E)=E, o(F)=F

= o(EF) = EF

Now o : EF — k is also a k-homomorphism from EF into EF. But
o(EF) = EF

= 6 : EF — EF is onto.

So, 6 : EF — EF is a k-automorphism.

= EF/kis normal.

(ii) Let o be a k-homorphism from E N F into & such thatkc ENF
C k. Then o can be extended to & -homomorphismn: &k — k.

Since E/k is normal, E is a minimal splitting field of a set of polynomials over
k. However, k is aminimal splitting field of the set of all polynomials over k. So,
E can be regarded as a subfield of 4. Therefore, k € E < k. Similarly
kc Fc k.



Let nlE=n,n|F=n,
Nown, : E— k,n,:F— k are k-homomorphisms. Since E/k, F/k are

normal, n, and n, are k-automorphism of £ and F'respectively. So, n,(E) = E,
n,(F) =F. NowENFCE,Fc k.

Thus,  M(ENF) =n(E) N &)

:n1(E)mn2(F)
=ENF.

But nNENF=oc

= G(ENnF)=EnNF

= o is a k~automorphism of £ N F.
= E N F/k is normal.

Check Your Progress

What do you mean by extension of a field F?

When is a complex number said to be an algebraic number?
What is a prime subfield?

Define normal extension.

What is a finite field?

What is a splitting field?

AN e

3.5 AUTOMORPHISM OF EXTENSIONS

The purpose of this section is to find conditions under which a finite extension
F/K is separable in terms of k~automorphisms of . We first show that the number
of k-automorphisms of F'is at most n = [F': K]. We then show that the upper
bound 7 is achieved iff F/K is both normal and separable.

Definition: Leto, 6,, ..., 5, be homomorphisms from a field £ into a field £".
Then, o5 are called linearly independent over E' if 0,6, + ... + o, 6, =0, =
o, =0V iwherea e £

Note, a6, : £ — E' such that, (a,0)) (a) =a(c(a)) VacekE.

In the following result, we show that any family of homomorphisms from
a field into another field is linearly independent.

Theorem (Dedekind). 3.51: Let (c,), be a family of distinct homomorphism
from a field E into a field E'. Then {G}, is linearly independent over E'.

Proof: Suppose {c,},is not linearly independent over £'. Then 3 finite subset
of {c,}; whichis not linearly independent over £'. (i.e., it is linearly dependent
over £'.). Let {6,,0,,...,0,} be aminimal linearly dependent subset of {G},
over E'.
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So, da, o, .., o € E such that,
a6, +..+ac, =0 andsome o, # 0.
= (v0,t..taoc)(@=0 Vaeck
= oc(a)+.+tac(a)=0 Vack
Suppose o, #0.
Now  o,(@) = (-o;'o)o,@) + ... + (~a;'a)o(a) VaekE
6,(@) = B,0y(a) + ... + B0 (@),
B,=-o,'o,eE,VaeckE (32)
So, c,(ab) = B,o,(ab) + .. +Bo(ab) Va bek
= o,@ o) =Boa)o,b)+..+Bo(aoc(b)VabeE .(33)
Consider Equation (3.3) — ,(b) Equation (3.2).
Then 0 =B,0,(@) (0,(b) ~ 0, (b)) + ..+ B,5,(@) (6,(b)~ 3,(b))

= > Bi(c;(b)-c(b))oi(a) VYaeck
2

= 0= ZBZ' (0;(b) — o1(b)) o;
2

= B(o(b) —oc(b)=0 Vi=23,.,rnVbek

as {0,,0,, ..., 0,} is aminimal linearly dependent subset of {c} .
Since 6, # o, Vi> 1,3 ¢, € E such that, 6(c,) # 5,(c)).
Now B(o/(c) —o,(c) =0 Vi=23, ..,

= B, =0 Vi=23,..,r
So, c(a) =0 VacekE by(32)
= o/(l) =0

= 1 =0, which is not true.
Thus {c,},1s a linearly independent set over £’

Theorem 3.52: Let E, E' be extensions of K. Let [E : K| =n. Then, there are
at most n K-homomorphisms from E into E'.

Proof: Let {u,,u,,...,u,} beabasisof E/K.Leto, G, ...,0, be n + 1 distinct
K-homomorphisms from £ into E’.

n
Consider the system of equations Z o; (u;)x; = 0, j=12,..,n
i=0

Then, we have n equationin n + 1 unknowns x;s € E'. Since the number
of equations is less than number of unknowns, the above system of equations has
a non zero solution, say ¢, ¢, ..., ¢, € E' where some ¢, # 0.

Let a € E. Since {u,, u,, ..., u,} spans E/K, a = au, + .. + o,u,
o €K



ThLIS, ZGI-(CZ)CI- = ZG[(Zq/’uj)Ci
i=0 i J

= ZZ(Gi(aj)Gi(uj))ci
i

= Y300,
i

- Zaj(zci(uj))ci)
j i

=0 as Xo,(u)¢ =0

= icl-csi(a) =0 Vaek
i=0

n
= co; =0=c¢ =0 Vibyabove theorem.
/=0

1

But some ¢, # 0. So, we get a contradiction. Thus, there are at most n
K-homomorphisms from £ into £'.

Corollary: There are at most n K-automorphisms of £, where n = [E : K].

Proof: Take £’ = E in above theorem. By automorphism of E, we mean
isomorphism of £ into E£. Now any K-homomorphism from £ into £ is a linear
transformation from £ into E as vector space over K. Also, any homomorphism
from E into £ is 1-1 and so onto as [E : K] = finite. By above theorem, there
are at most n K-automorphisms of £ where n = [E : K].

Case 6: Define 0 : C — C such that,
0(z) = z, where z = Conjugate of z
Then 0 is R-homomorphism and 0 # /. So, 6, [ are two distinct R-homo-
morphisms of C into C. But [C : R] =2 = there are at most two R-automorphismss
of C. Also, any R-homomorphism of C into C is an R-automorphism of C. So,
0, [ are only R-automorphisms of C. Note, C/R is normal as [C : R] =2 and

C/R s separable as char R=0 = R is perfect = Every algebraic extension of
R is separable.

Case 7: Let o be the real cube root of (x) =x° — 2. Let F = Q(a) — R. Let
0 be a Q-automorphism of F.

Since a is a root of f(x) in R, 6(a) is a root of O(f(x)) =f(x) in R.

So, 6(a) = a. But [Q(a) : Q] = deg Irr (Q, a) = deg f(x) = 3 and
{1, o, 0%} is a basis of Q(a)/Q.

= Qo) = {a, t aja+ a2a2 | a;, € Q}.

Since 0(a,) = a;, and O(a) = a,, 0 fixes every element of Q(av).

So, 0 =1 = Identity map is the only Q-automorphism of F'= Q(a.).

Note Q(a)/Q is separable as char Q =0 = Q is perfect = Every alge-
braic extension of Q is separable.
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As seen before Q(a)/Q is not normal.

Thus, we notice that if £/K is separable but not normal, then one may not
get the full quota (i.e., [E : K]) of K-automorphisms of E.

Case 8: Let char K = p and F = K(f). Then x” — ¢ is irreducible over F.
Let a be a root of f{x) in some extension of F.

Now f(x) = x” — t is irreducible over F = [F(a) : F] = p.

= {1, a, ..., 0¥ '} is a basis of F(a)/F.

p-l
So, F(o) = {)_ad'|a; € F}.
i=0

If 0 is F-automorphism of F(a), then 6(a) is a root of f(x) = O(f(x)) in
F(o).

But a is the only root of f(x) in any extension of F.

= 0(a) = o = 0 fixes every element of F(a).

= 0 is the identity map.

Thus, identity map is the only F-automorphism of /(o).

Since a is not a simple root of f(x), a is not separable over F.

Therefore, if E/K is not sparable then one may not get [E : K],
K-automorphisms of .

The above two examples clearly demonstrate that in order that an exten-
sion E/K has [E : K], K-automomorphisms of £, E/K should be both normal and
separable. In the first example, we saw that we do get [E : K], K-automorphisms
of E when E/K is both normal and separable. We would like to prove this in
general.

Theorem 3.53: Let K — L  F c E be a tower of fields. Suppose E/K is finite
normal. If v is the number of K-homorphisms from L into E and s the number
of L-homomorphisms from F into E, then the number of K-homomorphisms
from F into E is rs.

Proof: Leto, ..., 5, be the K-homomorphisms of L into £'and 1y, T,, ..., T, be
the L-homomorphisms from F into £. Since £/K is finite normal, each 6, can be
extended to K-automorphisms o; of £.

We show that {Eirj | 1 <i<r, 1<j<5s} 1s the set of distinct
K-homomorphisms from F'into E.

Suppose o, L= 0,1, Then Eirj(a) =05, rq(a), VaekF
= o1()= 5, rq(l) Viel

= s)=5,() Viel

= 0,=0,=I=p=>1=1=]q.

Let o be any K-homomorphisms from F into E. Then o |L is a
K-homomorphisms from L into E.



= c|L = o, for some i.

Then 5, 'o is K-homomorphisms from Finto E.
So, 5;'6() = 5,'c()=5,' 5;() =1 ViIelL
= 6, 'c is L-homomorphism from F into E

= o iy
Thus, 5, T, are the only K-homomorphisms from F'into £ and so, there are

exactly »s K-homomorphisms from F'into E.

Theorem 3.54: Let K  E < E' be a tower of fields. Suppose E'/K is finite
normal. Then E/K is separable if and only if the number of K-homomor-
phisms from E into E'is [E : K].

Proof: Suppose E/K is separable. We prove the result by induction onn=[F
: K].

G=rjforsomej:>c=6-r~

Ifn=1,then E=Kand/: E — E'suchthat, /[(a) = a is K-homomorphisms
from E into E'.

So, the result is true for n = 1.

Let n> 1. Assume that the result is true for all integers < n.

Leta € E, a ¢ K.

Now K c K(a) ¢ E < E' and E'/K is finite normal = E'/K(a) is finite
normal.

Also, [E:K] =[E:K(a)][K(a):K]and [K(a): K]>1

= [E:K(a)] <[E:K]=n.

Since E/K is separable E/K(a) is also separable.

By induction hypothesis (applied to tower of fields K(a) c E < E'), the
number of K(a)-homomorphisms from £ into £' is [E : K(a)].

Let p(x) = Irr(K, a). Since a € E, a is separable over K. So, all roots of
p(x) are simple.

Let deg p(x) = r. Since E'/K is normal, p(x) splits in E' asa € EC E'.

Leta=a,,a,,...,a bedistinctroots of p(x) in £'. Then 3 K-isomorphisms

c,: K(a) > K(a) such that, 6(a) =a, Vi=1,2,..,r o}, ajsbeing
distinct.

Since a, € E', /s are r K-homomorphisms from K(a) into £’

Also as [K(a) : K] = deg Irr (K, a) = deg p(x) = r, these c’s are only
K-homomorphisms from E(a) into £'.

By previous theorem these are excatly [E : K(a)] [K(a) : K] =[E : K],
K-homomorphisms from E into £’.

So, the result is true in this case. By induction the result is true forall n > 1.

Conversely, let there be n = [E : K] K-homomorphisms from £ into E'.
Leta e E.
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Now, the number m of K-homomorphisms from K(a) into £’ is at most
r=[K(a) : K].

Let m <r. Let s be the number of K(a)-homomorphisms from £ into £’.
Then

_ [E:K] n
<[E:Ka)]=——-=—.
s=1 (@] [K(a):K] r
By above theorem, the number of K-automorphisms from £ into £’ is

ms < rZ =n,acontradiction. So, m=r. That is, the number of K-homomorphisms
from Kr(a) into £' is [K(a) : K] =deg Irr (K, a).
Let p(x)=Irr (K, a), deg p(x) = r.
Since E'/K is normal, p(x) splitsin E' asa € EC E'.
Let a=ay,a,, .., a, be distinct roots or p(x) in £’
Then, for each i 3 K-isomorphisms 0, : K(a) — K(a;) such that, 0 (a) = a..
Since a, € E',K(a) c E'. So, 0, : K(a) — E' is K-homomorphism.
Again as a s are distinct, 0 is are also distinct K-homomorphisms from
K(a) into E'.
If 0 is a K-homomorphisms from K(a) into £’, then a is a root of p(x)
inkE
0(a) is a root of B(p(x)) = p(x) in E’
0(a) = a, for some i
0(a) = 0,(a) for some i = 6 = 0, for some i.
0,,0,,..., 0, are the only K-homomorphisms from K(a) into £
t=[K(a) : K] =deg px) =r.
all roots of p(x) are distinct and so simple.

TRV TR TN

a is separable over K. Thus, E/K is separable.

Corollary 1: Let £/K be finite normal. Then E/K is separable if and only if the
number of K-automorphisms of E'is [E : K] =n.

Proof: Since E/K is finite, a K-homomorphism of £ is K-automorphism of £ and
conversely. The result then follows by above theorem.

Corollary 2: Let K ¢ E — E' be atower of fields such that, £/K and E'/E are
finite separable. Then E'/K is also finite separable.
Proof: Let [E : K] =r, [E': E] =s. Since E/K, E'/E are finite so is E'/K.
Thus 3 an extension £ of K such that, F/K is finite normal and K c £
E' CF.
By above theorem since E/K is separable, there are » K-homomorphisms
from E into F.
Now F/K is normal = F/E is also normal.



As E'/E is separable, there are s E-homomorphisms from £’ into F.
Therefore, there are rs K-homomorphisms from £'into . Butrs =[E":K].
By above theorem then £'/K is finite seperable.

Corollary 3: Let £ be an extension of K. Let a, a,, ..., a, € E be separable
over K. Then K(a,, a,, ..., a,)/K is separable.

Proof: We prove the result by induction on . Since a,, a,, ..., a, are separable
overK, a,, a,, ..., a, are algebraic over K. So, K(a,, a,, ..., a,)/K is finite. Let
E'/K be finite normal extension such that, K < K(a,, ..., a,) < E'. Let
n=1.Let p(x) = Irr (K, a,), deg p(x) = r. Then 3 » K-homomorphisms from
K(a,) into E" as seen in above theorem. But 7= [K(a,) : K]. By above theorem,
K(a,)/K is separable. So, the result is true for n= 1. Let n > 1. Assume that the
result is true for all integers < n. By induction hypothesis, K(a,, ..., a,)/K is finite
separable. Also, a, is separable over K and K c K(a,, ...,a, ) = K(a,, ...,a,)

= a, is separable over K(a, ..., a, ,)
= K(a,, ...,a,) | K(a,, ..., a,) is finite separable.

By above corollary, K(a,, ..., @,)/K is separable. By induction the result
istrue Vin>1.

Corollary 4: Let F K  E be a tower of fields such that, £/K and K/F are
separable. Then E/F is also separable.
Proof: Leta € E.

Let p(x)=1Irr (K, a)

=b,+bx+..+bx", b €K
Let K'=F(by, b, ....b) K
b, € K= b, is separable over I
= K'/F is separable by above Corollary

Since p(x) is irreducible over K, it is also irreducible over K.

So, px)=1Irr(K', a)

Now K' € K < E and a € E is separable over K = p'(a) # 0 = a is
separable over K' = K'(a)/K" is separable and finite. Also, K'/F is finite separable.

So, K'(a)/F is finite separable.

= ais separable over F.

Thus, E/Fis separable.
Theorem 3.55: Let K  E < E' be a tower of fields such that, E'/K is finite
normal. Then following are equivalent:

(i) There are exactly n = [E : K| K-homomorphisms from E into E'.

(i) E/K is separable.

(iii) E/K is generated by separable elements.
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Proof: (i) < (b) follows from previous theorem

()= (@ [E:K]=n=E=K(a,,..,a,).Since a; € E, a;, 1s separable
over K. So, E is generated by separable elements over K.

(iii) = (b). Let E= K(S), where S c E is a set of separable elements over

_ Sfuy, . uy,)
K. Leta € E,thena= m,f,g € K[x,...,x,],u, €S.S0,a € K(u,,
Uy, ..., U, ). Since u,, u,, ..., u, are separable over K, K(u, u,, ..., u )/K is

separable. Therefore, a is separable over K. Thus, E/K is separable. This
proves (b).

Theorem (Artin’s) 3.56: Let E be a field, G the group of automorphisms of
E and suppose K is the set of elements of E fixed by G. Then K is a subfield
of E, called the fixed field of G. E/K is finite if and only if G is finite. In that
case, [E : K] = o(G).

Proof: K={ae E|oc(a)=a VoeG}
0,1 e K=K=#o.

Leta,b € K. Thenc(atb)=oc(a)xo(b)=atb=axbh e K. Also
o(ab) = o(a) o(b) =ab = ab € K. If b # 0, then o(ab™") = o(a) (b)) =
ab”' = ab™! € K. So, K is a subfield of E.

Clearly, G is a group of K-automorphism of E. If E/K is finite, then the
number of K-automorphisms of £ is at most [E£ : K]. So, G is finite. Suppose o(G)
=r.Letuy, u,, ...,u, € Ebelinearly independent over K. Consider the » equations
(in 7 + 1 unknowns xS inkE)

i o(u;)x; =0 foralloc e G
j=0

Since the number of equations is less than the number of unknowns, the
system of equations has a non-zero solution.

Let(ay, a5, ..., a,, 0,0, ..., 0) be anon zero solution of least length s + 1
(@,20Vi=0,1,..,5s)

Then o(upa, =-o(u)a, +..+-o(u)a,

= o(u,) =o(u)b, +..+o(u)b, forallce G ..(3.4)
Take c =1 Thenu,=ub +..+ub_

If b, € K for all i, then (— 1)u, + byu, + ... + bu = 0, contradicting that
Uy, Uy, ..., u linearly independent over K.

So, some b, ¢ K. Let b, ¢ K.
Then 3 t € G such that, ©(b)) # b,.
Replace o by 1o in (i) to get

T715(”0) = ir‘lc(uj)bj forallo € G
j=1



= o) = o) = Yow)b,) forallceG ..(3.5)
j=1

Then Equation (3.5)— Equation (3.4) gives
> o(u) (1(b;—b;) =0, forallce G

j=1
= i o(u;)c; =0, forallc € G, where ;= r(bj) — bj
Jj=1 ‘
Since c, =ub)—-b,#0.
We have anon zero solution (0, ¢y, ..., ¢, 0, ..., 0) of length less than s +
1, a contradiction.

Therefore,  + 1 elements in £ are not linearly independenent over K

= [E: K] <r= E/Kis finite.
So, [E: K] <0(G). But o(G) L [E: K]
= o(G) =[E: K].

Example 3.21: Let E be a field with n distinct automorphisms and suppose
K is the fixed field of the set of automorphisms. Show that [E : K| > n.

Solution: Let 6, 5,, ..., 6, be distinct automorphisms of £. Let G be the group
generated by 6, ©,, ..., 6,. Then o(G) 2 n. If F'is the fixed field of G,
then K c F c E. By Artin's theorem, [E : F] = o(G) = n.
So, [E:K|=[E:F]=n.
Example 3.22: Find the fixed field F of K(x) under the automorphisms x —

2 3
l—x,x > l Show that the degree is 6. Verify that % lies in F
X X —X

and use this to find an equation for x over F.
Solution: Let o(x)=1—x,n(x)= l. Then o, 1, on, No, ono, I are six distinct
X

automorphisms of £ = K(x). Let F" be the fixed field of these 6 automorphisms
of E. So, F < F' < E. By previous example, [E: F'| >6 = [E: F] > 6.

2 i)
Let gx) = —(x(xz - :)?
Then  n(g(x)) = g(x), o(gx)) = g(x)
= glx) e F
Let L =Kgx)cFcE

Then [E:L] =[E:F]|[F:L]>6.

Now L(x) = K(x) =E.

Also, o —x+ 1P —gx)*x-1*=0

= x is aroot of a polynomial of degree 6 with coefficients in L
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= [Lx):L] £6

= [E:L] <6=>[E:L]=6

So, [E:F] [F:L1=6<Z[E:F]

= [F:L] <1

= F =L =K(gk)

= (x> —x + 1)’ — g(x)x*(x — 1)> = 0 is an equation for x over F.

3.5.1 Primitive Elements
Theorem 3.57: Let K/F be a finite separable extension. Then K = F (a) for
some a € K.
Proof: Since K/F'is finite, K= F(a,, ..., a,) forsome a,, ...,a, € K. Itis enough
to prove the theorem for n = 2.

Let K = F(a, B). Then o, B are separable over F.
Case (i): Let F'be an infinite field.

Let px)=1Irr (F, a)

q(x) = Irr (F, B)

Leta=ay, ..., o, B =B, ..., B, be the roots of p(x), g(x) respectively

inasplitting fields of p(x) and ¢(x). Since K is finite, there exists a € K such that

a#0and 7 for1 <i<n 2<j<m.

J
Since o, B are separable over F, ous and B/s are distinct roots of p(x), g(x)
respectively. ‘

Let 0=ap + a.

We show that F(0) = F(a, B).

Clearly FO) < F(a, B).

Define g(x) = p(6 — ax).

Then g(B) =p(® —aP) = p(o) = 0.

Also, g(Bj) =p(0 — aBj) #0 forall j=2, ..., m.
(For, p(0 — aBj) =0=0- aBj — o, = 0 for some i

=af +a —aBj—OLl.:O

= a=2"% 4 contradiction

BB,
Now B is a root of g(x) and ¢g(x) and no Bj (j# 1) is a root of g(x)
= B is the only common root of g(x) and g(x). Let f(x) = Irr (F(©), B).
Since g(x) € F(0) [x] and g(B) =0, f(x) divides g(x). Similarly f(x) di-
vides g(x)
So, f(x) divides g.c.d. of g(x) and g(x).
= f(x) divides x — B



= Jx) =x-p

Since f(x) € FO)[x], B € F®)
Also, o =0—ap € FO)

= Fla, B) < FO).

Thus, F®) = F(a, P).

Case (ii): K is finite. We shall prove later that K" = K — {0} is a cyclic group.
If K" = <a>, then K = F(a).

Note: An extension K/F a called a simple extension if K = F(a) for some
a € K. In the above theorem, we have shown that a finite separable extension is
a simple extension. a is called a primitive element of K over F if K = F(a).

Example 3.23: Find a primitive element for Q(i, 2''?) over Q.
Solution: Since char Q =0, Q is perferct. So, Q(i, 2!%)/Q is separable. There-
fore, primitive element of Q(i, 2''?) over Q exists.

Let p(x) =Irr(Q, 2" =x* -2 =(x-2"%) (x +2'%

g(x) =Irr(Q, ) =x*+1=(x—1i) (x + i).
1 1 1

_92 _92 Y
Consider 27 -0 _ -2 212
i— (i) i
Take a = 1.
Then 0 =ap +o=i+2"

By above theorem Q(i, 2''%) = Q(0) = Q(i + 2').

3.6 GALOIS EXTENSIONS

Definition: An extension E of F'is called a Galois extension if

(i) E/F is finite

(i) F'isthe fixed field of a group of automorphisms of £.

We first find a necessary and sufficient condition for a finite extension to be
Galois.

Theorem 3.58: Let E/F be a finite extension. Then E/F is a Galois extension
if and only if it is both normal and seperable.

Proof: Let £/F be a Galois extension. Then F'is the fixed field of a group G of
automorphisms of £. By Artin's theorem, since E/F is finite, G is also finite.
Let G ={0,=1,0,,..,0}.
Let a € E.
Let ofa) =a,i=1,2,..n
Suppose a, = a, a,,..., a, are distinct elements of {a,, a,, ..., a,}.
Let S ={aa, ..,a}. ThenScCE.
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Now Gl.(al.) =0, c(a) = c,(a) = a, € S.

So, o, S— Sforallj=1,2, ..., n Since o, : E — Eis 1-1, so is
0;:§—>8. Also, Sis finite = 0,:8§—>8 is onto. Therefore, o; is a permutation
of S forall ;.

Let f(x) =(x-a)..(x-a)
=x"+ oclxr’1 T tox

Nowo (f(x))= (x — o (a,)) ... (x —c(a,))
=(x-a))..(x~-a)=f(x) for all ¢

So, x"+ cst(ocl)x”1 +..+tofa)=x"+ alx”l + ..+ a

= o/a,) =o,forall 7and i

= o, belongs to the fixed field of G

= o, € F,foralli

= f(x) € F[x].

Let g(x) be a monic irreducible factor of f(x) in F[x].

7

Let a; be a zero of g(x) in E.

Now a; = Gj(a) =0, Gi’l(al.) =06 /(a,). So, a; s a zero of g(x) in E.

= o/a,) is azero of 6(g(x)) = g(x) in E

=aq is a zero of g(x) in E for all j

= g) =1

= f(x) =1Irr (F, a).

Since a is a simple zero of f(x), a is separable over F'. So, E/F is separable.
Also, f(x) splits in E[x].

= E/F is normal.

Conversely, let G be the group of all F-automorphisms of E. Let F'' be
the fixed field of G.

Then F < F' < E and o(G) = [E : F].

Since E/F is finite, So is E/F'.

Also, E/F is seperable normal = E/F"' is separable, normal.
Therefore, there are exactly n =[E : F] F-automorphisms of E.
= oG =n=[E:F']l=n

= [F':F] =1=F'=F.

= Fis the fixed field of G = E/F is Galois.

Corollary 1: Let £/F be finite extension. Then E/F is Galois if and only if F'is
the fixed field of the group of all F-automorphisms of £.

Proof: Let E/F be Galois. Then from above E/F'is finite, normal, separable.
Again by converse part of the above result, ' is the fixed field of the group of all
F-automorphisms of £. Converse, follows by definition.



Corollary 2: Let char k= 0. Then £ is contained in some Galois extension of 4.

Proof: Let f(x) be anon constant polynomial in A[x]. Let £ be a minimal splitting
field of f(x) over k. Then E/K is finite normal. Since char k=0, k is perfect =
E/K is separable. So, E/K is Galois.

Note: When E/F is Galois, the group of all F-automorphisms of £ is denoted by
Gal(E/F) or G(E/F) called the Galois group of E/F.

Theorem 3.59: Let E/F be a finite extension. Then E/F is contained in a

Galois extension if and only if it is separable.

Proof: Let E/F be a contained in a Galois extension £'/F. Then Fc Ec E'.
Now E'/F is Galois = E'/F is separable = E/F"' is separable.
Conversely, let E/F be separable. Since E/F is finite,

E =F(a, 0y ..., o).
Let p;, =Irr(F, o), o, €k
o, € E= a, is separable over F
= a., is a simple zero of p,, for all i
= Each zero of p; in a splitting field is simple
Let f=[]p: Thenfe k[x] < E[x], and fsplits in some extension of E.
i=1
Let L be aminimal splitting field of /(x) over F.
Then L = F (zeros of fin an extension of E)
=F (o, a,, ..., a,, zeros of fother than o in an extension of F)
= E (zeros of fother than a5 in an extension of E)
= F cEclL

Also, L is generated by separable elements over F'(as each zero of fin an
extension of £'is simple and is a zero of an irreducible polynomial of p; € F[x])
= L/F is separable = E/F is contained in a separable extension L/F.

Theorem 3.60: Let E/k be Galois and F be any extension of k. Then EF/F
is Galois and G(EF/F) is isomorphic to a subgroup of G(E/k).

Proof: Since E/kis Galois, E/k is finite normal. So, £ is a minimal splitting field
of some polynomial f(x) € k[x].
Let S max—-a) x-a)..x-a),a €k ack
Then E = ko, a,, .., o).
Also, FE/kisseparable

= Each «, is separable over k. Now k ¢ F < EF and o, is separable
over k = a., is separable over F.

Again, E = ko, o, ..., a).
= EF = FE = Fk(o,, o, ..., &)
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= Floy, 0y, ..., 00) askc F
= EFisaminimal splitting field of f(x) over '
= EF/Fis finite normal
Also, EF is generated by separable elements over F’
= EF/F is separable.
So, EF/F is Galois.
Let o € G(EF/F).
Let S =of, £, .../, where each f; is monic irreducible polynomial
in A[x].
So, each a, is a zero of somefj € klx].
Since o, is separable over , o, is a simple zero.
Let S =1{a,, a,, ..., a, }. Then a, is a zero of fin E ¢ EF
= o(o,) is a zero of 6(f) = fin EF = o(a,) € S.
So, {o(a,), o(a,), ..., o(a)} = {a, A, ..., O}
= o(E) = k(o(a,), o(a), ..., o(a,))
= k(oy, 0y, .y ) = E
= o restricted to £ belongs to G(E/k)
Define 0 : G(EF |F) — G(E/k) such that,
0(c) =c|E
Then 0 is a homomorphism.
AlsofBisl—-lasc|E=1

= o(a;) =a,foralli

= o(a) =aforalla € EF as EF = F(a,, ,, ..., o, ) and © fixes
each element of '

= o =1on EF.

So, G(EF/F) = O(G(EF/F)) < G(E/F).

Corollary: If E/k is Galois and F, an extension of k, then [EF : F] divides
[E : k].
Proof: By above theorem, EF/F is Galois
= [EF : F] = o(G(EF/F))
Also, [E : k] = o(G(E/k))
But  O(G(EF/F)) < G(E/F)
= o(0(G(EF/F))divides o( G(E/F))
= o(G(EF/F)) divides o(G(E/F))
= [EF : F] divides [E : k].
Note: The above corollary need not be true if E£/k is not Galois. For example,

let k = Q, let o be the real cube root of 2. Then a, aw, ow? are roots of
f(x)=x-21inC.



Let E =Q(aw), F =Q().
Then EF = Q(aw) Q(a) = Q(a, aw) = Q(o,, /3i)
= F(\3i)

So, [EF:F] =[FKB3i):F]=2
while [E: k] =[Q(aw): Q]=deglrr (Q, aw)
= deg f(x) = 3.

3.6.1 Fundamental Theorem of Galois Theory

Theorem (The fundamental theorem of Galois Theory) 3.61: Let E/k be
Galois. Let G = G(E/k) be the group of all k-automorphisms of E. Then

(1) There is one-one correspondence between the sets
A={F|F=field kc FcE}and B = {H | H <G} which is an order
inverting bijection.

(7i) F €A is the fixed field of the subgroup H € B corresponding to F and
H €B is the group of H*-automorphisms of E, where H* is the fixed
field of H.

(iii) If H is the subgroup of B corresponding to the field F in B, then
o(H)=[E:Fland [G: H]|=[F:k].

(iv) If H,, H, €B corresponding to F'|, F, €A respectively, then F,, F,
are conjugate under an automorphism o € G if and only if 6! Hc
= H,.

(v) If H €B corresponds to F €, then F/k is normal if and only if H is
normal subgroup of G and in that case, G(F/k) = %

Proof: Define0 : A — B such that,
O(F)=F*
where F* = {c € G | o(x) =x for all x € F}. Then F* € B.
Similarly,define 0 : B — A such that,
O(H) = H*
where H* ={xe€ E|o(x)=xforall c € H}
Then H* € A is the fixed field of H.
Let F|, F, € A such that F| C F,.

Let c € F,* Theno(x) =x forallx € F,
= o(x) =xforallx € Fyas I, C F,
= c e F\*= F*cCF*

=  O(F,) < O(F))= 0isan order inverting map.
Similarly, ¢ is an order inverting map.

Let He B. Thenoc € H=>o(x)=xforallx e H* =>c € H** => H
o H**,
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Alsox € F(F eA ) => o(x)=xforall c € F*

= x belongs to the fixed field of F*

= x e F** —= FcF**forall I e A.
Let F €2 and F*=H. Then H** = F***
Now H cH** = F*c F***forall F e A.
Also, F c F** = 0(F**) c 0(F)

=  F*¥* c F*forall F € A. So, F* = F*** Similarly, H* = H***
for all H € B.

Now 0 is 1-1 onto if and only if ¢ = Identity and ¢0 = Identity ifand only
if H= H** for all H € B and F'= F** for all F' € A.

Let H € B. Then H* = F is the fixed field of H.

By Artin's theorem o(H) = [E : F].

Also,o(H**) =[E: H***|=[E: H*]|=[E : F].

So, o(H) =o(H**). But Hc H**. Therefore, H= H**.
Let F eA Thenkc FcCE.

Now E/k is Galois = E/F is Galois = F'is the fixed field of the group H
of all F-automorphisms of £.

= H <G= H e B.

Now H* = fixed field of H=F

= H¥ =R o [ = Y o F=F** forall F e A

Thus, 6 is 1-1 onto.

This proves (7).

(fiyLet F e A. LetO(F)=H. Then F*=H= F**=H* = F=H* =
Fis the fixed field of H.

Let H € B. Then there exists F € A such that O(F) = H = H = F*.

Leto € H. Then ¢ € F* = o(x)=x for all x € F'= ¢ is an F-automorphism
of E.

Conversely, let ¢ be an F-automorphism of E.
Then o(x)=xforallxe F=oc e F*=H.
So, H is the group of all = H*-automorphisms of E.

(iii) By Artin's theorem
o(H) =[E:H*]=[E:F]
) _ o) _ [E:k] _ p.
[G: H] o) B F] [F: k]

(iv) Suppose F|, F, € A are conjugate under ¢ € G. Then o(F)) = F,.
Let y € F,. Theny = o(z2), z € F,. Therefore, ol =z
= w6 '(y) =1(z), forallte H,



= ot (y) =ct(z)=o0(z), forallte H 1
= o156 (y) =y, forallte H,y € F,
= oto ! € H,, ~ forallt e H,
= Gch’l c H,
Let a € F|. Theno(a) =b € F,
= no(a) =n(b), forallm e H,
= no(a) = b, forallm e H,
= o 'no(a) =c i(b) =a,foralln e H, a eF,
= 6 'mo e H, forallne H,
= G’IH2 c cH,
= H, ¢ GHlel
So, H, = Gchs’l.
Conversely, let H, = GHlel forc € G.
Let y € F,. Now o156 ! € H,,  forallt e H,
= ot l(y) =y
= w6 l(y) =cl(y)=z
= (z) =z, forallt € H,
= z € F,
= y =o(z) € o(F))
= F, < o(F))
Let x € F,. Now c'moeH, forallne H,
= o nolkx) =x
= no(x) = o(x) =x'
= nx"H =x', foralln € H,
= x' eF,
= o(x) € F,
= o(F)) C F,.
So, o(F,) = F, = F, are conjugate under c.

(v) Suppose F/k is normal. Since E/k is finite, so is F/k. Therefore, F/k

is finite normal = F'is a minimal splitting field of some /'€ A[x].

Let f=ax-0a)..x-a), o €k ack
Then  F = k(a,, o, ..., ).

Let 6 € G. Then G is a k-autmorphism of £ = o(f) = f.
= f=ox-o(a)) .. x-o(x,))

= o(a,), ..., o(a,) are zeros of fin E

= {0y, o, .y o) = {o(ay), ..., o(a)}.
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So, o(F) = Ko(0t), ..., o(ct,))
=k, ..., o) =Fforallc € G.
By (iv), 6 'Ho =Hforalle € G

= His anormal subgroup of G.

Conversely, let H= F* be normal subgroup of G. Then 6 ' Ho = & for
allc € G

= o(F)=F by(v)foralloc e G
Let a € F, p(x) = Irr (k, o).
Since E/k is normal and a € E, we find p(x) splits in E.
Let B be a zero of p(x) in E.
Then a, B are zeros of p(x) in E.
= There is an isomorphism 0 : k(o)) > k(B) such that,
0(a) =B, 6(a) =a forall a € k.
Since B € E, k(B) < E. So 6 is a k-homomorphisms from k(o) to E.

Since E/K is finite normal, 0 can be extended to A-automorphism c of £.
So, 0 € G.

Now o(a) =0(a) =P and o(a)) € o(F)=F = B € F.
Thus, p(x) splits in = F/K is normal.

Let H be anormal subgroup of G. Then the corresponding field F'is normal
over k from above. Since E/k is Galois, so is F/k. Let N = Gal(F/k)

Define v : G — N such that,
y(o) =0, where G is the restriction of 6 on F.
(Since H< G, 6 'Ho = H = o(F) =F)

Leto,n € G.

Thenc mMo) =(on) (), oaeF
=o(m(a)), n(a) € F
=o(n(a)
=o(n(a))
=) (n), foralla € F

= on=on1

= y(on) = y(o)y(n)
= y is a homomorphism

Let 6 € N. Then O can be extended to k-automorphism c of £ = 6 €
G
= y(o)=0=10. So, y is onto. Now ¢ € Ker y < y(c) = Identity of N <>
¢ = Identity on F' < o(a) = a, for all a0 € F.

The result now follows by using fundamental theorem of homomorphism.

Case 9: (i) Let £ be a minimal splitting field of f{x) =x> —2 over Q. Let a. be
the real cube root of 2.



Then  E=Q(a, ow, an?) = Q(a, ¥3 i) = Q(ai, aw) = Q(at, ) Held Theory
Also, [E: Q] =6. Since char Q =0, E/Q is separable (as Q is perfect =
every algebraic extension of Q is separable.)

Also, E is a minimal splitting field of /() over Q = E/Q is finite normal. NOTES
So, E/Q is Galois.
Let G = G(E/Q) be the group of all Q-automorphisms of E.
Then Q is the fixed field of G. By Artin's theorem o(G) = [E : Q] =6.
Since a, aw are roots of f(x), there exists Q-isomorphism
o, : Q(a) = Q(aw) such that,
o) = aw
Let g(x) =x*+x+ 1, then g(x) is irreducible over Q(a)) c R
and o,(g(x)) =g(x)isirreducible over Q(aw)
Since w, w are roots of g(x), there exists an isomorphism
6 :Q(a, w) =FE — Q(aw, w) = E such that,

oc(w) =w

o) =o,(a) = ow

o@ =cya)=a VaeQ
Thus ¢ is Q-automorphism of £, 6 # I.

Also w, w? are roots of g(x) which is irreducible over Q(a) and 3 Q(cv)

isomorphism
©: Q(a, w) =E — Q(a, w?) = E such that,
(w) =w?, (o) = a

and so 1 is Q-automorphism of £, t # G, 1 # [
Now c*(a) = an?, o’(w) = w

(6 1) (@) = oaw, (o1) (W) = w?

(1) (o) = aw?, (6°1) (W?) = w?.
Since o(G) =6, G={I,0, o2, 1, o1, GZ’E}
Also  (t6) (o) = t(oaw) = aw?, 16 # ot
So G is a non abelian group of order 6 and so G = ;.
Denote ow by 1, aw? by 2 and o’ by 3 and we get

t =(12), oT = (13), 6’T = (23),

c = (123), %> =(132)
Write T =0, 6 =05, 6l =0, 62265 and 62T=c56
Then G = {l, o,, 65, G, O, G}
Subgroups of G are:

H = {1, 02}, H,= {1, 04},
H, ={l, 0., H,={l, 0,0, H,= G, H = {I}.
Let | = H,*, the fixed field of H,.
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Now H, fixesoao = Q < Q(a) c F|, C E.
But [Q():Q] =3,[E:F|]=[E:H*]=0(H)=2
and [£:Q] =6 = F, =Q(w).

Let F, =H,*, the fixed field of H,.

Then F, = Q(ow?) and F ;> the fixed field of H is Q(am)
Let F, =H,*, the fixed field of H,. Now H, fixes J3i

= Q cQ(3i)c F,cE

Since [E:F,] =3.[Q(3i):Q]=2,[E:Q]=6,F,=Q(~3i).
Clearly, Fy =Fixed field of G=Q

and F, =Fixed field of H, = E.

So, we have 6 intermediate fields between Q and E corresponding to 6
subgroups of G.

Since H|, H,, H, are not normal, F,/Q, F',/Q, F;/Q are also not normal.
Also H,, H,, H are normal subgroup of G, and thus F,/Q, F;/Q, F,/Q are
normal subgroups of G.

(if) Let E be a minimal splitting field of f(x) =x*+ 1 over Q.

Then o, o, o, o’ are roots of f(x), where a = cos%+ i sing

and E =Q(a) = Q) = Q(&’) = Q(at))

Then  [E£:Q] =[Q(a) : Q] =deg Irr (Q, a) = deg f(x) = 4.
Char Q =0= E/Q is separable.

Also E is aminimal splitting field of f(x) over Q implies £/Q is normal.
Hence E/Q is Galois.

Let G = G(E/Q) be the Galois group of £/Q.

By Artin's theorem, o(G) =[E: Q] =4
Since o and o are roots of an irreducible polynomial £ (x) over Q, there
exists Q-automorphism
6;:Q(o) =E — Q(c’) = E, such that,
oy(a) = o’
Similarly, there exists Q-automorphisms
c5: Q) =E— Q(a’) =E such that,

o5 (o) = o’
c,: Q) =E— Q(a/)=E such that,
c,(a) = a’
So G ={l, o5, 05, 0}
Also 6’ =c=0c2=]1
3 5 7

Thus G is an abelian non cyclic group of order 4 and so it is the Klein's four
group.



Subgroups of G are Field Theory
H, =11, 05}, H,= {l, o},
H, ={l,0,},H,= G, Hy= {I}.
Nowo € G
=3 o(x2)? =o(2)=2

= (c/2))? =2=0

= o2)isazeroofx*+2in Ec C

NOTES

= o(2) =++/2 . Similarly 6(i) =+ i.
So, c,(a) =’ = 03[%+%j =%+%

= 0,(2)=-2,0,() =-i
= 63(\/5 i)=~2i
= H, fixes J2i

Let F, = H,", the fixed field of H,

Then Q cQW2i)cF cE

But [Q(/2i):Q] =2, [E:F|]=2,[E:Q]=4

So, F, =Q21)

Also, cs(a) =0 = (55(%+%J = —%—%.

65(\/5) =—2 and cs(i) =i = H, fixes i.
Let F, = H,*, the fixed field of H,.
Then QcQO)cF,cE
and [E:F)] =2,[Q0):Q]=2,[E:Q]=4=F,=Q().
= oW =
= H, fixes V2. Let F, = H,*, the fixed field of H,.
Then Q cQW2)cF,cE
and [E:F;] =2,[Q2):Q]=2,[E: Q] =4=F,=Q(:2).
Clearly F, = fixed field of H, (= G) is Q and F; = fixed field of H; = E.
So, F\, F,, I, F,, F, are intermediate fields lying between Q and E.
Since F|, F,, F; are quadratic extensions of Q, F,/Q, F,/Q, F,/Q are
normal. Also F,/Q, F/Q are normal. But G being abelian, all subgroup of G are
normal subgroups of G.
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3.7 SOLUTION OF POLYNOMIAL EQUATIONS BY
RADICALS

In this section you will learn how to establish the solvability through radicals of
polynomials of different degrees. Additionally, for polynomials which are solvable
through radicals we require the Galois theoretic derivation of the general solution
to the polynomial. The solvability through radicals can be revealed using the Galois
Theory and also the characteristics of Group and Field theory.

Polynomials of degree one and two are simply established to be solvable
by radicals because of the existence of similar general formula for both. Complex
formulas for cubic and quartic polynomials are solved by radicals. Though, general
polynomials of degree five are not solvable and so there is no general formula for
this.

Basically, the polynomials are functions of the type,

p(x)=ax"+a, x"" +-+ax+a,

where a_# 0. The root(s) of a polynomial are considered the value(s) of x which
satisfy the condition p(x) = 0. To solve the polynomial roots using radicals does
not mean to find a root, because as per the fundamental theorem of algebra any
polynomial of degree n has n complex roots which should not be distinct. Solving
apolynomial by radicals involves the expression of all roots of a polynomial including
the four basic operations: addition, subtraction, multiplication and division, and
also taking the radicals from the arithmetic grouping of coefficients of any given
polynomial. Solving for polynomial roots through radicals includes obtaining the
general solution to the general form of'a polynomial of some specific degree. The
following analysis explains how all polynomials can be solved through radicals and
to prove the resultant of the solvability of polynomials.

Cubic Functions: Cubic functions can be solved with the help of Cardano’s
method in which the general cubic equation is transformed into a depressed cubic
without the x? term.

Consider the general form of a polynomial of degree three.
ax’ + bx> +ex +d=0 ...(3.6)

It is easy to work using a polynomial of foremost coefficient one, hence we
divide a outside the entire equation to get,

b c d
¥ +=x"+—x+—=0,
a a a
By substituting X =y — 34 into above equation the polynomial becomes,
a

( _ij3+2( _3]15( _zj+z
Y 3a a Y 3a a Y 3a a



=y + i—z—bz+£ +| - L +b3—0b+i =0
yory 3> 3d* a 274 94 3d® a

This has been reduced to the cubic polynomial of the form,

V+py+qg=0 ...(3.7)
Where,
b 2b2+c d b’ N b’ cb +d
=—-——5+t—and g=— - —
P 3> 3d° d 1 274 94’ 3a° a
Such that,
w+v)y =3uww+v)—@w +v)=0 ...(3.8)

Equation (3.7) corresponds to Equation (3.8) so that,
w+v)=y,3uv=—p,u’ +v' =—¢q

Equation (3.8) can be solved for y as follows,

|l )

where i € {1,2,3} and w, is one of the 3rd roots of unity.

The general solutions for this equation is,

b W 2 3 2 3
_x=__+_i 3_1_{_ 1 + £ +3_g_ 2 + £
3a 3a 2 2 3 2 2 3
Let us consider the Galois group of the irreducible depressed cubic equation.

The Galois group of the splitting field of a general cubic equation is S, and also the
possible Galois group of any cubic is isomorphic to either S, or 4.

Let f(x) =x* + px + g be an irreducible cubic in the polynomial ring F[x]
over afield /' of characteristic zero with roots y,, y, and y..

We include the relations, y, +y, +y, =0,y v, +y,y, +y,y, =pand
Yy, = 4.
Hence we have the chain of fields F < F(y,) € K, where K=F(y,y,) =

F(yy,y,). Hence, if two roots are in the field then the third root is automatically
there.

Also, either F(y ) =K or F(y)) <K.
Case (i): F(y) = K.
We know that K = F(y,) forany i = {1,2,3} or [K:F] = 3.
Hence, Gal(K/F) = A,. The composition series of Gal(K/F) is thus 4, 1> 1.
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Case (ii): F(y) <K.

We know that G = Gal(K/F) is a subgroup of §.. Since f{x) factors over K and
F(y,) does not contain y,, consider A(x) = (x -y,)(x - y,). Also, i(x) is irreducible
over F(y,), hence [K: F]=6.

Since [K: F]=6and G=S,, s0 S, has only one degree 3 subgroup 4 .. This
implies that there exists a field L such that [K: L]=|4,[= 3 and [L: F] = 2. L is thus
acquired by adjoining a square root of the discriminant D where,

D= H (y] 7yi)2

1<i<j<3

We comprehend that /] is fixed by any even permutation of the roots and

g(\/ﬁ ) — /D for any odd permutation ¢ where & acts naturally on the

subscripts in the above expression of D. Thus D s fixed by all of S, so if D is not
asquare+/D & F,hence [F (V D):F ] =2 oris aradical extension. Since Gal
(K/F) =S, it can be shown that L = F/D).

Thus, K=F(y,y,)=F (\/5, yl)and the composition series of Gal(K/F):
S, >4, >1

This is so because,
a¥ (pY poob b dY) (B 20 ¢
S5 S ste s 22" Moz ozt as
2 3 27a° 9a’ 3a c 9a 9a~ 3a

- ﬁ (b’c* — 4db* — 4ac’ +18abed — 27d%a”)

1
_ﬁ(yl _y2)2 (», _y3)2 » _y3)2

Therefore, the adjoining of the square root of the discriminant gives rise to
the field L which contains the term,

2)+(5)

Quartic Functions: Quartic polynomials can be solved using Ferrari’s
method which transforms a quartic polynomial into a depressed quartic which has
no x° term.

We start with the general form of a quartic equation,

X*tad+bx’+ex+d=0 ....(3.9)



In fact, all quartic polynomials can be reduced to the above monic
polynomials by dividing throughout with the leading coefficient and replacing the
coefficients of the other terms with a, b, cand d.

Substitute x = y — % into Equation (3.9) to get an equation of the form,

Vpy*t gy +r=0 ...(3.10)
We can add 2z)? + 2 to the above equation to obtain,
V42242 =2z-p)y—qy + (2 —71)

Since we would like the right hand side to be a square so we should let the
discriminant of the quadratic on the RHS be 0. Specifically, we assume that,

¢—A(-r)(2z-p)=0
Rearranging the terms we get a cubic in z as,
8z —4pz2 —8rz+4rp—q¢*’=0 ...(3.11)

Thus we find the root z of this equation and solve for y by substituting that
value into Equation (3.10) to get a quadratic in y. Solving the resultant quadratic
in)” gives the roots of the depressed quartic from which we can derive x.

Thus we get the solutions for the quartic Equation (3.9). One root of
Equation (3.9) is fixed in this formula,

x=%«/22pi\/%zépi\/zz P

4
The Galois theoretic derivation of the formula is as follows.

Solving for the roots of a quartic involves solving of the cubic
Equation (3.11)inz:
83 —4pz2 —8rz+4rp—¢°=0
For a general irreducible quartic equation f in F[x], the Galois
group G = Gal(E/F)is S,.
G =S, has the composition series as follows:
la<oc><Vad,<S,
where Vis the Klein 4-group. o is any of the 3 order 2 involutions in V.
The corresponding field extension is,
EDEsDEDEDF.

The part £, > F(corresponding to 4, < S,) is of degree two and

corresponds to the degree two extension in solving z. The element z is solved via
taking a degree two extension, i.e., square root of the discriminant and followed
by a cubic root (as explained eralier for cubic equations). Note that
Gal(E/F)=S,/V, which is isomorphic to S,. In fact, S, = VS, =gh {gin V] hin
S.}. The group Vacts on E trivially and hence S,/ (identified with S,) acts on £,
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which fixes exactly elements in /- The extension Eg D E is of degree 2 and

corresponds to the taking of either \/ 2z—por \/ z? — r . These are equivalent

2
since we have, (2z — p) (2" —r) = q? which is a square. There are 3 possible

groups < ¢ > which correspond to the adjoining of the 3 possible values of z as
solutions of the Equation (3.11). The last radical extension (E o E) corresponds
to,

11 5 \/ 11 5
——z——p+iz -1 ——=Z——Pp—\Z —F
\/ 274”7 T GY

Adjoining either of these two to Ec will give rise to the same field £ since
the degree [E: Es] = 2.

3.7.1 Insolvability of the General Equation of Degree 5

In algebra, the Abel-Ruffini theorem also known as Abel’s impossibility theorem
states that there is no general algebraic solution, i.e., solution in radicals to polynomial
equations of degree five or higher. This theorem states that every non-constant
polynomial equation in one unknown, with real or complex coefficients, has at
least one complex number as solution.

The theorem defines the form that a solution must take. It also states that
not all solutions of higher degree equations can be obtained by starting with the
equation’s coefficients and rational constants, and repeatedly forming sums,
differences, products, quotients and radicals (nth roots for some integer ) of
previously obtained numbers. In fact if the roots happen to be rational numbers,
they can trivially be expressed as constants. The simplest nontrivial example is the
monomial equation ax" = b, whose solutions are,

{/E.e"z”k/” k=0,1,....,n—1
a

Here the expression €™/ appears to involve the use of the exponential
function that gives the possible values of #/] (the nth roots of unity), so it involves
only extraction of radicals.

The Abel-Ruffini theorem states that there are some fifth-degree equations
whose solution cannot be so expressed, for example the equation x*—x+1=0.
Some other fifth degree equations can be solved by radicals, for example x° —x*
—x + 1 =0, which factorizes to (x — 1) (x — 1)(x + 1)(x + i)(x — i) = 0. The
precise criterion that distinguishes between those equations that can be solved by
radicals and those that cannot be solved was given by E variste Galois and is
termed as Galois Theory. A polynomial equation can be solved by radicals if and
only ifits Galois group (over the rational numbers or more generally over the base
field of admitted constants) is a solvable group.



In modern algebraic context, second, third and fourth degree polynomial
equations can always be solved by radicals because the symmetric groups S , S,
and S, are solvable groups, whereas S is not solvable for n > 5. This is so
because for a polynomial of degree » with indeterminate coefficients (i.e., given by
symbolic parameters), the Galois group is the full symmetric group S and is called
the ‘general equation of the nth degree’. This remains true if the coefficients are

concrete but algebraically independent values over the base field.

The following proof'is based on Galois Theory. Historically, Ruffini and
Abel’s proofs precede Galois Theory. One of the fundamental theorems of Galois
theory states that an equation is solvable in radicals ifand only if it has a solvable
Galois group, so the proof of the Abel-Ruffini theorem is based on the Galois
group of the general polynomial of the fifth degree.

Let y, be areal number transcendental over the field of rational numbers Q
and let y, be a real number transcendental over Q(y,) and so on to y, which is
transcendental over Q(y,,y,.y,.y,). These numbers are called independent
transcendental elements over Q.

Let E= O(y,.y,.V;:,.5) and let,
) =x-y)x-y,)x-y)x-y)(x-y) € E[x]
Multiplying f{x) yields the elementary symmetric functions of the V)
S, =y Ty, ty,ty, Ty
S, =YY, T Yyt TV
and so for,

Ss =Yy s

The coefficient of x" in f{x) is thus (— 1)>~"S, _ . Because our independent
transcendental y act as indeterminate over Q, so every permutation ¢ in the
symmetric group on 5 letters S induces an automorphism ¢’ on £ that leaves Q
fixed and permutes the elements y . An arbitrary rearrangement of the roots of the
product form produces the same polynomial of the form,

=)0 =)0 =)0 -y ) -y,

This is same polynomial as,

=20 =) =y ) =y )0 =¥

The automorphism 6" also leave E fixed, so they are elements of the Galois
group G(E/Q). Now, since | S, | = 5! so it must be | G(E/IQ) | > 5!, as there could
possibly be automorphism there that is not in S,. However, since the splitting field
of a quintic polynomial has at most 5! elements because| G (E/Q)| 2 5! and so
G(E/Q) must be isomorphic to . Generalizing this argument shows that the Galois
group of every general polynomial of degree n is isomorphicto S .

The only composition series of S, is S, >A_ > {e}, where A, is the alternating
group on five letters also known as the icosahedral group. However, the quotient
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group A4./{e} which is isomorphic to 4, itselfis not an abelian group and so S, is
not solvable. Hence, the general polynomial of the fifth degree has no solution in
radicals. Since the first nontrivial normal subgroup of the symmetric group on n
letters is always the alternating group on # letters and since the alternating groups
on n letters for n > 5 are always simple and non-abelian hence not solvable. It also
says that the general polynomials of all degrees higher than the fifth also have no
solution in radicals. Note that the above construction of the Galois group for a fifth
degree polynomial only applies to the general polynomial. Specific polynomials
of the fifth degree may have different Galois groups with quite different properties,
for example x° — 1 has a splitting field generated by a primitive Sth root of unity
and hence its Galois group is abelian and the equation itself solvable by radicals.

Check Your Progress

7.  Whenis an extension called a simple extension?
8.  Write about the quartic function.
9. State the Abel’s theorem.

3.8 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Let K be a field and suppose F'is a subfield of K then K is called the
extension of F.

2. A complex number is said to be an algebraic number if it is algebraic over
the field of rational numbers.

3. Let F'beafield. The intersection of all subfields of F'is the smallest
subfield of ' and is called the prime subfield of F-.

4. Let E'be an extension of K. E is called normal extension of K if E/K is

algebraicand a € E = p(x) = Irr(K,a) splits in E[x] or E.

5. A field having a finite number of elements is called a finite field or a Galois
field.

6. Let Sbe aset of polynomials over k. Suppose each f < S splits in a field
E containing k. Then E is called a splitting field of S over £.

7. Anextension K/F is called a simple extension if K=F(a) for some ac K.

8. Quartic polynomials can be solved using Ferrari’s method which transforms
a quartic polynomial into a depressed quartic which has no x* term.

9. Abel’s theorem states that the generic algebraic equation of degree higher
than four is not solvable by radicals.
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3.9 SUMMARY

e [ft Kis a field and suppose F'is a subfield of K, then K is called an
extension of F. NOTES

e [f K is an extension of F. a € K is said to be algebraic over F'if 3
non-zero polynomial f'(x) € F[x] such that f (a) = 0.
¢ Anelementa € K is said to be algebraic of degree n over F'if it satisfies

apolynomial of degree n over F'and does not satisfy any polynomial of
lesser degree (than n).

o A field Kis called perfect field if every algebraic extension of K is separable.

o [f Fis an extension of K. £ is called normal extension of K if
(i) E/K is algebraic (ii) a € E = p(x) =1Irr (K, o) splits in E[x] or E.

o A field kis called algebraically closed if every polynomial fover £ splits in
k.

e Leto,,0,, ..., 5, be homomorphisms from a field £ into a field £'. Then,
o;s are called linearly independent over £’ if o0, + ... T a,,0, = 0, = o,
=0 viwherea, € E'.

e Anextension E of F'is called a Galois extension if

(1) E/Fis finite
(i) F'isthe fixed field of a group of automorphisms of £.

e Cubic functions can be solved with the help of Cardano’s method in which
the general cubic equation is transformed into a depressed cubic without
the x? term.

e Quartic polynomials can be solved using Ferrari’s method which transforms
a quartic polynomial into a depressed quartic which has no x* term.

e The Abel-Ruffini theorem states that there are some fifth-degree equations
whose solution cannot be so expressed, for example the equation x* —x +
1=0.

3.10 KEY TERMS

e Algebraic number: A complex number is said to be an algebraic number if
itis algebraic over the field of rational numbers.

¢ Separable polynomial: A polynomial is said to be separable if all its roots
are simple.

e Finite field: A field having finite number of elements is called a finite field or
a Galois field.
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e Cubic functions: Cubic functions can be solved with the help of Cardano’s
method in which the general cubic equation is transformed into a depressed
cubic without the x? term.

e Quartic functions: Quartic polynomials can be solved using Ferrari’s
method which transforms a quartic polynomial into a depressed quartic
which has no x* term.

3.11 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

. Define a field.

. What is algebraic extension?

. What is the difference between separable and inseparable extensions?
. Whenis a field said to be perfect?

. What do you mean by the term normal closure?

Define product of fields.

Define linear independence.

What is primitive element?

© 0 N L AW

What is Galois group?

_
e

What do you understand the solvability of a quadratic equation.

Long-Answer Questions

1. If a, b € K are algebraic over F of degrees m and n respectively and if
m and n are relatively prime, prove that F(a, b) is of degree mn over F.

2. If a € K is algebraic over F of odd degree, show that F (a) = F(a?).

3. Show that degree of ~/2 ++/3 over Q is 4 and degree of /2 +3/5 over Q
is 6.

4. If a is an algebraic integer and m is an ordinary integer, prove

(1) a+ misanalgebraic integer.
(it) ma is an algebraic integer.

5. Prove that sum and product of two algebraic integers is an algebraic integer.

6. Find a basis of Q (+/2,~/3) over Q. [1, v2,+/3,/6]

7. Let K be an extension of F. Suppose £\, E, are contained in K and are
extensions of F. If [E, : F] and [E, : F] are primes, show that either
E,NE,=ForE =E,.

8. If K is an extension of F, ¢ € K, a, b € F, a # 0 then show that F(c) =
F(ac + b).



9. Suppose that a field F" has finite number of elements g. Show that Field Theory
(i) g =p" for some prime p and integer n.
(@) a?=aforalla € F.
(iii) If b € K is algebraic over F, then 57" = b for some m > 0. NOTES

10. Let K be a finite extension of /. Suppose if /', and F, are any two subfields
of K such that, F F, and F c F, then eitherF1 cF,orF,cF,. Show
that K will be a simple extension of F.
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4.0 INTRODUCTION

In mathematics, more specifically in the area of abstract algebra known as ring
theory, a Noetherian ring is a ring that satisfies the ‘Ascending Chain Condition’
on left and right ideals. In other hand the notion of a Noetherian ring is of fundamental
importance in both commutative and non-commutative ring theory, due to the role
it plays in simplifying the ideal structure of a ring. In abstract algebra, a Noetherian
module is amodule that satisfies the ascending chain condition on its submodules,
where the submodules are partially ordered by inclusion.

In abstract algebra, an Artinian module is a module that satisfies the
descending chain condition on its poset of submodules. They are for modules
what Artinian rings are for rings, and a ring is Artinian iff it is an Artinian module
over itself (with left or right multiplication). Both concepts are named for Emil
Artin.

In algebra, the Wedderburn—Artin theorem is a classification theorem for
semisimple rings and semisimple algebras. The Wedderburn—Artin theorem reduces
the problem of classifying finite-dimensional central simple algebras over a field K
to the problem of classifying finite-dimensional central division algebras over K.
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In abstract algebra, a module is called a uniform module if the intersection
of any two non-zero submodules is non-zero. Alfred Goldie used the notion of
uniform modules to construct a measure of dimension for modules, now known as
the uniform dimension (or Goldie dimension) of amodule. Uniformly primary ideals
in acommutative ring with non-zero identity have been introduced and studied by
J.A.Coxand A. J. Hetzel.

In mathematics, the Lasker—Noether theorem states that every Noetherian
ring is a Lasker ring, which means that every ideal can be decomposed as an
intersection, called primary decomposition, of finitely many primary ideals.

In this unit, you will study about the rings and modules, simple modules,
Schur’s Lemma, free modules fundamental structure theorem, Noetherian and
Artinian module or ring, Hilbert’s basis theorem, Wedderburn—Artin theorem,
uniform module, primary module, Lasker—Noether theorem.

4.1 OBJECTIVES

After going through this unit, you will be able to:
e Define simple modules, uniform modules and Schur’s lemma
¢ Understand the fundamental structure theorem for modules
e Describe the Neotherian and Artinian rings as well as modules
e State the Hilbert basis and Wedderburn Artin theorem
e Elaborate on the primary modules and Noether-Lasker theorem

4.2 RINGS AND MODULES: INTRODUCTION

A group we noticed is a system with a non-empty set and a binary composition.
One can of course talk about non-empty sets with two binary compositions also,
the set of integers under usual addition and multiplication being an example. Though
this set forms a group under addition and not under multiplication, it does have
certain specific properties satisfied with respect to multiplication as well. We single
out some of these and generalize the concept in the form of a ring. We start with
the formal definition.

Definition 1: A non-empty set R, together with two binary compositions + and
. 1s said to form a Ring if the following axioms are satisfied:

@Ha+b+c)y=(@@+b)+c foralla,b,c e R
@ya+b=b+a fora,beRr
(iii) 3 some element O (called zero) in R, such that,a +0=0+a=a forall
aeR
(iv) foreach a € R, 3 an element (—a) € R, such that,a + (—a)=(—a) +a
=0



Wa.(b.c)y=(a.b).c foralla,b,c eR
viya.(b+c)=a.b+a.c
(b+c)y.a=b.a+tc.a foralla,b,ceR

Notes: 1. Since we say that + and . are binary compositions on R, it is understood
that the closure properties with respect to these hold in R. In other words,
foralla,b € R,a+banda.bareuniquein R.

2. One can use any other symbol instead of + and ., but for obvious reasons,
we use these two symbols (the properties look so natural with these). In
fact, in future, the statement that R is a ring would mean that R has two
binary compositions +and . defined on it and satisfies the above axioms.

3. Axiom (v) is named associativity with respect to . and axiom (vi) is referred
to as distributivity (left and right) with respect to . and +.

4. Axioms (7) to (iv) could be restated by simply saying that <R, +> forms
an abelian group.
5. Since 0 in axiom (iii) is identity with respect to +, it is clear that this element
1S unique (see groups).
Definitions 2: A ring R is called a commutative ring if ab = ba for all a, b €
R. Again if 3 an element e € R such that,
ae=ea=a foralla eR

we say, R is a ring with unity. Unity is generally denoted by 1. (It is also
called unit element or multiplicative identity).

It would be easy to see that if unity exists in a ring then it must be unique.

Note: We recall that in a group by @ we meant a . @ where “.” was the binary
composition of the group. We continue with the same notation in rings as well. In
fact, we also introduce similar notation for addition, and shall write na to mean
a+a+ ..+ a(ntimes), n being an integer.

Case 1: Sets of real numbers, rational numbers, integers form rings with respect
to usual addition and multiplication. These are all commutative rings with unity.

Case 2: Set E of all even integers forms a commutative ring, without unity (under
usual addition and multiplication).

Case 3: (a) Let M be the set of all 2 x 2 matrices over integers under matrix
addition and matrix multiplication. It is easy to see that M forms a ring with unity

1 0 . .
{0 J, but is not commutative.

a

b . .
0 0} over integers under matrix

addition and multiplication. Then M forms a non commutative ring without unity.

(b) Let M be set of all matrices of the type [
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Case 4: The set Z, = {0, 1, 2, 3, 4, 5, 6} forms a ring under addition and
multiplication modulo 7. (In fact, we could take » in place of 7).

Case S: Let /' be the set of all continuous functions /: R — R, where R = set
of real numbers. Then F forms a ring under addition and multiplication defined by:

for any f,geF
(f + gx=f(x) forallx € R
(f @x= f(x)g(x) forallx e R
zero of this ring is the mapping O : R — R, such that,
Okx)=0forallx e R

Also additive inverse of any f € F'is the function (- /) : R —> R such that,
S x=-f(x)

In fact, /" would have unity also, namely the function 7 : R — R defined
by i(x) =1 for all x € R.

Note: Although the same notation fg has been used for product here it should not
be mixed up with fog defined earlier.

Case 6: Let Z be the set of integers, then Z[i] = {a +ib|a, b € Z} forms a
ring under usual addition and multiplication of complex numbers. @ + ib where a,
b € Zis called a Gaussian integer and Z[{] is called the ring of Guassian integers.

We can similarly get Z, [i] the ring of Gaussian integers modulo 7. For
nstance,

ZJi]=t{a+ib|a,beZ,=1{0,1,2} mod 3}
=10, 1,2, 0, 1+ 4,244, 20, 1 +2i,2 + 24}

Case 7: Let X be a non-empty set. Then . AX) the power set of X (i.e., set of
all subsets of X) forms aring under +and - defined by

A+B=AUB)—(ANB)
A.B=ANB

In fact, this is a commutative ring with unity and also satisfies the property
A*=Aforall 4 € . AX).

Case 8: Let M =set of all 2 x 2 matrices over members from the ring of integers
modulo 2. It would be a finite non-commutative ring. M would have

a

2% =16 members as each element a, b, ¢, d in matrix {
C

b .
d} can be chosen in

2 ways. Compositions in M are given by
a b N x y| _|a®x b®y
c d z u c®z dOu

where @ denotes addition modulo 2 and



a bilx y|_ |a®x®b®z a®y®b®u
c d cxBd®z c®yDdQu

zZ U

® being multiplication modulo 2.

. . 1 1{{0 O
That M is non-commutative follows as L J{ }

LY

Case 9: Let R = {0, a, b, c}. Define + and . on R by

]

+ 0 a b ¢ .0 a b
0 0 a b c 0O 0 0 o0
a a 0 ¢ b a 0 a b c
b b ¢ 0 a b 0 a b c
c ¢ b a O c 0 O 0 O

Then one can check that R forms a non-commutative ring without unity. In
fact it is an example of the smallest non-commutative ring.

Theorem 4.1: In a ring R, the following results hold
@)a.0=0.a=0 forallae R
(@) a(-b) = (—a)b=—ab forall a,b € R
(@#ii) (—a) (-b)=ab. ¥ a, b 1 R
(iv)ya(b—c)=ab—-ac.V a,b,c € R
Proof: (i) a.0=a.(0+0)
= a.0=a.0+a.0
=a.0+0=a.0+a.0
= 0=a.0
using cancellation w.r.t + inthe group <R, +>.
(i) a.0=0
= a(-b+b)=0
= a(=b)y+ab=0
= a (—b) =—(ab)
similarly (—a) b = — ab.
@) (—a)(=b) =—[a(=b)]=—[-ab]=ab
() a-c) =a(d+(0)
=ab+a(—c)
=ab — ac.
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Notes: 1. If R is a ring with unity and 1 =0, then since foranya € R, a=a.l =
a.0 =0, we find R = {0} which is called the trivial ring. We generally
exclude this case and thus whenever, we say R is a ring with unity, it will
be understood that 1 # 0 in R.

2. If n, m are integers and a, b elements of a ring, then it is easy to see that
n(a + b) = na + nb
(n +m)a =na + ma
(nm)a = n(ma)
am a" =a" "
( am)n = g™
We are so much used to the property that whenever ab = 0 then either a
=0 or b =0 that it may need more than a bit of convincing that the result may
not always be true. Indeed in the ring of integers (or reals or rationals) this property
holds. Butif we consider the ring of 2 x 2 matrices over integers, we notice, we
can have two non-zero elements 4, B s.t, AB =0, but 4 = 0 B # 0. In fact, take

0
this notion through

A:{g 1} andBZB 8} thenA;tO,B;tO.ButAB:{g g}.Weformalise

Definition 1: Let R be aring. An element 0 # a € R is called a zero-divisor,
if 3 an element 0 # b € R such that, ab =0 or ba = 0.

Definition 2: A commutative ring R is called an Integral domain if ab=01in R
= either a =0 or b= 0. In other words, a commutative ring R is called an integral
domain if R has no zero divisors.

An obvious example of an integral domain is < Z, +, - > the ring of integers
whereas the ring of matrices, talked about above is an example of a ring which
is not an integral domain.

Note: Some authors do not insist upon the condition of commutativity as a part
of the definition of an integral domain. One can have non-commutative rings without
zero divisors.

The following theorem gives us a necessary and sufficient condition for a
commutative ring to be an integral domain.

Theorem 4.2: A commutative ring R is an integral domain iff for all a, b,
ceR@#0)

ab=ac = b=c.

Proof: Let R be an integral domain

Let ab=ac (a+0)
Then ab—ac=0
= alb-¢c)=0



= a=0or b—c=0

Since a#0,wegeth=c.

Conversely, let the given condition hold.

Let a, b € R be any elements with a # 0.

Suppose ab =0

then ab =a.0

= b= 0using given condition

Hence ab =0 = b =0 whenever a # 0 or that R is an integral domain.
Note: Aring R is said to satisfy left cancellation law if forall a, b,c € R,a+ 0

ab=ac = b=c.

Similarly we can talk of right cancellation law. It might, of course, be
noted that cancellation is of only non zero elements.
Definition 1: An element a in a ring R with unity, is called invertible (or a unir)
with respect to multiplication if 3 some b € R such thatab =1 = ba.

Notice, unit and unit element (unity) are different concepts and should not
be confused with each other.

Definition 2: A ring R with unity is called a Division ring or a skew field if non
zero elements of R form a group with respect to multiplication.

In other words, aring R with unity is a Division ring if non-zero elements
of R have multiplicative inverse.

Definition 3: A commutative division ring is called a field.

Real numbers form a field, whereas integers do not, under usual addition
and multiplication. Since a division ring (field) forms groups with respect to two
binary compositions, it must contain two identity elements 0 and 1 (with respect
to addition and multiplication) and thus a division ring (field) has at least two
elements.

Case 10: A division ring which is not a field. Let M be the set of all 2 x 2 matrices

b — .
of the type{ c% _} where a, b are complex numbers and a,b are their
a

. . . _ . . . . . 1 0
conjugates, i.e., ifa=x+iy then @ =x—iy. Then M is a ring with unity {0 1}

under matrix addition and matrix multiplication.

Any non-zero element of M will be { Xhwoous W}

—(u—iv) x-iy

where x, y, u, v are not all zero.
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x—1iy u+iv

One can check that the matrix | ¥ , k'
u—iv  x+iy
k k

where k= x? + y* + 1> + v*, will be multiplicative inverse of the above
non-zero matrix, showing that A is a division ring. But M will not be a field as
it is not commutative as

R
o L1

Case 11: Consider
D={a+bi+c+dk|a, b,c,de R} with i* =j*>=k* =—1, then D
forms a ring under multiplication.
Sincei=0+1i+ 0j + 0k, j =0+ 0i + 1 + Ok gives ij = k, ji = —k,
we find D is not commutative and hence is not a field. D has unity 1 =1+ 0i +
07 + Ok.
If a + bi + ¢j + dk be any non-zero element of D (i.e., at least one of a,
. . . (a—bi—cj—dk) _
b, ¢, d is non zero) then (a + bi + ¢j + dk)—+2——+=
) ( / ) a?+b* P +d?
Hence D is a division ring but not a field.
Theorem 4.3: A field is an integral domain.
Proof: Let<R,+,.>be afield, then R is a commutative ring.

Let ab =0 in R. We want to show either @ =0 or » = 0. Suppose a # 0,
then ¢! exists (definition of field)

thus ab =0
= a'(@)=ada'0
= b=0.

which shows that R is an integral domain.
A ‘Partial Converse’ of the above result also holds.
Theorem 4.4: A non-zero finite integral domain is a field.
Proof: Let R be anon-zero finite integral domain.
Let R’ be the subset of R containing non-zero elements of R.
Since associativity holds in R, it will hold in R'. Thus R’ is a finite semi group.

Again cancellation laws hold in R (for non zero elements) and therefore,
these holdin R'.



Hence R’ is a finite semi group with respect to multiplication in which
cancellation laws hold.

.. <R',.> forms a group.

In other words <R, +, - >is a field (it being commutative as it is an integral
domain).

Aliter: LetR= {a, a,, ...., a,} be a finite non-zero integral domain. Let

0 # a € R be any element then aa, aa,, ....., aa, areall in R and if aa, = aa;
for some i #, then by cancellation we geta, = a, which is not true. Hence aa,,
aa,, ...., aa, are distinct members of R.

Since a € R, a = aa, for some i
Let x € R be any element, then x = aa; for some j
Thus ax = (aa)x = a(ayx)
ie., X =ax
Hence using commutativity we find
X=ax = xa,
or that a, is unity of R. Leta, = 1
Thus for 1 € R, since 1 = aa, for some k

We find a, is multiplicative inverse of a. Hence any non-zero element of R
has multiplicative inverse or that R is a field.

Case 12: An infinite integral domain which is not a field is the ring of integers.
Definition: A ring R is called a Boolean ring if x> = x for all x € R.
Case 13: Thering {0, 1} under addition and multiplication mod 2 forms a Boolean
ring.
Example 4.1: Show that a Boolean ring is commutative.
Solution: Let a, b € R be any elements
Then a + b € R(closure)
By given condition
(@a+byl=a+b
a?+b+ab+ba=a+b

=
= at+b+tab+ba=a+b

= ab+ba=0

= ab=—ba (1)
= a(ab) = a(-ba)

= a’b = — aba

= ab =—aba ..(2)
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Again Equation (1) gives,
(ab)a = (-ba)a
= aba = — ba® = —ba ..(3)
Equation (2) and (3) give,
ab = ba (= — aba)
or that R is commutative.

Example 4.2: (a) Show that a non-zero element a in Z  is a unit iff a and n
are relatively prime.

(b) If a is not a unit then it is a zero divisor.
Solution: (a) Z, = {0, 1, 2, ...... ,n—1} modn
Leta € Z be a unit, then 3 b € Z  such that,

a®b=1
i.e., when ab is divided by n, remainder is 1, in other words,
ab=nqg + 1

or ab—ng =1
= aandnarerelatively prime.
Conversely, let (a, n) = 1, then 3 integers u, v such that,
au +nv =1
= au=n(-v)+1

Suppose, wu=ng+r, 0<r<n, relZz,

Then au=anqg +ar =n(-v)+1
= ar =n(-v-aq)+l, rel,

1e., a®r=1, rel,

1e., a is a unit.

(b) Let a be not a unit and suppose g.c.d(a, n) =d > 1
Since d|a, a = dk for some k. Also d |n = n = dt

:>a.t=dk§=kn=0modn

1.€., a 1s a zero divisor.

Example 4.3: Show that z, = {0, 1, 2, ....., p =1} modulo p is a field iff p
is a prime.

Solution: Let z, be a field. Suppose p is not a prime, then 3 a, b, such that p
=ab,1 <a,b<p

= a ® b =0 where a, b are non zero = Zp has zero divisors.

ie. Zp is not an integral domain, a contradiction as Zp being a field is an
integral domain.



Hence p is prime.

Conversely, let p be a prime. We need show that Zp is an integral domain
(it being finite will then be a field).

Let a®b=0 a,beZp

Then  abisamultiple of p

plab

plaorp|b (pbeing prime)
a=0orb=0(Noticea, b € Zp:>a,b<p)

U U VY

Zp is an integral domain and hence a field.

Example 4.4: [fin a ring R, with unity, (xy)* =x*y* for all x, y € R then show
that R is commutative.

Solution: Let x, y € R be any elements
then y+leR asleRr
By given condition
(v + DY =2 (v +1)?
= +xP=x*@+1)7
= ()’ + 2 +xox+xay=x207+1+2y)
= x2y2 + X2+ Xyx + xxy = x2y2 + X%+ 2x2y
= xyx = x°y (1)

Since Equation (1) holds for all x, y in R, it holds for x + 1, y also. Thus
replacing x by x + 1, we get

(@ + 1) ylx +1) = (x +1)%y
= (y+y) (c+1) = (@ +1 +2x)y
= xyx+xy+yx+y=x2y+y+2xy
= yx=xy using Equation (1)
Hence R is commutative.

Example 4.5: Show that the ring R of real valued continuous functions on
[0, 1] has zero divisors.

Solution: Consider the functions fand g defined on [0, 1] by

1 1
= ——X, <x<=—
f(x) 5 O_x_2
_ 1
=0, —<x<1
2
and g(x) =0, Ost%
11
= x-—, —<x<I1
27 2

Noetherian and Artinian
Modules and Rings

NOTES

Self - Learning
Material 229



Noetherian and Artinian
Modules and Rings

NOTES

Self - Learning
230  Material

then f'and g are continuous functions and f# 0, g # 0

whereasg /(x)= g()f(x) =0. G . ) ifo<r<l

= [x—l].o =0ifleS1
2 2

e, gf(x)=0forall x
ie., gf=0butf=0,g=0.

Definition: A non-empty subset S of a ring R is said to be a subring of R if S
forms a ring under the binary compositions of R.

The ring <Z, +, - > of integers is a subring of the ring <R, +, - > of real
numbers.

If R is aring then {0} and R are always subrings of R, called #7ivial subrings
of R.

It is obvious that a subring of an integral domain will be an integral domain.

In practice it would be difficult and lengthy to check all axioms in the definition
of aring to find out whether a subset is a subring or not. The following theorem
would make the job rather easy.

Theorem 4.5: A non-empty subset S of a ring R is a subring of R iff a, b €
S
=ab,a—-b e S.

Proof: Let Sbe a subring of R
then a, b €S = ab e S (closure)
a,beS=>a-beS
as < §, +>is a subgroup of <R, + >.

Conversely, since a, b € S = a—b € §, we find < §, + > forms a
subgroup of <R, +>. Again for any a, b € S, since S < R

a,beR
= at+tb=b+a
and so we find S is abelian.

By asimilar argument, we find that multiplicative associativity and distributivity
hold in S.

In other words, S satisfies all the axioms in the definition of aring.
Hence S is a subring of R.

Definition: A non-empty subset S of a field F'is called a subfield, if S forms a
field under the operations in £ Similarly, we can define a subdivision ring of a
division ring.

The simple modules over aring R are the (left or right) modules over R,
which have no non-zero proper submodules.



Module

A left R-module M over the ring R consists of an abelian group (M, +) and an
operation R x M — M called scalar multiplication, such that forall 7, s € Rand x,
y € M, we have:

L.rix+y)=rx+ry

2. (r+s)x=rx+sx

3. (rs)x = r(sx)

4. 1 x=x,if R has multiplicative identity 1 ..
A right R-module is defined in the similar way but the ring acts on the right, i.e.,
we have a scalar multiplication of the form M x R — M, and the axioms are

written with scalars 7 and s on the right of x and y. If R is commutative, then left R-
modules are the same as right R-modules and are called R-modules.

Submodule

Suppose M is a left R-module and N is a subgroup of M. Then N is a submodule
or R-submodule if, for any n € N and any » € R, the productrn € Nornr € N
in the case of right R-module.

Quotient module
Given amodule 4 over aring R, and a submodule B of 4, the quotient space A/B
is defined by the equivalence relation
a~bifandonlyifb—a € B,

for any a and b € A4. The elements of A/B are the equivalence classes
[al={a+b:binB}.

The addition operation on A/B is defined for two equivalence classes as the
equivalence class of the sum of two representatives from these classes as,

[a]l+[b]=[a+b] for a,b e Aandr € R

and the multiplication by elements of R as,

r-lal=[r-a],foralla,b e Aandr € R

In this way, A/B becomes itselfa module over R, called the quotient module.

4.3 SIMPLE MODULES

Definition 1: A module is an algebraic object in which things can be added together
commutatively by multiplying coefficients and in which most of the rules of
manipulating vectors hold. If a module takes its coefficients in a ring R then it is
called a module over R or an R-module. If @ and b are two integers then the
smallest module containing a and b is the module for their greatest common divisor.

Definition 2: The left R-module M is said to be finitely generated if there exist

m,m, ..., m eMsuch that M= Z; Rm,.

17
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In this case, we say that { m ,m, ..., m } isaset of generators for M.
The module M is called cyclic if there exists m € M such that M = Rm. The
module M is called a free module if there exists a subset X < M such that each

elementm € M canbe expressed uniquely as a finite sum m = Zln =1 a x,with

a,...,a Randx,...,x € X

1
Definition 3: Let R be aring and let M be a left R-module. For any elementm € M,
the leftideal

Ann(m)={reR|rm=0}

is called the annihilator of m. The ideal

Anmm (M)={reR|rm=0forallme M}.
is called the annihilator of M.

The module M is called faithful if Ann(A)=(0).

A module is simple if it is non-zero and does not admit a proper non-zero
submodule. Ifa module M is simple then the following are equivalent:

e Am = M for every m non-zero in M. simple module
o M — A/m for some maximal left ideal of 4.

In particular, simple modules are cyclic and the annihilator of any non-zero
element of a simple module is a maximal left ideal.

The annihilator of a simple module is called a primitive ideal. The ring 4 is
primitive if the zero ideal is primitive or equivalently, if 4 admits a faithful simple
module.

e A module may have no simple submodules. Simple submodules of 4 are
minimal left ideals.

e Themodule 4 is simple if and only if 4 is a division ring. In this case, any
simple module is isomorphic to A.

e The Z-module Z/p"Z where p is a prime is indecomposable. It is simple if
andonlyifn=1.

e Let A=End, V' fora field k and a k-vector spaceV. The set a of finite rank
endomorphisms is a two-sided ideal of A. Let B be the subring 4 generated
by the identity endomorphism and a. Then V'is a simple B-module, in
particular a simple 4-module and B A4 if dim, V'is infinite. Let W be a
codimension 1 subspace of V. The endomorphisms killing ¥ form a minimal
leftideal in 4 and in B. Thus 4 and B when dim, Vis infinite give examples
of primitive rings that admit non-trivial proper two-sided ideals.

Definition 4: A uniform module is anon-zero module M such that the intersection
of any two non-zero submodules of M is non-zero or equivalently such that every
non-zero submodule of M is essential in M.

Note: An essential submodule of a module B is any submodule A which has non-
zero intersection with every non zero submodule of B.



4.4 SCHUR’S LEMMA

Schur’s lemma is a fundamental result in representation theory, an elementary
observation about irreducible modules, which is nonetheless noteworthy because
of'its profound applications.

Lemma 1: Let G be a finite group and let /" and W be irreducible G-modules.
Then, every G-module homomorphism f: — W s either invertible or the trivial
Zero map.

Proof: Both the kernel, ker / and the image, im f are G-submodules of V"and 17,
respectively. Since Vis irreducible, ker f7is either trivial or all of V. In the former
case, im f1is all of Walso because W is irreducible and hence fis invertible. In the
latter case, fis the zero map.

Given below is one of the most important consequences of Schur’s lemma:

Corollary: Let V' be a finite-dimensional, irreducible G-module taken over an
algebraically closed field. Then, every G-module homomorphism f:V'— Vis equal
to a scalar multiplication.

Proof: Since the ground field is algebraically closed, the linear transformation
f:V—V has an eigenvalue A, say. By definition, f—A is not invertible, and hence
equal to zero by Schur’s lemma. In other words, /=2 , i.e., a scalar.

4.5 FREE MODULES FUNDAMENTAL STRUCTURE
THEOREM

In a principal ideal domain, the generators of an ideal is unique up to associates. If
a e R, then the generator of ann(a) (= {r € R|ra=0}) is called the order of a,
denoted by o(a). Now we attach a weight P(a) to a € R. Since R is a unique
factorization domain, we denote the number of prime factors (counting multiplicity)
of a by P(a). By convention, P(0) = 1. Thus, a|b in R implies that P(a) < P(b),
where the equality holds if and only if @, b are associates.

Lemma 2: Let M be a finitely generated module over a principal ideal domain R,

say M= {m,...,m }.Suppose that there is arelationam +...+am =0,
where not all the @, are zero. Then there are elements m’ , ... ,m’ € M, such that
M= {m',... m'},andtheorder of m' divides everya..

Proof: If one of the a, is a unit then the proof follows.
If @, is a unit, then m, is a linear combination of the other m.. So take
m =0,m" =m,i>1l.

Let s = Z P(a;)where a,# 0. We will prove this by induction on s. If s = 0,

every a, is zero or a unit and at least one ¢, is a unit.
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If only one a, is non-zero, the result is easy to establish, so letus assume @,
a, are non-zero and non-unit. Let b= g.c.d.(a, a,),a, = bc,a,=bc,,and b c,
+b,c,=1. Now

M={m,m,...m;

¢, b
=<(m;,m,) Sy, M,
—-¢ b,

0=b(bm +bm)+am +...+am

Now P(b)< P(a, < P(a,) + P(a,). By induction, M= {m' , ... ,m’ }, with

o(m' )| b,and o(m' )|a, fori > 3. But bla, bla,, hence o(m’ )|a, for all i.
Theorem 4.6: Every n-generated module M over a principal ideal domain R

is a direct sum of n cyclic modules M ™= @' Rm,. Equivalently, M = {m , .
..,m}, and Zaimi =0 implies am. = 0, for all i.

Proof: If n =1, this is true, as R is a principal ideal domain. Now letn> 1. We
induct on n.

Amongst all possible set of generators of M having n elements choose one

which has an element m with least P(m). Let M = {m=m_ ,m’',, ... .m' } If
M=R,® ;Rm; , then by induction the submodule ;R’";‘ has abasis {m,, ...,
m }.Butthen {m ,...,m } is abasis of M.

We show that Rm is indeed a direct summand of M: If not, one has a
relationam, +...+am =0,witham #0.Letb=g.c.d.(a,o(m))=ca, +
c,0(m,).Since am #0,a, and o(m,) are not associates. Hence, P(b) < P(o(m))).

Note that bm +c a,m +.. +c.am =0.Byabove Lemma M= {m',...

172772
o'}, with o(m' )b, o(m'))|c,a,, for i > 2. Since P(o(m'))) < P(b) < P(o(m,)),
this contradicts the minimality of {m , ... ,m }. Thus, Rm is a summand of M and
the result follows.

4.6 NOETHERIAN AND ARTINIAN MODULES

A module is Artinian/Noetherian if it satisfies either of the following equivalent
conditions:

¢ Every non-empty collection of submodules contains a minimal/maximal
element with respect to inclusion.

¢ Any descending/ ascending chain of submodules stabilizes.

An infinite direct sum of non-zero modules is neither Artinian nor Noetherian.
A vector space is Artinian/ Noetherian if and only if its dimension is finite.
Submodules and quotient modules of Artinian modules are Artinian. Ifa submodule
N of amodule M and the quotient M/N by it are Artinian, then so is M.



Theorem 4.7: An R-module M is Noetherian if and only if each submodule
of M is finitely generated.

Proof:

Let N <M be a submodule of M which is not finitely generated. Since no finite
subset of N will generate N, we clearly can choose an infinite sequence of elements

from N,s,,s,,...e N, and get a proper ascending sequence of submodules:

<{s,}>c=<{s,,s,} > .... which contradicts with the fact that M is Noetherian.

Now, let N, € N, c...be an ascending sequence of submodules of M,

0

- N, is again a submodule of M which, by assumption, is finitely generated. Let

0

{V, Vv, ..., v} be aset of generators for k_Jl N, and Nﬂ_be some submodule which

contains {v }. Letm=max{j,,/,, ..., jk} , since ...,

N cN,c..,N, =N,  =..=UN,

i=1 '

Theorem 4.8: Given any short exact sequence 0 >Y —4—> X —>7 -0,
X is Noetherian if and only if Y and Z are Noetherian.

Proof: Let N be any submodule of the Noetherian module X and every submodule
of Nis also a submodule of X, hence, is finitely generated. Then from the above
Theorem , N is Noetherian.

Now, since Y'is D-isomorphic to a Noetherian submodule of X, Y is thus Noetherian.
To conclude that Z is Noetherian, let us consider any ascending sequence of
submodulesof Z: Z cZ, ... Clearly,v "' (Z) cv'(Z) c... isaterminated
ascending sequence, since X is Noetherian. This implies Z < Z, < ...also
terminates.

<:Let N, c N, c ... be any ascending sequence of submodules of X, then
w'V) c uw'(N) c ... and v(N,) < v(V,) < ... are ascending sequences in
Noetherian modules Y and Z, respectively.

Thereis m so that W '(N )=p'(N, . )=...and (N )=w(N  )=....We
claimthatN =N _=...

For this claim to hold, we only need to show that N | N ,i.e. for any
we show thatz e N .

Wz) e V(N )=W(N ),thereisz’ € N so thatv(z) =v(z').

zeN

m+1°

Forze N

m+1°

Since the given sequence is exact, 3y €Y such that u(y)=z—=z'.

This impliesy € p'(z—z)cu' (N , )=u'(N, ). We thus have p(y) €

m+l1
N ,and z=pu(y)+z' €N .
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4.7 NOETHERIAN AND ARTINIAN RINGS

We will, briefly, discuss noetherian rings here which are in fact a natural
generalization of Principal Ideal Domain (PIDs). We begin with

Definition 1: Aring R is called a noetherian ring if every ideal of R is finitely
generated.

Definition 2: Aring R is called noetherain ring if every ascending chain of ideals
in R terminates after finite number of steps.

Before giving any examples let us first show the equivalence of the two
definitions.

Definition 1 = Definition 2

Let R be aring in which every ideal is finitely generated. Let
A, cd,cdyc ...

be any ascending chain of ideals in R,

Let A= kiJAl-

then 4 is an ideal of R

Thus 4 is finitely generated.

Let A=<a,, a,, ... , a,>

Consider any a, then a; € A=A,

= g€ A. for some i

Suppose  a, € Ail, a, € Al.2 ..... , a, € Ain
Let k be suchthatAl.ngk vVi=1,2,..,n
Then a, ay, ....,a, €A,

= Ac A, c4

Hence A, = A or that the chain terminates at 4, which proves the result.
Definition 1 = Definition 2

Let R be a ring satisfying the condition of Definition 2.

Let / be any ideal of R. We show [ is finitely generated.

Let a, € Ibe any element.

If I = <a,>, we are done.

If I # < a, > then 3 same a, € [ such that, a, ¢ <a, >

Consider <a, a,>. If I = <a,, a,> then the result is proved.

Ifnot then 3 a, € I'suchthat, a, ¢ <a,, a,> continuing like this we get
an ascending chain of ideals

<a1>g<a1, a2>g<a1, a,, a3>g ...



which must break off after a finite number of steps, say at <a,, a,, .....,a,>.
Then

I=<a,,a,, ..., a,> and the result is proved.
n

Case 14: A Principal Ideal Domain or PID is a noetherian ring. Thus in particular,
Z,Z[i], F]x] where F'is a field are all noetherian.

Case 15: A finite ring will be noetherian and so would be any field. Remeber a
field F has only two ideal {0} and F..

Remark: A ring R is defined to be right noetherian if every ascending
chain of right ideals in R terminates after finite number of steps. Similarly one can
talk of a left noetherian ring by considering left ideals.

Again the condition of termination of an ascending chain is also referred to
as ACC (Ascending Chain Condition). A ring in which ACC holds for right as well
as leftideals is called a noetherian ring.

One can have examples of right noetherian rings that are not left noetherian
and vice versa.

Theorem 4.9: Quotient ring of a noetherian ring is noetherian.
Proof: Let R/Ibe any quotient ring of a noetherian ring R.
Let f: R — R/I be the the natural homomorphism, where f(r)=r+1
Let J be anyideal of R/I. We show J is finitely generated.
LetJ={reR|f(r) e}

then it is easy to see that ./ is an ideal of R Since R is noetherian, Jis finitely
generated.

Let J=<r,7ry ..., r,>, then we can show that

J=<f@r), f(ry, .o, f(r))>

Let f(r) € J be any element then r € J and as J is generated by |, 7,
..... r , we get

5 n’

r=oyrptoyr, o +a r OLl.eR

= f(r) = fo) f(r) + foy) f(ry) + oo + f(a,) f(r,), fo) € R

Showing that J = <f(r)), f(ry), ...... f(r,) >
Hence R/I'1s noetherian.
Theorem 4.10: Homomorphic image of a noetherian ring is noetherian
Proof: Let/: R — R'bean onto homomorphism and suppose R is noetherian.
By Fundamental theorem of ring homomorphism

R'is isomorphic to a quotient ring of R, which will be noetherian by above
theorem. Hence R’ will be noetherian.

Noetherian and Artinian
Modules and Rings

NOTES

Self - Learning
Material 237



Noetherian and Artinian
Modules and Rings

NOTES

Self - Learning
238  Material

Example 4.6: Let R be a noetherian ring. Show that any ideal I # R is
contained in a maximal ideal of R.

Solution: If /itself is maximal we have nothing to prove. If / is not maximal then
Janideal /;, such that, / c 1,. If 1, is maximal, we are done. If not then 3 another
ideal 7, such that, / /| I, and continuing like this we get an ascending chain
of'ideals which must become stationary after a finite number of steps

ie., Icliclc... cl,=1,,=1, ...

and thus /, will be maximal.

Example 4.7: Let R be a commutative ring with unity. Let R[x] be noetherian.
Show that R is also noetherian.

Solution: We know that
Rix] =R
<Xx>
Since R[x] is noetherian, its quotient ring % is noetherian and therefore
sois R.

We use the famous Hilbert Basis theorem which says that polynomial ring
R[x] of anoetherian ring R is noetherian in proving the following

Example 4.8: Show by an example that subring of a noetherian ring may not
be noetherian.

Solution: Let Q be the field of rational numbers, then Q is a noetherian ring and
thus Q[x] is noetherian.

LetS§={f(x) € Q[x]| f(x)=a, +ax+ a2x2 to..tax', a€l,a,
eQVvix>1}

It is easy to see that S is a subring of Q[x].

We notice the chain

X X
< xX>C<—>C<—>C...
# = 4 =

is an ascending chain of ideals in S which does not terminate after finite

number of steps. Suppose for instance, equality holds at < x >= <§>, then

T e<x> = I =hox
2 2

for some A(x) = o, + o x + ... + a,, x" where o, € Z
m
X
= B = o + o) + o to X
1 2 _ 2 m+1
= O+=—x+0x"+.. = 0+a, x+ax” +..+0a,x
2
1 _ 1
= — =o But —¢Z
2 ° 2



Hence <x>c< % > . Similarly it follows that equality does not hold in the
#

above chain at any step.
Definition: A ring R is called artinian ring if every decending chain of ideals

terminates after a finite number of steps.

It is clear that any finite ring is artinian and so would be a field. The ring Z
of integers is not artinian as the decending chain

<n>>o5<2n>>5<4n>o>5 ...
* * *

ofideals (for any +ve integer n) is infinite.

This also shows that subring of an artinian ring may not be artinian. Notice
Q the ring of rationals being a field is artinian. One can talk of left and right artinian
rings also by considering chain of left (right) ideals.

Check Your Progress

. What is commutative ring?

. What do you understand by submodule?
. State the Schur’s lemma.

. Define the simple modules.

. Give the statement of principal ideal domain.

AN L AW N~

. Write the necessary and sufficient condition for a Noetherian and Artinian
module.

7. Define Noetherian ring.

4.8 HILBERT BASIS THEOREM

In mathematics, specifically commutative algebra, Hilbert’s basis theorem says
that a polynomial ring over a Noetherian ring is Noetherian.

Theorem 4.11: Let R be a right (left) Noetherian ring. Then R[x] is also
right (left) Noetherian.

Proof: Let R be anoetherian ring and let fix)=a x"+a_ x""'+...+a x+a, € R[x]
witha # 0.a istheinitial coefficient of /.

Let /be anideal in R[x]. We will show that / is finitely generated, so that
R[x] s noetherian. Now let f, be a polynomial of least degree in/and if /. f ...,
/, have been chosen then choose f,, from I\(f, /... ..., f,) of minimal degree.
Continuing inductively gives a sequence (f,) of elements of /.
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Let a, be the initial coefficient of , and consider the ideal J=(a , a,, a.,....)
of initial coefficients. Since R is noetherian, J= (a,,....., a,) for some N.

Then I = (f,, f,,....., f,)- Otherwise, f, . € I(f, f,..... f,) and @,
= Zszoukak for some u, u,,.....,u, €R. Let g(x) =ZkN:0ukﬁka where v, =

deg (f,.,)—deg(f,). Thendeg (f, . ,—g) <deg(f,, )andf  —ge landf, g ¢
(fyf - - ---1,)- But this contradicts minimality of deg(f, . ,).

Hence, R[x] is noetherian.

4.9 WEDDERBURN ARTIN THEOREM

Theorem 4.12: (Wedderburn): 4 finite division ring is a field.
Proof: Let R be a finite division ring.

Let Z(R) be the centre of R. Then Z(R) is a field and R can be regarded as a vector
space over Z(R). Since R is finite, R is finite dimensional over Z(R). Letdim R=n,
0(Z(R))=q =power of a prime. Then o(R) = g¢". We show that n = 1. Because
then dim R =1 would imply R=Z(R) = Risafield. Letn>1. Now N(a) = {x €
R|xa= ax} is a subring of R containing Z(R). So, N(a) can also be regarded as a

vector space over Z(R). Let o (N(a)) = ¢'* for some integerr,,.

Let R* = R— {0}. Then R* is a multiplicative group and o(R*) = ¢" — 1.
Consider the class equation of R*.

_ o(R*)
q" — 1= o(Z(R*))+
a e;R*) o(N(a))
_ q" -1
=gq-1+ Y =
agz(Rnqd*—1
Now g« —1|g"-1=r,n, 1<r,<n

By above Lemma then
n _1
[o@[[ L= = |2@]q-1
q a

= |®,(q)][<q-1

But | D, (@)= TI lg-al>Tllg-1|>¢-1
o(aC;:m *

So, we get a contradiction > n =1
Hence R is a field.



4.10 PRIMARY MODULES AND NOETHER-LASKER
THEOREM

The Lasker-Noether theorem states that every Noetherian ring is a Lasker ring
which specifies that every ideal can be written as an intersection of finitely many
primary ideals which are related to but are not identical as powers of prime
ideals. The theorem was first established by Emanuel Lasker for the special case
of polynomial rings and convergent power series rings, and was verified by Emmy
Noether. Basically, the Lasker-Noether theorem is an extension of the fundamental
theorem of arithmetic and more specifically the fundamental theorem of finitely
generated abelian groups to all Noetherian rings.

It has an extension to modules and states that every submodule of a set
module over a Noetherian ring is a finite intersection of primary submodules. This
refers to the situation for rings as a special case considering the ring as a module
over itself such that ideals are submodules. This specifies the primary decomposition
structure of the structure theorem for set modules over a principal ideal domain
and for the special case of polynomial rings over a field.

Definitions

Write R for acommutative ring, and M and N for modules over it.

e A zero divisor of a module M is an element x of R such that xm = 0 for
some non-zero m in M.

e Ancelement x of R is called nilpotent in M if x"M = 0 for some positive
integer n.

e A moduleis called coprimary if every zero divisor of M is nilpotent in M.
For example, groups of prime power order and free abelian groups are
termed as coprimary modules over the ring of integers.

e A submodule M of amodule N is called a primary submodule if N/M is
coprimary.

e Anideal /is called primary ifit is a primary submodule of R. This is equivalent
to the statement that if ab is in / then either a is in / or »" is in I for some n
and to the condition that every zero-divisor of the ring R// is nilpotent.

e A submodule M ofamodule Nis called irreducible if it is not an intersection
oftwo strictly larger submodules.

¢ Anassociated prime of a module M is a prime ideal that is the annihilator of
some element of M.

Statement

The Lasker-Noether theorem for modules states that every submodule of a set
module over a Noetherian ring is a finite intersection of primary submodules. For
the special case of ideals it states that every ideal of a Noetherian ring is a finite
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intersection of primary ideals. An equivalent statement is that every finitely generated
module over a Noetherian ring is contained in a finite product of coprimary modules.

The Lasker-Noether theorem results from the following three facts:

¢ Any submodule of a finitely generated module over a Noetherian ring is an
intersection of a finite number of irreducible submodules.

e [f M is an irreducible submodule of a finitely generated module N over a
Noetherian ring then N/M has only one associated prime ideal.

e A finitely generated module over a Noetherian ring is coprimary if and only
if it has at most one associated prime.
Irreducible Decomposition in Rings
The decomposition of ideals in rings was required when there was lack of unique
factorization in number fields like Z[v/—5], in which 6 = 2.3 =

(14 v/=5)(1— v/=5). Ifanumber does not factor uniquely into primes, then
the ideal generated by the number may however factor into the intersection of
powers of prime ideals otherwise an ideal may at least factor into the intersection
of primary ideals. Consider the example given below:

Let R be aNoetherian ring and / an ideal in R. Then /' has a unique irredundant
primary decomposition into primary ideals.

I=0in---NGy

Irredundancy refers to:
e Removing any of the (., changes the intersection, i.e.,

QiN---nN Ei): N---NQn ;_5 (; for all i, where the symbol hat denotes
omission.

e The associated prime ideals /), are distinct.

Uniqueness refers to uniqueness for reordering the primary ideals. In the
case of the ring of integers 7, the Lasker-Noether theorem is equivalent to the
fundamental theorem of arithmetic. If an integer » has prime

factorizationn = :I:p‘.fl S pfr,, then the primary decomposition of the ideal
generated by o(n) C Z, 1s

dr
(n)=(py") N ---N (p")
Minimal Decompositions and Uniqueness

A primary decomposition of a submodule M of amodule N is called minimal if it
has the smallest possible number of primary modules. Consider the case where all
modules will be finitely generated over a Noetherian ring R. For minimal
decompositions, the primes of the primary modules are uniquely determined as



they are the associated primes of N/M. In addition the primary submodules
associated to the minimal associated primes (those not containing any other
associated primes) are also unique. Though the primary submodules associated to
the non-minimal associated primes called embedded primes need not be unique.
For example, let N = R = k[x, y] for some field k and let M be the ideal (xy, y?).
Then M has two different minimal primary decompositions M= (y) ) N (x, y*) =
(»)) N (x + y, *). The minimal prime is (y) and the embedded prime is (x, y).

4.11 UNIFORM MODULES

In abstract algebra, a module is called a uniform module if the intersection of any
two non-zero submodules is non-zero. This is equivalent to saying that every non-
zero submodule of M is an essential submodule. A ring may be called a right (left)
uniform ring if it is uniform as a right (left) module over itself.

Alfred Goldie used the notion of uniform modules to construct a measure of
dimension for modules, now known as the uniform dimension (or Goldie
dimension) of a module. Uniform dimension generalizes some, but not all, aspects
of the notion of the dimension of a vector space. Finite uniform dimension was a
key assumption for several theorems by Goldie, including Goldie’s theorem, which
characterizes which rings are right orders in a semi simple ring. Modules of finite
uniform dimension generalize both ‘Artinian Modules and Noetherian
Modules’. Uniform dimension is also referred to as simply the dimension of a
module or the rank of a module. Uniform dimension should not be confused with
the related notion, also due to Goldie, of the reduced rank of a module.

Properties and Examples of Uniform Modules

Being a uniform module is not usually preserved by direct products or
quotient modules. The direct sum of two non-zero uniform modules always contains
two submodules with intersection zero, namely the two original summand modules.
If NV, and N, are proper submodules of a uniform module M and neither submodule
contains the other, then M/ (IV, N V) fails to be uniform, as

N/V,"N) "N,/ (N, "N, = {0}.
Uniserial modules are uniform, and uniform modules are necessarily directly
indecomposable. Any commutative domain is a uniform ring, since if @ and b are

non-zero elements of two ideals, then the product ab is a non-zero element in the
intersection of the ideals.

Uniform Dimension of a Module

The following theorem makes it possible to define a dimension on modules using
uniform submodules. It is amodule version of a vector space Refer Theorem 4.13.
Theorem4.13: If U, and V, are members of a finite collection of uniform

submodules of amodule M such that &', Uj and " ; Vi areboth essential
submodules of M, then n=m.
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The uniform dimension of a module M, denoted u.dim(M), is defined to be
n if there exists a finite set of uniform submodules U, such that is an essential
submodule of M. The preceding theorem ensures that this n is well defined. If no
such finite set of submodules exists, then u.dim(M) is defined to be “. When
speaking of the uniform dimension of aring, it is necessary to specify whether
u.dim(R ) or rather u.dim(_R) is being measured. It is possible to have two
different uniform dimensions on the opposite sides of a ring.

If NVis a submodule of M, then u.dim(V) < u.dim(M) with equality exactly
when N is an essential submodule of M. In particular, M and its injective hull E(M)
always have the same uniform dimension. It is also true that u.dim(M) = n if and
only if E(M) is a direct sum of n indecomposable injective modules.

It can be shown that u.dim(M) = oo if and only if M contains an infinite direct
sum of non-zero submodules. Thus if M is either Noetherian or Artinian, M has
finite uniform dimension. If M has finite composition length &, then u.dim(M) < k
with equality exactly when M is a semi simple module. (Lam 1999)

A standard result is that a right Noetherian domain is a right Ore domain. In
fact, we can recover this result from another theorem attributed to Goldie, which
states that the following three conditions are equivalent for a domain D:

e D isright Ore
eudim(D) =1

eu.dim(D ) <o

Check Your Progress

8. State the Hilbert basis theorem.
9. Define the Lasker-Noether theorem.

4.12 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. AringR is called a commutative ring if ab = ba for all a, b € R. Again if
J an element e € R such that,

ae=ea=a forallaeR

we say, R is aring with unity. Unity is generally denoted by 1. (It is also
called unit element or multiplicative identity).

2. Suppose M is a left R-module and N is a subgroup of M. Then N is a
submodule or R-submodule if, forany n € N and any » € R, the product
rn € N or nr € N in the case of right R-module.

3. A module is an algebraic object in which things can be added together
commutatively by multiplying coefficients and in which most of the rules of
manipulating vectors hold. If a module takes its coefficients in aring R then



itis called a module over R or an R-module. If @ and b are two integers
then the smallest module containing a and b is the module for their greatest
common divisor.

4. Let G be a finite group and let V" and W be irreducible G-modules. Then,

every G-module homomorphism f:V’— W s either invertible or the trivial
Zero map.

5. In a principal ideal domain, the generators of an ideal is unique up to

associates. If a e R, then the generator of ann(a) (= {r € R|ra=0}) s
called the order of @, denoted by o(a).

6. Amoduleis Artinian/Noetherian if it satisfies either of the following equivalent

conditions:

¢ Every non-empty collection of submodules contains a minimal/maximal
element with respect to inclusion.

¢ Any descending/ ascending chain of submodules stabilizes.

An infinite direct sum of non-zero modules is neither Artinian nor Noetherian.
A vector space is Artinian/ Noetherian if and only if its dimension is finite.
Submodules and quotient modules of Artinian modules are Artinian. Ifa
submodule N of a module M and the quotient M/N by it are Artinian, then
sois M.

7. Aring R is called a northerian ring if every ideal of R is finitelty generated.
8. Let Rbe aright (left) Noetherian ring. Then R[x] is also right (left) Noetherian.

9. The Lasker-Noether theorem states that every Noetherian ring is a Lasker
ring which specifies that every ideal can be written as an intersection of

finitely many primary ideals which are related to but are not identical as
powers of prime ideals. The theorem was first established by Emanuel Lasker
for the special case of polynomial rings and convergent power series rings,
and was verified by Emmy Noether.

4.13 SUMMARY

e Sets of real numbers, rational numbers, integers form rings with respect to
usual addition and multiplication. These are all commutative rings with unity.

e A commutative ring R is called an Integral domain if ab =0 in R = either
a=0or b =0. In other words, a commutative ring R is called an integral
domain if R has no zero divisors.

¢ Anelement a inaring R with unity, is called invertible (or a unit) with respect
to multiplication if 3 some b € R such that ab =1 = ba.

e Real numbers form a field, whereas integers do not, under usual addition
and multiplication. Since a division ring (field) forms groups with respect to
two binary compositions, it must contain two identity elements 0 and 1
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(with respect to addition and multiplication) and thus a division ring (field)
has at least two elements.

e A non-empty subset S of aring R is said to be a subring of R if S forms

aring under the binary compositions of R.

A non-empty subset S of a field F'is called a subfield, if S forms a field
under the operations in . Similarly, we can define a subdivision ring of a
division ring.

A right R-module is defined in the similar way but the ring acts on the right,
i.e., we have a scalar multiplication of the form M X R — M, and the axioms
are written with scalars » and s on the right of x and y. If R is commutative,
then left R-modules are the same as right R-modules and are called R-
modules.

A module is an algebraic object in which things can be added together
commutatively by multiplying coefficients and in which most of the rules of
manipulating vectors hold. If a module takes its coefficients in a ring R then
itis called a module over R or an R-module. If @ and b are two integers
then the smallest module containing @ and b is the module for their greatest
common divisor.

A module is simple if it is non-zero and does not admit a proper non-zero
submodule.

Schur’s lemma is a fundamental result in representation theory, an elementary
observation about irreducible modules, which is nonetheless noteworthy
because of'its profound applications.

An infinite direct sum of non-zero modules is neither Artinian nor Noetherian.
A vector space is Artinian/ Noetherian if and only if its dimension is finite.
Submodules and quotient modules of Artinian modules are Artinian. Ifa
submodule N of a module M and the quotient M/N by it are Artinian, then
so is M.

Homomorphic image of a noetherian ring is noetherian

The Lasker-Noether theorem states that every Noetherian ring is a Lasker
ring which specifies that every ideal can be written as an intersection of
finitely many primary ideals which are related to but are not identical as
powers of prime ideals.

4.14 KEY TERMS

e Submodule: Suppose M s a left R-module and N is a subgroup of M. Then

Nis asubmodule or R-submodule if, for any ne N and any » € R, the product
rn € N or nreN in the case of right R-module.



e Schur’s lemma: Schur’s lemma is a fundamental result in representation

theory, an elementary observation about irreducible modules, which is
nonetheless noteworthy because of its profound applications.

Module: A module is an algebraic object in which things can be added
together commutatively by multiplying coefficients and in which most of the
rules of manipulating vectors hold.

Noetherian ring: Aring is called noetherian ring if every ideal of the ring is
finitely generated.

Lasker-Noether theorem: The Lasker-Noether theorem states that every
Noetherian ring is a Lasker ring which specifies that every ideal can be written
as an intersection of finitely many primary ideals which are related to but are
not identical as powers of prime ideals.

4.15 SELF-ASSESSMENT QUESTIONS AND

EXERCISES

Short-Answer Questions

X NS kD=

Give the axioms which are satisfied of a ring.

What are simple modules?

What is the significance of Schur’s lemma?

State the fundamental structure theorem for modules.

What is the difference between noetherian rings and modules?
Write the applications of Hilbert Basis theorem.

State Wedderburn Artin theorem.

Define Noether-Lasker theorem.

Long-Answer Questions

I.

Show that a ring R is commutative iff
(a+ b)? =a?+ b* + 2ab for all a, b €R.

. If in a ring R, x* = x for all x then show that 2x =0 andx +y=0=x

=y.

. If R is a ring with unity and (ab)? = (ba)* for all @, b € R and 2x =0

=> x = 0 then show that R is commutative.

. Let R be the set of real numbers. Show that RxR forms a field under

addition and multiplication defined by

(a,b) *+ (c,d)=(a+c, b+d)
(a, b) - (¢, d) = (ac — bd, ad + bc).
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I1.

. Let R be acommutative ring with unity. Show that

(/) aisaunitiffa ' is a unit.

(i) a, b are units iff ab is a unit.

. Show that set of all units in a commutative ring with unity forms an

abelian group.

. Give an example of a non commutative ring R in which (xy)* = x*?

forallx,y € R.

. If<R,+,->beasystem satisfying all conditions in the definition of aring

with unity excepta + b=b+ a, then show that this condition is also satisfied.

. Show that if 1 —ab is invertible in a ring with 1 then so is 1 — ba.
10.

Show that a finite commutative ring R without zero divisors has unity.
(See theorem 4 page 261).
b
Let R be the set of all 2 x 2 matrices {a d} over Q such that, a=d and
c

¢=0. Let / be the set of all such matrices for which a =d=0. Show that
Iis an ideal of R.
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5.0 INTRODUCTION

In mathematics, finitely generated Abelian group is a non-empty set G, together
with a binary composition * (star) is said to form a group. Specifically in the field
of finite group theory. The rational canonical form of a square matrix 4 with entries
in a field F'is a canonical form for matrices formed by conjugation by invertible
matrices over F'in linear algebra. The shape represents a simple decomposition of
the vector space into cyclic subspaces for A. (i.e., spanned by some vector and its
repeated images under 4). Because a given matrix can only have one normal form
(thus the term ‘Canonical’), matrix B is identical to 4 ifand only if it has the same
rational canonical form as 4. This form can be determined without any operations
that might change while extending the field ' (thus the ‘Rational’), such as factoring
polynomials, demonstrating that whether two matrices are comparable does not
change when the field is extended. Ferdinand Georg Frobenius, a German
Mathematician, is the name of the form.

In this unit, you will learn about the finitely generated Abelian groups, rational
canonical form and generalised Jordon form over any field.

5.1 OBJECTIVES

After going through this unit, you will be able to:
¢ Know about the finitely generated Abelian groups
¢ Define rational canonical form

e Learn about the generalised Jordon form over any field
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5.2 FINITELY GENERATED ABELIAN GROUPS

Definition: A non-empty set G, together with a binary composition * (star) is
said to form a group, if it satisfies the following postulates

(i) Associativity: a =« (b xc) =(a*b)*c, foralla,b,ce G
(ii) Existence of Identity: 3 an element e € G, such that,
axe=exa=a forallae G
(e s then called identity)
(iii) Existence of Inverse: Foreverya € G, 3 a’ € G (depending upon a)
such that,
axa =a xa=e
(a' s then called inverse of a)
Remarks: (7) Since * is a binary composition on G, it is understood that for
all a, b € G, a * b is aunique member of G. This property is called closure
property.
(ii) If, in addition to the above postulates, G also satisfies the commutative
law

axb=bxa foralla,be G
then G is called an abelian group or a commutative group.
(ii7) Generally, the binary composition for a group is denoted by ‘.’ (dot)
which is so convenient to write (and makes the axioms look so natural too).

This binary composition “.” is called product or multiplication (although it
may have nothing to do with the usual multiplication, that we are so familiar
with). In fact, we even drop ‘.’ and simply write ab in place of a . b.

In future, whenever we say that G is a group it will be understood that there
exists a binary composition ‘.’ on G and it satisfies all the axioms in the definition
of a group.

If the set G is finite (i.e., has finite number of elements) it is called a finite
group otherwise, it is called an infinite group.

We shall always (unless stated otherwise) use the symbols e for identity of
a group and ¢! for inverse of element a of the group.

Definition: By order of a group, we will mean the number of elements in the
group and shall denote it by o(G) or | G |.

We now consider a few examples of systems that form groups (or do not
form groups).

Example 5.1: The set Z of integers forms an abelian group with respect to the
usual addition of integers.



It is easy to verify the postulates in the definition of a group as sum of two
integers is a unique integer (thus closure holds). Associativity of addition is
known to us. 0 (zero) will be identity and negatives will be the respective inverse
elements. Commutativity again being obvious.

Example 5.2: One can easily check, as in the previous example, that sets Q
of rationals, R of real numbers would also form abelian groups with respect to
addition.

Example 5.3: Set of integers, with respect to usual multiplication does not
form a group, although closure, associativity, identity conditions hold.

Note 2 has no inverse with respect to multiplication as there does not exist
any integer a such that,2.a=a.2=1.

Example 5.4: The set G of all +ve irrational numbers together with 1 under

multiplication does not form a group as closure does not hold. Indeed /3 .+/3

=3 ¢ G, although one would notice that other conditions in the definition of a
group are satisfied here.

Example 5.5: Let G be the set {1,— 1}. Then it forms an abelian group under
multiplication. It is again easy to check the properties.

1 would be identity and each element is its own inverse.

Example 5.6: Set of all 2 x 2 matrices over integers under matrix addition
would be another example of an abelian group.

Example 5.7: Set of all non-zero complex numbers forms a group under
multiplication defined by
(a +ib) (c +id) = (ac — bd) + i (ad + bc)
1 =1+ 1.0 will be identity,

a i b will be inverse of a + ib.

a’ +b* a’ +b°

Note a + ib non-zero means that not both a & b are zero. Thus a® + b>
= 0.

Example 5.8: The set G of all nth roots of unity, where # is a fixed positive
integer forms an abelian group under usual multiplication of complex numbers.

We know that complex number z is an nth root of unity if z” = 1 and also
that there exist exactly n distinct roots of unity.

In fact the roots are given by 2™/
where r =1, 2, ..., n and €™ = cos x + i sin x.

If a, b € G be any two members, then " =1, b" = 1 thus (ab)" = a" b"
= 1.

= ab is an nth root of unity

= ab € G = closure holds.
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Associativity of multiplication is true in complex numbers.
Again, since l.a=a.1=a, 1 will be identity.

Also for any a € G, L will be its inverse as (—j =1 = 1.
a a

2rir/n ;o 2mi(n—r)/n

So, inverse of e ise 270 = |

and identity is e
Commutativity being obvious, we find G is an abelian group.
As a particular case, if n =4 then Gis {1,— 1,1, —i}

Example5.9: (i) Let G= {1, £ i,+/,+ k}. Define product on G by usual
multiplication together with

P=pP=KF=-1, ij=-ji=k
Jk=—ki =i
ki=—ik=j
then G forms a group. G is not abelian as ij #ji.
This is called the Quaternion Group.

(ii) If set G consists of the eight matrices

R e e

{0 (ﬂ LO _(ﬂ , where i = -1

1 1

then G forms a non-abelian group under matrix multiplication.
Example 5.10: Let G = {(a, b) | a, b rationals, a # 0}. Define * on G by
(a, b) = (c, d) = (ac, ad + b)
Closure follows asa,c#0 = ac#0
[(a, b) * (¢, d)] * (e, ) = (ac, ad + b) * (e, f)
= (ace, acf + ad + b)
(a, b) * [(c, d) * (e, )] = (a, b) * (ce, cf + d)
= (ace, acf + ad + b)
proves associativity.
(1, 0) will be identity and (1/a, — b/a) will be inverse of any element (a, b).
G is not abelian as
(1,2)*3,4)=3,4+2)=(3,6)
(3,4) = (1,2)=(3,6 +4)=(3, 10).



a

c

Example 5.11 (a): The set G of all 2 x 2 matrices of the form { b} over

reals, where ad — bc # 0, i.e., with non-zero determinant forms a non-abelian
group under matrix multiplication.

It is called the general linear group of 2 x 2 matrices over reals and is
denoted by GL(2, R).

. |10 . . .
The matrix {0 J will act as identity and

d -b
. d—->b d—b ) . b
the matrix 4 c ¢ will be inverse of {a } .
—-c a c d
ad—bc ad—bc

one can generalise and prove

(b) If G be the set of all n x n invertible matrices over reals, then G forms
a group under matrix multiplication.

(c) The set of 2 x 2 matrices over R with determinant value 1 forms a non-
abelian group under matrix multiplication and is called the special linear group,
denoted by SL(2, R).

One can take any field (e.g., Q, C or Zp) in place of R in the above examples.
Example 5.12: Let G = {2"|r=0, £1, £2, ...}
We show G forms a group under usual multiplication.
Forany 2,2°e G,2.2°=2"""¢ G
Thus closure holds.
Associativity is obvious.
Againasl e G, and x.1=1.x=x forallxe G
1 is identity.
Forany2" € G,as2”" € Gand 2". 27" = 20=1,
we find each element of G has inverse. Commutativity is evidently true.

Example 5.13: Group of Residues : Let G= {0, 1,2, 3,4}. Define a composition
®; on Gby a ®; b=c where cis the least non —ve integer obtained as remainder
when a + b is divided by 5. For example. 3®,4 =2, 3®, 1 = 4, etc. Then
®, is abinary composition on G (called addition modulo 5). It is easy to verify
that G forms a group under this.

One can generalise this result to
G=1{0,1,2,...,n-1}

under addition modulo n» where 7 is any positive integer.
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We thus notice

a+b ifa+b<n

a+b-n ifa+b=2n

a@an{

Also, in case there is no scope of confusion we drop the sub suffix » and
simply write ®. This group is generally denoted by Z, .

Example 5.14: Let G= {x € Z | 1 < x < n, x, n being co-prime} where
Z. = set of integers and x, n being co-prime means H.C.F of x and n is 1.

We define a binary composition ® on G by a ® b = ¢ where c is the least
+ve remainder obtained when a . b is divided by n. This composition ® is
called multiplication modulo 7.

We show G forms a group under ®.

Closure: Fora,b € G,leta ® b=c. Then ¢ # 0, because otherwise n | ab
which is not possible as a, n and b, n are co-prime.

Thus ¢ # 0 and also then 1 < ¢ <.

Now if ¢, n are not co-prime then 3 some prime no. p such that, p|c and
pln.
Again as ab = nq + ¢ for some ¢

We getplab  [p|n = plng, plc = plng +c]
= plaorp|b (as p is prime)
If p|a then as p|n it means a, n are not co-prime.
But a, n are co-prime.
Similarly p | b leads to a contradiction.
Hence c, n are co-prime and thus ¢ € G, showing that closure holds.
Associativity: Let a, b, ¢ € G be any elements.
Leta®b=r,(a@a®b)®c=r ®c=r,
then r, is given by r,c = nq, + r,
Also a ® b = r, means
ab=gqnn+r,
thus ab—qmn=r,
= (ab - qn)c=r,c=nq, +r,
= (ab)c = r, + nq, + nq,c = n(q,c +q,) +r,
or that r, is the least non-negative remainder got by dividing (ab)c by n.
Similarly, if a ® (b ® ¢) = r, then we can show that r, is the least non —ve
remainder got by dividing a(bc) by n.
But since a(bc) = (ab)c, ry = r,
Hence a ® (b ® ¢) = (a ® b) ® c.



Existence of Identity: It is easy to see that
a®l=1®a=a forallae G
or that 1 will act as identity.

Existence of Inverse: Let a € G be any element then a and n are co-prime
and thus we can find integers x and y such that, ax + ny =1

By division algorithm, we can write
x=gn+r, where0<r<n
= ax = aqgn + ar
= ax t ny =aqn + ar + ny
= 1 =agn+ ar + ny
or that ar=1+ (-aq — y)n

i.e.,a®r=1.Similarly » ® a = 1. If r, n are co-prime, » will be inverse
of a.

If 7, n are not co-prime, we can find a prime number p such that,p | r,p | n
= plgnandp|r
= plgntr
= plx
= plax also p|ny
= plax+ny=1

which is not possible. Thus 7, n are co-prime and so » € G and is the required
inverse of a.

It is easy to see that G will be abelian. We denote this group by U, or U(n)
and call it the group of integers under multiplication modulo 7.

Remark: Suppose n = p, a prime, then since all the integers 1, 2, 3, ...,
p — 1 are co-prime to p, these will all be members of G. One can show that

G =1{2,4,6,..,2(p-1)}
where p > 2 is a prime forms an abelian group under multiplication modulo 2p.
Since for any 2n € G, 2n(p + 1) =2np + 2n=2n
We noitce p + 1 will be identity of G'.
Again, for any 2 n € G, since 2n and p are co-prime 3 x, y, s, t, 2nx +
py=1
= py=1-2nx=o0dd
= yis odd as p is odd.
Lety=2k+ 1,then2nx+p 2k+1)=1
=>2nx+2py+2p=p+1
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=>2nx+2ptk+1)=p+1
= (2n)(x) = p + 1 = identity (under mod 2p)
If x is even, x will be inverse of 2x.
If x is odd, x + p will be inverse of 2x.
Example 5.15: Let G = {0, 1, 2} and define * on G by
axb=|a->b]|

Then closure is established by taking a look at the composition table

| = O %
[\ Bl e}l R el
i—‘oi—*ﬁ—‘
S| NN

Sincea*0=|a—-0|=a=0=%a, O0isidentity

and a * a =| a—a | =0 shows each element will be its own inverse.

But the system (G, =) fails to be a group as associativity does not hold.

Indeed l«(1%2)=1%x1=0

but (1x1)«*2=0%x2=2
Example 5.16: Let S = {1, 2, 3} and let S, = 4(S) = set all permutations
of S. This set satisfies associativity, existence of identity and existence of inverse
conditions in the definition of a group. Also clearly, since f, g permutations on
Simply that fog is a permutation on S the closure property is ensured. Hence
S, forms a group. That it is not abelian follows by the fact that fog # gof". This
would, in fact, be the smallest non-abelian group and we shall have an occasion
to talk about this group again under the section on permutation groups.

Remark: Let X' be a non-empty set and let M(X) = set of a/l maps from X to
X, then A(X) < M(X). M(X) forms a semi group under composition of maps.
Identity map also lies in M(X) and as a map is invertible iffitis 1-1, onto i.e.,
a permutation, we find 4(X) the subset of all permutations forms a group, denoted
by S, or Sym(X) and is called symmetric group of X. If Xis finite with say,
n elements then o(M(X)) = n" and o(S,) = |» and in that case we use the
notation S, forS,.

In the definition of a group, we only talked about the existence of identity and
inverse of each element. We now show that these elements would also be unique,
an elementary but exceedingly useful result. We prove it along with some other
results in



Lemma: /n a group G,

(1
2)
)
4)
)

Identity element is unique.

Inverse of each a € G is unique.

(@' =a, forall a € G, where a" stands for inverse of a.
(aby'=b"'a"! foralla, b e G

ab = ac > b =c

ba = ca = b =cforalla b,c e G

(called the cancellation laws).

Proof: (1) Suppose e and e’ are two elements of G which act as identity.

@)

€)

)

Then, since e € G and ¢’ is identity,

ee =cee =e
and as ¢’ € G and e is identity
ee=ee' =¢
The two => e=¢'
which establishes the uniqueness of identity in a group.

Leta € G be any element and let " and a”’ be two inverse elements of
a, then

| —

aa' = d'a = e
aa' = a''a = e
Now d' = de=a'(ad")=(ad'a)a"’ =ed" =a".
Showing thereby that inverse of an element is unique. We shall denote

inverse of a by a” .

lisinverse of a

1

Sincea”
aa' = ala = e62

which also implies a is inverse of ¢!

Thus (a V) =a.

We have to prove that ab is inverse of 5 'a™! for which we show

(ab) (b7'a) = (b'a") (ab) = .

Now (ab) (b7'a™") = [(ab) b '] a!
= [(a(bb™)]a”!
= (ae) a'=aa'=e

Similarly (5"'a™!) (ab) = e

and thus the result follows.
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(5) Let ab = ac, then
b = eb=(a'a)b
= a'(ab)=a! (ac)
= (@'a)x=e=c

Thus ab = ac=>b=c

which is called the left cancellation law.

One can similarly, prove the right cancellation law.
Example 5.17 (a): Let X= {1, 2, 3} and let S; = A(X) be the group of all
permutations on X. Consider f, g, # € A(X), defined by

sm=2,  f@=3  f3=1
g=2, ¢g2)=1, gB)=3
h(l) =3, h(2)=1, h(3)=2

It is easy then to verify that fog = goh

But f#h.

(b) If we consider the group in Example 5.10, we find
(1,2)«(3,4)=3,6)=(3,0) = (1, 2)

But (3,4)#(@3,0)

Hence we notice, cross cancellations may not hold in a group.

Theorem 5.1: For elements a, b in a group G, the equations ax = b and
ya = b have unique solutions for x and y in G.

Proof: Now ax =15
= al(ax)=a'b
= ex=a'b
or x=a'b
which is the required solution of the equation ax = b.
Suppose x = x, and x = x, are two solutions of this equation, then
ax, = band ax, = b
= ax, = ax,
= x,=x, byleftcancellation
Showing that the solution is unique.
Similarly y = ba! will be unique solution of the equation ya = b.

Theorem 5.2: 4 non-empty set G together with a binary composition *.’
is a group if and only if

(1) a(bc)=(ab)c foralla, b,c e G



(2) Foranya, b € G, the equations ax = b and ya = b have solutions
inG.
Proof: If G is a group, then (1) and (2) follow by definition and previous theorem.

Conversely, let (1) and (2) hold. To show G is a group, we need prove existence
of identity and inverse (for each element).

Let a € G be any element.
By (2) the equations ax = a
ya =a
have solutions in G.
Let x=e and y =/ be the solutions.
Thus J e, f € G, such that, ae = a
fa=a

Let now b € G be any element then again by (2) 3 some x, y in G such that,

ax =>b
ya = b.

Now ax=b = f(a.x)=f.b
= (f.a).x=f.b
= a.x=f.b
= b=f.b

Again v.a=b = (y.a).e=b.e
= yv.(a.e)=b.e
= y.a=be
= b=be

thus we have b=fb

b = be
for any beG
Putting b=e in (i) and b=/ in (ii) we get
e=fe
f=Je
= e=/f
Hence ae=a=fa=-ea

iie., e € G,such that, ae=ea=a
= eisidentity.

Again, for any a € G, and (the identity) e € G, the equations ax = e and
ya = e have solutions.
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Let the solutions be x=a,andy=a,

then aa,=e, a,a=e
Now a, = ea, = (a,a)a, = a,(aa,) = a,e = a,.
Hence aa,=e=aa foranya e G

i.e., foranya € G, 3 some a, € G satisfying the above relations = a has
an inverse. Thus each element has inverse and, by definition, G forms a group.

Remark: While proving the above theorem we have assumed that equations
of the type ax = b and ya = b have solutions in G. The result may fail, if only
one type of the above equations has solution. Consider for example:

G to be a set with at least two elements. Define .’ on G by a . b = b for
alla, b € G.

then a.b.c)y=a.c=c
(@a.b)y.c=b.c=c
shows associativity holds.
Again as ab = b, the equation ax = b has a solution forany a, b € G.
We notice that G is not a group, as cancellation laws do not hold in G.
Aslet a, b € G be any two distinct members, then
ab=0>b
bb=b= ab=>bb
But a#b.

Definition: A non-empty set G together with a binary composition ‘.’ is called
asemi-group if

a.(b.c)y=(a.b).cforalla,b,ce G

Obviously then every group is a semi-group. That the converse is not true
follows by considering the set N of natural numbers under addition.

Theorem 5.3: Cancellation laws may not hold in a semi-group.

Proof: Consider M the set of all 2 X 2 matrices over integers under matrix
multiplication, which forms a semi-group.

If we take AZF O},BZ{O O},CZ{O O}
0 0 0 2 30

thenclearly AB=AC = {g g}

But B=C.

Set of natural numbers under addition is an example of a semi-group
in which cancellation laws hold.



Theorem 5.4: A finite semi-group in which cancellation laws hold is a
group.
Proof: Let G = {a,, a,, ..., a,} be a finite semi-group in which cancellation
laws hold.
Let a € G be any element, then by closure property
aa,, aa,, ..., aa,

areallin G.

Suppose any two of these elements are equal

say, aa; = aa, for some i # j

then a;=a by cancellation

But a.#a. asi#j
i

Hence no two of aa,, aa,, ..., aa, can be equal.
These being 7 in number, will be distinct members of G (Note o(G) = n).
Thus if b € G be any element then
b =aa; forsomei
i.e., for a, b € G the equation ax = b has a solution (x = a;) in G.
Similarly, the equation ya=»5b will have a solution in G.
G being a semi-group, associativity holds in G.
Hence G is a group (by theorem 5.2).

Remark: The above theorem holds only in finite semi-groups. The semi-group
of natural numbers under addition being an example where cancellation laws
hold but which is not a group.

Theorem 5.5: A finite semi-group is a group if and only if it satisfies
cancellation laws.

Proof: Follows by previous Theorem 5.4.

Definition: A non-empty set G together with a binary composition *.’ is said
to form a monoid if

(@) a(bc)=(ab)c Y a, b,ce G

(@) Janelemente € G suchthat, ae=ea=a VaeG
e is then called identity of G. It is easy to see that e is unique.
So all groups are monoids and all monoids are semi-groups.

When we defined a group, we insisted that 3 an element e which acts both
as aright as well as a left identity and each element has both sided inverse. We
show now that it is not really essential and only one sided identity and the same
sided inverse for each element could also make the system a group.
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Theorem 5.6: 4 system < G, . > forms a group if and only if

@) a(bc)=(ab)c foralla, b,c € G
(@) Jee G,suchthat,ae=a forallae G
(iii) foralla € G,3 a' € G, such that, aa' = e.

Proof: If G is a group, we have nothing to prove as the result follows by definition.

Conversely, let the given conditions hold.

All we need show is that ea=a foralla e G
and a'a=a foranya e G
Let a € G be any element.
By (iii) Ja' € G, such that, aa’' = e
". For a' € G, 3a" € G, suchthat, a’'a'""=e (using (iii))
Now a'a= a'(ae) = (a'a)e=(a'a)(a'a"")
= ad'(aa")a" =a'(e)a"’ = (a'e)a’ =a'a"’ =e.

Thus foranya € G, 3 a’ € G, suchthat, aa’ =d'a=e
Again ea = (aa")a=a(d'a)=ae=a

ae=ea=a forallae G
i.e., eisidentity of G.
Hence G is a group.

It would now be a routine exercise to prove

Theorem 5.7: A system < G, . > forms a group if and only if

(@) a(bc)= (ab)cforalla, b, c € G
(@) 3 e € G such that, ea = aforalla € G
(iii) for all a € G, 3 some a' € G, such that, a’'a = e.

A natural question to crop up at this stage would be what happens, when one

sided identity and the other sided inverse exists. Would such a system also form
a group? The answer to which is provided by

Example 5.18. Let G be a finite set having at least two elements. Define ‘.’
on G by

ab=>bforalla, b e G

then clearly associativity holds in G.

Let e € G Dbyany fixed element.
Then as ea=a forallae G

e will act as left identity.

Again a.e=e forallae G

= eisrightinverse for any elementa € G.



But we know G is not a group (cancellation laws do not hold in it).

Hence for a system < G, . >to form a group it is essential that the same sided
identity and inverse exist.

A Notation: Let G be a group with binary composition *.”. If a € G be any
element then by closure property a . a € G. Similarly (a . a) . a € G and so
on.

It would be very convenient (and natural!) to denote @ . abya®and a . (a . a)
or (a . a). a by @® and so on. Again a”'. a”! would be denoted by a 2. And
since a . a~! = e, it would not be wrong to denote e = ¢°. It is now a simple
matter to understand that under our notation

m m+n

a.a"=a
(am)n = g™
where m, n are integers.

In case the binary composition of the group is denoted by +, we will talk of
sums and multiples in place of products and powers. Thus here 2a =a + a,
andna=a+a+...+a (ntimes), if n is a +ve integer. In case n is —ve integer
then n = — m, where m is +ve and we define na=—-ma=(—a)+ (—a) + ...
+ (— a) m times.

Example 5.19. If G is a finite group of order n then show that for any a
€ G 3 some positive integer 1, 1 < r < n, such that, a" = e.
Solution: Since o(G) = n, G has n elements.
Let a € G be any element. By closure property a°, a°, ... all belong to G.
Consider e, a,d ..., d"
These are n + 1 elements (all in G). But G contains only n elements.

= at least two of these elements are equal. If any of a, a, ... d" equals e,
our result is proved. If not, then a' = & for some i, j, 1 <i,j <n. Without any
loss of generality, we can take i > j

then a=d

=>d.al=d.a’

= ad7/=e wherel<i—j<n.
Putting i —j = r gives us the required result.

Example 5.20. Show that a finite semi-group in which cross cancellation holds
is an abelian group.

Solution: Let G be the given finite semi-group. Let a, b € G be any elements.
Since G is a semi-group, by associativity

a(ba) = (ab)a

By cross cancellation then ba=ab = G is abelian.
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Since G is abelian, cross cancellation laws become the cancellation laws.
Hence G is a finite semi-group in which cancellation laws hold.

Thus G is a group.

Example 5.21. If G is a group in which (ab)' = a'b’ for three consecutive
integers i and any a, b in G, then show that G is abelian.

Solution: Letn, n + 1, n+ 2 be three consecutive integers for which the given
condition holds. Then foranya, b € G,

(ab)" = a"b" (D)

(aby"™! = g1y Q)

(ab)n+2 — an+2bn+2 (3)
Now (ab)n+2 — an+2bn+2

U

(ab)(ab)"' = a""? b"*?

= ((lb)((ln+1bn+1) — an+2 bn+2
= ba""' =a""'b (using cancellation) (4
Similarly (aby™! = g 1p!
gives (ab)(ab)" = a" 'p""!
ie., (ab)(d"b") = a"'p"!
ba" = a"b

=
= ba""' = a"ba
= a""'b=a"ba using Equation (4)
= ab = ba.

Hence G is abelian.

Remark: Conclusion of the above result may not follow if the given result
holds only for two consecutive integers.

Consider, for example, the Quaternion group. One can check that (ab)' = a'b’
for i =4, 5 but the group is not abelian.

Example 5.22. Suppose (ab)" = a"b" for all a, b € G wheren > 1 is a
fixed integer.

Show that(i) (ab)"' = b"1g"!
(”) a" bnfl — bnflan

(iii) (aba 'b1y"*-D=p¢ foralla, b e G

Solution: (i) We have
[b71(ba)b]" = b '(ba)"b
and [b71(ba)b]" = (ab)"

(ab)" = b (ba)"b



= (ab)"'ab = b1 (b"a")b
= (ab)" ' =b"1a"foralla,b € G

(if) Now (@ 'b7lab)" = a"b"a"b"
and (a'blab)" =a (b 'ab)"
=a"b'a"b

a"b"a"b" = a"b la"b

= a"'b" ' =p1g" foralla,be G
(iii) Consider (aba'p~1)"-D

= [aba by 17"

= [(ba by by ()

= [ba " Vb @Y = [b(a D Y]

= D@ Dp gy = b D!

= qa " Dprpg! by (ii)

=e¢ foralla,beG.

Example 5.23. Let G be a group and suppose there exist two relatively
prime positive integers m and n such that a”b™ = b"a™ and a"b" = b"a"
for all a, b € G. Show that G is abelian.

Solution: Since m, n are relatively prime, there exist integers x and y such that

mx + ny = 1.

For any a, b we have

( a™ bn)mx —

(@"b")(a"b").....(a"b") mxtimes
a(b"a"b".....b"a"\b"
a"(b"a")" "

a"(b"a"y"™ (b"a") ' b"
a"c"(b"a™)'b" where ¢ = (b"a™)
"a"(b"a™) b

M d"a b = " = (bnam)mx

Similally ~ (a”b")” = (b"a™)"
glV]l’lg (ambn)mx tny — (bnam)mx +ny
= d"b" = b"a" foralla,be G (1)

Now ab= a

mx + ny bmx+ny

= g™ (any bmx)bny
= @™ (a" k™™ where d = @', k = b*
= @™ (k" d")b" by (1)

= a

mx bmx

La” o bv
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= @) B (@) Y
= ()" @) (B (@)

= (A" BV a™ = B (L a™) . a

+ +
= p"MT g™ = pa,

Hence G is abelian.

Remark: In the following problem we give another proof to Theorem 5.6 done

earlier.

Example 5.24. Let G be a semi-group, Suppose 3 e € G, such that,
ae =a forall a € G and for each a € G 3 a’ € G, such that, aa’ = e.

Show that G is a group.

Solution: We first show that G satisfies the right cancellation law.

Let ac = bc.
J¢" € G, such that, c¢' = e
(ac)c' = (bc)c!

= a(cc")=b(cc’)

As given

= ae=be = a=b.
We now show that e is left identity.
Consider, (ea)a’ =e(aa')=e.e=¢
Also aa'=e
aa' = (ea) = a'
By right cancellation law,
a=eaforalla e G
. eisalso left identify of G.
Again (d'a)a’ = a'(ad’)=a'e=ad’
and ea’' = a'
= (d'a)a’ =ed
= a'a=ebyright cancellation law
= a' is also left inverse of a
So, G is a group.

Example 5.25. If in a semi-group S, x>y =y = yx*
S'is abelian.

Solution: X’y = y= x3? = )7
w =y VxyeSsS
= x?=x Vxyes

= 32 = 2

VX, y, then show that



So =) Vx,yes

Now y=y =>)yy=y=>y’=y Vyes

Also 2y = y? (D)
Now x?=x = x’x = x? ..(2)

By Equation (1) and (2), xy*x = yx?y
Since y=13 Vyes, weget
xy = (xp)* = xy xy xy

= xy xp Xy = x(x)°x(xy)
)x*(x) ()

= 0 yx’y = yxy X%y

= (yx)xy*x

= yxty’x

= (%) (as y = yx°)

= (asy' =)
Thusxy=yxVx,yesS

Hence S is abelian.

Example 5.26. If G is a semi-group such that given a € G 3 unique
a’ € G such that aa’ a = a, then show that G is a group.

Solution: Let ¢, 'be idempotents in G, i.e., &’ = e, f>=T.
We show (ef)’ = ef.
Now ef € G = 3 g € G, such that,

(ef) g (ef) = ef (1)
Also ef(gefg) ef = (efgef) gef = (¢f) gef = ¢f

= g = gefg ..(2)
Again, (ef) (ge) (ef) = efgef = ef

= ge=g ..(3)
Also, ef(fg) ef = efgef = ef

= fg=g ..(4)

Now g =(ge) (f2) by (3) and (4)
= glef) =g by (2)
i.e., g 1s an idempotent.
Also,  @=gg-gg=¢g = ggg=¢
But g(ef) g = g and so g = ef and
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Thus ef is an idempotent, i.e., (ef)* = ef

Now (ef) 1 (ef) = (ef) (ef) = ef

and (ef) e (ef) =ef

= f=eshowing thereby that G has unique idempotent, say e.

Now aa'a =a = (a'a)® = a'a = a'a is an idempotent.

= da=e.
Similarly aa' = e
Now a=aada=ae

a=aa'a=-ea
= ae=ea=a VaeG
= eisidentity of G.
Also given a € G, aa’ = e = a'a showing that a' is inverse of a.

Hence G is a group.

CHECK YOUR PROGRESS

Define binary composition.

What do you understand by quaternion group?
Write the statement of general linear group.
What is special linear group?

A e

When G is called semi-group?

5.3 RATIONAL NORMAL FORM

The rational canonical form of a square matrix 4 with entries in a field F'is a
canonical form for matrices formed by conjugation by invertible matrices over F'in
linear algebra. The shape represents a simple decomposition of the vector space
into cyclic subspaces for 4. (i.e., spanned by some vector and its repeated images
under 4). Because a given matrix can only have one normal form (thus the term
‘Canonical’), matrix Bisidentical to 4 if and only if it has the same rational canonical
form as 4. This form can be determined without any operations that might change
while extending the field F (thus the ‘Rational’), such as factoring polynomials,
demonstrating that whether two matrices are comparable does not change when
the field is extended. Ferdinand Georg Frobenius, a German mathematician, is the
name of the form.

Some authors use the phrase rational canonical form to refer to a somewhat
different form, the primary rational canonical form. The fundamental form,
rather of decomposing into a small number of cyclic subspaces, decomposes into
a large number of them. It is similarly defined over F, but with major differences:



determining the form necessitates polynomial factorization, and as a result, the
primary rational canonical form may change when the same matrix is evaluated
over an extension field of F. This article focuses on the form that does not require
factorization, and it uses the term ‘Primary’ when referring to the form that does.

Rational Normal Form Motivation

When determining whether two square matrices A and B are comparable, one
way is to deconstruct the vector space as far as possible into a direct sum of stable
subspaces for each of them and compare the actions on these subspaces. If both
are diagonalizable, for example, one can decompose them into eigenspaces (for
which the action is as basic as it gets, namely by a scalar), and then compare their
eigenvalues and multiplicities to determine similarity. While this is typically a very
illuminating strategy in practice, it has a number of limitations as a general method.

First, it necessitates the discovery of all eigenvalues, such as the roots of the
characteristic polynomial, but an explicit statement for them may not be attainable.
Second, a complete set of eigenvalues may exist only in a subset of the field under
consideration, in which case there is no proof of similarity to the original field.
Finally, even over this bigger field, A and B may not be diagonalizable, in which
case a decomposition into generalized eigenspaces, and potentially Jordan blocks,
must be used instead.

However, attaining such a detailed decomposition is not required to simply
determine if two matrices are comparable. Instead, the rational canonical form
relies on a direct sum decomposition into as many stable subspaces as possible,
while yet permitting a fairly basic description of the action on each of them. These
subspaces are called cyclic subspaces (by analogy with cyclic subgroups) and are
clearly stable under the linear operator. They are formed by a single nonzero
vector v and all of its images by repeated application of the linear operator associated
with the matrix. Taking v and its consecutive images as long as they are linearly
independent yields a basis for such a subspace. The companion matrix of a monic
polynomial is the matrix of the linear operator with respect to such a basis; this
polynomial (the minimal polynomial of the operator restricted to the subspace,
which is analogous to the order of a cyclic subgroup) determines the action of the
operator on the cyclic subspace up to isomorphism and is independent of the
vector v generate.

There is always a direct sum decomposition into cyclic subspaces, and
obtaining one does not necessitate factoring polynomials. However, cyclic subspaces
may allow a decomposition as the direct sum of smaller cyclic subspaces (essentially
by the Chinese remainder theorem). As a result, knowing the respective minimum
polynomials and having some decomposition of the space into cyclic subspaces
for both matrices is insufficient to determine their similarity. To verify that
decompositions into cyclic subspaces for similar matrices are same, an extra
requirement is imposed: in the list of associated minimum polynomials, each one
must divide the next (and the constant polynomial 1 is forbidden to exclude trivial
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cyclic subspaces of dimension 0). The invariant factors of (the K[ X]-module formed
by) the matrix are the resulting list of polynomials, and two matrices are equivalent
ifand onlyifthey have identical lists of invariant factors. A matrix’s rational canonical
form is derived by expressing it on a basis adapted to a decomposition into cyclic
subspaces whose associated minimum polynomials are the invariant factors of A;
two matrices are identical if and only if their rational canonical forms are the same.

Example 5.27

Consider the following matrix A, which is centered on Q:

] ] —z\l

1

1 1 1 1 2 1 l 1
-2 4 3 -8 —4 -2 1

-1 8 -2 -1 5 2 3 -3
1] 0 0 n 0 1 ] 1
L] ] ] ] =k (1 i il

1 {l
l'ktl 0 0 0 4 0 1 ﬂ,‘l

Solution: A has minimal polynomial p=X°—4X*—2X*+4X?+4X+ 1, so that
the dimension of a subspace generated by the repeated images of a single vector
is at most 6. The characteristic polynomial is y = X® — X" — 5X° +2.X° + 10X* +
2X3 —7X*—5X— 1, which is a multiple of the minimal polynomial by a factor X
— X— 1. There always exist vectors such that the cyclic subspace that they generate
has the same minimal polynomial as the operator has on the whole space; indeed
most vectors will have this property, and in this case the first standard basis vector
e, does so: the vectors A“(e) for k=0, 1, ..., 5 are linearly independent and
span a cyclic subspace with minimal polynomial p.. There exist complementary
stable subspaces (of dimension 2) to this cyclic subspace, and the space generated
by vectors v=(3,4,8,0,-1,0,2,-1)"Tand w= (5,4, 5,9, -1, 1, 1, -2)T is an
example. In fact one has 4.v = w, so the complementary subspace is a cyclic
subspace generated by v; it has minimal polynomial X> — X— 1 must divided p
(and it is easily checked that it does), and we have found the invariant factors X>—
X—-Tland p=X°—4X*-2X*+4X>+4X+ 1 of A. Then the rational canonical
form of A is the block diagonal matrix with the corresponding companion matrices
as diagonal blocks, namely

|f o1 o LU | R 1 \l
1 1 0 g 0 0
oo 0o o a o 0 1
C— oo 1 4 o o 0 —4
oo 0 1 0 0 0 -4
o o o 0 1 0 0 2
o o 0 g 1 0 4
ll.,[ll & O o o 1 a /I



A basis on which this form is attained is formed by the vectors v, w above,
followed by 4%(e ) for k=0, 1, ..., 5; explicitly this means that for

(4 5 1 -1 @0 ¢ -4 0}
4 4 0 1 1 =2 3 ]
8 5 0 —-2 -5 =2 —11 -6
P 1} 9 il —1 3 —2 0 1]
1 1 0 0 m 1 1 4
o 1 0 0 0 0 -1
2 L & 1 =1 'p 3 6
lL 1 -2 0 0 1 -1 1 =¥

one has A = PCP.
General Case and Theory of Rational Normal Form

Fix abase field F'and a finite-dimensional vector space V over F. Given a polynomial
P e F[X], there is associated to it a companion matrix C,, whose characteristic
polynomial and minimal polynomial are both equal to P).

Theorem 5.8: Let V' be a finite-dimensional vector space over a field F, and 4 a
square matrix over F. Then V' (viewed as an F[X]-module with the action of X
given by 4) admits a F].X]-module isomorphism

V= Flxlf, ® ... ® FIXIf,

where the /, € FTX] may be taken to be monic polynomials of positive degree
(so they are non-units in F[.X]) that satisfy the relations

SULT - 1

where ‘a | b’ is notation for ‘a divides b’; with these conditions the list of
polynomials f'is unique.

Proof: Apply the structure theorem for finitely generated modules over a principal
ideal domain to V, viewing it as an F[X]-module. The structure theorem provides
a decomposition into cyclic factors, each of which is a quotient of F].X] by a proper
ideal; the zero ideal cannot be present since the resulting free module would be
infinite-dimensional as F vector space, while Vis finite-dimensional. For the
polynomials /, one then takes the unique monic generators of the respective ideals,
and since the structure theorem ensures containment of every ideal in the preceding
ideal, one obtains the divisibility conditions for the /.

Given an arbitrary square matrix, the elementary divisors used in the
construction of the Jordan normal form do not exist over F[X], so the invariant
factors f; as given above must be used instead. The last of these factors f, is then
minimal polynomial, which all the invariant factors therefore divide, and the product
of'the invariant factors gives the characteristic polynomial. Note that this implies
that the minimal polynomial divides the characteristic polynomial (which is essentially
the Cayley-Hamilton theorem), and that every irreducible factor of the characteristic
polynomial also divides the minimal polynomial (possibly with lower multiplicity).
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For each invariant factor fi one takes its companion matrix C ' and the block
diagonal matrix formed from these blocks yields the rational canonical form of 4.
When the minimal polynomial is identical to the characteristic polynomial (the case
k= 1), the Frobenius normal form is the companion matrix of the characteristic
polynomial. As the rational canonical form is uniquely determined by the unique
invariant factors associated to 4, and these invariant factors are independent of
basis, it follows that two square matrices 4 and B are similar if and only if they
have the same rational canonical form.

5.3.1 Generalised Jordon form over any Field

Even ifit exists over the ground field F, the rational or Frobenius normal form does
not reflect any sort of factorization of the characteristic polynomial. This means
that when F'is substituted by a different field, it remains invariant (as long as it contains
the entries of the original matrix 4). However, this distinguishes the Frobenius normal
form from other normal forms that rely on factoring the characteristic polynomial,
such as the diagonal form (if 4 is diagonalizable) or the Jordan normal form in general
(if the characteristic polynomial splits into linear factors). A diagonal matrix with
unique diagonal elements, for example, has a Frobenius normal form that is simply
the partner matrix of'its characteristic polynomial.

There is another way to define a normal form, that, like the Frobenius normal
form, is always defined over the same field /" as 4, but that does reflect a possible
factorization of the characteristic polynomial (or equivalently the minimal polynomial)
mto irreducible factors over £, and which reduces to the Jordan normal form when
this factorization only contains linear factors (corresponding to eigenvalues). This
form is sometimes called the generalized Jordan normal form, or primary
rational canonical form. It is based on the fact that the vector space can be
canonically decomposed into a direct sum of stable subspaces corresponding to
the distinct irreducible factors P of the characteristic polynomial (as stated by the
lemme des noyaux [ft]), where the characteristic polynomial of each summand is a
power of the corresponding P. These summands can be further decomposed, non-
canonically, as a direct sum of cyclic F]x]-modules (like is done for the Frobenius
normal form above), where the characteristic polynomial of each summand is still
a (generally smaller) power of P. The primary rational canonical form is a block
diagonal matrix corresponding to such a decomposition into cyclic modules, with
a particular form called generalized Jordan block in the diagonal blocks,
corresponding to a particular choice of a basis for the cyclic modules. This
generalized Jordan block is itself'a block matrix of the form

i T
g s 0
0 - U a,



where C is the companion matrix of the irreducible polynomial P, and U'is
amatrix whose sole non-zero entry is a 1 in the upper right hand corner. For the
case of a linear irreducible factor P =x — A, these blocks are reduced to single
entries C = A and U = 1 and, one finds a (transposed) Jordan block. In any
generalized Jordan block, all entries immediately below the main diagonal are 1. A
basis of the cyclic module giving rise to this form is obtained by choosing a generating
vector v (one that is not annihilated by P*'(4) where the minimal polynomial of
the cyclic module is P¥), and taking as basis

v, Av), A*v), . .., A" (v), P(A)(v), A(P(A)V)), . .., A (P(A)(v),
S P AW, ..., P A)W), . AT (PN (A) ()

where d = deg (P).

CHECK YOUR PROGRESS

6. What is rational cononical form of a square matrix?
7. Define generalised Jordon block in diagonal block.

5.4 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. The binary composition for a group is denoted by ‘.’ (dot) which is so
convenient to write (and makes the axioms look so natural too).

This binary composition ‘.’ is called product or multiplication (although
it may have nothing to do with the usual multiplication, that we are so
familiar with). In fact, we even drop °.” and simply write ab in place of
a.b.

2. LetG={x1,+i,%j,+k}. Define product on G by usual multiplication
together with

P==k=—1, ij =—ji=k
Jjk=—-ki=1i

ki=—ik=j

then G forms a group. G is not abelian as ij # ji.

This is called the Quaternion Group.

a

3. The set G of all 2 x 2 matrices of the form { b} overreals, where ad

c

—bc #0, 1.e., with non zero determinant forms a non abelian group under
matrix multiplication.

It is called the general linear group of 2 x 2 matrices over reals and is
denoted by GL(2, R).
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. The set of 2 x 2 matrices over R with determinant value 1 forms a non-

abelian group under matrix multiplication and is called the special linear
group, denoted by SL(2, R).

. A non-empty set G together with a binary composition ‘.’ is called a

semi-group if
a.(b.c)y=(a.b).c foralla,b,ce G

Obviously then every group is a semi-group. That the converse is not
true follows by considering the set N of natural numbers under addition.

. The rational canonical form of a square matrix A with entries in a field Fis a

canonical form for matrices formed by conjugation by invertible matrices
over F'in linear algebra. The shape represents a simple decomposition of
the vector space into cyclic subspaces for A. (i.e., spanned by some vector
and its repeated images under 4).

. The primary rational canonical form is a block diagonal matrix corresponding

to such a decomposition into cyclic modules, with a particular form called
generalized Jordan block in the diagonal blocks, corresponding to a particular
choice of a basis for the cyclic modules.

5.5

SUMMARY

Associativity: a x (bxc) =(a*b)xc, foralla,b,ce G
Existence of Identity: 3 an element e € G, such that,
axe=exa=a forallae G

(eis then called identity)

Existence of Inverse: Foreverya € G,3a’ € G (depending upon a) such
that,

axa =a xa=e
(a’ is then called inverse of a)

Since * is a binary composition on G, it is understood that for all a, b
G, a * bis aunique member of G. This property is called closure property.

This binary composition °.” is called product or multiplication (although
it may have nothing to do with the usual multiplication, that we are so
familiar with). In fact, we even drop °.” and simply write ab in place of
a.b.

Set of all non-zero complex numbers forms a group under multiplication
defined by

(a +ib) (c +id) = (ac — bd) + i (ad + bc).

The set G of all nth roots of unity, where # is a fixed positive integer
forms an abelian group under usual multiplication of complex numbers.



o LetG={*x1,%i,£j,+k}. Defineproducton G byusual multiplication

together with
P==k=—1, ij =—ji=k
jk=—kj=i
ki=—ik=j

then G forms a group. G is not abelian as ij # ji.
This is called the Quaternion Group.

For elements a, b in a group G, the equations ax = b and ya = b have
unique solutions forx and y in G.

Cancellation laws may not hold in a semi-group.
A finite semi-group in which cancellation laws hold is a group.
A finite semi-group is a group if and only if it satisfies cancellation laws.

The rational canonical form of a square matrix 4 with entries in a field Fis a
canonical form for matrices formed by conjugation by invertible matrices
over F'in linear algebra. The shape represents a simple decomposition of
the vector space into cyclic subspaces for A. (i.e., spanned by some vector
and its repeated images under 4).

The primary rational canonical form is a block diagonal matrix corresponding
to such a decomposition into cyclic modules, with a particular form called
generalized Jordan block in the diagonal blocks, corresponding to a particular
choice of a basis for the cyclic modules.

5.6 KEY TERMS

Closure property: Since * is a binary composition on G, it is understood
that for all @, b € G, a = b is aunique member of G. This property is
called closure property.

Existence of identity: I anelement e € G, such that,
axe=exa=aq forallae G
(eis then called identity)

Existence of inverse: Foreverya € G, 3 a' € G (depending upon a)
such that,

axa =a xa=e

(a' s then called inverse of a)

Rational normal form: The rational canonical form of a square matrix 4
with entries in a field F'is a canonical form for matrices formed by conjugation
by invertible matrices over F'in linear algebra. The shape represents a simple

decomposition of the vector space into cyclic subspaces for 4. (i.e., spanned
by some vector and its repeated images under A).
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5.7 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What do you mean by the finitely generated Abelian group?
2. What is rational normal form?

3. State the generalised Jordon form over any field.
Long-Answer Questions

1. Briefly discuss about the finitely generated Abelian group giving appropriate
examples.
2. Elaborate on the is rational normal form give appropriate examples.

3. Discuss in detail about the generalised Jordon form over any field with the
help of relevant examples.
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