Blocks and Chains

Introduction to Bitcoin, Cryptocurrencies,
and Their Consensus Mechanisms

Aljosha Judmayer, Nicholas Stifter,
Katharina Krombholz and Edgar Weippl

SBA Research

SYNTHESIS LECTURES ON INFORMATION SECURITY,
PRIVACY & TRUST #20

1\@ MORGAN CLAYPOOL PUBLISHERS

Copyright © 2017 by Morgan & Claypool

Blocks and Chains: Introduction to Bitcoin, Cryptocurrencies, and Their Consensus Mechanisms
Aljosha Judmayer, Nicholas Stifter, Katharina Krombholz, and Edgar Weippl

wwWw.morganclaypool.com

ISBN: 9781627057165 paperback
ISBN: 9781627057134 ebook

DOI 10.2200/500773ED1V01Y201704SPT020

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON INFORMATION SECURITY, PRIVACY, & TRUST

Lecture #20
Series Editors: Elisa Bertino, Purdue University
Ravi Sandhu, University of Texas, San Antonio
Series ISSN
Print 1945-9742 Electronic 1945-9750

www.morganclaypool.com

ABSTRACT

The new field of cryptographic currencies and consensus ledgers, commonly referred to as
blockchains, is receiving increasing interest from various different communities. These commu-
nities are very diverse and amongst others include: technical enthusiasts, activist groups, re-
searchers from various disciplines, start-ups, large enterprises, public authorities, banks, finan-
cial regulators, business men, investors, and also criminals. The scientific community adapted
relatively slowly to this emerging and fast-moving field of cryptographic currencies and con-
sensus ledgers. This was one reason that, for quite a while, the only resources available have
been the Bitcoin source code, blog and forum posts, mailing lists, and other online publications.
Also the original Bitcoin paper which initiated the hype was published online without any prior
peer review. Following the original publication spirit of the Bitcoin paper, a lot of innovation
in this field has repeatedly come from the community itself in the form of online publications
and online conversations instead of established peer-reviewed scientific publishing. On the one
side, this spirit of fast free software development, combined with the business aspects of crypto-
graphic currencies, as well as the interests of today’s time-to-market focused industry, produced
a flood of publications, whitepapers, and prototypes. On the other side, this has led to deficits
in systematization and a gap between practice and the theoretical understanding of this new
field. This book aims to further close this gap and presents a well-structured overview of this
broad field from a technical viewpoint. The archetype for modern cryptographic currencies and
consensus ledgers is Bitcoin and its underlying Nakamoto consensus. Therefore we describe the
inner workings of this protocol in great detail and discuss its relations to other derived systems.

KEYWORDS
block, chain, blockchain, Bitcoin, cryptographic currency, Proof-of-Work,

Nakamoto consensus, consensus ledger

Contents

Introduction 1
1.1 Aspects of Cryptocurrenciesoiiiinuuinnniiineenann. 2
1.2 Cryptocurrency Community, 3
1.3 From Cryptocurrency to Blockchain 3
1.4 'The Analog Stone-Block-Chain 4
1.4.1 Security Model of the Stone-Block-Chain 7
1.5 Structure of this Book 8
Background 9
2.1 Cryptographic Primitives i 9
2.1.1 Cryptographic Hash Functions 9
2.1.2 Asymmetric Cryptography 11
2.2 Notation, Symbols, and Definitions 12
History of Cryptographic Currencies 15
3.1 Before Bitcoin....... ... 15
3.1.1 'The Early Beginnings of Digital Cash 16
3.1.2 'The Cypherpunk Movement.cooiiiiiiiiiinne.... 16
3.1.3 'The Rise of Cryptocurrencies, 17
3.2 BIteoin ... 18
Bitcoin 19
41 Bitcoinata Glanceottt e 19
4.1.1 Components of Cryptocurrency Technologies.................... 20
4.2 Core Data Structures and Concepts 21
421 Block ... 22
422 Blockchain. 22
423 Address 24
424 Transaction i i 26
43 Consensus Managementuuuuuunneeeiimuuinnneeeennn. 29

4.3.1 The Idea of Proof-of-Work (PoW) 30

4.3.2 Proof-of-Workin General 31
4.3.3 Proof-of-Work in Bitcoin 33
434 MInIng.ot 37
4.3.5 BlockchainForks.......... .. . i i 39
4.3.6 Double Spending 40
4.3.7 Double Spending Success Probability 43
4.4 Network and Communication Management 44
4.41 Seedingand Connecting i 45
4.4.2 Network Structure and Overlay Networks 46
4.5 Digital Asset Management ..., 46
4.6 ALTCOINS. . o oottt 47
4.6.1 Namecoin and Merged Mining, 47
4.6.2 Other Examples i i 50
Coin ManagementTools 51
5.1 History and Categorization of CMTs 51
52 Metaphors 53
53 Usability ... 53
5.3.1 Bitcoin Management Strategies and Tools. 54
5.3.2 Anonymity....... ... 56
5.3.3 Perceptions of Usability............ 57
5.4 User Experiences with Security il 57
5.5 Cryptocurrency Usage Scenariosooiiiiiiiiiinnaaaa.. 59
Nakamoto Consensus. 61
6.1 'The Problem Bitcoin Strives to Solveo, 61
6.1.1 Trusted Third Parties.............. i 61
6.1.2 Placing Trust in a Distributed System 62
6.1.3 Decentralizing Trust o i 63
6.2 Consensus and Fault Tolerance in Distributed Systems 64
6.2.1 Consensus 64
6.2.2 System Models and Their Impact. ..., 67
6.2.3 Byzantine Fault Tolerance, 71
6.2.4 Randomized Consensus Protocols 77
6.3 A Closer Look at Nakamoto Consensus 80

6.3.1 Defining Nakamoto Consensus ..., .. 82

Conclusion and Open Challenges 87
7.1 Conclusion 90

Glossary 93

Bibliography 97

CHAPTER 1

Introduction

Since the introduction of Bitcoin [117] as a prototype for a decentralized cryptocurrency be-
tween 2008 and 2009, the field of cryptocurrency technologies has experienced a rapid growth in
popularity. Those technologies that are based on the same or very similar fundamental principles
as Bitcoin are commonly referred to as &lockchains. The term blockchain itself was not directly in-
troduced by Satoshi Nakamoto in the original paper [117], but used early on within the Bitcoin
community to refer to certain concepts of the cryptocurrency. As a result, there are two com-
mon spellings of this term found throughout the literature, namely blockchain and block chain.
Although, the later variant was used by Satoshi Nakamoto in a comment within the original
source code,! the first one is used frequently in press articles as well as recent academic literature
e.g., in publications such as [50], and has established itself as the de facto standard. Therefore,
we will use the term blockchain throughout this book. Nowadays &/ockchain is used as a nebu-
lous umbrella term to refer to various concepts that are related to cryptocurrency technologies.
One goal of this book is to demystify this term and provide a solid introduction to the field it
encompasses, i.e., distributed cryptocurrencies, their underlying technologies, as well as their
governing consensus mechanisms.

To date, over 700 different cryptocurrencies have been created [1]. Some of those cur-
rencies only had a very short lifespan or were merely conceived for fraudulent purposes, while
others brought additional innovations and still have vital and vibrant communities today.

The mechanisms and underlying principles of most of these cryptocurrencies are, to a
greater or lesser extent, derived from the original Bitcoin protocol. Several of these incarnations
may only differ from Bitcoin in their choice of certain constants such as the target block interval
or maximum number of currency units that will eventually come into existence. Others have
switched to alternative proof-of-work algorithms (e.g., Litecoin [129], Dogecoin [128]), have
included additional features (e.g., Namecoin [2], Ethereum [66], Zcash [64]), or have used
different distributed consensus approaches (e.g., PeerCoin [96], Ripple [133]).

In the few years since the launch of Bitcoin, the decentralized cryptocurrency has grown
to remarkable economic value and currently has a market capitalization of around 17 billion

USD.?

https://github.com/trottier/original-bitcoin/blob/master/src/main. h#L.795-1803
2This marked rise in valuation, but also the high volatility of the currency, has made it difficult to provide an estimate that is
not quickly superseded and appears hopelessly outdated.

https://github.com/trottier/original-bitcoin/blob/master/src/main.h#L795-L803

2 1. INTRODUCTION

'This has not only led to extensive news coverage but also to an increased interest from
different communities reaching from technical enthusiasts to business people and investors to
criminals and law enforcement agencies.

Mainstream media coverage of security incidents and popular myths around Bitcoin show
that its fundamentals are hard to understand for non-expert users and cannot be reconciled with
the mental models of traditional currency systems.

Bitcoin was designed to be a decentralized cryptographic currency that does not rely on
trusted third parties. It achieves this by combining clever incentive engineering and the right
cryptographic primitives with a novel probabilistic distributed consensus approach. This combi-
nation and the practical demonstration of its feasibility are proving to be a significant contribu-
tion that has the potential to profoundly impact other domains beyond cryptocurrencies. These
implications are increasingly gaining attention from the scientific community and relate to other
security problems of distributed systems, such as distributed name spaces, secure timestamping,
and many more.

All these circumstances make the deployment of Bitcoin as a financial instrument an ex-
citing experiment for researchers in many fields. As stated by Bonneau et al. [27], “Bitcoin is a
rare case where practice seems to be ahead of theory. We consider that a tremendous opportunity for the
research community to tackle the many open questions about Bitcoin"

Hence, the use of the underlying technologies, commonly referred to as blockchain, has
been progressively covered in scientific literature and is more and more finding its way to con-
sumer applications. Despite the rising interest within academia as well as the private sector,
many open problems remain in terms of finding a balance between performance, scalability,
security, decentralization, and anonymity in such systems.

1.1 ASPECTS OF CRYPTOCURRENCIES

Cryptocurrencies have many different aspects, and can therefore be viewed from various an-
gles, including the financial and economic perspective, legal perspective, political and sociological per-
spective, as well as technical and socio-technical perspectives. These very different viewpoints can
be separated even further; for example, the technical aspects can be divided into the follow-
ing non-exhaustive list of fields: cryprography, network and distributed systems, game theory, data
science, and software and language security. In this book, the focus is placed on the technical per-
spectives that are necessary to understand this broad field. In doing so, we also discuss aspects of
human-computer interaction and usable security, which are vital for the adoption of a cryptographic
currency and, therefore, also related to the overall level of security a cryptographic currency can
offer.

1.2. CRYPTOCURRENCY COMMUNITY 3
1.2 CRYPTOCURRENCY COMMUNITY

The cryptographic currency community is as diverse as the possible viewpoints on the topic.
Cryptocurrencies are, as the name suggests, intended to be used as currencies. Therefore, they
attract a variety of different people, including zechnology enthusiasts, businesses and investors, ideol-
ogists, researchers, cypherpunks, libertarians, public authorities and policy makers, financial regulators,
banks, and also criminals, who exploit anonymity measures and make use of the fact that crimi-
nal investigation and de-anonymization techniques are lagging behind. In contrast to that, the
distributed nature of Bitcoin-like cryptocurrencies also attracts activists and individuals living
in oppressive regimes, as these enable them to manage their digital assets despite political sanc-
tions. This highlights the important role that decentralized currencies can play for inhabitants
of such countries.

This composition of the broader Bitcoin community as well as its loose structure, com-
bined with a strong mindset of avoiding trusted single points of failure, might also be one reason
why it is sometimes hard to reach consensus regarding the direction of Bitcoin’s technological
development, as interests might diverge. This book aims to not engage in currently ongoing
debates (e.g., regarding the maximum block size) but rather to present a neutral, fact-based
introduction to this broad topic.

Following the traditional publication spirit of Satoshi Nakamoto, many papers in this field
are self-published or made available online as pre-prints prior to their acceptance at scientific
journals or conferences. Therefore, we opted to also reference online resources and pre-prints that
have not yet been published in peer reviewed venues. The authors are furthermore maintaining
a public bibliography® where all references that are made in this book can be found.

1.3 FROM CRYPTOCURRENCY TO BLOCKCHAIN

Early works in the area of cryptographic currencies or crypzocurrencies mostly focused on required
cryptographic primitives as well as the privacy guarantees that could be achieved in such sys-
tems [41, 42, 43]. Thereby, these systems themselves still had to rely on trusted third parties
(T'TPs) to be able to guarantee correct operation. This necessity changed in 2009 when Bit-
coin was launched as the first decentralized distributed currency [117] that removed the depen-
dency on T'T'Ps. Bitcoin achieves this through a novel combination of well known primitives and
techniques, such as, for example, proof-of-work (PoW), to eventually establish agreement (or
consensus) amongst all nodes on the state of the underlying transaction ledger. The resulting con-
sensus approach, termed Nakamoto consensus [27], allows for permissionless participation [147]
by potentially anonymous actors.

One core element of Bitcoin and Nakamoto consensus is the 4/ockchain. Originally the
term blockchain was used to refer to the aggregation and agreement on transactions in an im-
mutable ledger. Now &/ockchain is used as an umbrella term to refer to all kinds of cryptocurrency

3Bibliography: https://allquantor.at/blockchainbib.

4 1. INTRODUCTION

technologies. This set of technologies and techniques is also commonly referred to as &lockchain
technologies [32]. Although the term dlockchain is often not well defined, a rough distinction can
be made between permissionless blockchains, where participation in the consensus algorithm, at
least in principle, is not restricted, and permissioned blockchain, where there is a closed set of
nodes amongst which consensus has to be reached. For a more detailed definition of the term
blockchain as used in this book see Section 4.2.2.

1.4 THEANALOG STONE-BLOCK-CHAIN

Capturing and effectively conveying the basic principles of Bitcoin and other blockchain-based
cryptocurrencies to novices, especially those without a technical background, can be a difficult
task. When trying to explain the technological innovation and novel approach presented by
Bitcoin, you are quickly faced with the problem of having to refer to complex elements such as
consensus algorithms and cryptography.

'This section provides a completely analog example that may be helpful when trying to
explain the fundamental mechanisms of blockchain technologies to people without the necessary
technological background knowledge. The example of the stone-block-chain replaces Bitcoin’s
complex components with simple, real-world analogies, and while it is, of course, not able to
accurately cover all the details, it should capture the basic ideas. Practicality aside, the described
system should help illustrate the basic principles of blockchain-based cryptocurrencies.

Nakamotopia: In aland far away, there is a stone age village called Nakamotopia whose in-
habitants are famous for their stone carvers and general obsession with stone blocks. Up until
recently, the Nakamotopians relied on small, round, intricately carved rocks as their currency
and medium of exchange. However, crafty individuals found a process that allowed them to
easily and quickly carve new rocks and subsequently both the value and trust in the currency
was quickly lost in the wake of hyperinflation. In dire need of a new currency, the village elders
called for an emergency meeting to discuss the future of the Nakamotopian financial system.
Their solution was an ingenious idea for a stone-block-chain that combines the Nakamotopians’
obsession with stone blocks and their attraction toward lottery systems. The following three-step
scheme was devised, which the Nakamotopians called the block creation ceremony:

Miner selection: Every day, all Nakamotopians meet in the village square. In the first part of
the block creation ceremony, every villager puts one small stone, engraved with their (unique)
name, into a big wooden box. Thereby, the other villagers oversee the process and check that
every villager acts honestly.

'This box is then placed on a geyser next to the village. During the selection ceremony, all
villagers wait for the geyser to erupt and eject steam so that the box containing all the stones is
propelled high up into the air and scatters its contents. The villager whose stone lands closest to

the geyser wins the lottery and is elected as the miner of the next block.

1.4. THE ANALOG STONE-BLOCK-CHAIN 5

Figure 1.1: Nakamotopian random miner selection by geyser.

Transaction processing: After a villager has been selected as miner for that day, she has the
duty to collect all transactions from the villagers that have not yet been recorded. The villagers
who want to perform transactions queue up in front of the miner to inform her about transactions
that should be included in the stone-block-chain. A transaction transfers ownership of a certain
number of currency units from one name to another and is only valid if the sender actually has
at least as many units as he wants to transfer to the receiver. The only exception to this rule is the
first transaction that is engraved into the block, which credits the miner with a predetermined
number of units as a reward for her efforts. This special miner transaction is also the only way in
which new currency units can be created. At the end of this session, the stone block will contain
all the transactions the miner has decided to include. The remaining space of the stone block will
be filled with the holy termination symbol 0x00 so that no additional transactions can be added,
i.e., engraved, later on without being detected. If someone were to polish the entire surface of
the stone block to engrave a completely new set of transactions, this would be detectable, since

6 1. INTRODUCTION

all blocks must have exactly the same dimensions. During this whole process, the chosen miner
is allowed to not include a particular transaction. If this happens, the person who wants the
transaction to be included into a stone block has to wait until the next day and hope that the
next miner will include the transaction.

Figure 1.2: Transaction processing by engraving transactions into empty stone blocks.

Chaining: After the miner has prepared the current stone block, it is heaved toward the town
center. Because of the tremendous size and weight of such a stone block, it takes the combined
effort of a large number of villagers to move it at all. If a miner were to engrave invalid trans-
actions or otherwise create a stone block that does not obey the rules that were set out by the
elders, no honest villager would help the miner move the block. This ensures that the miner
sticks to the rules and does not forfeit her chance to receive the mining reward.

1.4. THE ANALOG STONE-BLOCK-CHAIN 7

Once a valid stone block has been moved by the villagers into the town center, they lift it
on top of the towering stack of previous blocks. Only once a block is placed onto this stack is it
considered valid by the Nakamotopians.

Stacking the stone blocks has several advantages: Not only does it establish a logical order
of transactions, it also makes it much more difficult to change blocks that are further down in
the past. An attacker would need to persuade a large number of villagers to start taking off blocks
from the top, each requiring a significant amount of time and effort to be removed, which would
not remain unnoticed by honest villagers for very long. On the other hand, if a large number of
villagers come to the conclusion that one or several blocks should not belong on top of the chain,
they can collectively remove these blocks and replace them, thereby ensuring that the majority
always agrees upon the contents of their stone-block-chain.

1.4.1 SECURITYMODEL OF THE STONE-BLOCK-CHAIN

We will now look at the security guarantees such a stone-block-chain can offer and how this
analogy relates to the properties current cryptographic currency technologies aim to provide.

Public transaction ledger ~As with Bitcoin, all transactions that take place in Nakamotopia
are recorded in a publicly accessible chain of blocks. The key difference here is that Bitcoin is a
pseudonymous system, whereas the Nakamotopians use their real identities in their transactions.

Proof-of-Work The basic requirement for a proof-of-work (PoW) should be that it is hard
to produce but easy to verify. In Bitcoin, the PoW also functions as a leader election mechanism
that randomly selects a new leader, i.e., creator of a valid PoW, on every new block.

In the stone-block-chain analogy, the properties of the proof-of-work are split into three
parts. (I) The work that has been put into crafting the blank blocks beforehand and placing
the current one at the top of the chain on town square aims to fulfill the “hard to produce”
criterion. (II) Once a block has been placed onto the stone-block-chain, it is still easy to verify by
reading the transactions engraved onto it and measuring its dimensions to verify that it complies
with the rules defining a valid block layout. (III) The geyser in our example works as a random
leader-election mechanism on every new stone-block. In Bitcoin, this is achieved through the

probabilistic properties of computing a valid PoW for blocks.

Immutability Since every stone block is huge and has precisely defined dimensions, it is un-
likely that the effort required for changing a previous stone block in the chain will go unnoticed
by several honest Nakamotopians. Even if someone manages to craft a completely new stone
block that includes malicious transactions, the effort of replacing an older block in the chain
will be detected by some villagers living next to the town square and would also require the
collaboration of many dishonest Nakamotopians to be feasible.

In Bitcoin, the blocks are chained together by cryptographic hash functions.

8 1. INTRODUCTION

Honest majority Assuming that the majority of villagers are honest, a large portion of the
stacked chain of blocks comes from honest villagers and will eventually cease to be in danger of
being changed by malicious villagers. Initially there is a slight chance that some of the topmost
blocks that have been added to the chain came from malicious villagers while the larger portion
of honest Nakamotopians were occupied with other, more pressing issues. Once they return,
this honest majority can set about removing the invalid blocks and start replacing them. On
the other hand, it takes time for the minority of dishonest villagers to remove or add blocks
and both can be quickly detected by any honest villager. If there are enough new stone blocks
stacked upon a particular block, it would take the dishonest villagers many days to remove them,
making such an attack very unlikely to succeed. Therefore, stone blocks that have been included
far enough in the past (i.e., lower in the chain) can be considered agreed upon.

Bitcoin blocks that have a high number of confirmations, i.e., blocks appended after them,
are unlikely to change and can, therefore, be considered agreed upon. Although the number of
confirmation blocks depends on the value of the transaction in question, common wisdom is
that six confirmation blocks are enough to consider a past transaction secure [69].

1.5 STRUCTURE OF THIS BOOK

'The remainder of this book is structured as follows: Following a brief introduction of notations
and definitions in Chapter 2, Chapter 3 provides a brief overview of the history of cryptocur-
rencies that led to the invention of Bitcoin. Chapter 4 discusses Bitcoin as the archetype of
modern distributed proof-of-work-based cryptocurrencies and highlights the basic properties of
blockchain and distributed ledger technologies. Chapter 5 provides an overview of human inter-
actions with cryptocurrency ecosystems on the example of Bitcoin. This highlights the challenges
in the area of digital assets management and presents a discussion of Bitcoin usability, privacy,
and security challenges from the user’s perspective. Chapter 6 addresses the Nakamoto con-
sensus in the context of distributed fault-tolerant computing and highlights the developments
toward modeling this new consensus approach. Chapter 7, finally, provides an outlook on future
developments of cryptocurrencies and other applications of blockchain technology. For further
studies we point the reader to our public bibliography* that holds additional references that go
beyond the scope of this book.

“Bibliography: https://allquantor.at/blockchainbib.

https://allquantor.at/blockchainbib

CHAPTER 2

Background

This chapter provides a high-level overview of the cryptographic primitives required in the do-
main of cryptocurrency technologies, as well as explanations of the symbols and notations that
are used throughout the book. For the background on distributed fault tolerant computing see
Chapter 6.

2.1 CRYPTOGRAPHIC PRIMITIVES

In this section we outline the cryptographic primitives that are required to understand the prin-
ciples of current PoW-based cryptocurrencies. On a high level the two basic buildings blocks in
this context are cryptographic hash functions and asymmetric cryptography.

2.1.1 CRYPTOGRAPHIC HASH FUNCTIONS

The most important primitive in the context of PoW-based cryptocurrencies are cryptographic
hash functions. Therefore, we focus on the properties required from such functions as well as the
constructions that can be based on it, e.g., Merkle trees. While describing the basic properties,
we will not go into much detail regarding the security guaranties of the discussed schemes.

Hash function: A hash function H takes a message x of arbitrary but finite size and out-
puts a fixed size hash £ (also called digest). When not explicitly stated differently, we refer to a
cryptographic hash function whenever the term hash function is used in this book.

Cryptographic hash function: There are four additional properties of a hash function that
have to be fulfilled so that the function qualifies as a cryptographic hash function [106].

1. Easy to compute: It is computationally easy to calculate the hash of any given finite mes-
sage.

h = H(x), Where h is of fixed length. (2.1)

2. Pre-image resistance: It is infeasible to generate a message that has a given hash value.
Infeasible in this context means it cannot be achieved by an adversary as long as the security
of the message is important. In terms of complexity theory, this is defined as not being
possible in polynomial time. Because of this property, cryptographic hash functions are
also called one-way functions.

Given a hash £ it is infeasible to find any message x such that 7 = H(x). (2.2)

10 2. BACKGROUND

3. Second pre-image resistance: It is infeasible to find two different messages which produce
identical outputs, i.e., a collision, when given as input to the hash function.

Given a message m it is infeasible to find another message m’ (2.3)

such that m # m’ and H(m) = H(m'). '

4. Collision resistance: It is infeasible to find any two different messages which produce
identical outputs, i.e., a collision, when given as input to the hash function.

It is infeasible to find any two messages m,m’ (2.4)
where m # m’ and H(m) = H(m').)
Merkle tree: In the paper [107] Merkle introduced the concept of a one-time signature
scheme that relies on a “infinite tree of one-time signatures.” This underlying concept later be-
came known as a Merkle tree, hash tree, or authentication tree [106]. Merkle trees are binary trees
in which the leaf nodes are labeled with the values that need to be authenticated and each non-
leaf node is labeled with the hash of the labels or values of its child nodes. Figure 2.1 shows
an example Merkle tree with n = 4 values and the resulting rooz hash or Merkle tree root r. To
authenticate a value v; and prove that it was part of a Merkle tree with root hash r, the values
hy and hg are required. For more information on Merkle trees see [14].

7= H(hs| | bs)
hs = H(h1||h) he = H(B3|| bs)
00 / \ 01 10 / \ 11
1 = H(vq) H(vy) h3 = H(v3) hy = H(vy)
U1 v v3 Uy

Figure 2.1: Example Merkle tree with n = 4 values. Nodes are referenced with a binary string rep-
resenting their position, e.g., node 01 is labeled /5.

Some properties of such a tree structure are:

* The length of the path from any leaf to the root of a (balanced) binary tree with n leafs is
approximated by log, (n).

* Given a root hash r and a value v, it requires approximately /0g» (n) hash computations to
prove that v is indeed a leaf of a (balanced) binary tree.

2.1. CRYPTOGRAPHIC PRIMITIVES 11
2.1.2 ASYMMETRIC CRYPTOGRAPHY

The second most important primitive on which cryptographic currencies are based is asymmetric
cryptography. Since cryptographic currency technologies mostly rely on well researched algo-
rithms and parameters in this context (e.g., Bitcoin uses Secp256k1 [38]), we will not go into
detail regarding the aspects concerning this broad field of research.

For further details as well as the mathematical foundations of the topics mentioned in this

section please refer to [6, 26, 28, 46, 86, 89, 91].

Public-key encryption: A public-key encryption scheme is defined as a triple of efficient algo-
rithms & = (G, E, D) where,

* G is a key generation algorithm that takes no input and outputs a key pair (pk, sk), where
pk is called public key, which can be shared publicly, and sk is called secret key, which
should be kept private.

(pk.sk) < G(). (2.5)

* E isaencryption algorithm that takes as input a public-key pk as well as a message m € M
and outputs a cipher text ¢ € C encrypted under the public-key pk associated with the
public/secret key pair (pk, sk) of the intended recipient.

¢ < E(pk,m). (2.6)

* D is a (deterministic) decryption algorithm that takes as input a secret-key sk as well as a
cipher text ¢ € C and outputs the message m € M, that was encrypted under the public-
key pk associated with sk, or L if the wrong keys have been used.

m <« D(sk,c). (2.7)

It follows that if the respective operations are reversible V(pk, sk) of G it holds that:
VYm e M : D(sk, E(pk,m)) = m. (2.8)

Digital signatures: A digital signature scheme is defined as a triple of efficient algorithms
< = (G, S, V) where,

* G is a key generation algorithm that takes no input and outputs a key pair (pk, sk), where
pk is called public key, which can be shared publicly, and sk is called secret key, which
should be kept private.

(pk, sk) < G(). (2.9)

* S is a signing algorithm that takes as input a secret key sk as well as a message m € M and
outputs a signature o € X' that can be communicated publicly together with the message.
S is invoked as

S :0 <« E(sk,m). (2.10)

12 2. BACKGROUND

* V is a (deterministic) algorithm that takes as input a public-key pk a message m € M as
well as a signature 0 € X' and outputs either accept or reject depending on the validity
of the signature o on message m.

{accept, reject} < V(pk,m,0). (2.11)

If follows that a signature generated by S is accepted by V iff (pk, sk) is a valid public/secret
key pair. So V(pk, sk) of G it holds that:

Vm e M : V(pk,m,S(sk,m)) = accept. (2.12)

2.2 NOTATION, SYMBOLS, AND DEFINITIONS

This section provides an overview of the notations and symbols used throughout the book (Ta-

ble 2.1).

2.2. NOTATION, SYMBOLS, AND DEFINITIONS 13

Table 2.1: Notations, symbols, and definitions used in this book

Symbols ‘ Description ‘ Sections

Oxff 'The prefix Ox denotes a hexadecimal representation. In this case 4
the hexadecimal representation of the decimal number 255.

[String concatination. -

x[251 : 255] Refers to the bits from 251 to 255 of variable x. -

H() Cryptographically secure hash function. 2.1;4.3

H* () Chained use of function x times e.g., H2(i) = H(H(3)). -

SHA 256 () The cryptographic hash function SHA256 as defined in [119]. -
The target defines the validity and hardness of a proof-of-work. In

T Bitcoin a valid PoW is defined as: 4

SHA2562(block header) < T.

z Number of leading zero bits of the 256 bit number 7' 4

Pr (x) Probability of x, 0 < Pr(x) < 1. =
Number of attempts a process p can make when searching for a

m(p) PoW solution in a unit of time.)

II Set of processes {p1, p2, ..., pn} = 1L -

B(7) Subset of Byzantine nodes B € II at time ~ -
Number of faulty processes, 0 < /< 7z where 7 denotes the total

/ number of processes. i

W, 2, Different classes of Failure Detectors. 6.2.2

08 (bz), OM 4

CHAPTER 3

History of Cryptographic

Currencies

The history of cryptographic currencies rests on two foundations. The first is the history of dis-
tributed systems research in general, and the second is the history of electronic cash systems.
In the early days, these two areas of research had very few connections with each other, despite
the use of cryptographic primitives. Both fields are related to research and advances in cryptog-
raphy, and particularly research in the area of electronic cash was driven by the inventions in
the area of asymmetric cryptography, e.g., blind signature schemes. In retrospect, Bitcoin pro-
vided the missing link between those fields of research to create a decentralized cryptographic
currency. Bitcoin cherry-picked the right pieces from each of these areas and combined them.
One byproduct of the rise of Bitcoin is an increased interest in distributed systems research as
well as in electronic payment systems and currencies.

In this chapter, we take a brief look at the history of cryptographic currencies before Bit-
coin and the beginnings of this field of research. Therefore we focus on the technical innovations
and the context of existing research at that time rather than individual persons or legal defini-
tions. The purpose of this chapter is to provide a basic understanding of historical events that
impacted cryptocurrency research and the community around it.

Legally cryptographic currencies of all types fall under the definition of a virtual currency.
'The term wirtual currency was defined by the European Central Bank in 2014 as “a digital rep-
resentation of value that is neither issued by a central bank or a public authority, nor necessarily
attached to a fiat currency, but is accepted by natural or legal persons as a means of payment and
can be transferred, stored or traded electronically” [9].

In Chapter 6, we describe the history from a distributed systems perspective.

3.1 BEFORE BITCOIN

'This section covers the roots as well as the early days of cryptographic currency research, from the
original idea and steadily improving concepts and implementations until the point that Bitcoin
was born.

16 3. HISTORY OF CRYPTOGRAPHIC CURRENCIES
3.1.1 THE EARLY BEGINNINGS OF DIGITAL CASH

1983 —
1984 —
1085 +
1986 —
1987
1988 —
1989 —
1990 —
1991 —
1992 —
1993 —
1994 —
1995
1996 —
1997 —
1998 —
1999 —
2000 —+
2001
2002
2003 +
2004 —
2005 +—
2006 -
2007 4
2008 —

‘Blind signature (Chaum)

‘ Cypherpunk mailing list

Clipper chip backdoor

announced

‘3 lines of RSA (Adam Back)‘

‘Clipper chip was abandoned ‘

B-money (Wai Dei)

‘Hashcash (Adam Back)

|RPOW (Hal Finney)

‘Bit gold (Nick Szabo)

2009 +— ‘Bitcoin (Satoshi Nakamoto) ‘

The history of cryptographic currencies started in the
1980s with David Chaum’s work [42, 43]. He is com-
monly referred to as the inventor of secure digital cash
for his paper on cryptographic primitives of blind sig-
natures [41]. In this paper, Chaum proposed a novel
cryptographic scheme to blind the content of a mes-
sage before it is signed, so that the signer cannot deter-
mine the content. These &/ind signatures can be publicly
verified just like a regular digital signature. Chaum’s
proposed digital cash approach allows users to spend
a digital currency in such a way that it is untrace-
able by another party. In a later publication, Chaum et
al. [43] improved the idea by allowing offline transac-
tions and by adding double-spending detection mecha-
nisms. Nevertheless, the system requires trusted parties
for issuing and clearance of electronic cash.

To commercialize his ideas of digital cash,
Chaum founded DigiCash in 1990. This first genera-
tion of cryptographic currencies failed to reach a broad
audience despite various commercialization efforts [3].

3.1.2 THE CYPHERPUNK MOVEMENT
With David Chaum’s advances in the field, the

cypherpunk movement was born. The informal group
communicated via the Cypherpunks electronic mail-
ing list and advocated the use of cryptography and
privacy-enhancing technologies. Among others, David
Chaum’s work inspired the group of activists to pro-

mote the widespread use of these technologies. Before that, cryptography was not publicly

available to consumers and exclusively practiced by the military and intelligence agencies. The
Cypherpunk movement addressed topics such as anonymity, pseudonymity, communication
privacy and data hiding, but also censorship and monitoring. A major issue in the mid-1990s
was the Clipper chip chipset developed by the NSA, which was heavily criticized by the Cypher-
punks for its built-in backdoor. In 1994, Matt Blaze published a paper on vulnerabilities in Clip-
per Chip’s escrow system [25]. He found that the chip transmitted information that could be
exploited to recover the encryption key in a specific Law Enforcement Access Field (LEAF). This
LEAF contained a 16 bit hash to prove that the message has not been modified. 16 bit however
were not sufficient as a reliable integrity measure, as an attacker could easily brute force another

3.1. BEFORE BITCOIN 17

LEAF value that would give the same hash but not the correct keys after an attempted escrow.
Further vulnearabilities were detected in 1995 by Moti Yung and Yair Frankel who in their
work showed that key escrow device tracking can further be exploited by attaching the LEAF
to messages from different devices than the originating one to bypass escrow in real time [74].
Several other attacks have been published since then, e.g., [4], and activist groups, such as the
Electronic Frontier Foundation, also expressed their concerns about the Clipper chip and the
government’s efforts to limit the use of encryption by Internet users. This is commonly referred
to as crypto wars. The inventor of Hashcash, Adam Back, pioneered the use of ultra-compact
code with his 3-line RSA in Perl signature file which was then printed on t-shirts to protest
the United States’ cryptography export regulations. Due to the lack of adoption of the Clipper
chip by smartphone manufacturers, the design was abandoned in 1996. However, the debate
on key escrow and government-controlled backdoors persists even to this date. The Snowden
revelations of 2013 sparked a public wave of concern that resulted in an increased demand for
cryptographic applications by end users and vendors.

3.1.3 THE RISE OF CRYPTOCURRENCIES

Before the first decentralized cryptocurrency, Bitcoin, and its successors emerged, a number of
approaches that improved on the original idea of David Chaum were proposed. These concepts
represent incremental improvements, but as they still contained centralized elements, they do
not qualify as completely decentralized currencies.

b-money: In 1998, Wei Dai proposed b-money [53], an anonymous and distributed electronic
cash system. In his proposal, he described two protocols based on the assumption that an un-
traceable network exists where senders and receivers are identified only by digital pseudonyms
such as their public keys, and that every message is signed by its sender and encrypted to the re-
ceiver. B-money also allowed the creation of money based on previously unsolved cryptographic
puzzles.

bit gold: In 1998, Nick Szabo designed a new digital currency called iz go/d. His system also
relied on cryptographic puzzles which, after being solved, were sent to a Byzantine fault-tolerant
public registry and assigned to the public key of the solver. This allowed network consensus
over new coins to be obtained. To address the problem of double-spending without a central
authority, Szabo’s scheme was designed to mimic the trust characteristics of gold. In 2002, Szabo
also presented a theory of collectibles based on the origins of money [144].

Hashcash: Adam Back proposed Hashcash [10], a proof-of-work (PoW) system based on
cryptographic hash functions to derive probabilistic proof of computational work as an authen-
tication mechanism. The requirements of this system were that, on the one hand, it should be
hard to find a valid solution, but on the other, it should be easy to verify any given solution. With
Hashcash, the purpose of the PoOW was to ensure that it was computationally hard for a spam-

18 3. HISTORY OF CRYPTOGRAPHIC CURRENCIES

mer to transmit mails over an anonymous mail relay [10]. Since the identity of the sender should
be protected, no traditional authentication checks are possible in such a scenario. Therefore, the
mail server required the solution to a computational challenge as an authentication method for
accepting the message for relaying. In the case of Hashcash, this was realized via an additional
e-mail header. Back’s PoW scheme was conceptually reused in Bitcoin mining.

RPOW: Based on previous work, Hal Finney presented the first currency system based on a
reusable proof-of-work (RPOW) and Szabo’s theory of collectibles [144] in 2004 [70]. Similar
to Szabo’s bit gold, Finney’s scheme introduced token money that was aligned with the con-
cept of gold value. Later, after the launch of Bitcoin, Hal Finney became the first user of this
new distributed cryptocurrency after Satoshi Nakamoto. He received a Bitcoin transaction from
Bitcoin’s creator Satoshi Nakamoto.

3.2 BITCOIN

Between 2008 and 2009, Bitcoin was created as the first decentralized cryptocurrency by
the pseudonymous developer Satoshi Nakamoto [117]. Nakamoto self-published the Bitcoin
whitepaper in 2008 and soon after, on January 3rd, 2009, the genesis block of the Bitcoin pro-
tocol was created, marking the start of Bitcoin as a decentralized cryptocurrency. To date, it is by
far the most successful cryptocurrency in terms of market capitalization. More than 700 altcoins
(e.g., Litecoin, Peercoin) based on Bitcoin have been proposed since the launch of Bitcoin.

CHAPTER 4
Bitcoin

In 2016, the market capitalization of Bitcoin reached over 10 billion USD [1], proving that de-
signing and maintaining a distributed cryptographic currency is technically feasible today. Al-
though the technical primitives, which are essentially cryptographic hash functions, and asym-
metric cryptography have existed for a while, Bitcoin was the first concept to combine these
technical building blocks with an incentive system, thereby creating the first distributed cryp-
tographic currency in history. In this chapter, we describe Bitcoin as the archetype of modern

distributed proof-of-work-based blockchains.

4.1 BITCOINAT A GLANCE

Bitcoin and other related cryptocurrencies rely on two different types of data structures: rans-
actions and blocks. Transactions are grouped together in blocks. The blocks are chained to-
gether via hashes of their predecessors, thereby forming an authenticated data structure, the
blockchain [119]. Transactions and blocks are disseminated among all participating nodes using
a gossiping protocol over a peer-to-peer (P2P) network.

A new block is added to the blockchain if a node of the network can provide a valid
proof-of-work (PoW) for it. The PoW acts as a defense mechanism against Sybil attacks [60]
and provides a form of keyless signature to authenticate new blocks as well as the blockchain
as a whole [123]. Honest nodes agree that at any point in time only the longest blockchain is
considered valid. Although commonly referred to as longest chain rule, it is actually the blockchain
that is the hardest to compute in terms of PoW, i.e., the heaviest chain. If a node does not
consider a block to be valid, then the block is not added to its blockchain. This implicit consensus
process can be described as a “random leader election” on each solved PoW. 'The leader is allowed
to propose a new block and implicitly agrees on all blocks before that by appending its new
block to the end of the respective blockchain [119]. In short, Bitcoin can be described as a
distributed system that uses PoW and a blockchain as a probabilistic consensus mechanism to
agree on the contained set of transactions as well as their order. Thereby, the system ensures
that all peers agree on the current ownership status of bitcoins. This is necessary to correctly
handle state transitions in the ownership from one block to the next block. The underlying
consensus approach to achieve this is referred to as Nakamoto consensus. Thereby, the leader is
allowed to decide one block, then another leader is elected based on solving a PoW puzzle.
'The leaders signal their approval of previous blocks by appending to the rightful, in their view,

20 4. BITCOIN

chain of blocks. The probability of agreeing on a common prefix of blocks in the heaviest! chain
increases toward Pr(1) as the chains grows larger [76].

To motivate people to provide their computational resources and run Bitcoin nodes, so-
called miners are rewarded with currency units (i.e., bitcoins) for every valid PoW provided for
a block and its associated transactions.

As a result, the security and decentralization of Bitcoin comes not only from technical
aspects but also from clever incentive engineering [119].

4.1.1 COMPONENTS OF CRYPTOCURRENCY TECHNOLOGIES

There exist multiple approaches to decompose cryptocurrency technologies. In [50] the authors
describe cryptocurrencies by separating them into different plains like nerwork plane, consensus
plane, storage plane, view plane, and a side plane. Inspired by this approach, the authors of this
book decided to decompose cryptocurrencies on a two-level basis. On the first level we introduce
a rough separation into two main components. On the second level those two main components
are decomposed into different subsystems. To avoid confusion with the “plains” concept defined
in [50] or the “layers” of the OSI model we use the terms components and subsystems in this
context.

'The operation of Bitcoin and most other cryptocurrencies can be broken down into two
main components: (I) Consensus management encompasses everything that is consensus relevant,
e.g., consensus algorithms and communication aspects. (II) Digital asset management refers to all
applications that build upon the agreed state and act upon it, e.g., key and transaction manage-
ment. For a more fine-grained separation, both main components can be divided into multiple
subsystems.

* Consensus management COIl’lpOl’leIlt

— Network subsystem
— Storage subsystem

— Consensus algorithm subsystem
* Digital asset management component

— Key management subsystem

— Transaction management subsystem

With this separation into two main components, it is also possible to view such systems as dis-
tributed operating systems with applications running on top of them. In this analogy the con-
sensus management component can be viewed as the operating system which provides services
(e.g., syscalls) to userland applications, i.e., the digital asset management component. This view

1The heaviest chain is the chain containing the block with the hardest proofs-of-work.

4.2. CORE DATA STRUCTURES AND CONCEPTS 21

highlights that both components can be replaced independently of each other. For example, if
someone wants to use a different software for storing and using the public- and secret-key pairs
related to her coins (i.e., a wallet) this would be possible without consensus critical changes. In
other words, this would be the equivalent of changing the digital asset management component,
which would not affect the other component as long as they can still communicate with each
other, e.g., a wallet can run on any current instance of Bitcoin.

To the contrary, the subsystems within one component cannot be directly replaced without
potentially influencing each other. For example, replacing the P2P networking implementation
of Bitcoin with a different gossiping protocol would not directly touch the code on how to reach
agreement, and hence the basic rules of Nakamoto consensus, however this change could alter
message propagation times which in turn directly influence the achievable security and liveness
properties of the consensus algorithm. Therefore, the subsystems are more contextualization to
describe difterent parts more independently of each other.

Sections 4.3, 4.4, and 4.5 reflect this separation between components and subsystems and
what they encompass in the context of Bitcoin as the archetype of modern distributed crypto-
graphic currencies. To explain the inner workings of those subsystems in Bitcoin, several data
structures are required, which are discussed in Section 4.2.

4.2 CORE DATA STRUCTURES AND CONCEPTS

Addresses, transactions, and blocks are the three basic data structures used in Bitcoin. The need
for these specific data structures arose from the fact that Bitcoin was designed as a distributed
digital currency. All cryptographic currencies that are based on Bitcoin, whether they are direct
forks of it (e.g., Namecoin, Litecoin, Zcash) or just conceptually based on it (e.g., Ethereum),
also include variants of these core data structures with some small modifications. This section
describes those structures and shows how they interlink with each other to outline the basic
concepts of a cryptographic currency. Because of the data-centric view of this Section 4.2, the
details on how consensus is reached in Bitcoin is deferred until Section 4.3. For simplicity’s sake,
we assume in this section that the order of the blocks in the chain is agreed upon by every client
and that each client knows at least the current head of the chain.

Over the lifetime of Bitcoin, there have been minor changes in the exact representation
and interpretation of core data structures, e.g., the interpretation of the Version (nVersion) value
of the block header, which originally just represented an increasing version number and is now
interpreted as a bit vector so that miners can indicate whether they support features that require a
soft fork. Most of the described constructs in this section have not been subject to major changes
in the past.

In this section, we focus on the core components and fundamentals of the Bitcoin protocol
in a generalized way irrespective of the exact protocol version. The information presented here
is intended as a practical example to illustrate the general concepts of cryptographic currencies.

22 4. BITCOIN

For up-to-date details, we recommend consulting the Bitcoin developer guide [23], the
respective Bitcoin improvement proposals (BIPs) [24], and the source code of the reference
implementation [22].

4.2.1 BLOCK

'The most fundamental data structure in Bitcoin is a block. A block consists of a &lock header
and the fransactions associated with the respective block. These blocks are chained together by
including cryptographic hashes of their predecessors to form a linked list commonly referred
to as a blockchain.” The current state of currency is represented by the order of the blocks in
the chain. They represent a ledger of all performed transactions, in which the transactions are
processed sequentially depending on their position in the block in which they occur.

Block Header

Table 4.1 shows the different fields of the block header (80 bytes) and the associated list of
transactions. The most important field of the block header from the integrity point of view is
the HashPrevBlock. It contains a cryptographic hash (SHA256) of the previous block in the
chain. This ensures that the blocks are chained together to form an immutable data structure.
'The integrity of this dlockchain can be checked by anyone who has access to the head, i.e., the last
block in the chain. A client that has stored only the last block can verify that the chain up to this
point has not been altered. Therefore, he requests all previous blocks of interest and recreates
the hash chain up to the last block. If the final block hash matches, no past blocks have been

changed after their inclusion into the chain.?

Associated Transactions

'The ordering of the list of transactions linked to every block is also vital, as they are processed
in sequential order. This permits, for example, that the same funds can be moved several times
by sequential transactions, all of which are associated with the same block.

All transactions associated with a block are tied to the respective block via a Merkle tree
root hash that is included in the block header (i.e., HashMerkleRoot). For a simplified explana-
tion, it is also possible to think of this field as a hash value over all transactions. If the content
of one transaction would be changed after linking it to a block header, this would be detectable
due to the change in the Merkle tree root hash.

4.2.2 BLOCKCHAIN

'The term b/ockchain, although not directly introduced by Satoshi Nakamoto in the original pa-
per [117], is commonly used as an umbrella term to refer to concepts related to cryptographic

2For a detailed definition of the term lockchain see Section 4.2.2.
3 Although cryptographic hash functions always contain collisions, it is safe to assume that it is infeasible for an attacker to

find them [6].

4.2. CORE DATA STRUCTURES AND CONCEPTS 23

Table 4.1: Bitcoin block header (80 bytes) and its associated transactions (currently 1 MB) [122]

Field Name ‘ Type (Size) ‘ Description

int Originally this specified only the version of the block. With
nVersion (4 bytes) | BIP 9 coming into effect, bits of this field also indicate the
support of features that require a soft fork [126].
HashPrevBlock uint256 Double SHA256' hash of previous block header
(32 bytes) | SHA2562(nV ersion|| ... ||nNonce).
Hash MerkleRoot Uint256 | Merkle tree root. hash (aIS(.) called.master or top.hash) built
(32 bytes) | from all transactions associated with the respective block.
{Time unsigned int | Timestamp in UNIX format of approximate block creation
(4 bytes) | time.
unsigned int | Target that defines the difficulty of the proof-of-work prob-
nBits (4 bytes) | lem. This value is stored in a compact representation. For
details see Section 4.3.3.
unsigned int | Nonce allowing variations for solving the proof-of-work
nNonce
(4 bytes) | problem.
VarInt | Number of transactions associated with the respective block.
#vtx (1-9 bytes) | This field is not part of the block header but it is transferred
along with the block over the network.
Transaction | Vector of transactions that contains the actual data on them.
vix|[] (Variable) | These transactions are also not directly part of the block
header but linked to it via the HashMerkleRoot field.

currency technologies. There are two common spellings throughout the literature for this term,
i.e., blockchain and block chain. Although, the later variant was used by Satoshi Nakamoto in
a comment within the original source code,* the first one has been used frequently in recent
academic literature, e.g., in [50]. Therefore, we stick to this variant within this book. As with
the spelling, there are also multiple definitions of the term blockchain. Therefore we provide two
possible interpretations for this term in this book: (I) the academic interpretation and (II) the
colloquial interpretation.

Academic Interpretation
Since multiple definitions of the term &lockchain also exist in the academic context, this book
outlines several of those interpretations. The first definition is a broad one that is independent

“https://github.com/trottier/original-bitcoin/blob/master/src/main. h#L795-1803

https://github.com/trottier/original-bitcoin/blob/master/src/main.h#L795-L803

24 4. BITCOIN

of the underlying consensus algorithm. Therefore it is applicable to all kinds of different types of
blockchains and most accurately covers the broader usage of this term. We call this definition the
Princeton definition, since it was first introduced informally in the Princeton Bitcoin book [119].
We provide this definition more explicitly in this section.

The second set of definitions is more formal and also includes consensus related aspects.
They are the result of various approaches toward more formally modeling such systems and
include works such as [77, 92, 93, 123]. These works do not necessarily define the term &/ockchain
directly. Kiayias et al. for instance use the term zransaction ledger for their definition in [93] while
Pass et al. use the term abstract definition [123]. The evolution and details of these more formal
analyses are outlined in Section 6.3.

For the remaining sections, up to but not including the entirety of Chapter 6, the Princeton
definition as provided in [119] is sufficient to understand the concepts and follow the explana-
tions.

Definition4.1 A blockchain, according to the Princeton Definition [119], is defined as a linked
list data structure, that uses hash sums over its elements as pointers to the respective elements.

By this definition, the construction of a blockchain ensures that as long as someone has
stored or retrieved the correct block at the head of the chain, he is able to verify all other blocks
of the chain when provided in their entirety.

Colloquial Interpretation

Colloquially the term blockchain refers to the category of distributed systems that are built using
blockchain/cryptographic currency technologies, e.g., hash chains, asymmetric cryptography,
game theory, etc. By this interpretation there exist two different versions of blockchains, namely:
permissionless and permissioned blockchain.

permissionless blockchains The central property of this type of blockchain is that the set of
nodes, amongst which consensus over the state of the chain should be reached, is unknown.

Vukoli¢ et al. refers to this type as proof-of-work (POW) blockchains [147].

permissioned blockchain The central property of this type of blockchain is that the set of
nodes, amongst which consensus over the state of the chain should be reached, is known. Vukolic
et al. refers to this type as Byzantine Fault Tolerant (BFT) blockchains [147]. Further distinction
can be made between permissioned blockchains and private blockchain regarding the composi-
tion and selection of the set of nodes.’

4.2.3 ADDRESS

At the most basic level, Bitcoin addresses, like the addresses of many other cryptographic cur-
rencies, are cryptographic hashes of public keys. Therefore, each address actually consists of a

Shttps://blog.ethereun.org/2015/08/07/on-public-and-private-blockchains/

https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/

4.2. CORE DATA STRUCTURES AND CONCEPTS 25

public and a private part. The public part is the address, which can be compared to an account
number in ordinary online banking. The private part is the corresponding secret key, which can
be compared to the password or signature required to withdraw money from an ordinary savings
account. Addresses can be generated by anybody as easily as public/private key pairs. This allows
everyone to accept Bitcoins by handing out the public address without any deeper knowledge of
the Bitcoin protocol itself or its consensus mechanisms.

In Bitcoin, addresses are an Elliptic Curve Digital Signature Algorithm (ECDSA) [37]
public/private key pair. More precisely, Bitcoin uses the elliptic curve secp256%1 specified and
recommended by Certicom [38]. To create a human-processable Bitcoin address, the public
part is encoded as described in Algorithm 4.1. In the process, the public key is hashed multiple
times. Thereby, two different hash functions are used, i.e., RIPEMD160 and SHA256 [121].

Algorithm 4.1 Construction of Bitcoin addresses from ECDSA public keys

Input : ECDSA public key pk
Output : Bitcoin address A e.g., 1IDR8mXZpK75q7Vipkb1tmp8Wyjz6gDHZBL

1: a = 0x00 || RIPEMD160(SHA256 (pk))
2: h = SHA256(SHA256(a))
3: A = Base58(a || h[251 : 255])

During this process, a 4 byte checksum is added at the end. The final result is then en-
coded with base58 encoding. A reason for the choice of base58 is that some base64-encoded
characters are potentially visually indistinguishable in certain fonts, e.g., {0, O, I, }. The source
code snipped from Bitcoin Core® depicted in Listing 4.1 also highlights the reasons for choosing
base58 encoding.

Listing 4.1: Comment on base58 encoding in base58.h of Bitcoin Core
VAR

*

Why base—58 instead of standard base—64 encoding?

* — Don’t want 00I!/ characters that look the same
* in some fonts and could be used to

* create visually identical looking data.

* — A string with non—alphanumeric characters is
* not as easily accepted as inpuf.

* — E—mail wusually won’t line—break if there’s

* no punctuation to break at.

* — Double—clicking selects the whole string as
* one word if it’s all alphanumeric.

*/

bhttps://github.com/bitcoin/bitcoin/blob/v0.13.1/src/base58.h#L6-L13

https://github.com/bitcoin/bitcoin/blob/v0.13.1/src/base58.h#L6-L13

26 4. BITCOIN
4.2.4 TRANSACTION

Transactions are used to transfer currency units from one address to another. They can be created
by any entity that is in possession of currency units, i.e., bitcoins. Possession in this context
means control over the private key of the respective address (i.e., public key) that currently holds
the currency units that are to be transferred, i.e., an address that has received transactions in the
past.

A transaction in Bitcoin consists of one or multiple inputs and one or multiple outputs.
An input unlocks a previous output by providing a valid cryptographic signature. Thereby, the
inputs serve as proof that the holder of the respective Bitcoin address that previously received
the bitcoins is also in possession of the required private key. The private key is needed to generate
the signature that unlocks the funds so that they can be used, i.e., transferred to another Bitcoin
address.

For example, if Alice wants to transfer 5 bitcoins to Bob, she first requires Bob’s Bitcoin
address. For our example, we assume that this address is transferred over some trusted com-
munication channel, e.g., displayed as payment information while shopping on a website that
uses a valid certificate for TLS encryption [55]. Alice places Bob’s address in the output of the
transaction she is constructing together with the number of coins she wants to transfer to this
account, i.e., 5. In the next step, Alice needs to prove that she is in possession of the required
number of bitcoins and that she really wants to transfer them to Bob. Therefore, Alice searches
the blockchain for previous transactions where bitcoins were sent to addresses that are under her
control, i.e., where she is in possession of the corresponding private keys. She then unlocks as
many of these previous transactions as needed to cover the desired output of 5 bitcoins. In our
example, she uses two previous transactions (outputs) for this, consisting of 4 and 3 bitcoins.
Referring to the respective previous transactions, Alice creates an input in the current trans-
action for every output she wants to unlock. These inputs uniquely identify previous outputs
by their transaction ID and number. To unlock those outputs, she has to prove that she is the
rightful owner, which she does by providing cryptographic signatures along with every input.
Alice now adds an output to the transaction which transfers 5 bitcoins to Bobs Bitcoin address.
Since the two unlocked inputs sum up to more than the desired value of 5 bitcoins, Alice adds
another output for transferring the change of 2 bitcoins back to a Bitcoin address that is under
her control. As soon as the transaction is constructed, Alice broadcasts it to the Bitcoin peer-
to-peer network and waits until it is included in a newly generated block. Once the transaction
is included at the head of the blockchain, the transaction is called confirmed. The number of
confirmations is defined by the number of blocks that build on top of the block that contains
the transaction.

Transaction Validation
Generally a transaction in Bitcoin is considered valid if the following criteria hold:

* Allunlocked inputs have not been spent (i.e., unlocked and used) in a previous transaction.

4.2. CORE DATA STRUCTURES AND CONCEPTS 27
* All cryptographic signatures in the inputs are valid.

* 'The sum of all values unlocked in the inputs is greater than or equal to the sum of all values
specified in the outputs of the transaction.

For a more detailed description of check criteria, the reader is referred to the source code and
the developer documentation [22, 23].

Coinbase
'The above example transaction between Alice and Bob illustrates the general functionality of
moving funds in Bitcoin, but it does not describe where bitcoins are actually created. This hap-
pens in the so-called coinbase transaction, which is the first transaction in every block and has
a special status among all other transactions. In the coinbase transaction, the block creator is
allowed to create a predetermined number of bitcoins out of thin air as a reward for finding a
valid proof-of-work.

Figure 4.1 shows the structure of a block and the transactions it encompasses, with the
first being the coinbase transaction.

Block [Coinbase Transaction Transaction(s)
nVersion] ?‘ nVersion nVersion
s} T P
HashPrevBlock E #vin = 1 e #vin = 1 —
—|HashMerkleRoot e ash = ash =
nTime 8: n=2%2-1 n
nBits (Target) vin[0] | coinbaseLen vin[0] | scriptLen
aNmEe . coinbase script
s — nSequence nSequence
I — #vout =n
nValue #vout = n
vout[0]|ScriptPubkeyLen nValue
scriptPubkey vout[0]|ScriptPubkeyLen
scriptPubkey
nLockTime
— nLockTime

Figure 4.1: Data structure of block and the transactions it encompasses.

Table 4.2 highlights the exact differences between ordinary transactions and coinbase
transactions.

28 4. BITCOIN

Table 4.2: Difference between regular transaction and coinbase transaction structure [122]

Field Name ‘ Type (Size) ‘ Description

int32_t
nVersion L Transaction format version (currently 1).
(4 bytes)
i Varlnt Number of transaction inputs entries in vizn.
in
(1-9 bytes) | For coinbase this is set to 1.
hash uint256 Fixed double-SHA256 hash of previous tx.
* (32 bytes) For coinbase set to 0.
uint32_t Fixed transaction output index. For coinbase
n
(4 bytes) set to 232 — 1.
iptSigl. Varlnt
vin([] (S::)rilr}:baslegL:: o (1a—r9r;ytes) Length of coinbase or scriptSig field in bytes.
scriptSig or CSecript 'The coinbase encodes the block height and arbitrary
coinbase (Variable) data (100 bytes max).
S uint32_t T vion inout b
nSequence ransaction input sequence number.
1 (4 bytes) P d
Varlnt . o
#vout Number of transaction output entries in vout.
(1-9 bytes)
int64_t Amount in Satoshis, 10~8 BTC. For coinbase this is
nValue)
(8 bytes) the block reward plus transaction fees.
VarlInt
vout[] | scriptPubkeyLen (1a—r9I:)ytes) Length of scriptPubkey field in bytes.
scriptPubkey CSCI."ipt S.cript specifying cond.itions under which the transac-
(Variable) tion output can be claimed.
LockTime unsigned int | Timestamp u.ntil vv.hich transactions can be replaced
(4 bytes) before block inclusion.
Fees and Change

'The amount associated with a specific Bitcoin address cannot be split up and has to be unlocked
as a whole in a transaction input. Therefore, it is necessary to include additional outputs in
a transaction if the surplus of currency units is to be transferred back as change to a Bitcoin
address which is under the control of the sender.

If the sum of the values in the inputs of the transaction is still greater than the sum of the

values in the outputs of the transaction, then this difference is collected as a transaction fee by

4.3. CONSENSUS MANAGEMENT 29

the miner of the block in which the transaction is included. All transaction fees of a block are
added to the reward of the coinbase transaction.

Scripts

As indicated in Table 4.2 and Figure 4.1 the transactions do not simply provide the re-
quired cryptographic signatures to unlock funds. Instead Bitcoin uses a stack-based non-
Turing-complete scripting language (without loops) [23]. This so-called Scripz is split up into
two parts. The first part resides in the transaction output that is to be spent (i.e., trans-
ferred), whereas the second part is given in the respective transaction input that is to un-
lock this fund. For the evaluation, both parts are concatenated and executed. If the execu-
tion returns frue as a result on the stack, the script is considered valid and the respective
fund is allowed to be spent in the associated transaction. Figure 4.2 shows an example ex-
ecution of a standard Pay-to-Public-Key-Hash (P2PKH) transaction input that verifies that
the rightful holder of the coins wants to initiate this payment. This example illustrates the
status of the stack at each step of the execution from left to right. The script code that
is executed contains a mixture of data (e.g., <sig>,<pubKey>,<pubKeyHash>) and opcodes
(e.g., OP_DUP,0P_CHECKSIG,0P_HASH160,0P_EQUALVERIFY). When a data item is read from
the script it is pushed to the stack. When an opcode is read from the script it is executed. In
Figure 4.2 the stack depicts the execution state affer the opcode, or data item, that is shown
below the stack snapshot was processed.

Bitcoin scripting language example execution of P2PKH:
scriptPubKey (locks output)

‘ <sig> <pubKey> HOPiDUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY OP CHECKSIG

scriptSig (unlocks output within input)

<pubKeyHash>
<pubKey> <pubKeyHash> | <pubKeyHash>
<pubKey> <pubKey> <pubKey> <pubKey> <pubKey>
‘ <sig> <sig> <sig> <sig> <sig> <sig> true
<sig> <pubKey> OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

Figure 4.2: Example execution of a Pay-to-Public-Key-Hash (P2PKH) Bitcoin script in one trans-
action input.

4.3 CONSENSUS MANAGEMENT

This subsystem contains all consensus-critical parts, i.e., the rules on which the majority of the
participating nodes have to agree to eventually reach consensus on the state of the blockchain.
In other words, if there is an agreement on the validity and order of the blocks in the chain, then

30 4. BITCOIN

there is also an agreement on the order of transactions. This is required to determine whether a
certain transaction is valid, i.e., uses only transaction outputs that have not been spent so far.

'The randomized consensus in Bitcoin is based on proof-of-work to randomly select one
node in the network to be the leader for the next “round” (i.e., the next block). The leader is
allowed to propose the next block, then another leader is chosen according to the same princi-
ple and so forth. Following this process, the current leader can implicitly agree with the chain
collected previously by appending his newly created bock at the head of the chain or disagree
by choosing a different, i.e., previously created, block to append to. The chance of a node being
selected as leader is dependent on his relative hashing power in comparison to all other nodes.
Therefore, any node can increase its chances to be selected by increasing its computational share.
According to current estimates,’ this mechanism can be considered secure against a malicious
node participating in the consensus as long as his share does not increase above 25% of the
overall hash rate. This value resembles a current estimate and is the result of a still ongoing pro-
cess of modeling and assessing the security guarantees of PoW blockchains [79] under certain
attacks [67, 69] and combinations thereof [120]. In addition to the random selection, the proof-
of-work also acts as protection against Sybi/ attacks [60] in Bitcoin. This is necessary since nodes
can join (and leave) the Bitcoin P2P network and start (or stop) participating in the protocol at
will.

From that perspective, the proof-of-work ensures that an attacker actually needs the re-
spective computational power to generate new blocks and hence directly influence the consensus
process.

In this section, we discuss the basic properties of proof-of-work and how the mining pro-
cess in Bitcoin is organized. We also cover and briefly explain the adjustment of the proof-of-
work hardness in Bitcoin and the difference between zarget and difficulty. Finally, we discuss the
security guarantees and corner cases like blockchain forks and double spending.

4.3.1 THEIDEA OF PROOF-OF-WORK (POW)

The idea® of performing and providing a proof-of-work (PoW) for security reasons was devel-
oped and refined by Dwork et al. [63], Back [10], and Finney [70]. The history as well as some of
the first implementations and use-cases of proof-of-work schemes are summarized in [10]. To
introduce the concept of hashcash we outline an example for hashcash-based throttling [10] that
we call hashslash. Hashslash is based on the same principles but slightly deviates from other im-
plementations. In hashslash, the PoW was intended to ensure that it would be computationally
hard for a spammer to transmit mail over an anonymous mail relay [10, 63]. Since the identity of
the sender is to be protected, no authentication checks are possible in such a scenario. Therefore,
the mail server required the solution to a computational challenge as an authentication method
before it would accept the message for relaying.

"For details refer to Section 4.3.7.
8See Chapter 3 for context.

4.3. CONSENSUS MANAGEMENT 31
In hashslash, this is realized via an additional e-mail header line. The SHA1 hash value

of this header line had to start with a given amount of zero bits; only then would the header be
considered a valid proof-of-work. A regular client that wanted to transfer an e-mail had to find
a nonce value for the header such that the SHA1 sum of the entire header line started with the
required number of zero bits. Listing 4.2 shows a valid example solution where the nonce value
is set to 369. In addition to the requirements for the outcome of the hash function, the header
also had to comply to the following structure:

* Version information (1).

* Number of leading zero bits, i.e., target (12).

+ UNIX timestamp (1231002905).

* Recipient e-mail address (satoshin@gmx.com).

* Random value to avoid reuse of proof-of-work (rluN7en).

* Counter or nonce that is incremented to find a valid solution.

Listing 4.2: Proof-of-work in hashslash
$ echo —n 71:12:1231002905:satoshin@gmx.com:: rluN7en:369” | shalsum
000c2c9c9e601fa2aef6eb80c9d6f2361f99f6a4

'The brute force search for this example shown in 4.2 can be accomplished within one line
of bash script as shown in Listing 4.3. In this specific instance of hashslash, a solution can be
found on average after a2 212 tries. For details on how to calculate the probability of finding a
solution see Section 4.3.2.

Listing 4.3: Finding a valid PoW for hashslash
$ for i in {1..10000}; do echo —n 71:12:1231002905:satoshin@gmx.com:: rluN7en: $i” |
shalsum | grep ”"2000” &% echo ”i=$i"; done

4.3.2 PROOF-OF-WORKIN GENERAL

A proof-of-work (PoW) in the context of computer science is a mechanism that enables a prover
to provide evidence to a wverifrer that he has invested computational resources (e.g., CPU and
memory) into a certain task. There are different definitions and requirements regarding the con-
struction of such proofs [44, 63, 83, 142]. We focus on the aspects relevant in the context of cryp-
tographic currency technologies. In this domain, these types of puzzles are sometimes also called
hash puzzles [119], computational puzzles, moderately hard puzzles, or scratch-off puzzles [109]. On
an abstract level, the main characteristics that a PoW, in the context of cryptographic currencies,
has to fulfill can be summarized as follows:

1. Any given PoW is easy to verify.

32

. BITCOIN
. 'The PoW is difficult to generate.

4

2

3. 'The difficulty of the PoW is parametrizable.

4. It should not be possible to reuse previously generated PoWs.

5. It should not be possible to generate PoWs ahead of time and use them later.

'The first three are the basic requirements for a PoW, which are also highly relevant in
other application scenarios. Requirements 4 and 5 are particularly relevant in the context of
cryptographic currencies, as we will demonstrate in this section. To do this, we will first revisit
our hashslash example outlined at the beginning of Section 4.3.1 and check whether it fulfills
all of these requirements.

'The requirements 1, 2, and 3 are fulfilled due to the properties of the underlying crypto-
graphic hash function (see Section 2.1.1 for background). The PoW is easy to verify since any
given PoW value is the result of the underlying hash function and hence can be verified by rerun-
ning the hash function on the same input (easy to compute). The PoW is difficult to generate,
i.e., only through brute force search, because it is infeasible to generate messages that correspond
to a specific output of a cryptographic hash function (pre-image resistance). The difficulty of the
PoW is parametrizable because there is a range of allowed hash values that are accepted as valid
PoW. Expanding or reducing this range makes the PoW easier or harder.

'The reuse of previously generated PoWs (4) is hindered by enforcing the structure of the
header line on the server side. The header must contain a timestamp, the recipient, and a unique
random value. Additonally, the server has to check the random value and confirm that it has not
been used before. If this is the case, a valid PoW cannot be reused even for the same recipient
address.

To minimize the storage requirement on the server for already used random values, the
server can only save the random values for a certain timespan and discard every message that
has an older timestamp as invalid.

Now let us see whether the last property (5) is also fulfilled by hashslash. Is it possible
to generate valid PoW ahead of time and use them later? Yes, unfortunately it is possible to
pre-generate arbitrarily many valid headers by simply setting the timestamp to the desired value
in the future at which the messages are to be sent to the server. In this way, an attacker can
pre-compute as many PoW as he wishes and use them at the desired point in time, flooding the
server with valid messages. Although such an attack is theoretically possible, the attacker cannot
avoid investing computational resources into computing those headers. Therefore, sending many
spam messages is still a computationally intensive task.

Before we look at how this requirement is handled in cryptographic currencies, we first
formally define the properties of a PoOW in this context. Since this field is evolving rapidly, there
are multiple definitions [109, 119]. We have decided to use the definition of a hash puzzle by
Narayan et al. [119], because it is less generic and specifically tailored to Bitcoin-like PoW
blockchains. As a result, it is also relatively simple.

4.3. CONSENSUS MANAGEMENT 33

Hash Puzzle: Taking the five stated requirements into account, we define a hash puzzle in
accordance with Narayanan et al. [119], as outlined in 4.2:

Definition4.2 A hash or search puzzle consists of:
* a cryptographic hash function H ().
* a random value r.
* atargetset S.

A solution is a value, x, such that
H(r||x) € S.

'The random value r in this case is required to fulfill the properties 4 and 5 mentioned previously.
In the context of hash puzzles, the pre-image resistance of a cryptographic hash function is
extended by a hiding property. This is achieved by requiring a random number r so that is not
possible to deduce the input x even if it has low min-entropy, e.g., is the result of a coin flip and
either heads or tails. Even then it would be infeasible to determine the exact input to the hash
function (i.e., if x is heads or tails) if r has high min-entropy.

In the case of cryptographic currencies, the random value r is required to avoid already
calculated and used valid PoWs being reused and to ensure that PoWs are not calculated ahead
of time by some miners. Therefore, r has to come from a source of randomness that is available
to all participating miners. In Bitcoin, this is solved by enforcing a certain structure of the block
header that includes a cryptographic hash value of its predecessor, i.e., the block that was created
before the current one. With this construction, it is not possible to start mining, i.e., searching
for a valid solution for the PoW, before the previous block has been created. Moreover, the
structure of the block header also ensures that it is not possible to reuse valid old PoWs. For
example, the timestamp is required to not be too far in the past or in the future. In addition,
the value of the previous block hash, i.e., the previous PoW, is partially random since it is the
output of a cryptographic hash function. In other words, if is the result of a public source of
randomness and not known beforehand then all properties required for a PoW are satisfied by
the hash puzzle construction.

4.3.3 PROOF-OF-WORK IN BITCOIN

In this section, we describe in detail the structure of the PoW in Bitcoin and the relationships
between the individual variables, like required zero bits, nBits, target, and difficulty. We also pro-
vide methods for estimating the required number of computations and thereby the hardness of

the PoW.

34 4. BITCOIN
Hash function H(): Bitcoin uses two different cryptographic hash function constructions:

* Main Hash: Hjs(x) = SHA256(SHA256(x)) = SHA256(x)
* Address Hash: H4(x) = RIPEMD160(SHA256(x))

Since we are only interested in the PoW in this analysis, we define H as an instance of the
main hash, which is calculated by invoking SHA256 twice on the input x that consists of the
respective block header.

H(x) = Hpy (x). (4.1)

'The value n often refers to the output length of the hash function in bits. For example for
SHA256 n = 256. Then the number of possible outputs would be defined as:

=226 (4.2)
N =2".
Required zerobits z: We use the variable z to refer to the number of required leading zero bits
in H(x) such that the output of H(x) qualifies as valid. In other words, if H(x) is in the target set
S, then x is considered a valid PoW. Related work sometimes uses the variable ¢ instead of z, but
this can lead to confusion since ¢ is often used to refer to time e.g., when calculating the mean
time to find the next block. The smallest allowed value for the required number of leading zero
bits in Bitcoin is z = 32. The biggest value that can be represented with the required number of
zero bits z is 277 — 1.
'The required zero bits are a simplified construction that is mostly of relevance when talking
about rough estimates regarding the PoW in Bitcoin. For precise verification, the nBifs value is
used, which itself is a packed representation of the real zargez.

Target T: Every input x that produces an output H(x) that is below or equal to a certain
target value T is considered a valid solution to the PoW puzzle. Therefore, the target T defines
the upper bound for the output of H(x).

A proof-of-work as used in Bitcoin is based on a partial pre-image attack [81] on the
cryptographic hash function SHA256 [121]. This process can be defined as finding a combina-
tion of a current block header and a nonce such that SHA256(SHA256(blockHeader)) < T.
'The block header of a Bitcoin block comprises (i) constraint variables that hold the required meta
information (e.g., the hash of the previous block), (ii) variables that can be chosen with a certain
degree of freedom (e.g., a Merkle tree root hash of transactions belonging to this block), and
(iii) an arbitrarily-chosen variable (i.e., a nonce). The detailed structure is depicted in Figure 4.6.

The chaining of the SHA256 hash function, i.e., SHA2567(x), makes certain attacks less
likely, but has little influence on the hardness of the PoW in general.” The input x to this function
is the block header of a valid Bitcoin block. This block header also contains a nonce value that

9For details see Rasmussen et al. [81].

4.3. CONSENSUS MANAGEMENT 35

can be changed arbitrarily during this brute force search. Definition 4.3 shows the PoW validity
criteria in Bitcoin.

Definition4.3 A PoW in Bitcoin is defined as finding an input value x to the hash function
H () such that:

* x isavalid block header composed of meta data and a nonce, which can be changed arbitrarily
during brute force search.

* the output of H() is equal to or below the zargez value T

x = block header = meta data || nonce

H(x) = SHA256(SHA256(x)) = SHA256%(x) < T.

For example, if you have a cryptographic hash function H with an output size of n = 4 bits and
you require a proof-of-work with z = 2 leading zero bits, then you can check the validity of the
proof-of-work as shown in Equation 4.3.

H(x) <277 —1. (4.3)

Listing 4.4: Example for checking condition in Python

>>> n = 4

>>> 7z = 2

>>> T = 2#%%(n—z)—1

>>> 0b0111 <= T

False

ss> int (060111 / (T+1)) < 1
False

>>> 0b0010 <= T

True

>>> 0b0011 <= T

True

>>> int(0b0011 / (T+1)) < 1
True

Thinking of the zarger T as a 256-bit value, it is clear that the number of leading zeros indicates
the size of the set of valid solutions to the PoW puzzle. The higher the number of leading zeros,
the lower the number of possible solutions, resulting in the PoW being harder to find. The
maximum value possible for 7, i.e., the easiest PoW, is defined in Bitcoin as Tiax = 2224

Difficulty D: The hardness of the Bitcoin PoW puzzle can also be expressed in terms of i/~
Jfreulty, defined as the ratio between the maximum target and the current target:

Tm ax

D = .
T,

(4.4)

36 4. BITCOIN

nBits: The nBits, Bits, or compact value is a packed 32 bit representation of the actual 256 bit
target value. When the target value is calculated based on a given nBits value, it is called derived
target or target threshold. Computing the derived target from a given nBits value and vice versa
is not important for understanding the general functionality of PoW. However, since internally
all calculations regarding the PoW in Bitcoin Core are based on the derived target, the required
transformations might be of value to the practically inclined reader.

The following is an example for calculating the derived target 7' from an nBits value
30c31618 stored in the block header. This value is stored in little-endian and therefore equals
Ox1816c330 in big-endian. Listing 4.5 shows a summary of the required calculations taken
from [23]. The calculation to derive the target works as follows:

1. Raw little-endian nBits value in block header

nBits; = 0x30c31b18.

2. Raw big-endian nBits value in block header

nBitsp = 0x181bc330.

3. Select most significant bytes of zarget i.e., Significant or Mantissa.

Tysp = 0x1bc330.

4. Multiply Ta sp with the base 256 squared by the exponent 0x18 minus the number of bytes
in the Significant i.e., 3
T = 0x1bc330 * 256°¥1873,

Listing 4.5: Example for deriving target from nBits

nBits = 0x30c31b18

nBits_be = 0x181bc330

T = 0x1bc330 * 256 ~ (0x18 - 3)
Significand Base Exponent Number of bytes in significand
(Mantissa)

T = 0x1bc33000

Probability to Find a Valid PoW
'The probability to find a value equal or below zarger T is defined as shown in Equation 4.5.

Pr(x<T)= zzn (4.5)

4.3. CONSENSUS MANAGEMENT 37

If the target is solely defined by the required number of zero bits, then the probability can also
be computed as shown in Equation 4.6

Pr(x <T)=27%. (4.6)
'The probability of 7oz finding a value equal to or below T is defined as shown in Equation 4.7.

T 2"-T
1-Prx<T)=1——= .
on on

(4.7)

'The probability of finding a value equal to or below T in y tries, i.e., the inverse of the probability
of not finding a value equal to or below 7" in y tries 4.8.

Pr(x <Tinytries) ~ 1 —(Pr(x <T))”. (4.8)

Equation 4.9 shows an approximation of the number of computations/tries that on average are
required to find a value equal or below the target.
1 2"

—_— ~ — & 2%, 4.
Pri(x<T) T (49)

4.3.4 MINING

Mining is the process of solving and disseminating PoW solutions as a means of reaching con-
sensus on the current state of the blockchain. The nodes that are actively involved in searching
and providing a solution to the PoW are called miners. The miners are rewarded with units of
the mined cryptocurrency (e.g., bitcoins) as a compensation for their efforts and for investing
computational power into the overall security of the cryptocurrency. Miners can join or leave
the network at any time, increasing or lowering the mining power. Therefore, PoOW blockchains
need to adjust the PoW hardness so as to ensure that new blocks are generated at regular inter-
vals. The higher the number 7', the lower the number of possible solutions, resulting in the PoW
being harder to find. The maximum value possible for T is defined in Bitcoin as Tyax = 2224
This resembles 32 leading zero bits and, hence, an average number of 232 tries to find a solu-
tion. As of December 2016, the current target is T, = 2%24/254620187304. The current target
requires approximately 2% tries on average to find a solution. To sustain a block interval of ap-
proximately 10 minutes, a new target T}, is set every 2,016 blocks as a function of elapsed time

t:
t

" 2,016+ 10min’
'The probability of finding a new block is exponentially distributed and the mining rewards are
paid out at irregular intervals, as the blockchain cannot account for all miners’ actions while
adjusting the difficulty. The mean time it takes to find a block (MTTB), i.e., a valid PoW, can
be calculated depending on the share p of the total hash rate. When the block interval is 107in

T, =1, (4.10)

38 4. BITCOIN
and you get a share of p percent compared to the total hash rate of the network, the mean time

to the next found block is calculated as depicted in Equation 4.11.

10 min

MTTB = . (4.11)
p

To generate a constant stream of revenue, miners team up and form mining pools, where they
bundle their resources and share their rewards [102, 137]. The game theoretic aspects and the
distribution of rewards in pooled mining were studied in [67, 102, 137]. Optimal strategies for
mining pools have been discussed in the context of adversarial behavior and selfish mining [82,

120, 135].

Finite Supply

The smallest currency unit in the Bitcoin ecosystem is one Sazoshi. One bitcoin is defined as
1 x 10® Satoshis. The official currency symbol for bitcoin is XBT according to ISO 4217, but the
community still widely uses BT'C as symbol. It is a common misconception that the often-cited
limited supply of 21 million bitcoin is ensured cryptographically. However, the artificial limit
of 21 million bitcoins is established programmatically. As long as the majority of users obeys
the rules defined in the reference implementation Bitcoin Core, the total number of bitcoins is
limited to 21 million by the algorithm that issues the mining rewards. Every 210,000 blocks, a
new era is reached and the received mining reward is halved. The algorithm defines 33 eras as

depicted in Table 4.3.

Table 4.3: Eras of Bitcoin generation

Era | Reward Date

1 50 BTC 2009-01-03
2 25 BTC 2012-11-28
3 12.5 BTC 2016-07-09
4 6.25 BTC -

33 0.00000001 BTC | -

By setting the initial reward to 50 BT'C (i.e., 50 * 107 Satoshis), the overall supply of bitcoins s
that can be created is defined as shown in Equation 4.12.

32 3
> 210000(252~ |

i=0

4.3. CONSENSUS MANAGEMENT 39
4.3.5 BLOCKCHAIN FORKS

In the previous sections we described how mining works and how a PoW is calculated. The
question remains: what happens if two miners find a block at almost the same point in time? In
the following sections, we describe how PoW blockchains resolve such conflicts called &/ockchain
forks and how attacks might utilize this resolution mechanism to perform double spending attacks.

If two miners find a valid block at approximately the same point in time, due to network
latency they cannot know of each other’s blocks. As a result both of them would start dissemi-
nating this block within the Bitcoin P2P network. In such a case, the nodes in the network are
confronted with two different blocks that should be appended to the blockchain at the same
block height, i.e., at the same point in the chain. A block that is not valid by the criteria defined
for PoW, or well formed, for example by including invalid transactions, would immediately
be rejected by an honest client and not disseminated further in the P2P network. However in
case of an accidental blockchain fork both blocks simply represent valid but possibly difterent
viewpoints of the current state of the network. For example, the blocks might contain different
transactions since some of them have not reached both miners yet, or the transactions are in
a different order. Moreover, both miners rightfully claim the respective block reward for this
block since they provide a valid PoW for it.

Since the whole purpose of distributed cryptographic currencies is to ensure a total order-
ing of transactions and mitigate double spending attacks, only one of any concurrent set of valid
blocks can be appended to the main chain. Valid blocks that have not made it into the main
chain are referred to as stale blocks."’

'The resolution of conflicting valid blocks is again based on the properties of PoW. Cur-
rently the reference implementation suggests that the miners decide randomly on which of the
valid blocks they want to base their next block in the chain. Previously the reference imple-
mentation generally picked the block they received first, but for security reasons described in
Section 4.3.7 this mechanism has been changed to the aforementioned random behavior. Ba-
sically miners are free to decide on top of which block they mine and until the next block has
been found both conflicting blocks are considered equally valid. As soon as the next valid block
is found one of the competing blocks has a successor and therefore becomes part of the longest
chain. 'The more miners decide to extend the blockchain based on the same block the more
computational power is aimed at finding a PoW that considers said block as a predecessor and
therefore it is more likely that this block will be part of the main chain. This so-called /ongest
chain rule ensures that such conflicts are resolved. More accurately, it is in fact not the longest
chain but rather the chain that was the hardest to compute, i.e., the one with the highest cu-
mulative difficulty. This ensures that an attacker cannot easily create a valid longest chain that
primarily consists of blocks with a very low difhiculty. Figure 4.3 shows a visual representation of
a successful resolution of a blockchain fork. In this case there is a blockchain fork at block height
1Olnformallly sometimes the expression orphaned block is used in this context, although in a strict sense this is incorrect [23, 68].

A orphaned block is a block that currently has no parent in the main chain (longest chain). This situation can happen while
downloading blocks in the Bitcoin peer-to-peer network when block 7 is downloaded before block n — 1.

40 4. BITCOIN

n + 1, where two valid blocks b, 11 and b, ; exist. Those blocks contain the same transactions
x and y but in a different order. Despite some possible differences regarding some values in
the block header (e.g., nonce and timestamp) the main difference between these blocks is in the
coinbase transactions #,41,1 and 7, ; ; which rewards different miners for the creation of the
respective block. As soon as block b, 4, gets mined and distributed the conflict is resolved and
block by, , ; is considered a stale block.

Real-world measurements on the stale block rate of the bitcoin network over a limited
amount of time in late 2015 revealed a stale block rate of approximately 0.41% based on 24.000
Bitcoin blocks [79].

It should be noted that the stale block rate does not provide information on the concrete
cause for why a block has become stale. This might be due to an accidental blockchain fork,
or for example due to a targeted double spending attack (see Section 4.3.6). Even so, the stale
block rate is an interesting metric that can serve as an indicator toward the security and reliability
of proof-of-work blockchains but must be considered in the context of the particular protocol
design. For instance, protocol modifications that may take stale blocks into consideration, such
as Greedy Heaviest-Observed Sub-Tree (GHOST) [139], can help improve security properties
in the context of high stale block rates, by allowing faster block intervals.

Blaég Blockchain

genesis b1 bn bp+1 bn+2

0,0 t11 th,1 th+1,1 the2,1
t12 Xn+1,2 th+2,2

Coinbase Tx. / Yn+1,3

Transaction bh+1

t'n+l,1
y'n+1,2

X'n+l,3

Figure 4.3: Blockchain conflict resolution in case of a blockchain fork.

4.3.6 DOUBLE SPENDING

In a central system double spending can easily be detected since there is only one central entity
that is responsible for accounting. In the domain of distributed cryptographic currencies the

4.3. CONSENSUS MANAGEMENT 41

mitigation of double spending attacks is a core problem. The remaining section illustrates how
such attacks are mitigated in Bitcoin and other PoW-based cryptographic currencies.

Let us assume an example scenario where Malory wants to launch a double spending at-
tack in the Bitcoin ecosystem. Generally speaking a successful double spending attack would
allow Malory to spend the same units of currency twice. To execute the attack Malory requires
some funds, which she can try to double spend and a merchant that accepts Bitcoin in exchange
for goods. For our example, let’s assume that A/ice is a merchant who runs an exchange service
on which she accepts bitcoins in exchange for U.S. dollars (USD). In a double spending scenario
the goal of Malory is to convince Alice that she has received the required number of bitcoins,
so that she sends out the equivalent number of USD in exchange, while convincing the rest of
the Bitcoin network that this transaction to Alice has never happened. To achieve this, Mal-
ory creates two conflicting transactions that both reference the same unspent transaction output
(UTXO). For our example it is enough to know that a Bitcoin transaction is composed of a
variable number of inputs and a variable number of ouzputs. Each input unlocks the output of
a previous transaction that has not yet been spent, i.e., unlocked. For more information, please
refer to Section 4.2.4 where we have described the transaction format in greater detail. On a
high level, a transaction in Bitcoin is valid iff:

» all its inputs have not been spent yet, i.e., belong to the set of UTXOs;

* the sum of all currency units (Satoshis) unlocked in the inputs is smaller than or equal to
the sum of Satoshis in the outputs; and

* the Script program code in all inputs evaluates correctly, i.e., all provided cryptographic
signatures over this transaction are correct.

If two transaction inputs reference the same transaction output of a previous transaction, only
one of them can be valid. Malory generates two contradicting transactions x and x’ that reference
the same UTXO and are therefore mutually exclusive. Transaction x is designed to legitimately
pay Alice, whereas x’ transfers the same funds that should pay Alice back to Malory. Then
she launches her attack and initiates the desired purchase with Alice. Thereby, we distinguish
between three simplified cases:

Zero confirmation attack: In this case Alice sends out the goods, i.e., USD, immediately af-
ter receiving the unconfirmed transaction in the Bitcoin network. Since the transaction has not
yet been included in a block it has zero confirmations. In such a scenario Malory can launch a
successful double spending attack by transmitting the transaction x containing the correct pay-
ment directly to Alice’s server in the Bitcoin network if she is able to deduce its IP address. At
the same point in time she can disseminate the contradicting transaction x’ to the rest of the
network. This contradicting transaction is configured to transfer the same UTXO to another ac-
count/Bitcoin address which is also under the control of Malory. By distributing x” she increases

42 4. BITCOIN

her chances that this transaction will be included in a block first and thereby gets confirmed by
the network instead of x.

One confirmation attack: In this case Alice waits until the transaction in question x is con-
firmed once, i.e., is included in a block (b, +1) at the top/head of the blockchain, before she sends
out the goods. To successfully perform a double spend attack Malory requires a blockchain fork
that resolves toward block b; , | instead of b,+1 which includes the transaction x'. Figure 4.4
shows a successful double spending attack for this case.

genesis |- b1 ¢ < bp Dl bn+l
10,0 t1,1 th1 thel,1
t12 Xn+1,2
Yn+1,3
version ‘ incoune = 1
input | bh+s1 | bh+2
locktime |out, =1 i
‘ count the1,1 tne2,1
output ;
P Yn+1,2 tn+2,2

Figure 4.4: A potentially successful double spending attack on a merchant that only waited for one
confirmation block.

n confirmation attack: Conceptionally this kind of attack is similar to the one confirmation
attack, but in this case Alice waits for one or more confirmation blocks depending on the value
of the transaction in question. The more confirmation blocks she waits for the longer a con-
tradicting fork must be to allow for a successful double spend attack. This is the best strategy
Alice can use to be secure against double spending attacks. In [79, 141] the authors describe
such a scheme depending on the value(s) of the transaction(s) in question. While it should be
noted that Bitcoin relies on probabilistic consensus and therefore in principle there is no 100%
(i-e., deterministic) guarantee that a double spending attack will not work, regardless of the num-
ber of required confirmation blocks, the chances for a successful attack drop exponentially with
the number of confirmation blocks [92, 134].

Figure 4.5 shows the probability for a successful double spending attack as it was estimated
originally by Nakamoto [117] and Rosenfeld [134]. These estimates however do not consider
block withholding attacks like selfish mining [69], or eclipse attacks [87] as well as combinations
thereof termed stubborn mining [120].

4.3. CONSENSUS MANAGEMENT 43

Double spend success probablility Double spend success probablility

10°
1.0 - -2
mm n=5 i
n=8 =
0.8+ . n-12 _—g
. n-24 e
0.6 4 === Rosenfeld i-‘
—— Satoshi 3
0.4 g
. 4 . n-12
4
9 =24
0.2 g -== Rosenfeld
= < —— Satoshi
0.0 — 10° -
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6

Attacker hash rate ‘q’ Attacker hash rate ‘q’

Figure 4.5: Success rate for double spending attacks depending on the hashrate of the attacker ac-
cording to Nakamoto [117] and Rosenfeld [134]. Probability in linear scale (left) and logarithmic
scale (right). The colors represent different numbers n of confirmation blocks.

4.3.7 DOUBLE SPENDING SUCCESS PROBABILITY

'The security properties of Bitcoin are based on the assumption that the majority of the overall
mining power belongs to honest miners. Early work in Bitcoin security modeling concluded that
the mining power of all the honest miners has to be strictly greater than 50% so as to sustain the
security of the blockchain [108, 117, 134]. If dishonest miners have the majority of the mining
power, they can control the insertion of new transactions in the blockchain and the transaction
fee market, hence, the supply of newly mined coins. In other words, all properties of a distributed
system designed to work without a trusted third party are replaced by a mining monopoly.
More recent works found attack strategies that can be successful even without control-
ling the majority of the mining power. Examples include the b/ock withholding [69] attacks like
selfish mining [135], eclipse attacks [87], as well as combinations thereof termed stubborn min-
ing [79, 120]. These attacks relate to information dissemination and aim to isolate portions of
the network and partition it in disconnected clusters. By withholding or otherwise suppressing
information propagation of newly generated blocks, malicious nodes can trick honest partici-
pants into “wasting” their computational power by mining on stale or older blocks that already
have successors. This can give the attacker a disproportionate success rate of having their gen-
erated blocks be part of the eventually agreed-upon heaviest chain, while blocks generated by
honest nodes are more often discarded in a losing fork. The success probability of such attacks
increases with the mining power share («) and the level of connectivity (y) of the attacker. Be-
low a certain bound for these parameters, honest mining outperforms these attack strategies. A
poorly connected attacker (y A 0.1) requires an o > 0.33 to successfully perform selfish mining
attacks [120]; an attacker connected to half of the nodes (y ~ 0.5) would need an even lower
o > 0.25. Therefore, 25% is currently considered a conservative lower bound on the required

44 4. BITCOIN

mining power for an attacker to gain an advantage using these attack strategies over honest
behavior.
For a more formal description of the security model of Bitcoin and Nakamoto consensus

see Chapter 6.

44 NETWORKAND COMMUNICATION MANAGEMENT

This subsystem is related to the underlying communication mechanisms as well as the structure
and characteristics of the peer-to-peer network. In this context, it is important to distinguish
between different entities in the network. Whenever the term 7ode is used, we refer to some
entity that is actively participating in the consensus protocol, i.e., a miner. Thereby, we follow the
nomenclature used in the literature on distributed systems. When we use the term peer or client,
we are more generally referring to any interconnected entity within the peer-to-peer network of
the currency or an entity that is at least trying to establish a connection to this network. This
might be a miner or a client program that does not participate in the consensus or does not have
a full copy of the blockchain, e.g., an SPV!! wallet.

'The Bitcoin and cryptographic currency community do not necessarily care about this dis-
tinction when using the term node or peer, but since we will also describe distributed systems
aspects in Chapter 6, we require a more fine-grained separation of terminology. The term fu//
node is used when we refer to some entity that is not necessarily participating in the consensus
protocol by mining blocks but is at least forwarding messages within the peer-to-peer network
and storing a full copy of the blockchain. Although this wording might be misleading regard-
ing our definition of node, we opted to adhere to the nomenclature used in the cryptographic
currency domain in this context.

Since PoW blockchains like Bitcoin can be characterized as on/ine systems, they require a
connection to other peers, at least from time to time, so that they can synchronize on the current
state of the blockchain. In Bitcoin, information is disseminated and collected in the underlying
P2P network via a gossiping protocol. This protocol and the underlying network structure and
characteristics it produces are outlined in this section. We will avoid going into too much de-
tail and describe everything at a higher level for the following reasons: (i) Over the lifetime of
the bitcoin reference implementation, the networking subsystem has undergone some changes.
Some of these changes were introduced to increase performance, while others were supposed to
mitigate security or privacy flaws and harden the system. (ii) The details of the networking and
communication subsystem are not necessarily relevant for the security of the consensus system
as long as some basic properties regarding synchrony are fulfilled. For the consensus algorithm it
is important that the propagation delay between nodes that are currently online is low compared
to the block creation interval [12, 50, 51]. Generally speaking, the used consensus algorithm im-

1SPV stands for Simplified Payment Verification and describes a process for verifying the validity of transactions without
storing a full copy of the blockchain.

4.4. NETWORK AND COMMUNICATION MANAGEMENT 45

poses some constraints (or requirements) on the underlying communication system. For details
see Chapter 6.

4.4.1 SEEDING AND CONNECTING

The first step when initializing or starting a peer-to-peer client is a discovery process to find peers
it can connect to. This process is called seeding. When a client is started for the first time, there
is no past information on already known peers that could be retried, i.e., reused in connection
attempts. Therefore, a seeding mechanism is required that can also bootstrap new clients. The
Bitcoin reference implementation Bizcoin Core uses the following seeding scheme to find other
peers that are currently online. There are between 5,000 and 10,000 Bitcoin peers online that
accept connections [50, 110].

1st check for old peers: Initially, the client tries to connect to already known hosts that it col-
lected in a previous session. In doing so, it uses some ranking scheme based on several factors
that are not described in detail here. In general, the decision whether or not to attempt a con-
nection to a specific IP address is influenced by: (i) the time elapsed since it was notified about
this IP, (ii) whether it has already been connected to it, (iii) the subnet in which the IP address
resides. This should prevent a client only connecting to IP addresses in one subnet that are under
the control of the same entity.

If the Bitcoin Core client is started with the -—connect=<ip> option, then the IP speci-
fied there is the only IP it will try to connect to. This may be useful for someone running their
own trusted server that they like to use for other clients.

2nd check DNS seed server: If the client has not yet been connected to other peers or was
offline for a long period of time, it uses DNS servers to query a list of currently active peers. The
DNS servers / DNS names are hardcoded into the client software and return a set of approxi-
mately 250 IP addresses in a round-robin fashion.

3rd fallback: If all above-mentioned methods fail, a client has some hardcoded IP addresses
of well-connected peers that can be used as a fallback. Moreover, it is possible to add peers
manually before invoking the client via the -~addnode=<ip> command line option.

As soon as a client is connected to a remote peer, it can query this peer for IP addresses of
other clients. Each peer keeps an address pool, i.e., a list of addresses of other clients to which
it has recently been or is currently connected. The maximum number of connections a client
can have is 125 inbound plus outbound.!? This constant can be changed by invoking the client
with the --maxconnections=<n> option. Generally, clients try to keep active connections to
eight other peers and, therefore, allow 117 incoming connections. The limit for the number of

12¢f. Bitcoin Core source https://github.com/bitcoin/bitcoin/blob/ab5716abe5662ec74c2f8af93023f1e7cca
901fc/src/net .h#L78.

https://github.com/bitcoin/bitcoin/blob/a55716abe5662ec74c2f8af93023f1e7cca901fc/src/net.h#L78
https://github.com/bitcoin/bitcoin/blob/a55716abe5662ec74c2f8af93023f1e7cca901fc/src/net.h#L78

46 4. BITCOIN

outgoing connections cannot be changed directly with an option on startup.'® Therefore, if a
client is positioned behind a router that performs network address translation (NAT), it is only
connected to eight other peers. There are two methods by which connected clients can exchange
information about other peers.

* GETADDR: A client can request messages from other peers it is currently connected to via a
GETADDR message. As a result, it receives mostly about 1,000 addresses.

* ADDR: In special cases, a client can receive unsolicited ADDR messages containing IP ad-
dresses.

4.4.2 NETWORK STRUCTURE AND OVERLAY NETWORKS

Theoretically, the Bitcoin peer-to-peer network should form a random graph, but empirical
analysis by Miller et al. shows that there exist high-degree vertices/peers with 70 to 708 con-
nections [110]. Moreover, they found that two percent of the reachable peers account for three-
quarters of the mining power in Bitcoin. Besides the publicly reachable peers, there is an un-
known number of peers that resides behind NAT. Those clients are mostly short lived and con-
nect to the network from time to time. More information on the Bitcoin peer-to-peer network
can be found in the following publications [21, 51, 80, 87, 140].

In addition to the peer-to-peer network, there is a fast overlay network now called bizcoin-
fibre.'* This network was formally known as Bitcoin relay network or referred to directly by the
name of the key maintainer Matt Corallo. The purpose of this overlay network is to establish
fast connections between miners to exchange information about new blocks in a timely manner.
'This is intended to prevent blockchain forks that are caused by a high network-induced delay
between miners.

4.5 DIGITAL ASSET MANAGEMENT

This subsystem encompasses everything that is related to key and transaction management, for
example:

* Creating and storing public private key pairs, i.e., usable addresses.
* Creation, tracking, and bookkeeping of transactions.
* Management of different accounts with distinct balances.

* Keeping a history of all transfers.

13¢f. Bitcoin Core source https://github.com/bitcoin/bitcoin/blob/a55716abe5662ec74c2f8af93023f1e7cca
901fc/src/net . h#L62.
14cf. Homepage http://bitcoinfibre.org/.

https://github.com/bitcoin/bitcoin/blob/a55716abe5662ec74c2f8af93023f1e7cca901fc/src/net.h#L62
https://github.com/bitcoin/bitcoin/blob/a55716abe5662ec74c2f8af93023f1e7cca901fc/src/net.h#L62
http://bitcoinfibre.org/

4.6. ALTCOINS 47

'The described functionality is covered by tools that are usually referred to as wa/less. To
date, a huge variety of tools is available for managing bitcoins and for interacting with the Bit-
coin ecosystem. As they can logically provide different functionality and offer different secu-
rity or usability benefits, they pose significant challenges for their users. Chapter 5 provides an
overview of coin management tools and discusses their implications on user experience based
on the findings from a large-scale user study.

4.6 ALTCOINS
4.6.1 NAMECOIN AND MERGED MINING

Namecoin [2] is an alternative cryptocurrency (i.e., an alfcoin) derived from Bitcoin. It was the
first fork of Bitcoin and, hence, the second distributed cryptocurrency in history. Besides be-
ing a cryptocurrency, Namecoin intends to provide an alternative to the Domain Name System
(DNS) and offers the possibility to store arbitrary name-value pairs in its blockchain. The un-
derlying design of Namecoin is heavily based on Bitcoin but extends the Bitcoin protocol by
introducing transaction types, which introduce a structured approach toward handling the stor-
age and management of additional information in the blockchain (e.g., DNS entries).!®

Merged Mining
Merged mining was originally conceived as a bootstrap technique, aiming to increase the PoW
difficulty and, as a consequence, the security of altcoins in their early stage, when they are more
vulnerable to dishonest miners. Merged mining aims to improve the blockchain security by
rapidly increasing the number of nodes participating in the distributed consensus. The key idea
of merged mining is to allow a blockchain (e.g., Namecoin) to accept valid PoW produced for
another blockchain (e.g., Bitcoin), provided that they meet the hardness criteria of the receiving
(child) blockchain even if they do not meet the criteria of the sending (parent) blockchain.

Merged mining was first implemented in Namecoin. By accepting Bitcoin blocks through
merged mining, Namecoin quickly achieved a high difficulty level. Thanks to this, Namecoin
still has the highest mining difficulty of all Bitcoin-derived altcoins.Other popular altcoins, in-
cluding Litecoin and Dogecoin, have already adopted merged mining, establishing it as a de facto
hardening mechanism for altcoins.

'The implementation of merged mining has not been without controversy. There are al-
ready discussions on realistic threats on network centralization'® and scam attacks.!” Merged
mining has been neither sufficiently documented nor studied in the literature until now. The

15With Bitcoin it is also possible to use OP_RETURN opcodes to store arbitrary information in the Blockchain, but these
methods are not well standardized.

16¢f. https://www.cryptocompare.com/mining/guides/what-is-merged-mining-bitcoin-namecoin-litecoin-
dogecoin/.

17¢f. commentary on the Eligius CoiledCoin scam, available on https://bitcointalk.org/index.php?topic=56675.ms
g678006#msg678006.

https://www.cryptocompare.com/mining/guides/what-is-merged-mining-bitcoin-namecoin-litecoin-dogecoin/
https://www.cryptocompare.com/mining/guides/what-is-merged-mining-bitcoin-namecoin-litecoin-dogecoin/
https://bitcointalk.org/index.php?topic=56675.msg678006#msg678006
https://bitcointalk.org/index.php?topic=56675.msg678006#msg678006

48 4. BITCOIN

work described in the next sections aims to fill this knowledge gap and provide a systematic
study of the actual effects of merged mining on the security of altcoins.

'The most detailed textual description of merged mining to date is provided as a Bitcoin
Wiki entry [118]. The only additional information available is the source code of the merged
mining implementation in the various altcoins. We analyzed all these sources of information
and provide in this section a systemized description of merged mining and its data exchange
formats.

A parent blockchain must support a method to link to or include some arbitrary data in
its block headers. This data comes from the child blockchain. For most of the PoW blockchains,

this requirement is fulfilled using the structure of the coinbase transaction, depicted in Figure 4.6.

Block [Coinbase Transaction Coinbase
nVersion] § nVersion coinbaseLen
HashPrevBlock ; #vin = 1 o |blockHeightLen
—1| HashMerkleRoof] é; hash 3:20 % blockHeight
nTime A . n=2e] g |arbitraryData
: vin[0] ||coinbasel.en [
nBits (Target) i | I
Nonce coinbase
— nSequence [data]
#vtx Fvout = [magic]
out=n
— vix[] BlockHash / MerkleRoof
nValue -
vout[0] |ScriptPubkeyLen MerldeSize
- MerkleNonce
scriptPubkey
Merged Mined
L nLockTime Coinbase

Figure 4.6: Common PoW blockchain data structures.

'The coinbase transaction is a special type of transaction for rewarding the block miner.
It comprises n transaction outputs (denoted as vout [0]), which transfer the mined coins to the
account(s) of the miners, and one special ransaction input (denoted as vin[01). This special
input includes the “block reward” (denoted as nValue) and the “coinbase” fields. The b/oc reward
comprises new cryptocurrency units that are created up until the maximum supply is reached
(currently this is set to 12.5 for Bitcoin). The coinbase encodes the current block height and can
contain up to 96 bytes of arbitrary data, as summarized in Table 4.4.

The last 40 bytes of the coinbase field can be used to store information for the child
blockchain. If merged mining involves only one child blockchain, then 32 bytes define a
BlockHash, i.e., the hash of the block header of the child blockchain directly. If more than
one child blockchain is involved, the 32 bytes form the MerkleRoot, i.e., the root hash or a

4.6. ALTCOINS 49

Table 4.4: Structure of the coinbase of a merge-mined block. Uses Namecoin as an example [118].

Field Name ‘ Type (Size) ‘ Description

) Varlnt Length of the coinbase field in bytes as a variable
coinbasel.en) . .
(1-9 bytes) | length integer. Maximum size is 100 bytes.

Length in bytes required to represent the current

blockHeightLen | (1 byte)

blockHeight.
blockHeight (3 bytes) Current block height.
[data] charf[] Optional: Arbitrary data that can be filled by the
(0-52 bytes) | miner (e.g., identifying the block miner).
‘ char[] Optional: If len(coinbase) 2 ?0, Iflagic b?ltes indicate
[magic] (4 bytes) the start of the merged mining information, e.g.,

"\xfa\xbe".
Hash of the merge-mined block header. If more than

coinb.
BlockHash or char([]
MerkleRoot (32 bytes)

one cryptocurrency is mergemined, this is the Merkle

tree root hash of those cryptocurrencies.

MerkleSize uint32_t Size of the Merkle tree, i.e., the maximum number of
(4 bytes) contained cryptocurrencies.
. Used to calculate the indices of the mined cryptocur-
MerkleNonce ?;n;ji_s; rencies in the Merkle tree. If no Merkle tree is used,

it is set to 0.

Merkle tree of size MerkleSize. The leaves of the tree represent the hashes of the block header
of each child blockchain.

It is vital to ensure that merged mining does not occur for multiple forks of the same
child blockchain; this would compromise the security of the latter. This is addressed as follows:
Each child blockchain has a fixed chainID that is hard-coded in its client implementation and is
defined by its developers. For example, the chainID for Namecoin is set'® to the value 0x0001.
Every miner can choose freely for how many and for which PoW child blockchains they want
to perform merged mining and, hence, maintain a different Merkle tree. The combination of
MerkleSize, MerkleNonce, and chainID are fed to a linear congruential generator so as to
produce the unique position of a child blockchain chainID on a Merkle tree of a given size.!’

18¢f. Namecoin source code on https://github.com/namecoin/namecoin-core/blob/fdfb20fc263a72acc2a3c460b
56b64245c1bedcb/src/chainparams . cpp#L123.

19¢f. Namecoin source code on https://github.com/namecoin/namecoin-core/blob/fdfb20fc263a72acc2a3c460b
56b64245c1bedcb/src/auxpow. cpp#L177-L200.

https://github.com/namecoin/namecoin-core/blob/fdfb20fc263a72acc2a3c460b56b64245c1bedcb/src/chainparams.cpp#L123
https://github.com/namecoin/namecoin-core/blob/fdfb20fc263a72acc2a3c460b56b64245c1bedcb/src/chainparams.cpp#L123
https://github.com/namecoin/namecoin-core/blob/fdfb20fc263a72acc2a3c460b56b64245c1bedcb/src/auxpow.cpp#L177-L200
https://github.com/namecoin/namecoin-core/blob/fdfb20fc263a72acc2a3c460b56b64245c1bedcb/src/auxpow.cpp#L177-L200

50 4. BITCOIN
4.6.2 OTHER EXAMPLES

Litecoin [129] forked from Bitcoin by replacing its PoW. Litecoin uses the scryp# cryptographic
hash function, which is considered to be memory-hard [127]. The aim was to reduce the advan-
tage of Bitcoin miners using hardware devices (ASICs) specifically built for high-performance
SHA256 hash operations. Litecoin uses a reduced block interval of 2.5 minutes.

Dogecoin [56] started as a toy experiment but is now maintained by a vibrant community.
Itis an indirect fork of Litecoin with a smaller block interval of one minute and a slightly adjusted
difficulty and reward algorithm over time.

CHAPTER 5

Coin Management Tools

In this chapter, we discuss current practices and tools for managing digital assets, as well as
associated security, privacy, and usability implications, and future research and design strategies.

Bitcoin users have an enormous variety of tools to choose from when it comes to managing
their digital assets. In the Bitcoin terminology, such tools are currently referred to as wallets,
following the metaphor of a traditional currency. Originally, a wallet was defined as a collection
of private keys.! Hence, anything from a mental representation of a private key to a dedicated
software can be considered a wallet. To avoid misconceptions and because this definition of a
wallet is very narrow, we have introduced the broader definition of a Coin Management Tool
(CMT) [98] to account for the other areas without which most cryptocurrencies would not
work. A CMT refers to a tool or a collection of tools which allows users to manage one or more
core tasks of a cryptocurrency. In particular, the network and blockchain layer of Bitcoin and
other cryptocurrencies is not only important for the integrity of the system as a whole, but has
a significant impact on the security and privacy of each and every end user.

Most of the currently available tools referred to as wallets provide functionality be-
yond storing keys, such as performing Bitcoin transactions and downloading parts of the
blockchain. Contrary to other public key crypto-systems, e.g., PGP/GPG, Bitcoin is not fully
communication-channel agnostic. In the case of Bitcoin, the interaction with the Bitcoin net-
work is an integral part of operating in the distributed system. In contrast to other signing
systems, Bitcoin tools need to keep state information on performed transactions and account
balances.

Even though there is a great variety of software available for managing bitcoins, users
still need to deal with the technical fundamentals and perform backups so that they can recover
their virtual monetary assets in case of a loss. Therefore, these systems are not resilient to human
errors and have a variety of potential attack vectors. Reports from online forums and mailing
lists show that many Bitcoin users have lost money due to poor usability of key management
and security breaches such as malicious exchanges and wallets.

5.1 HISTORY AND CATEGORIZATION OF CMTS

In this section, we discuss and categorize CMTs by the degree of control and verifiability a user
can exercise with a designated client. The proposed scheme is tailored to Bitcoin-like cryptocur-
rencies, but expressly designed in the most generic way possible so that it can be applied to other

https://en.bitcoin.it/wiki/Wallet

https://en.bitcoin.it/wiki/Wallet

52 5. COIN MANAGEMENT TOOLS

derived cryptocurrencies as long as their design is not fundamentally different. The categoriza-
tion according to our scheme makes it possible to quickly distinguish clients by their underlying
capabilities. From a user’s point of view, knowledge of these underlying models is crucial for
making an informed decision regarding the level of trust they can put into an individual client.

When Bitcoin was in its infancy, bitcoind was the only available Bitcoin client which
performed all required tasks: mining management, P2P network communication and blockchain
management, key management, and wvirtual asset management. With the growing popularity of
Bitcoin and cryptocurrencies in general, more and more software was developed which focused
on a subset of individual tasks of the original implementation. Moreover, the design of Bitcoin
allows users to use it even if they are not running mining software or a full P2P client (full node).
As a result, there are software implementations with varying feature sets in which the handling
of public-private key pairs is the most sensitive and, therefore, the most common core feature. A
CMT for example might cover every task of a cryptocurrency except for mining management.
This definition should not indicate the need to include the full functionality in every client
software but account for the diverse feature sets required to operate a cryptocurrency and, at the
same time, avoid the ambiguity of the term “wallet.”

To categorize CMTs, we first identified critical CMT tasks which are directly related to
security and privacy issues. This covers aspects of key management, like generating keys/ad-
dresses and signing transactions, and P2P network communication and blockchain manage-
ment, like handling connections and verifying and storing the blockchain. These core tasks can
be used to divide CMTs into five categories. A client can fulfill the requirements of more than
one category depending on its configuration.

* Basic Client: A client which runs on a user-controlled device and can perform key man-
agement operations, but cannot perform any P2P network communication. Therefore, it is
not a stand-alone solution. This category includes some dedicated hardware clients/wallets
and cold-storage clients which require a second online device for transaction processing.

* Fully Functional Basic Client: A client which runs on a user-controlled device and per-
tforms all P2P network communication and blockchain verification-related tasks, keeps a
copy of the full blockchain, can perform all key management-related operations, and ex-
ecutes the mining algorithm. In other words, this is a client which can perform all tasks
required to operate a cryptographic currency (e.g., the Bitcoin core implementation biz-
coind when the option setgenerate true is set).

* 'Thick Client: A client which runs on a user-controlled device and performs all P2P tasks
related to network communication and blockchain verification, keeps a copy of the full
blockchain, and can perform all key management-related operations. This type of client is
sometimes referred to as thick client or full node.

* Thin Client: A client which runs on a user-controlled device and performs certain P2P
tasks related to network communication and blockchain verification but does not keep a

5.2. METAPHORS 53

copy of the full blockchain, although it can perform all key management-related opera-
tions. This type of client is sometimes referred to as thin client or mobile client/wallet and
includes so-called SPV clients/wallets (Simplified Payment Verification), e.g., Electrum.

* Hosted Client: A client which does not run on a user-controlled device and where all
tasks are performed by a trusted third party on behalf of the user. This type of client is
sometimes referred to as hosted or web client/wallet. In this case, it is not relevant whether
key management is handled in the browser (e.g., via JavaScript) since this would require
the user to download and verify the script code from the website of the third party every
time they want to use it.

5.2 METAPHORS

As Bitcoin is considered a currency, the use of related metaphors seems natural and, from a
naive perspective, intuitive. In the Bitcoin ecosystem, the metaphors of traditional currency are
broadly used to describe and perform actions with a client, such as sending/receiving coins. Even
though the use of metaphors seems, at first glance, like a user-friendly way to communicate how
the cryptocurrency can be used, it poses the risk of creating significant misconceptions, and fails
in many ways.

According to Eskandari et al. [65], aspects of Bitcoin transactions fail because they do not
easily fit the coin metaphor and conversely encourage users to overextend the metaphor, which
can lead to confusion on the user side. In contrast to physical coins, bitcoins are exchanged
neither physically nor virtually. Therefore, the coin metaphor fails in describing how transactions
are handled. In the case of Bitcoin transactions, the private key must remain in the sender’s
possession and is solely used to sign transactions. As discussed by Eskandari et al. [65], the
metaphor of sending bitcoins is misleading, as it only describes the process of digitally signing a
transaction rather than an actual exchange of virtual units.

In the metaphorical cryptocurrency terminology as used by many CMTs, the role and
purpose of public and private keys is insufficiently explained to the user and, therefore, creates
misleading cognitive models. Furthermore, the role of the respective keys is not contextualized
by the metaphor and not self-explanatory to the non-expert user. This poses significant risks of
key loss or unintentional key sharing. We argue that this source of misconception needs to be
addressed in future user-centric designs for CMTs. To date, the challenge of user-friendly key
management remains unresolved and is still a subject of scientific research in the area of usable
security.

5.3 USABILITY

We conducted a large-scale study with 990 Bitcoin users to understand security, privacy, and
related coin management challenges in the context of user interactions with the Bitcoin ecosys-
tem [98]. Our results suggest that users still struggle with finding the best trade-off between

54 5. COIN MANAGEMENT TOOLS

usability and security. In the following, we summarize the results of this comprehensive study,
which was the first of its kind [98]. For our analysis, we collected both quantitative and quali-
tative data. The quantitative data were collected via an online questionnaire that was distributed
via mailing lists and online forums to Bitcoin users, who received compensation for their time in
(micro) bitcoins. The qualitative data were collected via open-text questions in the online survey
and in additional qualitative semi-structured interviews to gain deeper insights and to explore
reasons for phenomena observed in the online questionnaire.

5.3.1 BITCOIN MANAGEMENT STRATEGIES AND TOOLS

In the course of our study, we found that a significant number of Bitcoin users use solely web-
hosted CMTs to manage their digital assets. The most popular CMT was Coinbase, followed by
Bitcoin Core, Xapo, Electrum, and MyCelium. Only 35.5% of Coinbase users reported backing
up their CMT. Hence, the remaining proportion of users shifted the responsibility to the CMT
provider, which is paradoxical in terms of the philosophy of a decentralized system, but com-
prehensible from a usability and convenience perspective. In the case of lost keys or a security
breach, however, it is arguable to what extent such digital assets are restorable.

In contrast to the behavior and backup morality of Coinbase users, 83.5% of MyCelium
users reported that they back up their CMT. This is not surprising when we take a closer look
at the backup procedure provided by MyCelium. Making a complete and secure paper backup
is easy and convenient. The CMT allows users to print parts of their key on paper and then lets
them fill in the remaining digits of the key. The qualitative interviews conducted by Krombholz
et al. [98] confirm that the backup process is perceived as convenient and easy-to-use by tech-
savvy and non-tech-savvy users. Our results as described in [98] also suggest that users of web
wallets store a much smaller number of bitcoins in third-party-hosted CMTs.

Table 5.1 shows the most widely used Bitcoin wallets. The question permitted multiple
answers, as it is common for users to have more than one wallet. The table also shows the number
and percentage of participants in our sample who use a certain wallet. Furthermore, Table 5.2
shows whether users protect their wallets with a password and whether the wallets are encrypted.
Our findings show that the majority of users protect their wallets with a password. In the case
of web clients, we observed a lack of background knowledge. For example, 47.7% of Coinbase
users in our sample said their wallet was encrypted and 34% said they did not know whether
it was encrypted. We observed a similar trend for Xapo, which is the third-most used wallet
in our sample. Just like Coinbase, it is also a web-hosted tool, and similarly to Coinbase, only
about half the users say it is encrypted and about a third do not know whether it is encrypted.
Regarding backups, only a third of Coinbase users and 43% of Xapo users back up their wallets.
33.9% of Coinbase and 28.5% of Xapo users do not know whether their wallet is backed up. We
also found that Bitcoin users with more than 0.42BT'C (100 USD) did not back up their CMT
more often than users with fewer bitcoins. This effect is statistically significant in our sample
(x2(1) = 5.1, p = 0.02).

5.3. USABILITY 55
Table 5.1: Properties of the most frequently used wallets mentioned by our participants

CMT ‘ Number ‘ Percent ‘ BTC
Coinbase 314 31.7 238
Bitcoin Core | 236 23.8 752
Xapo 179 18.1 157
Electrum 125 12.6 226
MyCelium 97 9.8 62

Table 5.2: Properties of the most mentioned CMTs. The three blocked columns contain user re-

sponses (in percent) to whether the CMT is encrypted, whether it is backed up, and whether there
is an additional backup (Yes, No, and I don’t know (IDK)). The rightmost column contains the sum
of bitcoins stored in a respective CMT by our participants.

Encrypted? Additional Backup?

No Yes No IDK
Coinbase 475 | 185 | 340 355 | 30.6 | 339 | 303 | 669 & 2.8
Bitcoin Core 728 | 161 | 111 | 763 | 140 | 9.7 | 640 | 322 | 3.8
Xapo 514 | 19.0 | 299 | 43.0 | 285 | 285 | 413 | 575 12
Electrum 728 | 152 | 220 | 776 | 160 | 64 | 552 | 440 | 0.8
MyCelium 619 | 21.6 16.5 83.5 12.4 4.1 52,6 | 472 0.2

We also asked our participants whether they created additional backups in case their pri-
mary backup gets lost or stolen. In our sample, Bitcoin Core users had the highest rate of addi-
tional backups, with 64% saying they make a secondary backup of their wallet. Table 5.3 shows
self-reported properties of wallet backups. According to our data, none of our participants stored
backups on an air-gapped computer. The most reported backup properties were encryption and
password protection. 197 backups were stored in a cloud.

59.7% of our participants use only one wallet to manage their bitcoins, 22.7% use two,
and 10.6% use three wallets. The remaining 7% use four or more wallets. The maximum num-
ber of wallets a participant reported using was 14. This participant justified the high number by
explaining that he wanted to try out different wallets before choosing those that met his require-
ments best. About half of our participants who used a web client did this exclusively to manage
their bitcoins. The other half used a web client in addition to a local client. To our surprise, our
results show that most coins of our participants are stored in Armory.> The Armory users in our
sample have about 3,818 BTC in their Armory altogether, with the top five users reported to

2https://bitcoinarmory.com/

https://bitcoinarmory.com/

56 5. COIN MANAGEMENT TOOLS

Table 5.3: Backup properties in absolute mentions in descending order; a user can have multiple
wallets and multiple backups

Backup Properties ‘ Mentions

My backup is encrypted. 662
My backup is password protected. 629
My backup is stored on external storage (e.g., USB drive). 430
My backup is stored on paper. 334
My backup is stored in the cloud (e.g., Dropbox). 197
My backup is stored on an air-gapped device. 0

have 2,000 BTC, 885 BTC, 300 BTC, 230 BTC, and 150 BTC. The highest reported number
of bitcoins stored in a participant’s web client was 100 BT'C. The reported sum of all coins stored
in Coinbase is 238 BTC, and 157 BTC in Xapo. Figure 5.1 illustrates the accumulated bitcoins

per wallet as reported by our participants.

800 —800
W users
amount
600— —600 "§
<
E
o =
Q400 —400 S
- =
-
=
S
3
2OOI I I - E
Coinbase BitcoinCore Other Xapo BitcoinWallet

Figure 5.1: Self-reported wallet usage and accumulated hosted bitcoins per wallet.

5.3.2 ANONYMITY

We found that 32.3% of our participants believe that Bitcoin is anonymous per se when, in
fact, it is only pseudonymous. 47% think that Bitcoin is not anonymous per se but can be used
anonymously. However, about 80% think that it is possible to trace their transactions. 25%

5.4. USER EXPERIENCES WITH SECURITY 57

reported having used Bitcoin over Tor to preserve their anonymity.

We also asked participants whether they took any additional steps to stay anonymous. 18%
reported frequently applying methods for staying anonymous on the Bitcoin network. Most of
them reported using Bitcoin over Tor, followed by multiple addresses, mixing services, multiple
wallets, and VPN services. As shown by Biryukov et al. [20, 21], using Bitcoin over Tor creates
an attack vector for deterministic and stealthy man-in-the-middle attacks and fingerprinting.

5.3.3 PERCEPTIONS OF USABILITY

Although most participants in our qualitative interviews were very much concerned about the
security and privacy aspects of Bitcoin management, eight of the ten persons interviewed said
that they would recommend web wallets and deterministic wallets to non-tech-savvy Bitcoin
users, highlighting convenience and ease as the main benefits. One participant said that he
would definitely recommend a wallet where the private key is stored on a central server to make
key recovery easier and to obviate the need for comprehensive backups, and that mnemonics
would help. Six participants also said that they would recommend MyCelium? as the most usable
wallet. Those who had already used MyCelium consider the paper backup procedure the most
usable and secure form of backup. To create a paper backup with MyCelium, the user has to print
out a template that contains some parts of the key and then fill in the empty spots manually.
Some participants expressed initial discomfort when they used paper wallets.

Most interviewees also highlighted the need for fundamental education in early years of
childhood. P2 said that Bitcoin is inherently complex, that the fundamental idea of public key
cryptography should be taught in school, and that monetary systems are a matter of culture.

Two participants also highlighted that user interfaces should be simplified and minimal-
ized. Many participants stated that for a fast proliferation of Bitcoin, simple and intuitive Uls
are more important than security. They argued that computers proliferated, even though most
people do not know how computers work and that security is not necessarily an argument when
it comes to large-scale adoption. They provided examples such as cars in the 1940s, computers,
credit cards, and WhatsApp. They also said that the amount of money that is circulating in the
Bitcoin network is low enough to take the risk of losing it and compared this scenario to the
risk of losing cash. Some participants also proposed a dedicated device with an intuitive UI for
key management and think that such an artifact would be the most secure and usable option.

5.4 USER EXPERIENCES WITH SECURITY

Usability challenges potentially have an impact on the security experience. When using a de-
centralized currency, users are responsible for managing their digital assets. Hence, in case of a
security breach, they are responsible for recovering their keys in order to prevent monetary loss.

3https://mycelium.com/

https://mycelium.com/

58 5. COIN MANAGEMENT TOOLS

In the following, we report user experiences with security breaches and their ability to recover
from them.

About 22.5% said that they had lost bitcoins or Bitcoin keys at least once. Of these, 43.2%
said it was their own fault (e.g., formatted hard drive or lost a physical device with Bitcoin keys),
26.5% reported that their loss was caused by hardware failure (e.g., a broken hard drive), followed
by software failure (24.4%; e.g., keyfile corruption) and security breaches (18% e.g., malware,
hacker).

'The majority (77.6%) of those who lost bitcoins did not want to say whether they were
able to recover their keys. Of those who provided an answer, 65% were not able to recover
their keys. In total, our participants reported to have lost about 660.6873 bitcoins. However, it
must be taken into account that we did not ask when the coins were lost. Given that the Bitcoin
exchange rate is highly volatile, it is hard to provide an overall estimation in USD. About 40% of
our participants reported to have lost money due to a self-classified major security breach. 13.1%
of our overall sample reported to have lost bitcoins in HYIPS (high-yield investment programs)
and pyramid schemes. 7.9% lost money at Mt. Gox.

We also gave our participants the opportunity to describe how they dealt with the incident.
Most participants stated that they did not do anything to recover their keys and simply accepted
the loss. Some argued that the financial loss was not worth the effort to take further steps or that
they felt helpless and did not know what to do. Those who actually took action most frequently
mentioned that they filed claims and contacted the exchange or online wallet provider. Those
who lost money to a malicious online wallet reported switching to other types of wallets instead
of hosted/online wallets. The participants who lost money in HYIPS mostly stated that they
started to use less risky investments and learned from their previous mistakes. Irrespective of
the security breach, many participants reported to have spread the word over forums on the
Internet and shared their experiences with other aftected users.

Eight participants in our qualitative interviews reported that they had experienced an
intentional or accidental key and/or Bitcoin loss. Three participants were affected by the Mt.
Gox security breach and two of them reported to have filed a claim on Kraken.* One participant
reported having lost a physical Casascius® bitcoin but stopped searching for it as it was only
worth about 9 USD at that time. Others also mentioned having lost their keys due to device
failure, corrupted HDDs, or software failure.

Krombholz et al. [98] also investigated user perceptions of risks associated with Bitcoin.
We provided the participants with 11 risk scenarios. We selected the risk scenarios based on
findings from scientific literature and evidence from online resources. For each risk scenario, we
provided an easy-to-understand description and asked the participants whether they thought
the risk was likely or unlikely to occur. Figure 5.2 shows the participants’ risk estimation. Our
results show that the participants consider value fluctuation to be the highest risk, followed by

“https://www.kraken.com/
Shttps://www.casascius.com/

https://www.kraken.com/
https://www.casascius.com/

5.5. CRYPTOCURRENCY USAGE SCENARIOS 59

vulnerabilities in hosted wallets and Bitcoin theft via malware. Our participants estimated the
risk for cryptographic flaws as the lowest, followed by double-spending attacks and DoS attacks
on the Bitcoin network.

Value Fluctuation | 16% 16% 67%
Hosted Wallet Vulnerabilities | 23% 21% 56%
Theft (Malware) | 33% 18% 48%
Mining Centralization | 36% 20% 44%
Key Loss (Device Failure) | 36% 20% 44%
Theft (Unencrypted Wallets) | 39% 18% 44%
Monetary Loss | 35% 21% 44%
De-anonymization | 35% 23% 42%
DoS Attack | 51% 16% 32%
Double Spending | 52% 19% 29%
Cryptographic Flaws | 55% 20% 25%
100 50 0 50 100
Percentage
Response: very low risk rather neutral rather high risk very
low risk low risk high risk high risk

Figure 5.2: User perceptions of risk scenarios in percentage of participants (N = 990).

5.5 CRYPTOCURRENCY USAGE SCENARIOS

Most participants reported using Bitcoins for tips and donations (38.0%), followed by vir-
tual goods, such as web hosting, online newspapers (33.3%), online shopping (27.5%), altcoins
(26.5%), gambling (26.5%), and Bitcoin gift cards (19.9%). About 5% reported buying or having
bought drugs with bitcoins. 30.2% of our sample reported using Bitcoin at least once a week,
25% stated that they use Bitcoin at least once a month and 19% at least once a day. The remain-
der of the participants said that they used Bitcoin once a year or less. These results suggest that
the majority of respondents in our survey use Bitcoin frequently.

60 5. COIN MANAGEMENT TOOLS

We also asked our participants about the number of bitcoins they were currently hold-
ing. About half the participants did not want to specify. According to those who did respond,
our sample holds approximately 8,000 BTC in total. ‘The majority of users (70%) started using
Bitcoin between 2013 and 2015 and 17% started between 2011 and 2012. 58.0% reported us-
ing other cryptocurrencies in addition to Bitcoin, most frequently Dogecoin and Litecoin. The
most popular Bitcoin exchanges in our sample are BTCE (20.9%), Bittrex (14.0%), and Bit-
stamp (13.0%). 11.4% of our participants are currently mining bitcoins. Most of them started
mining after 2014. Many of those who started earlier have stopped mining as they currently
consider it infeasible. 195 (19.7%) participants claimed to be running a full Bitcoin server that
is reachable from the Internet. The top-mentioned reason for running a Bitcoin server was to
support the Bitcoin network (60.5%), followed by fast transaction propagation (46.6%), network
analysis (30.3%), and double-spending detection (26.1%).

All participants in our qualitative interviews were frequent Bitcoin users, and some of
them are active in their local Bitcoin association. Most interviewees mentioned that the de-
centralized nature of Bitcoin was among the main reasons for them to start using Bitcoin.
'The second-most mentioned reason was simply curiosity. One participant, who used to live in
Crimea at the time the Ukrainian-Russian conflict started, mentioned socio-political reasons.
He was working for a U.S. company at the time and needed a safe and cheap option to receive
his salary in Crimea. He also wanted to make sure he would not lose any money due to the an-
nexation by the Russian Federation. In his opinion, Bitcoin was the best option, and according
to him, many people in Crimea started using Bitcoin at the time. Some participants also used
to mine Bitcoins some years ago, when it was still profitable to mine at a small scale.

CHAPTER 6

Nakamoto Consensus

While the utility and future potential of cryptocurrencies is relatively apparent, it may not be
immediately clear why Bitcoin is proving to have a significant impact in the field of (distributed)
fault-tolerant computing [147]. In this chapter we will therefore take a closer look at the princi-
pal mechanisms behind Bitcoin, or more precisely behind Nakamoto consensus, which can allow
the system to reach eventual agreement upon the blockchain datastructure and its contents in
the presence of potentially malicious actors from a distributed systems perspective and relate it
to other research in the field of distributed computing.

6.1 THEPROBLEM BITCOIN STRIVES TO SOLVE

The governing principles behind Bitcoin have been dubbed! Nakamoto consensus, which builds
on the combination of a distributed append-only ledger of digitally signed transactions called
the blockchain, a cryptographic proof-of-work scheme that serves as a probabilistic consensus
mechanism for agreement on the contents of this blockchain, and economic and game theory-
based incentives for participants to uphold and enforce the protocol and consensus rules.

In order to gain a more effective understanding of why Nakamoto consensus presents a
novel approach for addressing the problems of creating a system through which two willing
parties can “...zransact directly with each other without the need for a trusted third party” [117], it
is necessary to relate it to various fundamental insights and research on distributed and fault-
tolerant computing. Research centered around Byzantine fault tolerance is of particular interest,
as Nakamoto consensus is part of this problem domain.

6.1.1 TRUSTED THIRD PARTIES

An essential property that separates Bitcoin and similar technologies from previous endeavors of
creating electronic cash systems is its novel approach for solving the problem of having to place
various degrees of trust in third parties. To prevent users from spending the same virtual currency
more than once, generally referred to as double-spending, some form of global agreement needs
to be reached on the ordering and state of transactions in the system. In its most basic form such
an agreement may be provided through a single authority that validates new transactions and
will reject any requests that are in violation of the defined guarantees. However, users of such a

1One of the earliest uses of the term can be attributed to N. Szabo in http://unenumerated.blogspot.co.at/2014/12/
the-dawn-of-trustworthy-computing.html and has subsequently been used in publications such as [27, 104].

http://unenumerated.blogspot.co.at/2014/12/the-dawn-of-trustworthy-computing.html
http://unenumerated.blogspot.co.at/2014/12/the-dawn-of-trustworthy-computing.html

62 6. NAKAMOTO CONSENSUS

system need to place trust in that authority to uphold these guarantees at all times and not act
maliciously.

Even if we only consider such a single trusted entity, a practical system would still require
some degree of fault tolerance, where the failure of a single node does not render the service
unavailable. Extending the model to multiple nodes is, however, no trivial task. Consistency
between all the nodes of the system needs to be ensured in order to satisfy the previously stated
property that users should not be able to spend the same currency units multiple times. One can
easily envision scenarios, such as a partitioning of the network, that may enable a malicious entity
to successfully perform a double-spend attack. Interestingly, in such a scenario a double-spend
may be possible even if all the partitioned nodes remain honest. Clearly, providing a reliable
and fault-tolerant distributed cryptographic currency is no trivial endeavor, even if one assumes

a trusted third party.

6.1.2 PLACING TRUST IN A DISTRIBUTED SYSTEM

Above, we assumed a model where our digital currency system is comprised of a single trusted
entity. But when such a system is extended to multiple nodes in order to improve fault tolerance,
this actually implies that multiple entities can exist in which we have to place some amount of
trust.” We should, therefore, treat our model as a distributed system with {p1, p2,..., pa} = IT
entities that we have to trust. Since our goal is to decrease the reliance on such trusted third
parties, the next question might be whether and how the system could be augmented so that it
can deal with a situation where a subset of the processes IT’ C IT can fail or act in a malicious
way while still being able to uphold its defined guarantees.

'The problem of ensuring a consistent state across multiple nodes where processes or their
communication channels may fail has long been a subject of research in fault-tolerant distributed
computing. Early outlines of this diverse research field have been given for instance by Chris-
tian [49] and Girtner [78] and, as the name implies, its focus is aimed at the occurrence and
handling of faults in distributed systems. The question of how to reach agreement in the pres-
ence of faults, in particular, is a fundamental problem [145] that has been the subject of much
discussion since the problem was outlined by Pease, Shostak, and Lamport in 1980 [126]. Being
able to reach agreement or consensus is an essential building block for developing fault-tolerant
distributed systems. The results in [126] revealed that a surprisingly large number of nodes have
to remain correct to be able to reach agreement,’ if the faulty processes are allowed to deviate
arbitrarily from their expected behavior. In this context correcs implies that a process will not
exhibit any faulty behavior for the entire duration of the execution.

As will later be outlined, this requirement on the number of correct nodes is strongly
tied to the assumed system model and available primitives. Nevertheless, it was shown that

2 Albeit under the command of a single authority.
3Specifically, they considered the inseractive consistency agreement problem and found that (n > 3f + 1) nodes were required
in the assumed system model.

6.1. THE PROBLEM BITCOIN STRIVES TO SOLVE 63

distributed systems can be designed, where the need for trust can be distributed in a way that
only requires a subset of all participants to behave correctly, while still providing relatively strong
consistency guarantees. In this context trust can be considered a synonym for assuming the
nonfaulty behavior of a node, while faults may imply potentially malicious behavior.

6.1.3 DECENTRALIZING TRUST

Bitcoin and its underlying mechanism for agreeing on the contents of the blockchain, namely
Nakamoto consensus, extends the aforementioned model in certain key aspects. A variety of both
conceptual and practical distributed systems exist that tolerate failures and malicious behavior
in a subset of nodes and can provide primitives that are, in principle, suitable for building dis-
tributed ledger applications such as cryptocurrencies. These systems, however, generally assume
a previously determined and fixed set of nodes which are actually responsible for reaching agree-
ment, even if the total set of participants may be larger and can change over time [147]. Such
a reliance on a predetermined group of consensus nodes can again raise certain concerns about
trust, and while these systems may be considered distributed, they are not truly decentralized.

Through clever incentive engineering and a novel application of proof-of-work that pre-
vents Sybil attacks and serves as a form of leader election, Bitcoin allows open and anonymous
participation in the agreement process over the contents of the blockchain datastructure. Anyone
can, in principle, participate in the Bitcoin protocol which presents a significant step toward a
tully decentralized cryptocurrency system. At the same time this mechanism also promises to
provide relatively strong resilience against faulty or malicious nodes and hence the problem of
having to place trust in third parties. Because of the anonymous setting the resilience toward
malicious participants is generally expressed in terms of their computational power or hash rate,
that is, the number of valid PoWs all honest participants can produce in a unit of time in relation
to those a malicious entity can generate.

Initially it was believed that Bitcoin could tolerate up to less than half (e.g., < 50%) of the
total hash rate being controlled by malicious entities at any time 7, or more formally:*

Vi m(b)<% > m(p). (6.1)

beB(r) PEI(?)

where m(i),i € IT is used to denote the hash rate of process i and where B(¢) C I1(¢) is the set
of malicious or Byzanz‘ines processes, and I1(7) the total number of (mining) processes, at time
t. In this context multiple individual adversaries are treated as a single malicious entity because,
in the worst case, they could collude.

'This assumption has since been revised in light of various attack strategies, such as selfish
and stubborn mining [69, 120, 135] and may be as low as < 25%, i.e., at least % of the hash rate
needs to be controlled by honest participants at any time. Specifically, dishonest miners using

4Following the notation used by Eyal et al. in [68].
5The term Byzantine is explained in Section 6.2.2.

64 6. NAKAMOTO CONSENSUS

such strategies can achieve a situation in which a disproportionately large number of blocks
relative to their hash rate will be included in the main (heaviest) chain, thereby greatly weakening
some of the desirable properties of a proof-of-work blockchain. Modifications to the protocol
have been proposed that may again strengthen its resilience to be able to withstand an adversary
with up to less than 50% of the hash rate at any time [124] without a detrimental effect to the
provided guarantees.

'The concrete properties and guarantees that Bitcoin and Nakamoto consensus can provide
are still an ongoing topic of research. We will outline relevant aspects of this area of research in
the next Section 6.2, to give a better understanding of how Bitcoin relates to other work in the
field of fault-tolerant distributed computing and where the potential strengths and weaknesses
of Nakamoto consensus lie.

6.2 CONSENSUS AND FAULT TOLERANCE IN
DISTRIBUTED SYSTEMS

'The field of fault-tolerant distributed computing is relatively broad and covers a wide range of topic
areas on how to provide reliable and failure-resilient systems. As was mentioned above, Bitcoin
and similar cryptocurrency systems address the problem of having to rely on a trusted third party
from a new angle by employing a novel consensus mechanism, namely Nakamoto consensus.

'The topic of consensus is a distinct area of research in fault-tolerant distributed computing
that deals with identifying the fundamental aspects of reaching agreement in a distributed sys-
tem where processes and their means of communication may fail. Consensus is a fundamental
building block for (reliable) distributed systems that can be used, for instance, to implement
any wait-free concurrent data object among a set of processes [88] or serve as a basis for active
replication, such as in the replicated state machine approach [100, 136].

In this section the focus is placed on fundamental aspects of consensus and byzantine fault
tolerance. Byzantine failures can be arbitrary and potentially malicious and are well suited for
describing the adverse environment in which cryptocurrencies such as Bitcoin strive to create a
decentralized third party in which one has to place as little trust as possible. It will be outlined
that Byzantine failures render consensus harder to achieve, and that properties of the assumed
system model, such as its synchrony, greatly affect the solvability of consensus problems and may
even render them impossible [73].

6.2.1 CONSENSUS

'The term consensus is currently not well defined in the context of Bitcoin and blockchain tech-
nologies. It may be used when speaking about a social agreement, such as the Bitcoin community
attempting to agree on future protocol changes, or refer to the governing rules of the proto-
col that determine whether a block is valid or not (sometimes called the consensus layer [103]).
Within the field of distributed computing, however, the term consensus is generally used to re-

6.2. CONSENSUS AND FAULT TOLERANCE IN DISTRIBUTED SYSTEMS 65

fer to a specific problem or more accurately a class of problems that has its origins in seeking
answers to the question of how to develop reliable and dependable distributed systems. In this
context distributed does not necessarily imply large geo-spatial differences and could also refer
to processors within a single system that communicate via message passing or distributed shared
memory.

An obvious approach to increasing the resilience of such a system against (process) failures
is to increase the redundancy. It is clear that in this case, in order to guarantee consistency, it is
desirable that at any given point® any (active) non-faulty replica p € I1., where IT. C IT is the
set of correct processes, should agree on, and present to an external observer, the same state S,
suchthat Vp,g e I, p #q — S, = S,.

'The problem of processes being able to reach agreement on a value or set of values has been
tormalized as the agreement or consensus problem [71, 75] and is often defined through properties
such as the following definition (6.1):

Definition 6.1 The agreement or consensus problem defined through three properties:
1. Validity: If a process decides a value v, then v was proposed by some process.
2. Agreement: No two correct processes decide differently.

3. Termination: Every correct process (eventually) decides some value.

'The Validity and Agreement properties are referred to as safety properties because they guard
against trivial solutions or solutions violating the desired consensus assumptions while the 7er-
mination property ensures liveness, i.e., that the algorithm eventually makes progress and pro-
duces some result. A trivial solution, for instance, would be a consensus algorithm that always
outputs a predetermined value such as 1, no matter what values the processes actually propose.
Such a solution would clearly satisty the Agreement and Termination properties but is of little
practical use.

'These properties can, of course, be strengthened or weakened to cover different consensus
problem classes. For instance, the Agreement property of Definition 6.1 can be further strength-
ened to require uniform agreement, resulting in the uniform consensus problem that is harder than
consensus [40]. Uniform consensus requires that a// processes, correct or not, decide on the same
value.

Definition 6.2 Agreement property of uniform consensus:

2’. Uniform Agreement: No two processes decide differently

6The astute reader will interject that perfect synchrony, and hence strict consistency, is impossible to achieve in reality because
communication is not instantaneous and local time drift exists. We may nevertheless consider such a desideratum and discuss
what is achievable under certain system models and assumptions.

66 6. NAKAMOTO CONSENSUS

Consensus protocols terminate when all correct processes have halted. If this is achieved in the
same communication round the processes are considered to have reached immediate agreement,
otherwise they reach eventual agreement [71].

In its most reduced form, processes may only need to agree on a single binary digit, called
binary consensus, i.e., the value v € V' that a process can select as their proposal is in the set V' =
{0, 1}. Binary consensus is often encountered when formally describing or modeling consensus
protocols and their properties [16, 72, 73] and can be transformed to multivalued consensus
where the set of possible proposal values V' can be arbitrarily large [116].

There exist various problems that are either variants of, or are closely related to, consensus,
such as:

* Reaching agreement on a vector of values, either called vector consensus or referred to as
interactive consistency [126], if agreement is also reached on whether participating processes

are faulty.

* Terminating Reliable Broadcast (TRB) [85], where a distinguished sender from a set of
processes is to disseminate a message to this set, so that all correct processes either agree
upon the receipt of the message or that the sender is faulty.

* The Byzantine Generals Problem, which is actually a specific case of TRB where Byzantine
failures are assumed [101].

* Tovtal Order Broadcast (also referred to as atomic broadcast) [52], where messages sent to a
set of processes are to be delivered by processes in the same zozal order.

* The Group Membership Problem (GMP) [132], where agreement by a set of processes is to
be reached whether they belong to a particular group, and where additional processes may
Join as well as existing or failed processes may be removed or /eave that group.

* State Machine Replication [136], where agreement is to be reached on both the input and
its ordering to a set of replicated deterministic state machines, so that all replicas receive
and process the same sequence of requests.

Some of these agreement problems have been shown to be equivalent to consensus, such
as total-order broadcast, while others, such as TRB, may be harder [39].

'The assumed system model plays an important part in the solvability and how these prob-
lems relate to each other. For instance, while consensus is considered to be a harder problem than
reliable broadcast in an asynchronous system augmented with unreliable failure detectors’ [39],
adding the assumption of finite process memory to such a model actually reverses the case so that

(single) consensus is easier to solve than reliable broadcast and repeated consensus is as difficult
as reliable broadcast [54].

"The concept of unreliable failure detectors is explained in Section 6.2.2.

6.2. CONSENSUS AND FAULT TOLERANCE IN DISTRIBUTED SYSTEMS 67

Early work on consensus was largely focused on agreement in the presence of arbitrary
or so-called Byzantine faults [59, 101, 126, 130], but later, the topic of dealing with Byzantine
failures, often referred to as dyzantine fault tolerance or BF'T, became a more distinct area of
research.

The close relation between Byzantine consensus and Nakamoto consensus as well as its
more distinct differentiation from other research on consensus warrant a more in-depth look at
the topic of Byzantine fault tolerance, which is presented in Section 6.2.3.

6.2.2 SYSTEM MODELS AND THEIR IMPACT

So far, nothing has been said about important aspects of the system model such as the #ypes
of failures that can occur, or the timing assumptions for both processes and their communication
links. The system model greatly influences how problems are solvable and even if a solution exists
at all. Some of the outlined models and assumptions may strike the reader as being unrealistic
or impractical and, at first, could appear to have little real-world relevance. For instance, assum-
ing asynchronous communication between processes, that is, allowing an arbitrarily long delay
between the sending and receipt of any message, does not appear to reflect the relatively strong
synchrony of real-world communication links. Nevertheless, reasoning about a protocol under
such an asynchronous communication model allows us to outline bounds and properties that
do have practical relevance. For real-world systems, it is easy to envision situations where the
assumed timing bounds do not hold, rendering synchrony assumptions probabilistic at best [39].

Assuming a system model that provides very weak guarantees may render a problem very
hard or impossible to solve, while overly strong guarantees might allow for an easy solution, yet
achieving these guarantees can become a hard problem in itself.

Synchrony Assumptions

One essential property of the system model that greatly influences the solvability of consensus
are its synchrony assumptions. In their seminal work, Fischer, Lynch, and Patterson showed that
reaching deterministic agreement in a system with asynchronous communication is impossible,
even if message communication is reliable and only a single process can fail (in the crash-stop
model) [73].

Effectively, without bounded delays on message transmission times, it is impossible to
deterministically decide whether a process has failed or its messages have simply not yet arrived.
To ensure that the Agreement property of consensus® under such conditions cannot be violated,
the Termination property is no longer satisfiable, as a single failed process could require all correct
processes to wait indefinitely for an answer.

'This fundamental insight, which is commonly referred to as the FLP impossibility result,
outlines an important limitation of all problems in the consensus domain. For real-world systems

8See Definition 6.2 in 6.2.1.

68 6. NAKAMOTO CONSENSUS

simply assuming stronger synchrony cannot fully address this issue, because components have a
non-zero probability of failure, and hence also render such synchrony assumptions probabilistic.
Therefore, it is necessary to contemplate the possibility of timing failures and choose a
suitable trade-oft between availability and correctness, as no protocol can exist that determinis-
tically guarantees both.
'The FLP impossibility result has led to research on the minimal models of synchrony
necessary to be able to reach consensus [58, 62].

Failures and Failure Detection

Above we have outlined that the synchrony assumptions of the system model play an important
role in determining the solvability of consensus. At the core of the FLP impossiblity result lies
the problem that one cannot reliably and deterministically decide if a process has actually failed
or is merely slow to respond. To be able to reason about failures it is first necessary to define how
the processes and communication links that make up the system can actually fail. After having
done so one can then consider approaches toward the detection and handling of such failures
within a particular system model.

A component is only considered to be correct if, during the entirety of an execution, it
will not exhibit faulty behavior, else it is referred to as faulty. A protocol is considered to be
[-resilient if it tolerates no more than f faulty processes of the n processes that make up the
system. In related literature the variable ¢ is also frequently used to represent faulty processes,
hence ¢ -resilience is also a commonly encountered descriptor. However, due to ambiguities, such
as t also being regularly used to denote time, we will adhere to using f within this manuscript.
'The following definition (Definition 6.3) is a generalization of different failure types that can be
encountered in the components of a distributed system.

Definition 6.3 Types of failures that processes and their communication links may exhibit:

* Crash failure. A basic failure model where components are assumed to crash and never
recover.

* Omission failure. Here components may omit some actions such as sending messages or
performing computations. Assuming the ability for processes to recover after a crash (crash
recovery) also falls into this category.

* Timing failure. Timing failures occur when synchrony assumptions are violated. In an
asynchronous system, this failure is irrelevant.

* Byzantine failure. Byzantine failures (sometimes also referred to as arbitrary failures) allow
a component to deviate arbitrarily, and possibly maliciously, from its expected behavior.
This includes duplicating or changing message contents, sending unsolicited messages, and
temporarily or permanently exhibiting any of the previously listed failure characteristics.

6.2. CONSENSUS AND FAULT TOLERANCE IN DISTRIBUTED SYSTEMS 69

Assuming Byzantine failures, in particular, can render consensus problems more difficult,
as they allow faulty processes to deviate arbitrarily from their expected behavior. One way to
address the underlying problem outlined by the FLP impossibility result, namely the inability
to discern between a process that has crashed and one where it or its messages are merely very
slow, is to query some form of failure detector.

Failure detectors are a form of oracle that a process can query and will provide a (possibly
inaccurate) estimate on whether a process is believed to have failed or not. In 1996, Chandra
and Toueg presented the concept of unreliable failure detectors which are characterized by a
completeness and an accuracy property [39]. Here, instead of considering concrete synchrony as-
sumptions, problems rely on a distributed failure detector abstraction that is based on local un-
reliable failure detector modules to determine whether a process has failed. Any concrete timing
requirements are, therefore, moved into the actual implementation of the local unreliable failure
detector modules, and problems can be expressed and classified purely through the abstract class
of failure detector required to solve them.

Chandra and Toueg define eight different classes of failure detectors based on two com-
pleteness and four accuracy properties and show that the weakest class of failure detector required
to solve consensus in asynchronous systems is WV, requiring weak completeness and eventual weak
accuracy.

In contrast, terminating reliable broadcast, and hence the Byzantine Generals Problem,
are shown to require a failure detector in P, which exhibits szrong completeness and strong accuracy.

A failure detector is considered reducible if a distributed algorithm exists that transforms
failure detector D into D’, written as D > D’. If D > D’ and D’ = D then D is considered
equivalent to D', written D = D’. Analogously, a class of failure detectors C is reducible to C’
ifVDeC,D' € C' - D =~ D', written C = C’ [39].

Definition 6.4 Failure detector properties used for their classification:

'The Completeness properties are:

1. Strong Completeness: Eventually every process that crashes is permanently suspected by
every correct process.

2. Weak Completeness: Eventually every process that crashes is permanently suspected by
some correct process.

'The Accuracy properties are:
1. Strong Accuracy: No process is suspected before it crashes.
2. Weak Accuracy: Some correct process is never suspected.

3. Eventual Strong Accuracy: There is a time after which correct processes are not suspected
by any correct process.

70 6. NAKAMOTO CONSENSUS

4. Eventual Weak Accuracy: There is a time after which some correct process is never sus-
pected by any correct process.

Table 6.1: Different classes of failure detectors

Accuracy

C let
SEPEEE EenpallSuoncl Eyentualiib:ek

Perfect | Strong | Eventually Perfect | Eventually Strong
Strong
P S oP 0SS
IE; Iy Weak
Weak Q Weak W 09 Ventug ”IZZ .

Static and Dynamic System Models

For consensus problems, the distributed system is generally modeled as a bounded number
of processes {p1, p2. ..., pn} = I1, where communication between processes occurs by message
passing over reliable point-to-point links. It is usually assumed that the communication graph is
bidirectional and completely connected; however, work in the field has also addressed other topolo-
gies [57, 101], communication modes (such as distributed shared memory), and failure modes.
Models where both the set of processes and their communication links remain static are referred
to as static distributed systems. Interestingly, there is no commonly agreed upon definition for
the dynamic system model, and research on consensus in such dynamic models is currently not
as widespread. This situation may now change because Bitcoin and similar cryptographic cur-
rencies can be better described using a dynamic system model, providing further incentives to
explore this topic area.

In Baldoni et al. [11] give the following informal definition and propose and investigate
two attributes that such definitions should contain: “a dynamic system is a continually running
system in which an arbitrarily large number of processes are part of the system during each interval of
time and, at any time, any process can directly interact with only an arbitrary small part of the sysz‘em.”

The first attribute [11] relates to the entities that may join and leave the system. An infinite
arrival model is assumed where, in each run, infinitely many processes {..., pi, pj. pk, ...} =
IT may join the system. Based on different assumptions on the number of processes that can
concurrently be part of the system, the following infinite arrival models are defined:

1. M?: The number of processes concurrently inside the system is bounded by a constant 4 in
all runs.

2. M": 'The number of processes concurrently inside the system is bounded in each run, but
may be unbounded when we consider the union of all the runs.

6.2. CONSENSUS AND FAULT TOLERANCE IN DISTRIBUTED SYSTEMS 71

3. M: 'The number of processes that join the system in a single run may grow to infinity as
the time passes.

'The second attribute [11] looks at relaxing the general assumption of a fully connected commu-
nication network as it is usually found in the static system model by considering that at any time

each process may only have a partial view of the system. The following geographical attributes
are defined:

1. At any time, the system can be represented by a graph G = (P, E), where P is the set of
processes currently in the system and E is a set of pairs (p;, p;) that describe a symmetric
neighborhood relation connecting some pairs of processes. (p;, pj) € E means that there
is a bidirectional reliable channel connecting p; and p;.

2. 'The dynamicity of the system, i.e., the arrivals and departures of processes, is modeled
through additions and removals of vertices and edges in the graph.

(a) The addition of a process p; to a graph G brings to another graph G’ obtained from
G by including p; and a certain number of new edges (p; pj) where the p; are the
processes to which p; is directly connected.

(b) the removal of a process p; to a graph G brings to another graph G’ obtained from
G by suppressing the vertex p; and all the edges involving p;.

(c) Some new edges can be added to the graph, and existing edges can be suppressed
from the graph. Each such addition/deletion brings the graph G into another graph
G'.

3. Let {G,}run denote the sequence of graphs through which the system passes during a
given run. Each G, € {Gy},un is a connected graph the diameter of which can be greater than
one for all runs.

Unless otherwise specified, the static system model with a finite set of processes and a fully
connected communication graph of reliable point-to-point links is assumed when talking about
consensus.

6.2.3 BYZANTINE FAULT TOLERANCE

So far, we have not adequately addressed the question of how consensus protocols can deal with
more severe failures than the relatively benign crash-stop model. When the consensus problem
was first outlined by Pease, Shostak, and Lamport in [126], no explicit differentiation or limi-
tation of failure models was made, thereby allowing processes to exhibit arbitrary or Byzantine
failures. The motivation for their work emerged from the development of fault-tolerant systems
where consensus, in particular inferactive consistency, was needed in various aspects of the design,
such as synchronization of clocks, stabilization of sensor inputs, and system diagnostics. The re-
alization that simple majority voting schemes would not be sufficient to guarantee consistency

72 6. NAKAMOTO CONSENSUS

if faulty processes could send differing answers to processes led to the question under which
conditions such interactive consistency could actually be achieved.

In their subsequent seminal work on the Byzantine Generals Problem Lamport, Shostak,
and Pease [101] introduced the term Byzantine general to describe a faulty node that may act
maliciously. Beyond the strong impact this work has had on the research field of fault-tolerant
systems, the term Byzantine has subsequently been adopted as a descriptor for arbitrary or ma-
licious failures. The ability to withstand such Byzantine failures is referred to as Byzantine fault
tolerance or BF'T. As outlined above, there is generally no distinction between arbitrary and
Byzantine failures because a sequence of randomly occurring arbitrary faults may behave in the
exact same way as a coordinated malicious entity.

In the following pages we will first outline the concept of interactive consistency that was
described in [126], before moving on to the more commonly known Byzantine generals problem.
There has been, and still is, some confusion and uncertainty regarding the terminology used
to describe different consensus problems in the Byzantine failure model. In particular the terms
Byzantine agreement and Byzantine consensus do not necessarily refer to the same class of consen-
sus problems. These differences are also addressed when speaking about the Byzantine generals
problem.

Interactive Consistency

Interactive consistency is the notion that a set of processes reach agreement upon a vector of values
such that each correct process outputs the same vector, and that each element of the vector either
corresponds to the private output of a given correct process, or, if the corresponding process is
faulty, some other agreed upon value. In [126] interactive consistency was considered in the
tollowing context.

A synchronous system consisting of a set of processes {pi, p2,..., pn} = IT connected
through reliable point-to-point links is assumed. Processes are to agree upon the same vector
of values {v1,vs,...,v,} = V where v; corresponds to some private value of information of
process p;, and where a maximum of f processes out of n may fail arbitrarily. Analogously to
the previously defined consensus problem, we can give the following definition (Definition 6.5)
for interactive consistency:

Definition 6.5 The interactive consistency problem defined by three properties:

1. Validity: If p; is a correct process, then element v; of vector V corresponds to the private
value of p;.

2. Agreement: Correct processes agree upon exactly the same vector V.
3. Termination: Every correct process (eventually) decides some vector V.

What Pease et. al were able to show in [126] is that in order to be able to guarantee these
properties, a total of n > 3f + 1 processes is required to tolerate f faulty processes in a model

6.2. CONSENSUS AND FAULT TOLERANCE IN DISTRIBUTED SYSTEMS 73

that uses so-called ora/ messages for communication. On the other hand, if a stronger primi-
tive called authenticated messages is available an arbitrary9 number of failures can be tolerated,
ie., n > f > 0. Authenticated messages basically strengthen the assumptions such that mes-
sages from correct processes become tamper-proof and their authorship can be ascertained. As
such, Byzantine processes are limited in their available actions and can only choose to withhold
or forward messages at a particular time as any modifications to the message would be detectable
under the assumed properties. Oral messages have been defined in [101] through the following
characteristics:

Definition 6.6 Properties for ora/ messages:
1. Every message that is sent is delivered correctly.
2. 'The receiver of a message knows who sent it.

3. 'The absence of a message can be detected.

'The second property, in particular, is needed, or else a single (Byzantine) failed process could
defeat any distributed algorithm [100]. For the case of authenticated messages,'” an additional
fourth assumption is added to the previous Definition 6.6:

Definition 6.7 Additional fourth property for authenticated messages:

4. (a) Messages sent by a correct process cannot be forged, and any alteration of the contents
of these signed messages can be detected.

(b) Anyone can verify the authenticity of a correct process’s signature.

It is clear that the addition of message authentication can greatly improve the resilience toward
Byzantine failures, at least in synchronous system models.

As will be discussed later, in an asynchronous system model, even if message authentica-
tion is available the lower bound for failures remains f < f%-|
Byzantine Agreement and the Byzantine Generals Problem
In the literature, there is often no clear differentiation of the nomenclature for certain different
consensus problems in the Byzantine failure model. Byzantine agreement may refer to both the
previously described consensus problem in the Byzantine failure model and the Byzantine generals
problem. In the latter case, the goal is to have a distinguished leader send its private value to all
processes, after which all correct processes are to either agree upon that value or agree that the
sender was faulty. This problem is actually a form of refiable broadcast, specifically (terminating)

9However, the problem becomes vacuous if n < f + 2 [101].
10Tn [101], Lamport et al. called them signed wrizten messages.

74 6. NAKAMOTO CONSENSUS

reliable broadcast in the Byzantine failure model. In [71], Fischer outlines how a solution to
interactive consistency can be transformed to the Byzantine generals problem and vice versa, and
presents an algorithm that transforms Byzantine consensus to the Byzantine generals problem
(in a synchronous system model). It is, however, also pointed out that this algorithm requires one
additional round of message communication. Furthermore, as later outlined by [39], terminating
reliable broadcast and thus both the Byzantine generals problem and interactive consistency
require stronger synchrony assumptions than regular consensus, therefore rendering Byzantine
consensus a weaker problem than Byzantine agreement.

From here on, the term Byzantine consensus will exclusively refer to the consensus problem
in a Byzantine failure model, whereas Byzantine agreement will be used to refer to the Byzantine
generals problem or Byzantine Terminating Reliable Broadcast. The following definition describes
the Byzantine generals problem as presented by Lamport et al. in [99]:

Definition 6.8 The Byzantine generals problem or Byzantine agreement:

Given a collection of processes numbered from 0 to n — 1 which communicate by sending mes-
sages to one another, to find an algorithm by which Process 0 can transmit a value v to all
processes such that:

1. If Process 0 is nonfaulty, then any nonfaulty Process i obtains the value v.

2. If Process i and j are nonfaulty, then they both obtain the same value.

In [30], Bracha and Toueg show that it is also impossible to guarantee Byzantine reliable
broadcast,'! a weaker problem than Byzantine agreement, with f > [%] in an asynchronous
system model with oral messages. In other words, the requirement of n > 3f + 1 also applies
to solutions of asynchronous Byzantine reliable broadcast.

Definition 6.9 Byzantine reliable broadcast:

1. If the transmitter is correct, all the correct processes decide on its value.

2. If the transmitter is malicious, then either no correct process will decide or they will all
decide on the same value.

Note that the definition does not include the zermination property of consensus or TRB and
a faulty transmitter can therefore prevent all correct processes from delivering a message. This
weakened guarantee is necessary in an asynchronous system or else solutions would have to
contradict the FLP impossibility result.

1n [30] Bracha and Toueg use the term Byzantine agreement to refer to this problem.

6.2. CONSENSUS AND FAULT TOLERANCE IN DISTRIBUTED SYSTEMS 75

Oracles in BFT

Analogous to approaches for consensus in the crash-stop failure model some form of oracle may
also be employed to augment the system model and render Byzantine consensus or Byzantine
agreement solvable in the asynchronous case. The following two approaches, namely failure de-
tectors and wormboles, both shift the required synchrony assumptions out of the direct scope of
the problem by providing an abstraction that protocols can rely on.

Failure Detectors One might assume that the failure detector abstraction presented by Chan-
dra and Toueg [39] can be directly applied to the Byzantine failure model, but this is not the
case. While in the crash-stop model, the behavior of a faulty process is well defined, this is not
the case for Byzantine failures where a faulty process may exhibit all sorts of different behaviors
or, for some time, even act according to the protocol specification. Doudou et al. [61] outline
that the detection of Byzantine behavior of a process p by a Byzantine failure detector cannot
be entirely independent of the algorithm 4 in which the failure detector is used. Kihlstrom et
al. [95] also point out that there is a subset of Byzantine faults that cannot be detected.

In [105], Malkhi and Reiter use an approach where they define a Byzantine failure de-
tector class ©S(bz) that only detects (quiet) behaviors that may prevent progress and defers all
other forms of Byzantine failure detection to upper levels of the consensus protocol. Such a fail-
ure detector that detects if a process stops sending messages has also been defined by Doudou et
al. as a so-called muteness failure detector [61]. The properties of such a muteness failure detector,
denoted by oM 4, are:

Definition 6.10 Muteness failure detector

. Mute A-Completeness. lhere is a time atter which every process that is mute to a correc
1. Mute A-Complet Th t fter which every p that te t t
process p, with respect to A, is suspected by p forever.

2. Eventual Weak A-Accuracy. There is a time after which a correct process p is no more
suspected to be mute, with respect to A, by any other correct process.

Wormholes Wormbholes are closely related to the notion of architectural hybridization and en-
capsulate and provide stronger guarantees to an otherwise weaker environment [48]. The concept
of wormholes was introduced in [146] and essentially follows the idea that instead of trying to
implement or provide difficult-to-achieve properties in a specific system model, one could create
a subsystem where such properties are more readily achieved and allow processes (limited) access
to this subsystem.

Instead of presenting an abstraction that specifies the minimum requirements (such as
the ability to detect failures), wormholes provide the ability to introduce controllable levels of
predictability into systems that are otherwise mostly uncertain with regard to their provided
guarantees.

76 6. NAKAMOTO CONSENSUS

By relying on wormholes, it is possible to further improve upon bounds such as the re-
silience to failures, which would otherwise not be possible.

Correia et al. [47], for instance, present a method for achieving “asynchronous” Byzan-
tine consensus with n > 2 f + 1 processes by combining a muteness failure detector and a reliable
broadcast protocol that is augmented through wormholes to tolerate an arbitrary number f* of
faulty processes. Their approach can be used to transform any indulgent consensus algorithm
that tolerates crash failures and requires n > 2 f + 1 processes into a similar one that tolerates
Byzantine failures and requires n > 2 f + 1 processes. They provide examples for how both a ran-
domized asynchronous algorithm (Ben-Or) and a partially synchronous (asynchronous but aug-
mented with unreliable failure detectors) algorithm (Mostefaoui and Raynal consensus [115])
can be modified using these abstractions.

'This result does not contradict the previously established lower bounds for Byzantine con-
sensus in such models, which is n > 3f + 1, because the system is in fact a Aybrid, where the
stronger (synchronous) system model of the wormholes makes these results possible.

Practical Byzantine Fault Tolerance

The feasibility of implementing Byzantine fault-tolerant consensus protocols and BFT state
machine replication was initially largely dismissed as impractical for real-world scenarios. Espe-
cially considering the rather limited networking and computation capacities of the time, it would
have been difficult to justify the large communication overhead and relatively strong synchrony
requirements in non-specialized systems. Instead, focus was largely placed on the crash-fault-
tolerant system model.

This is in contrast to statements in some of the early works on Byzantine consensus, es-
pecially those considering randomization [45, 130], that already pointed out that the proposed
protocols would lend themselves to practical implementations.

In 1999, Castro and Liskov presented a protocol for “Practical Byzantine Fault Toler-
ance” [36] that illustrated practicability by providing tangible performance metrics, thereby
changing the general conception on the real-world feasiblity of BF'T. Generally referred to as
PBFT, their BFT state machine replication protocol is able to operate efficiently even under
relatively weak synchrony assumptions. Specifically, the liveness guarantee only holds if at most
f=< L% replicas are faulty and the delay(t), i.e., the time between the moment when a mes-
sage is sent for the first time and the moment when it is received by its destination, does not grow
indefinitely. PBFT relies on authenticated messages and on the (asynchronous) network with
unreliable links still allowing eventual progress to be made. More recent works on BFT proto-
cols have improved on both the efficiency and performance of PBEFT [84, 97], and such systems
show that processing tens of thousands of transactions per second is possible with relatively low
latency and that they can operate in environments with rather weak synchrony guarantees, such
as the Internet or other large-scale WANSs. ‘The term practical Byzantine fault tolerance itself may

1211 a synchronous system with authenticated messages, Byzantine consensus is possible for n > f > 0.

6.2. CONSENSUS AND FAULT TOLERANCE IN DISTRIBUTED SYSTEMS 77

also be used in other contexts, such as randomized Byzantine consensus algorithms [34], and
should not be treated as a synonym for the PBFT protocol or derivatives thereof. Despite the re-
cent improvements in BFT state machine replication and Byzantine consensus protocols in both
the deterministic and probabilistic setting, such protocols have yet to see widespread adoption
in real-world systems.

6.2.4 RANDOMIZED CONSENSUS PROTOCOLS

An entirely different approach to solving consensus in the asynchronous system model and to
dealing with the FLP impossibility result based on randomization was pioneered by Ben-Or [16]
and Rabin [130] in 1983, thereby creating the field of fault-tolerant randomized distributed
algorithms. In 2015, both of these publications were jointly awarded the Edsger W. Dijkstra
Prize in Distributed Computing.'®

For randomized consensus, the termination property of the consensus problem is weakened
to:

Definition 6.11 Termination property for randomized consensus:

Termination with probability 1: Every correct process eventually decides some value with

probability 1.

What this means is that, rather than requiring all permissible executions of a protocol
to eventually terminate, executions in the randomized approach may not actually terminate,
but this occurs with probability Pr(0) as the number of communication rounds R approaches
limR_mo.

Some randomized consensus solutions may also consider a model where the agreement
property is weakened, so that consensus is always reached within a fznite number of rounds, albeit
only with probability Pr(1 — «), and a probability Pr(«) of error. Such protocols are referred
to as Monte Carlo randomized consensus algorithms [90]. In [130], for example, Rabin presents
a protocol where, for a fixed number of rounds R, the probability of error is & = Pr(27R).

While both Ben-Or and Rabin present solutions to the consensus problem in asyn-
chronous systems that rely on randomization, their approaches differ from one another. Both
system models assume a bounded set of { p1, p2. ..., pn} = IT processes, of which at most f* may
be faulty and where any process p can directly exchange messages with p’ that are eventually
delivered (asynchronous reliable communication).

Local Coin Randomized Consensus
In Ben-Or’s model, processes communicate via oral messages.'* For these oral messages, it is
assumed that the receiver p’ is always able to determine the true sender p of message m, even in

13See http://www.podc.org/dijkstra/2016-dijkstra-prize/.
14The term oral message is defined and explained in 6.2.3 in more detail.

http://www.podc.org/dijkstra/2015-dijkstra-prize/

78 6. NAKAMOTO CONSENSUS

the presence of Byzantine faults. Also, each process p € IT can draw upon a /ocal coin that returns,
with equal probability Pr(}), a value v € {0, 1}. The solution is given for binary consensus, and
protocols are presented for both the crash failure and the Byzantine failure model. In the crash-
failure model the total number of processes n must exceed f faulty processes by n > 2f + 1,
and in the Byzantine failure model n > 5f + 1 is required. This algorithm is actually gptimal
in respect to the maximum number of crash-failures it can tolerate, as in such a system model
consensus with n < 2f + 1 is impossible [29].

'The protocols perform rounds of exchange of information where, if a process decides on v
in around r, all correct processes will decide on v by the next round r + 1. If no process decides,
then with bounded positive probability all correct processes will decide on the next round.

Interestingly, the first fi/ correctness proof of Ben-Or’s algorithm (for the crash-failure
model) was published much later, in 2012 [5].

In this proof it is not only shown that the assumptions hold for n > 2f + 1 and a strong
adversary, that is, an adversary that can see process states and message contents as well as sched-
ule process steps and message receipts, but it is also demonstrated that replacing the local coin
source of randomness for protocols like that of Ben-Or with a global coin in an effort to speed
up termination can actually be deleterious and may prevent termination.

Global Coin Randomized Consensus

Another interesting aspect of some randomized consensus protocols is the possibility that con-
sensus can be reached within an expected number of communication rounds that is less than
f + 1, which has been shown to be the lower bound in worst-case executions for a number of de-
terministic consensus problems, such as Byzantine generals in both the authenticated and unau-
thenticated case, unauthenticated interactive consistency, and unauthenticated crash-resilient
weak consensus [71].

However, Ben-Or’s algorithm is not very efficient in this regard, and the expected number
of rounds to reach agreement is constant only if /' = O(y/n), otherwise the expected number
of rounds may actually be exponential.

'The solution presented by Rabin in [130] solves Byzantine consensus'® within an expected
small constant number of rounds independent of n and faulty processes f. The system model
assumes reliable communication with authenticated messages where processes are supplied in ad-
vance with both a directory of public keys and a sequence of random bits as a shared secret'® by
a non-faulty dealer. In this case, the shared secret acts as a source of randomness, i.e., a shared
global coin that allows the protocol to reach agreement in constant expected time as opposed to
the exponential time of algorithms as that of Ben-Or. The algorithm requires n > 10f + 1 for
the asynchronous and n > 4f + 1 for the synchronous case.

1>Note that in [130] Rabin speaks about the Byzantine generals problem; however, in this case no distinguished leader is
assumed that broadcasts a message, but rather all processes agree on a common value, implying Byzantine consensus rather
than Byzantine agreement.

16Such as by the secret sharing algorithm presented by Shamir in [138].

6.2. CONSENSUS AND FAULT TOLERANCE IN DISTRIBUTED SYSTEMS 79

In [145] Toueg presents a modified version of Rabin’s algorithm that solves (Byzantine)
randomized consensus for n > 3f + 1 with an expected number of rounds that is also a small
constant independent of 7 and f* but with a higher communication complexity, and also proves
that this is the lower bound on the number of failures f for solving asynchronous consensus in
the Byzantine failure model, even if authenticated messages are assumed.

Randomization and Byzantine Fault Tolerance

The first randomized consensus algorithms [16, 130] presented their solutions in the con-
text of the Byzantine Generals Problem and, therefore, already considered Byzantine failures;
however, their bounds on the number of permissible faulty processes f were not yet optimal.
Shortly thereafter it was shown that no Byzantine agreement protocol in an asynchronous sys-
tem model can achieve resilience against f > (%—| failures [29], even if message authentication
is assumed [145]. In other words, the system requires at least n > 3f + 1 processes, of which at
most f can be faulty.

Interestingly, these early works not only considered randomized Byzantine consensus al-
gorithms where the termination property was weakened to termination with probability Pr(1),
but also variants where correct agreement is only achieved with a certain probability Pr(1 — «),
which is dependent on the number of (fixed) rounds the algorithm is executed.

Such randomized consensus with a non-deterministic agreement property has since been
largely overlooked as a topic of research [48]. In [90], Ishii and Tempo introduce the terms
Las Vegas and Monte Carlo randomized algorithms to differentiate between consensus that may
produce an incorrect result with bounded probability (Monte Carlo) and algorithms that always
return the correct answer but where the running time is random.

As we will discuss in 6.3, the guarantees of Nakamoto consensus actually also relate to
this non-deterministic agreement property, as consensus on a block in the blockchain is only
guaranteed with a certain probability that increases exponentially toward Pr(1) as the protocol
progresses.

As we have outlined, randomized consensus protocols exist that are able to reach agree-
ment with probability Pr(1) within a small constant expected number of steps independent of
n and f. In particular, the global coin model that was introduced by Rabin [130] has drawn the
attention of further research, as it avoids the problem generally found in /ocal coin approaches
such as that of Ben-Or, which can have an expected exponential number of rounds if there are
many faulty processes. On the other hand, the local coin model’s advantages are that algorithms
can be much simpler in their implementation and do not have to rely on cryptography. Draw-
backs of Rabin’s approach were that a frusted dealer is required for the initial distribution of the
global coin shares and that this shared randomness is eventually consumed. These problems of
needing to rely on a trusted dealer for initial shared coin distribution and exhausting the shared
coin have been addressed in further work [34, 35].

80 6. NAKAMOTO CONSENSUS

It has often been assumed that randomized consensus algorithms are impractical due to
their high expected message and time complexities [48]. Such assumptions, perhaps, do not
consider the often quite strong adversarial model under which these algorithms are considered,
which does not reflect practical real-world conditions. Moniz et al. [113], for instance, analyze
and compare both local and global coin probabilistic binary Byzantine consensus algorithms in
a realistic setup and show that both can be practical. In particular, their results showed that:

1. Shared coin protocols (SCP) are more robust toward malicious faults than local coin-
based protocols (LCP), since their performance was not affected when malicious faults
were injected.

2. LCP is significantly faster than SCP with similar system parameters for all tested envi-
ronmental settings.

3. The measured average number of rounds for both protocols was quite small, being close to
one with no faults and exactly one with f crashed processes. For Byzantine failures, SCP
scored similar to the failure-free scenario, while LCP showed small degradations that were
accentuated with higher n."”

4. SCP was slower but proved to be more scalable when the total number of nodes n increases
as its performance degraded to a lesser degree than LCP.

5. 'The bottleneck for LCP was network bandwidth because of the high number of exchanged
messages, whereas for SCP it was the CPU because of expensive asymmetric cryptography,
suggesting that LCP is more suitable for LAN environments whereas SCP is a better
candidate for WAN environments.

In [111] Miller et. al present a practical asynchronous BF'T protocol whose design is op-
timized particularly for cryprocurrency-like deployment scenarios where bandwidth is the scarce
resource that is called HoneyBadgerBFT. It extends the work of Cachin et al. [33] on asyn-
chronous (hence randomized) Byzantine fault-tolerant broadcast protocols and improves the
previous O(N?) communication complexity to O(N).

6.3 A CLOSERLOOKATNAKAMOTO CONSENSUS

So far, this chapter has mainly covered fundamental aspects of consensus and Byzantine fault
tolerance without relating them to Bitcoin and Nakamoto consensus. Now that these aspects,
and more importantly, the limitations and achievable properties for certain consensus problems
have been outlined, we can discuss Nakamoto consensus in this context. Let us first consider
some of the unique properties the Bitcoin protocol and its underlying consensus mechanism
exhibit.

7 Tests with up to n = 10 processes were conducted.

6.3. ACLOSER LOOK AT NAKAMOTO CONSENSUS 81

Anonymous Consensus One of the most interesting aspects of Bitcoin is the ability for
anonymous processes to participate in the consensus protocol via proof-of-work mining. A pro-
cess need not reveal any information about itself prior to disseminating a valid solution to the
network. Such a model where “anyone,” i.e., pseudonymous or anonymous entities, can participate
in the consensus process and is, in principle, capable of generating new currency units is often
referred to as a “permissionless” setting, whereas systems that rely on a trusted set of consensus
processes such as designs based on BEF'T consensus are called “permissioned” [143, 147].

Dynamic Membership with Byzantine Faults 'The consensus and BFT protocols so far pre-
sented in this publication generally assume a static set of known processes that make up the
consensus participants.

Agreeing on a dynamically changing set of processes is, in itself, a problem related to
consensus, namely the Group Membership Problem. This problem has been studied primarily in
the crash-failure model, where the introduction of the concept of virtual synchrony by Birman
and Joseph [19] in the ISIS system has been influential and led to a variety of practical group
membership systems such as JGroups [13], Spread [7], and Appia [112].

Byzantine fault tolerance in the context of group membership systems was explored in
implementations such as Rampart [131] and SecureRing [94]; however, in these cases either the
problem of dealing with potentially Byzantine processes in the changing membership set is only
partially addressed (Rampart), or relatively strong guarantees on aspects such as synchrony and
the ability to detect Byzantine failures (SecureRing) are assumed.

'The difficulties with such systems lie in dealing with Sybil attacks and being able to uphold
guarantees if the ratio of honest to faulty processes both within and across views'® changes. In
general, Byzantine fault-tolerant dynamic group membership is an ongoing research topic with
many open questions that remain to be answered.

'The concept of using moderately hard puzzles to expose impostors in Byzantine consensus
where processes may assume multiple identities has been outlined by Aspnes et al. in [8]. Bit-
coin’s proof-of-work follows this mechanism and appears to allow a changing set of processes
to form eventual agreement on a blockchain, as long as a sufficiently large majority of active
processes is not faulty. As will later be outlined, the specific properties under which Bitcoin and,
more generally, Nakamoto consensus can uphold its claimed guarantees is an ongoing field of
research.

Consensus Scalability A problem many classical BF'T consensus systems face is the difficulty
of efficiently scaling with respect to the number of processes that can actively participate in
consensus. The message complexity is usually expected to be quadratic, i.e., O(n?), and practical
systems generally assume a rather small number of processes, ranging from fewer than ten to, at
the very most, a few hundred processes.

18Tn dynamic group membership, the agreed upon set of processes that constitute the group at a particular time is referred to
as a view, and the system progresses through an increasing sequence of views as processes join or leave the agreed upon set.

82 6. NAKAMOTO CONSENSUS

Beyond the communication overhead for a large set of processes, the focus on small con-
sensus groups may also be attributed to the fact that BE'T protocols were often developed in the
context of state machine replication in order to provide fault-tolerant replication to some par-
ticular service, such as a database, and not as a large decentralized system where a large number
of processes may want to participate. Solutions for supporting a larger set of processes in such
models may involve the delegation of consensus responsibilities to a select subset of nodes that
are responsible for collecting local peer information and including it in their consensus votes as
well as disseminating consensus results.

Bitcoin and Nakamoto consensus, on the other hand, can potentially support a very large
number of processes that can concurrently participate in consensus because the mining difficulty
is adjusted so that on average, a valid solution is found after a certain interval. No communication
between nodes is necessary other than the dissemination of newly found blocks. In [147] Vukoli¢
provides a comparison between PBFT and similar permissioned approaches to permissionless
solutions such as Bitcoin.

6.3.1 DEFINING NAKAMOTO CONSENSUS

There is currently no agreed upon definition of what constitutes Nakamoto consensus, and re-
search on the properties of Bitcoin and other related systems may or may not adhere to this nam-
ing convention. Works have also used other names such as “Zhe Bitcoin Backbone Protocol” [76]
or “Nakamoto’s blockchain protocol” [123]; however, the term Nakamoto consensus is finding its way
into more and more publications and we believe it is a suitable descriptor for this novel consensus
approach.

It is also possible to define the term &dlockchain in the context of Nakamoto consensus
and thereby account for the distributed systems aspects of this technology. This is also done by
Pass et al. [123] with their definition of an abstract blockchain which is presented in this section
(Definition 6.13).

A fundamental difficulty in providing a good generalized definition lies in the tight in-
teraction between the various mechanisms that make up the Bitcoin protocol.

'The proof-of-work that is used by nodes to generate new blocks not only provides a form
of probabilistic leader election, but also serves as a (weak) authentication mechanism that prevents
an attacker from carrying out Sybil attacks.

'This leader election mechanism is, in fact, a form of consensus that relies upon other nodes
to acknowledge the leader, i.e., the creator of a valid block at a particular height, by appending
new valid blocks to that block. The depth of a block in a blockchain, or more precisely the cu-
mulative work acknowledging a block by appending to it in relation to the overall computational
capacity of the system, gives some outlook on the likelihood that all nodes of the system will
agree that this block is part of the blockchain they consider valid.

In [108], Miller and LaViola considered the proof-of-work consensus mechanism of Bit-
coin for a single instance, specifically for reaching eventual binary consensus, which they simply

6.3. ACLOSER LOOK AT NAKAMOTO CONSENSUS 83

refer to as a “Bitcoin Consensus Protocol.” In particular, they relate it to Monte Carlo random-
ized consensus, that is, probabilistic consensus where there is a non-zero probability of error on
agreement.

Monte Carlo Consensus: A Monte Carlo consensus protocol for a set of n processes (f of which
may be corrupted) begins with each correct process p; receiving an input value proposed; €
{0, 1}*, and must satisfy the following properties:

1. Termination: All correct processes must output a single value after a bounded time.

2. Agreement: All correct processes must output zhe same value, except with negligible prob-
ability.

3. Validity: The output value must be one of the inputs (with non-negligible probability).

Instead of constructing a concatenated blockchain, processes exchange their preferences
with proofs-of-work and adopt, as their own preference, the value that appears to have the
most votes. Their model assumes a set of processes {p1, p2. ..., pn} = IT where each process
pi starts with a value v; € {0, 1}. Both communication and processing time are assumed to be
synchronous and reliable; however, processes have no way of determining message origins. Under
these assumptions, Miller and LaViola [108] show that such a Bitcoin Consensus Protocol can
satisfy the presented Monte Carlo consensus properties for an adversary that controls strictly
less than half, i.e., 3 ;e m(b) < 50% of the computing power.

Interestingly, this result regarding failure resilience for single consensus of what we may
consider a variant of Nakamoto consensus does not easily translate to consensus for multiple
instances, which is required when considering a blockchain data structure or different system
states for state machine replication.

In a multiple instance model, adversaries may adopt certain strategies such as block-
withholding attacks [69, 120] that are not relevant in the single instance consensus model.

Eyal et al. [68] define Nakamoto consensus in the context of state machine replication.
In their model the system is comprised of a set of processes {p1, p2. ..., pn} = IT connected by
a reliable peer-to-peer network.

Each process has access to a random bit source through a (cryptographic) random oracle.
Processes can generate key pairs but no trusted PKI is assumed. A cryptographic proof-of-
work scheme as described in Chapter 2 is assumed, where each process p € IT has a limited
computation power.

'The mining power of process p;, denoted by m (i), is the number of attempts per second
a given process can make when searching for a solution to the PoW with respect to its limited
compute power. At any time ¢ a subset of nodes B(¢) C IT are Byzantine where, based on the
previous findings on selfish mining by Eyal and Sirer [69], they assume an upper bound on the

84 6. NAKAMOTO CONSENSUS

combined mining power of B(f) at any time ¢ that is:

Vi: Y mb) < % > m(p).

beB(t) pell

Or, in other words, the combined mining power of Byzantine nodes at any time is to be less than
1. In their model Nakamoto consensus is expressed through the following three properties:

Definition 6.12 Properties of Nakamoto consensus as by Eyal et al. [68]

1. Termination: There exists a time difference function A(-) such that, given a time ¢ and
avalue 0 < & < 1, the probability is smaller than ¢ that at times ¢',¢” > ¢t + A(e) a node
returns two different states for the machine at time 7.

2. Agreement: There exists a time difference function A(-) such that, given a 0 < ¢ < 1, the
probability that at time ¢ two nodes return different states for t — A(e) is smaller than e.

3. Validity: If the fraction of mining power of Byzantine nodes is bounded by f, i.e., V¢ :
Y beB) m(b)
Zpel‘[t m(p)
of honest nodes is smaller than f.

< f, then the average fraction of state machine transitions that are not inputs

In [76] Garay et al. analyze and formally describe Nakamoto consensus through looking at the
“...core of the Bitcoin profocol,” and refer to it as the “Bitcoin Backbone Protocol.” Its funda-
mental characteristics are described through two properties, called the common prefix property
and chain-quality property, that are quantified by three parameters, y, 8 and m,'” where y and
B correspond to the collective hashing power per round of honest nodes and the adversary re-
spectively, and where m represents the expected number of PoWs that may be found per round
by the participants as a whole. The system model assumes both a static set of nodes and a syn-
chronous communication model. The common prefix property guarantees that if, y > Ap for some
A € [1,00) that satisfies A2 —mA + 1 > 0, then the local blockchains of honest nodes will pos-
sess a large common prefix. What is meant by this is that the probability for two honest nodes
to maintain mutual prefixes of their blockchains by removing k blocks from the top of their lo-
cal chains increases exponentially in k. The chain-quality property states that if y > A for some
A € [1,00), then the ratio of blocks contributed by honest players in the chain of any honest
player is at least (1 — 7).

Another definition by Pass et al. in [123] expresses Nakamoto consensus, or what they
refer to as “the core blockchain protocol,” as an abstract blockchain that should satisfy the following
four key properties:

Definition 6.13 Abstract blockchain

91n [76] Garay et al. use the variable f, however we already employ f to denote the number of faulty processes and hence
divert to using m.

6.3. ACLOSER LOOK AT NAKAMOTO CONSENSUS 85

1. T-consistency: with overwhelming probability (in T), at any point, the chains of two
honest players can differ only in the last 7" blocks.

2. future self-consistency: with overwhelming probability (in 7'), at any two points r, s the
chains of any honest player at r and s differ only within the last 7" blocks.

3. g-chain-growth: with overwhelming probability (in 7'), at any point in the execution, the
chain of honest players grows by at least T messages in the last % rounds; g is called the
chain-growth of the protocol.

4. the p-chain quality: with overwhelming probability (in 7'), for any T consecutive mes-
sages in any chain held by some honest player, the fraction of messages that were “con-
tributed by honest players” is at least .

In the same work they analyze Nakamoto consensus based on these properties in an asyn-
chronous system model and show that it can neither satisfy consistency nor chain quality without
an upper bound A on the network delay, even if the adversary only controls a tiny fraction of
computational power.”’ Furthermore, it is shown that, as long as the adversary controls less
than half of the computational power (p < 1), for every A there exists some sufficiently small
mining-hardness p (if p > MLA consistency can't be satisfied) so that Nakamoto consensus satis-
fies T-consistency, thereby extending previous findings by Garay et al. that have shown Nakamoto
consensus to satisfy consistency in the synchronous system model [76].

At the time of writing, the properties and characteristics of Bitcoin and Nakamoto con-
sensus are still an ongoing subject of research.

Summary

In this chapter, we have shown that reaching agreement in the presence of faults, i.e., consensus,
is a non-trivial problem whose solvability greatly depends on the characteristics of the assumed
system model. Considering weak models of synchrony and the presence of Byzantine failures ren-
ders the consensus problem harder to the point that early solutions were considered impractical
for real-world implementations. Only once broadly available computational and networking
resources had increased sufficiently in capacity and Byzantine consensus protocols had been im-
proved did Byzantine fault tolerance become feasible. Byzantine fault tolerant consensus is an
essential building block for distributed systems where the amount of trust in participating nodes
is to be minimized. The Bitcoin protocol at its core also belongs to the general class of Byzantine
consensus protocols. On the one hand, its assumptions render the consensus problem harder by
allowing anonymous participants, thereby opening the door to Sybil attacks. On the other hand,
the agreement property of consensus is weakened to a form of Monte Carlo consensus where

20Specifically when A = % for some § > 0, where pnp is the expected number of blocks that an attacker can mine in a
round.

86 6. NAKAMOTO CONSENSUS

agreement may be reached with a high probability that increases exponentially; however, there is a
non-zero probability of error.

Nakamoto consensus addresses the problem of Byzantine agreement from a novel angle
and was introduced in the form of a practical solution to this long-standing problem in fault-
tolerant distributed computing. In this respect, the exact guarantees of Nakamoto consensus
are still not entirely clear and this area is an ongoing subject of research. We have outlined that
(probabilistic) Byzantine agreement is not possible for n < 3¢ + 1 in an asynchronous system
model, even if authenticated messages are available. We have also highlighted that using hybrid
system models, i.e., wormholes, can help improve upon this result so that Byzantine agreement
can be reachedinn > 2f + 1, and Byzantine TRB with n > f [15]; however, these wormholes
need to rely on synchrony or else they would form a direct contradiction to the previous proofs.

For Nakamoto consensus it was originally assumed that an honest majority of nodes,
i.e., n>2f 4+ 1, or more precisely honest nodes controlling the majority of computational
power, is required to uphold its guarantees.

'The original publication by Satoshi Nakamoto [117] did not include formal specifications
of the system model or protocol guarantees and has, therefore, left these questions open for
further research. Works such as that of Eyal and Sirer [69] as well as [120] have shown that
block-withholding strategies exist that can grant selfish miners an unfair advantage over hon-
est miners, thereby increasing the requirements for the number of honest nodes to prevent a
so-called 51% attack. Under the assumption of a synchronous system, it has been shown that
a simplified form of Nakamoto consensus can achieve n > 2 f + 1 for single-instance consen-
sus; however, Nakamoto consensus in the context of a blockchain or state machine replication,
i.e., multiple instance consensus, generally requires f < (%—| to provide the expected guaran-
tees.’! It has also been shown that in a model of asynchrony, Nakamoto consensus can only
provide its guarantees if certain assumptions on the maximum transmission delay in relation to

mining difficulty hold [123].

ZFor f < [4] an adversary may mine a disproportionately large number of blocks relative to their actual hashrate, however
honest miners will from time to time have at least one of their blocks included, allowing the basic functionality of a dis-
tributed ledger to remain in principle functional (assuming unlimited space to include transactions) albeit not fair to honest
participants.

CHAPTER 7

Conclusion and Open

Challenges

Bitcoin has demonstrated that decentralized cryptographic currencies are technically feasible
today. Since going live in early 2009, the Bitcoin protocol and its broader community have
proven that it is possible to operate a decentralized global currency capable of performing asset
transactions around the world.

At the same time, not only the underlying protocol itself, but the ecosystem as a whole
has demonstrated a surprising amount of resilience against a variety of attacks and malicious
actors.

Despite these remarkable achievements, there are also many challenges and issues left to
resolve. These challenges, which most cryptographic currencies are facing today, are not solely
of a technical nature. The security and properties provided by Bitcoin and its derivatives are
a combination of technical aspects such as cryptographic primitives and consensus algorithms
as well as incentive engineering that relies on mining rewards, and the trust people place in
the cryptocurrency, e.g., that bitcoins have and will retain their value. Therefore, cryptographic
currencies can be considered as sociotechnology, operating at the intersection of society and tech-
nology. Since this book focuses on the technical aspects of cryptographic currency technologies,
we primarily outline remaining challenges related to technical and usability aspects. While issues
related to sociological, political, legal, and regulatory challenges are also of significant impor-
tance for the understanding and further development of cryptographic currency technologies
and their ecosystems, they lie outside the scope of this book. In the following, we discuss open
challenges in the technical domain.

Scalability Bitcoin-like cryptographic currencies that are based on proof-of-work have cer-
tain drawbacks when it comes to scalability. Due to network latencies and structure and the
very nature of the computationally expensive proof-of-work, there are certain performance lim-
itations. The Bitcoin network is currently capable of handling about 7 to 10 transactions per
second [50, 51, 147]. Compared to traditional payment networks, this is a relatively small num-
ber. For example, PayPal is capable of handling a few hundred transactions per second [92]
whereas VISA can process up to several thousand transactions per second [50, 92]. It is well
known that there are certain trade-offs between the security and performance of PoW-based
cryptographic currencies [12, 79, 92, 139]. Optimizing the performance of cryptographic cur-

88 7. CONCLUSION AND OPEN CHALLENGES

rency technologies, i.e., blockchains, while still being able to provide information and accurate
estimates on the security impact of any changes is an ongoing topic of research. Several difter-
ent approaches have been proposed that aim to minimize intrusive changes to existing protocols,
such as Bitcoin-NG [68]. Others propose switching to entirely different underlying consensus
mechanisms [147, 148]. Hybrid system models [125] that aim to consolidate advantages of both
approaches are also being discussed. For a general summary of possible directions see [50].

Resource Consumption All proof-of-work-based schemes rely on the existence of a limited
resource that nodes are required to draw upon if they want to provide the PoW. In Bitcoin,
this resource is a combination of energy, hardware, and network capacity. If there were a proof-
of-work that did not rely on a limited resource and instead could be claimed in unbounded
quantities by anybody, then this automatically would mean that the system would be vulnerable
to Sibyl attacks. It is actually the “anonymous” and permissionless setting of the Bitcoin protocol
that allows mining nodes to not reveal any previous information about themselves when pre-
senting a solution to the required proof-of-work. In a non-anonymous setting where nodes may
join or leave the system, the problem remains difficult if we are to maintain the trustless model
where nodes may behave maliciously.

'The question that arises is whether there are provable secure and yet practical and scal-
able schemes that allow us to virtualize these required PoW resources and still provide pro-
tection against Sibyls in the permissionless model. Such a scheme would mean that instead of
being forced to waste physical resources such as energy and computation hardware, one would
only need to rely on virtual ones. One of the first approaches toward virtualizing such PoW
resources, called proof-of-stake (PoS), has been introduced for cryptographic currencies such as
Peercoin [96]. The general idea behind proof-of-stake is to allow participants to lock up or stake
part of their cryptocurrency units, which, in relation to the number of units staked by other
miners, gives them a certain probability at which they can mine, or min#, a new block. Sev-
eral difficulties and attacks with regard to proof-of-stake cryptocurrencies have been initially
pointed out [17], and until recently, concepts and presented protocols often lacked formal mod-
els and security proofs. This situation however has been amended by recent works such as those
of Kiayias et al. [93] and Bentov et al. [18], which both present provably secure proof-of-stake
blockchain protocols. It appears to be that a crucial component for achieving security in such
protocols is the existence or joint generation of a sufficiently unbiased random oracle such as a
global random coin.

Another approach toward improving the security of proof-of-stake protocols that is, for
instance, being pursued by the Ethereum Foundation is to integrate or leverage economic in-
centives in the PoS consensus process. The proposed protocol, named Slasher [31], is designed
to render (certain types of) malicious behavior detectable and consequently punish such behavior
by destroying locked up funds or potential block rewards of the perpetrator.

'The topic of virtualizing PoW resources is still an ongoing field of research and the impact
of newer protocol proposals and concepts is yet to be seen.

89

Centralization vs. Decentralization ~ Studies on the mining landscape of Bitcoin as well as on
other cryptographic currencies show that there is a trend toward centralization even in decentral-
ized PoW-based systems. The question is, how decentralized should a cryptographic currency
ecosystem be, and what methods can be used to enforce certain levels of decentralization? Which
single points of failure are acceptable and which are not—for example, powerful exchanges, min-
ing pools, and influential developers?

In the case of cryptographic currencies that are based on Byzantine fault-tolerant systems,
the question is how to compose and maintain a set of trusted nodes for consensus and who de-
cides which nodes are allowed to participate. If the set of consensus nodes is small and static,
resilience against Byzantine failures is more readily achievable, however the system is strongly
centralized. The question of how to achieve Byzantine fault tolerance in a dynamic group mem-
bership setting which could potentially allow for more decentralization remains part of ongoing
research.

Updatability In the wake of the latest software flaws and feature updates of difterent crypto-
graphic currencies the question arises how to handle updates in a distributed system without a
trusted third party.

One possible direction is to encode a formal description of the protocol, e.g., the consen-
sus system in use, into the data structure, on which the nodes agree when reaching consensus.
'This would allow us to devise a scheme for software updates that relies on the same consensus
mechanisms as the rest of the system. In such a scenario, the question arises how to give a voice
to every user. For example, in Bitcoin, only the miners have a direct and immediate influence on
the consensus process. Exchanges, users, merchants, and developers certainly all have an influ-
ence on the broader ecosystem, but it is indirect, by means of mechanisms such as providing the
miners with economic incentives or rational arguments rather than directly through the actual
consensus protocol of the system.

Coin Management and Usability As discussed in Chapter 5, managing digital currency is
still a major challenge for many users. Due to the decentralized nature of Bitcoin-like cryp-
tocurrencies, users are usually responsible for managing their own digital assets. In the event
of an incident, users have to restore their keys based on their own backups. This is substan-
tially different from traditional currencies, which rely on centralized entities such as banks and
government institutions. Hence, decentralized cryptocurrencies pose significant challenges and
responsibilities for their users. The underlying cryptographic fundamentals are often difficult
to understand for non-expert users, so that many find it hard to manage their keys and coins
and, therefore, try to shift the responsibilities to third parties, such as hosted wallet providers.
Compared to traditional banks, these providers are often hard to trace and are not backed by
government institutions and/or insurance companies in case of a security breach. It is also of-
ten hard to determine whether these centralized entities are trustworthy or not due to a lack
of transparency and unclear and insufficient legal and organizational regulations. As presented

90 7. CONCLUSION AND OPEN CHALLENGES

in Chapter 5, a large proportion of individuals use hosted CMTs, which contradicts Bitcoin’s
inherent benefit of decentralization. Hence, a major challenge for designers and researchers is
to provide users with sufficiently user-friendly key management and backup tools so that they
can responsibly manage their bitcoins without relying on a centralized entity. A major prob-
lem inherent to most cryptographic user applications is that they force users to deal with public
key cryptography. It remains to be shown which mental models users have and to what ex-
tent they understand the concept of public key cryptography. Furthermore, the perfect trade-off
between transparency and usability remains to be determined. Another human-computer inter-
action problem of Bitcoin lies in its use of metaphors. As argued in Chapter 5, Bitcoin heavily
makes use of metaphors derived from traditional currency. These metaphors, however, are often
misleading, hindering users’ ability to understand what is happening when interacting with the
decentralized currency, e.g., processing a payment.

Recovery Cryptographic currencies put the responsibility for their digital assets, e.g., bitcoins,
in the hands of the user. It is possible for the user to make mistakes or for the security of her sys-
tem to become compromised. Therefore, technologies and best practices are required that work
as safety nets, for example multi-party signatures, hardware wallets, or cold storage. Although
technically such methods already exist, most common wallet software does not support these
technologies. Moreover, further research is required regarding possible accounting strategies for
currency units where the secret key has already been destroyed. In this case, it is important that
the immutability and pseudonymity requirements of the underlying blockchain, i.e., the ledger
not be violated or weakened. Possibilities like [114] are only the tip of the iceberg.

7.1 CONCLUSION

'The Bitcoin protocol is a clever mixture of technologies and concepts from different fields which
in combination created something remarkable. Most of the used primitives, like chaining of
cryptographic hash functions, asymmetric cryptography, or proof-of-work, were known and had
been studied for a while before Bitcoin was conceived. The novelty of Bitcoin lies in the fusion
of these building blocks with an incentive system based on game theory and a practical use case,
namely a digital currency. This created a new type of probabilistic distributed consensus system
dubbed Nakamoto consensus. The novelty of this mechanism is that it allows the “anonymous”
participation in the consensus process through the process of mining without requiring any
kind of trusted setup procedure in advance.

Bitcoin is not the answer to everything, but it has undoubtedly had an impact in a number
of different areas and communities:

It created a new class of randomized consensus systems and rekindled research in the
field of distributed consensus and Byzantine fault-tolerant systems in general. It bootstrapped
a vivid and diverse community that is driving the development of this set of technologies fur-
ther. The original online publication, software implementation, and further development by the

7.1. CONCLUSION 91

community in its early days outpaced traditional academic research and publishing cycles. It
demonstrated that you can implement and run a decentralized digital currency system with a
market capitalization in the billions of dollars before even having a sound theoretical model
of why it works. It showcased that interdisciplinary thinking can lead to novel approaches and
solutions with practical applications.

While Bitcoin and blockchains are hardly the answer to life, the universe and everything,
as ideologists or advertising sometimes paint it, the fusion of its underlying technologies and
methods has opened new pathways and outlined new possibilities in different areas of research.
Furthermore, cryptographic currency technologies also have a sociological and practical dimen-
sion with disruptive potential. Never before was it this easy to create a currency that can be used
worldwide without the absolute need for a trusted third party or the requirement to distribute
physical coins and notes. This change of paradigm forces us to rethink the concept of money and
currencies and enables us to envision a future in which a multitude of different cryptographic
currencies exist, all of which encode their individual techniques and a set of rules accepted within
the community of their users. As long as there are methods to easily use different cryptographic
currencies and also exchange assets between them, it is not necessary to rely on just one cryp-
tocurrency for everything.

Glossary

Cryptographic currencies are a relatively new field of research, hence the nomenclature has not
settled for certain terms and their interpretation. Also the spelling is not always universally
agreed upon, for example in the case of blockchain or block chain.' This chapter aims to provide
rich a glossary of important terms and phrases used throughout the book to avoid ambiguities.

1Both forms have been used on various occasions but lately the variant without space is becoming predominant. This is also
the reason why we adhere to term blockchain within this work.

Glossary

blockchain or block chain

There are multiple definitions of the term &lockchain of which we present two different
categories in this book. The broad Princeton definition describes a blockchain as a linked list
data structure that uses hash sums over its elements as pointers to the respective elements.
See Definition 4.1 for details. In Section 6.3 various definitions are presented that place a
stronger focus on the formalization of the Bitcoin protocol and its governing mechanisms
and which consider the concept of a blockchain from a more abstract vantage point.

Pages: 3, 22

permissioned-, consortium-, private-, or BT blockchain

'The central property of this type of blockchain is that the set of nodes, amongst which
consensus over the state of the chain should be reached, is known and an admission to
the consensus set is restricted. Vukolic et al. refers to this type as Byzantine Fault Tol-
erant (BFT) blockchains [147]. Further distinction can be made between permissioned
blockchains and private blockchain regarding the composition and selection of the set of
nodes. 2

Page: 4

permissionless-, public-, or PoW blockchain

'The central property of this type of blockchain is that the identity of nodes, amongst
which consensus over the state of the chain should be reached, is either pseudonymous
or anonymous and the ability for new nodes to start participating in the consensus pro-
tocol is relatively unrestricted. Vukolic et al. refers to this type as proof-of-work (POW)
blockchains [147].

Page: 4

cryptocurrency or cryptographic currency

A cryptographic currency or cryptocurrency is a digital asset system designed to work as a
medium of exchange that uses cryptographic primitives to secure the control and creation
of currency units.

Page: 3

2https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/

https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/

GLOSSARY 95
cryptographic currency-, distributed ledger-, or blockchain technologies

We define the terms cryptographic currency technologies, distributed ledger technologies, con-
sensus ledger technologies, as well as blockchain technologies as umbrella terms that refer to the
whole set of technologies and techniques that are used within the space of cryptographic
currencies, blockchains of difterent sorts, as well as transaction ledgers, e.g., cryptographic
primitives, fault-tolerant distributed computing aspects, game theoretic approaches, net-
working aspects, language security aspects, etc.

Page: 3

difficulty

The difficulty D is a different way to describe the hardness of the proof-of-work. It is
defined as the ratio between the maximum target and the current target:

Page: 35
distributed currency

A distributed cryptographic currency or distributed cryptocurrency is a digital asset system de-
signed to work as a medium of exchange that uses cryptographic primitives to secure the
decentralized control and creation of currency units.

Page: 3

Nakamoto consensus

We consider the term Nakamoto consensus to refer to the underlying consensus mechanism
behind Bitcoin, that allows a dynamic set of anonymous participants in a distributed sys-
tem to reach eventual agreement’ by leveraging on the properties of proof-of-work as well
as economic incentives.

Page: 3

proof-of-work (PoW)

Represents a system that fullfills the following high-level characteristics (in accordance

to [119]):
* The PoW is easy to verify
* 'The difficulty to compute a PoW is adjustable

3Eventual agreement in Bitcoin is reached on the transaction set and its ordering within a distributed ledger, however
Nakamoto consensus may also be used to agree upon other items.

96 GLOSSARY
* The PoW is progress-free, i.e., every participant has a probability to find a valid PoW

that is proportianal to his share of invested resources.

Pages: 3, 19

target

'The target T describes the validity requirements of a proof-of-work, i.e., the hardness. In
Bitcoin a valid PoW is defined as:

SHA256(block header) < T
Page: 34

trusted third party (T'TP)

A trusted third party (T'TP) refers to the requirement of having an intermediary C between
two parties A and B which is required to be trusted so that A and B can transact or interact
securely according to the respective protocol.

Page: 3

virtual currency

'The European Central Bank redefined the term in 2014 as “a digital representation of value
that is neither issued by a central bank or a public authority, nor necessarily attached to a
fiat currency, but is accepted by natural or legal persons as a means of payment and can be
transferred, stored or traded electronically” [9].

Page: 15

zero bits

Number of leading zero bits of the target T'.
Page: 34

Bibliography

[1] Coinmarketcap. http://coinmarketcap.com/
[2] Namecoin. https://namecoin.org/

[3] Requiem of a Bright Idea. http://www.forbes.com/forbes/1999/1101/6411390a
.html

[4] H. Abelson, R. Anderson, S. M. Bellovin, J. Benaloh, M. Blaze, W. Diffie,]. Gilmore,
P. G. Neumann, R. L. Rivest, J. I. Schiller, et al. The risks of key recovery, key escrow,
and trusted third-party encryption. World Wide Web Journal, 2(3):241-257, 1997.

[5] M. K. Aguilera and S. Toueg. Tbe correctness proof of ben-or’s randomized consensus algo-
rithm. Volume 25, pages 371-381. Springer, 2012. DOI: 10.1007/s00446-012-0162-z.

[6] P.C.v. O. Alfred J. Menezes and S. A. Vanstone. Handbook of Applied Cryptography, Sth
ed. CRC Press, 2001. DOI: 10.1201/9781439821916.

[7] Y. Amir and J. Stanton. The spread wide area group communication system. Technical
Report, TR CNDS-98-4, the Center for Networking and Distributed Systems, Johns Hopkins
University, 1998.

[8] J. Aspnes, C. Jackson, and A. Krishnamurthy. Exposing computationally-challenged
byzantine impostors. Department of Computer Science, Technical Report, Yale Univer-

sity, New Haven, CT, 2005.

[9] E. B. Authority. Eba opinion on virtual currencies. http://www.eba.europa.eu/do
cuments/10180/657547/EBA-Op-2014-08+0pinion+on+Virtual+Currencies. pdf,
2014.

[10] A. Back et al. Hashcash-a denial of service counter-measure. http://www.hashcash.o
rg/papers/hashcash.pdf, 2002.

[11] R. Baldoni, M. Bertier, M. Raynal, and S. Tucci-Piergiovanni. Looking for a defini-
tion of dynamic distributed systems. In International Conference on Parallel Computing

Technologies, pages 1-14. Springer, 2007. DOI: 10.1007/978-3-540-73940-1_1.

[12] T. Bamert, C. Decker, L. Elsen, R. Wattenhofer, and S. Welten. Have a snack, pay with
bitcoins. In Peer-to-Peer Computing (P2P), 13th International Conference on, pages 1-5.
IEEE, 2013. DOI: 10.1109/p2p.2013.6688717.

http://coinmarketcap.com/
https://namecoin.org/
http://www.forbes.com/forbes/1999/1101/6411390a.html
http://www.forbes.com/forbes/1999/1101/6411390a.html
http://dx.doi.org/10.1007/s00446-012-0162-z
http://dx.doi.org/10.1201/9781439821916
http://www.eba.europa.eu/documents/10180/657547/EBA-Op-2014-08+Opinion+on+Virtual+Currencies.pdf
http://www.eba.europa.eu/documents/10180/657547/EBA-Op-2014-08+Opinion+on+Virtual+Currencies.pdf
http://www.hashcash.org/papers/hashcash.pdf
http://www.hashcash.org/papers/hashcash.pdf
http://dx.doi.org/10.1007/978-3-540-73940-1_1
http://dx.doi.org/10.1109/p2p.2013.6688717

98

BIBLIOGRAPHY

[13] B. Ban. Design and implementation of a reliable group communication toolkit for java.

Cornell University, 1998.

[14] G. Becker. Merkle signature schemes, merkle trees and their cryptanalysis. Ruhr-
University Bochum, Technical Report, 2008.

[15] Z. Beerliovi-Trubiniovd, M. Hirt, and M. Riser. Efficient byzantine agreement with
faulty minority. In Proc. of the Advances in Crypotology 13th International Conference on
Theory and Application of Cryptology and Information Security, pages 393—-409. Springer-
Verlag, 2007. DOI: 10.1007/978-3-540-76900-2_24.

[16] M. Ben-Or. Another advantage of free choice (extended abstract): Completely asyn-

chronous agreement protocols. In Proc. of the 2nd Annual Symposium on Principles of Dis-
tributed Computing, pages 27-30. ACM, 1983. DOI: 10.1145/800221.806707.

[17] I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld. Proof of activity: Extending bitcoin’s
proof of work via proof of stake [extended abstract] y. ACM SIGMETRICS Performance
Evaluation Review, 42(3):34-37, 2014. DOI: 10.1145/2695533.2695545.

[18] I. Bentov, R. Pass, and E. Shi. Snow white: Provably secure proofs of stake. https:
//eprint.iacr.org/2016/919.pdf, 2016.

[19] K. Birman and T. Joseph. Exploiting virtual synchrony in distributed systems. 4ACM,
Volume 21, 1987. DOI: 10.1145/37499.37515.

[20] A. Biryukov, D. Khovratovich, and I. Pustogarov. Deanonymisation of clients in bitcoin
p2p network. In Proc. of the SIGSAC Conference on Computer and Communications Security,
pages 15-29. ACM, 2014. DOI: 10.1145/2660267.2660379.

[21] A. Biryukov and I. Pustogarov. Bitcoin over tor isn't a good idea. In Security and Privacy
(SP), Symposium on, pages 122-134. IEEE, 2015. DOI: 10.1109/sp.2015.15.

[22] Bitcoin community. Bitcoin-core source code. https://github.com/bitcoin/bitco
in
[23] Bitcoin community. Bitcoin developer guide. https://bitcoin.org/en/developer-

documentation

[24] Bitcoin community. Bitcoin improvement proposals (bips). https://github.com/bit
coin/bips

[25] M. Blaze. Protocol failure in the escrowed encryption standard. In Proc. of the 2nd
Conference on Computer and Communications Security, pages 59—-67. ACM, 1994. DOLI:
10.1145/191177.191193.

http://dx.doi.org/10.1007/978-3-540-76900-2_24
http://dx.doi.org/10.1145/800221.806707
http://dx.doi.org/10.1145/2695533.2695545
https://eprint.iacr.org/2016/919.pdf
https://eprint.iacr.org/2016/919.pdf
http://dx.doi.org/10.1145/37499.37515
http://dx.doi.org/10.1145/2660267.2660379
http://dx.doi.org/10.1109/sp.2015.15
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin
https://bitcoin.org/en/developer-documentation
https://bitcoin.org/en/developer-documentation
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
http://dx.doi.org/10.1145/191177.191193
http://dx.doi.org/10.1145/191177.191193

BIBLIOGRAPHY 99

[26] D. Boneh and V. Shoup. A graduate course in applied cryptography. https://crypto
.stanford.edu/~dabo/cryptobook/, 2008.

[27]]J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten. Sok: Re-
search perspectives and challenges for bitcoin and cryptocurrencies. In IEEE Symposium

on Security and Privacy, 2015. DOI: 10.1109/sp.2015.14.

[28] J. W. Bos, J. A. Halderman, N. Heninger, J. Moore, M. Naehrig, and E. Wustrow.
Elliptic curve cryptography in practice. In Financial Cryptography and Data Security,
pages 157-175. Springer, 2014. DOI: 10.1007/978-3-662-45472-5_11.

[29] G. Bracha and S. Toueg. Resilient consensus protocols. In Proc. of the 2nd An-
nual Symposium on Principles of Distributed Computing, pages 12-26. ACM, 1983. DOI:
10.1145/800221.806706.

[30] G. Bracha and S. Toueg. Asynchronous consensus and broadcast protocols. Volume 32,
pages 824-840. Citeseer, 1985. DOI: 10.1145/4221.214134.

[31] V. Buterin. Slasher: A punitive proof-of-stake algorithm. https://blog.ethereun.or
g/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/, 2014.

[32] V. Buterin. Chain interoperability. https://staticl.squarespace.com/static
/55£73743e4b051cfccOb02ctf/t/5886800ecd0f68de303349b1/1485209617040/Ch
ain+Interoperability.pdfi, 2016.

[33] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and efficient asynchronous
broadcast protocols. In Annual International Cryptology Conference, pages 524-541.
Springer, 2001. DOI: 10.1007/3-540-44647-8_31.

[34] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in constantinople: Practi-
cal asynchronous byzantine agreement using cryptography. In Proc. of the 19th Annual
Symposium on Principles of Distributed Computing, pages 123-132. ACM, 2000. DOI:
10.1145/343477.343531.

[35] R. Canetti and T. Rabin. Fast asynchronous byzantine agreement with optimal resilience.
In Proc. of the 25th Annual Symposium on Theory of Computing, pages 42-51. ACM, 1993.
DOI: 10.1145/167088.167105.

[36] M. Castro, B. Liskov, et al. Practical byzantine fault tolerance. In OSDI, Volume 99,
pages 173-186, 1999.

[37] Certicom Research. SEC 1: Elliptic Curve Cryptography, Version 2.0. http://www.se
cg.org/secl-v2.pdf, 2009.

https://crypto.stanford.edu/~dabo/cryptobook/
https://crypto.stanford.edu/~dabo/cryptobook/
http://dx.doi.org/10.1109/sp.2015.14
http://dx.doi.org/10.1007/978-3-662-45472-5_11
http://dx.doi.org/10.1145/800221.806706
http://dx.doi.org/10.1145/800221.806706
http://dx.doi.org/10.1145/4221.214134
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/
https://static1.squarespace.com/static/55f73743e4b051cfcc0b02cf/t/5886800ecd0f68de303349b1/1485209617040/Chain+Interoperability.pdfi
https://static1.squarespace.com/static/55f73743e4b051cfcc0b02cf/t/5886800ecd0f68de303349b1/1485209617040/Chain+Interoperability.pdfi
https://static1.squarespace.com/static/55f73743e4b051cfcc0b02cf/t/5886800ecd0f68de303349b1/1485209617040/Chain+Interoperability.pdfi
http://dx.doi.org/10.1007/3-540-44647-8_31
http://dx.doi.org/10.1145/343477.343531
http://dx.doi.org/10.1145/343477.343531
http://dx.doi.org/10.1145/167088.167105
http://www.secg.org/sec1-v2.pdf
http://www.secg.org/sec1-v2.pdf

100 BIBLIOGRAPHY

[38] Certicom Research. SEC 2: Recommended elliptic curve domain parameters, version 2.0.
http://www.secg.org/collateral/sec2_final.pdf, 2010.

[39] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.
Volume 43, pages 225-267. ACM, 1996. DOI: 10.1145/226643.226647.

[40] B. Charron-Bost and A. Schiper. Uniform consensus is harder than consensus, 2004.
DOI: 10.1016/j.jalgor.2003.11.001.

[41] D. Chaum. Blind signatures for untraceable payments. In Advances in Cryptology,
pages 199-203. Springer, 1983. DOI: 10.1007/978-1-4757-0602-4_18.

[42] D. Chaum. Security without identification: Transaction systems to make big brother
obsolete. Volume 28, pages 1030-1044. ACM, 1985. DOI: 10.1145/4372.4373.

[43] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In Proc. on Advances
in Cryptology, pages 319-327. Springer-Verlag, New York, 1990. DOI: 10.1007/0-387-
34799-2_25.

[44] L. Chen, P. Morrissey, N. P. Smart, and B. Warinschi. Security notions and generic
constructions for client puzzles. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 505-523. Springer, 2009. DOI: 10.1007/978-
3-642-10366-7_30.

[45] B. Chor and B. A. Coan. A simple and efficient randomized byzantine agreement algo-
rithm. Number 6, pages 531-539. IEEE, 1985. DOI: 10.1109/tse.1985.232245.

[46] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercauteren.
Handbook of Elliptic and Hyperelliptic Curve Cryptography. CRC Press, 2005. DOI:
10.1201/9781420034981.

[47] M. Correia, G. S. Veronese, and L. C. Lung. Asynchronous byzantine consensus with
2f+ 1 processes. In Proc. of the Symposium on Applied Computing, pages 475-480. ACM,
2010. DOI: 10.1145/1774088.1774187.

[48] M. Correia, G. S. Veronese, N. F. Neves, and P. Verissimo. Byzantine consensus in asyn-
chronous message-passing systems: A survey. Volume 2, pages 141-161. Inderscience

Publishers, 2011. DOI: 10.1504/ijccbs.2011.041257.

[49] F. Cristian. Understanding fault-tolerant distributed systems. Volume 34, pages 56-78.
ACM, 1991. DOI: 10.1145/102792.102801.

[50] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller, P. Saxena,
E. Shi, and E. Giin. On scaling decentralized blockchains. In 37d Workshop on Bitcoin and
Blockchain Research, Financial Cryptography 16, 2016. DOI: 10.1007/978-3-662-53357-
4 8.

http://www.secg.org/collateral/sec2_final.pdf
http://dx.doi.org/10.1145/226643.226647
http://dx.doi.org/10.1016/j.jalgor.2003.11.001
http://dx.doi.org/10.1007/978-1-4757-0602-4_18
http://dx.doi.org/10.1145/4372.4373
http://dx.doi.org/10.1007/0-387-34799-2_25
http://dx.doi.org/10.1007/0-387-34799-2_25
http://dx.doi.org/10.1007/978-3-642-10366-7_30
http://dx.doi.org/10.1007/978-3-642-10366-7_30
http://dx.doi.org/10.1109/tse.1985.232245
http://dx.doi.org/10.1201/9781420034981
http://dx.doi.org/10.1201/9781420034981
http://dx.doi.org/10.1145/1774088.1774187
http://dx.doi.org/10.1504/ijccbs.2011.041257
http://dx.doi.org/10.1145/102792.102801
http://dx.doi.org/10.1007/978-3-662-53357-4_8
http://dx.doi.org/10.1007/978-3-662-53357-4_8

BIBLIOGRAPHY 101

[51] C. Decker and R. Wattenhofer. Information propagation in the bitcoin network. In
Peer-to-Peer Computing (P2P), 13th International Conference on, pages 1-10. IEEE, 2013.
DOI: 10.1109/p2p.2013.6688704.

[52] X. Défago, A. Schiper, and P. Urban. Total order broadcast and multicast algorithms:
Taxonomy and survey. ACM Computing Surveys (CSUR), 36(4):372-421, 2004. DOI:
10.1145/1041680.1041682.

[53] W. Dei. B-money. http://wuw.weidai.com/bmoney.txt
[54] C. Delporte-Gallet, S. Devismes, H. Fauconnier, F. Petit, and S. Toueg. With fi-

nite memory consensus is easier than reliable broadcast. In International Conference on
Principles of Distributed Systems, pages 41-57. Springer, 2008. DOI: 10.1007/978-3-540-
92221-6_5.

[55] T. Dierks and E. Rescorla. The transport layer security (TLS) protocol, version 1.2. RFC
5246 (proposed standard), 2008. Updated by RECs 5746, 5878, 6176, 7465, 7507, 7568,
7627, 7685. DOI: 10.17487/rfc5246.

[56] Dogecoin community. Dogecoin reference implementation. github.com/dogecoin/do
gecoin

[57] D. Dolev. Unanimity in an unknown and unreliable environment. In Foundations of
Computer Science, 22nd Annual Symposium on, (SFCS'81), pages 159-168. IEEE, 1981.
DOI: 10.1109/sfcs.1981.53.

[58] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchronism needed for dis-
tributed consensus. Volume 34, pages 77-97. ACM, 1987. DOI: 10.1145/7531.7533.

[59] D.Dolev, M.]. Fischer, R. Fowler, N. A. Lynch, and H. R. Strong. An efficient algorithm
for byzantine agreement without authentication. Volume 52, pages 257-274,1982. DOI:
10.1016/50019-9958(82)90776-8.

[60] J. R. Douceur. ‘The sybil attack. In International Workshop on Peer-to-peer Systems,
pages 251-260. Springer, 2002. DOI: 10.1007/3-540-45748-8_24.

[61] A. Doudou, B. Garbinato, and R. Guerraoui. Encapsulating failure detection: From
crash to byzantine failures. In International Conference on Reliable Software Technologies,

pages 24-50. Springer, 2002. DOI: 10.1007/3-540-48046-3_3.

[62] C.Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony.
Volume 35, pages 288-323. ACM, 1988. DOI: 10.1145/42282.42283.

[63] C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In Annual
International Cryptology Conference, pages 139-147. Springer, 1992. DOI: 10.1007/3-
540-48071-4_10.

http://dx.doi.org/10.1109/p2p.2013.6688704
http://dx.doi.org/10.1145/1041680.1041682
http://dx.doi.org/10.1145/1041680.1041682
http://www.weidai.com/bmoney.txt
http://dx.doi.org/10.1007/978-3-540-92221-6_5
http://dx.doi.org/10.1007/978-3-540-92221-6_5
http://dx.doi.org/10.17487/rfc5246
github.com/dogecoin/dogecoin
github.com/dogecoin/dogecoin
http://dx.doi.org/10.1109/sfcs.1981.53
http://dx.doi.org/10.1145/7531.7533
http://dx.doi.org/10.1016/s0019-9958(82)90776-8
http://dx.doi.org/10.1016/s0019-9958(82)90776-8
http://dx.doi.org/10.1007/3-540-45748-8_24
http://dx.doi.org/10.1007/3-540-48046-3_3
http://dx.doi.org/10.1145/42282.42283
http://dx.doi.org/10.1007/3-540-48071-4_10
http://dx.doi.org/10.1007/3-540-48071-4_10

102

BIBLIOGRAPHY
[64] Z. electric coin company. Zcash homepage. https://z.cash/

[65] S. Eskandari, D. Barrera, E. Stobert, and J. Clark. A first look at the usability
of bitcoin key management. In Workshop on Usable Security (USEC), 2015. DOI:
10.14722/usec.2015.23015.

[66] Ethereum community. Ethereum: A secure decentralised generalised transaction ledger.
https://github.com/ethereum/yellowpaper

[67] 1. Eyal. The miner’s dilemma. In Security and Privacy (SP), Symposium on, pages 89-103.
IEEE, 2015. DOI: 10.1109/sp.2015.13.

[68] I. Eyal, A. E. Gencer, E. G. Sirer, and R. van Renesse. Bitcoin-ng: A scalable blockchain
protocol. In 13th USENIX Security Symposium on Networked Systems Design and Imple-
mentation (NSDI'16). USENIX Association, 2016.

[69] I. Eyaland E. G. Sirer. Majority is not enough: Bitcoin mining is vulnerable. In Financial
Cryptography and Data Security, pages 436—454. Springer, 2014. DOI: 10.1007/978-3-
662-45472-5_28.

[70] H. Finney. Reusable proofs of work (RPOW). http://web.archive.org/web/
20071222072154/http://rpow.net/, 2004.

[71] M.]J. Fischer. The consensus problem in unreliable distributed systems (a brief survey). In
International Conference on Fundamentals of Computation Theory, pages 127-140. Springer,
1983. DOI: 10.1007/3-540-12689-9_99.

[72] M.]. Fischer and N. A. Lynch. A lower bound for the time to assure interactive consis-
tency. Volume 14, 1982. DOI: 10.1016/0020-0190(82)90033-3.

[73] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed con-
sensus with one faulty process. Volume 32, pages 374-382. ACM, 1985. DOI:
10.1145/3149.214121.

[74] Y. Frankel and M. Yung. Escrow encryption systems visited: Attacks, analysis and de-
signs. In Annual International Cryptology Conference, pages 222-235. Springer, 1995.
DOI: 10.1007/3-540-44750-4_18.

[75] R. Fuzzati. A formal approach to fault tolerant distributed consensus. Ph.D. thesis,
EPFL, 2008.

[76] J. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis and
applications. In Advances in Cryptology-EUROCRYPT, pages 281-310. Springer, 2015.
DOI: 10.1007/978-3-662-46803-6_10.

https://z.cash/
http://dx.doi.org/10.14722/usec.2015.23015
http://dx.doi.org/10.14722/usec.2015.23015
https://github.com/ethereum/yellowpaper
http://dx.doi.org/10.1109/sp.2015.13
http://dx.doi.org/10.1007/978-3-662-45472-5_28
http://dx.doi.org/10.1007/978-3-662-45472-5_28
http://web.archive.org/web/20071222072154/http://rpow.net/
http://web.archive.org/web/20071222072154/http://rpow.net/
http://dx.doi.org/10.1007/3-540-12689-9_99
http://dx.doi.org/10.1016/0020-0190(82)90033-3
http://dx.doi.org/10.1145/3149.214121
http://dx.doi.org/10.1145/3149.214121
http://dx.doi.org/10.1007/3-540-44750-4_18
http://dx.doi.org/10.1007/978-3-662-46803-6_10

BIBLIOGRAPHY 103

[77] J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol with chains
of variable difficulty. http://eprint.iacr.org/2016/1048.pdf, 2016.

[78] F. C. Girtner. Fundamentals of fault-tolerant distributed computing in asyn-
chronous environments. ACM Computing Surveys (CSUR), 31(1):1-26, 1999. DOI:
10.1145/311531.311532.

[79] A. Gervais, G. O. Karame, K. Wiist, V. Glykantzis, H. Ritzdorf, and S. Capkun. On
the security and performance of proof of work blockchains. https://eprint.iacr.or
g/2016/555.pdf, 2016. DOI: 10.1145/2976749.2978341.

[80] A. Gervais, H. Ritzdorf, G. O. Karame, and S. Capkun. Tampering with the
delivery of blocks and transactions in bitcoin. In Proc. of the 22nd Conference on
Computer and Communications Security (SIGSAC), pages 692-705. ACM, 2015. DOI:
10.1145/2810103.2813655.

[81] I. Giechaskiel, C. Cremers, and K. B. Rasmussen. On bitcoin security in the presence of
broken cryptographic primitives. In European Symposium on Research in Computer Security

(ESORICS), 2016. DOI: 10.1007/978-3-319-45741-3_11.

[82] J. Gobel, P. Keeler, A. E. Krzesinski, and P. G. Taylor. Bitcoin blockchain dynamics:
The selfish-mine strategy in the presence of propagation delay. http://arxiv.org/pd
£/1505.05343.pdf, 2015. DOI: 10.1016/j.peva.2016.07.001.

[83] B. Groza and B. Warinschi. Cryptographic puzzles and dos resilience, revisited. Designs,
Codes and Cryptography, 73(1):177-207, 2014. DOI: 10.1007/s10623-013-9816-5.

[84] R. Guerraoui, N. Knezevi¢, V. Quéma, and M. Vukoli¢. The next 700 BEFT protocols.
In Proc. of the 5th European conference on Computer systems, pages 363-376. ACM, 2010.
DOI: 10.1145/1755913.1755950.

[85] V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broadcasts and related
g pp
problems. Technical Report 94-1425, Cornell University, 1994.

[86] D. Hankerson, A. J. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography.
Springer Science and Business Media, 2006. DOI: 10.1007/b97644.

[87] E.Heilman, A. Kendler, A. Zohar, and S. Goldberg. Eclipse attacks on bitcoin’s peer-to-
peer network. In 24th Security Symposium (USENIX Security 15), pages 129-144, 2015.

[88] M. Herlihy. Wait-free synchronization. Volume 13, pages 124-149. ACM, 1991. DOI:
10.1145/114005.102808.

[89] J. Hoffstein, J. Pipher, J. H. Silverman, and J. H. Silverman. An Introduction to Mathe-
matical Cryptography, Volume 1. Springer, 2008. DOI: 10.1007/978-1-4939-1711-2.

http://eprint.iacr.org/2016/1048.pdf
http://dx.doi.org/10.1145/311531.311532
http://dx.doi.org/10.1145/311531.311532
https://eprint.iacr.org/2016/555.pdf
https://eprint.iacr.org/2016/555.pdf
http://dx.doi.org/10.1145/2976749.2978341
http://dx.doi.org/10.1145/2810103.2813655
http://dx.doi.org/10.1145/2810103.2813655
http://dx.doi.org/10.1007/978-3-319-45741-3_11
http://arxiv.org/pdf/1505.05343.pdf
http://arxiv.org/pdf/1505.05343.pdf
http://dx.doi.org/10.1016/j.peva.2016.07.001
http://dx.doi.org/10.1007/s10623-013-9816-5
http://dx.doi.org/10.1145/1755913.1755950
http://dx.doi.org/10.1007/b97644
http://dx.doi.org/10.1145/114005.102808
http://dx.doi.org/10.1145/114005.102808
http://dx.doi.org/10.1007/978-1-4939-1711-2

104 BIBLIOGRAPHY

[90] H. Ishii and R. Tempo. Las vegas randomized algorithms in distributed consen-
sus problems. In American Control Conference, pages 2579-2584. IEEE, 2008. DOI:
10.1109/acc.2008.4586880.

[91] J. Katz and Y. Lindell. Introduction to Modern Cryprography. CRC Press, 2014.

[92] A. Kiayias and G. Panagiotakos. Speed-security tradeofls in blockchain protocols. http
s://eprint.iacr.org/2015/1019.pdf, 2015.

[93] A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A provably secure proof-
of-stake blockchain protocol. https://pdfs.semanticscholar.org/1c14/549f7b
a7d6a000d79a7d12255eb11113e6fa.pdf, 2016.

[94] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. The securering group communi-
cation system. ACM Transactions on Information and System Security (TISSEC), 4(4):371—
406, 2001. DOI: 10.1145/503339.503341.

[95] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. Byzantine fault detectors for
solving consensus. 7he Computer Journal, Volume 46, pages 16-35. Br Computer Soc.,
2003. DOI: 10.1093/comjnl/46.1.16.

[96] S.Kingand S. Nadal. Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. https:
//peercoin.net/assets/paper/peercoin-paper.pdf, 2012.

[97] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva: Speculative byzan-
tine fault tolerance. In Operating Systems Review (SIGOPS), Volume 41, pages 45-58.
ACM, 2007. DOI: 10.1145/1323293.1294267.

[98] K. Krombholz, A. Judmayer, M. Gusenbauer, and E. Weippl. The other side of the

coin: User experiences with bitcoin security and privacy. In International Conference on

Financial Cryptography and Data Security (FC), 2, 2016.

[99] L. Lamport. The weak byzantine generals problem. Volume 30, pages 668—676. ACM,
1983. DOI: 10.1145/2402.322398.

[100] L. Lamport. Using time instead of timeout for fault-tolerant distributed systems. Vol-
ume 6, pages 254-280. ACM, 1984. DOI: 10.1145/2993.2994.

[101] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. Volume 4,
pages 382-401. ACM, 1982. DOI: 10.1145/357172.357176.

[102] Y. Lewenberg, Y. Bachrach, Y. Sompolinsky, A. Zohar, and J. S. Rosenschein. Bit-
coin mining pools: A cooperative game theoretic analysis. In Proc. of the International
Conference on Autonomous Agents and Multiagent Systems, pages 919-927. International
Foundation for Autonomous Agents and Multiagent Systems, 2015.

http://dx.doi.org/10.1109/acc.2008.4586880
http://dx.doi.org/10.1109/acc.2008.4586880
https://eprint.iacr.org/2015/1019.pdf
https://eprint.iacr.org/2015/1019.pdf
https://pdfs.semanticscholar.org/1c14/549f7ba7d6a000d79a7d12255eb11113e6fa.pdf
https://pdfs.semanticscholar.org/1c14/549f7ba7d6a000d79a7d12255eb11113e6fa.pdf
http://dx.doi.org/10.1145/503339.503341
http://dx.doi.org/10.1093/comjnl/46.1.16
https://peercoin.net/assets/paper/peercoin-paper.pdf
https://peercoin.net/assets/paper/peercoin-paper.pdf
http://dx.doi.org/10.1145/1323293.1294267
http://dx.doi.org/10.1145/2402.322398
http://dx.doi.org/10.1145/2993.2994
http://dx.doi.org/10.1145/357172.357176

BIBLIOGRAPHY 105

[103] E. Lombrozo, J. Lau, and P. Whille. Bitcoin improvement proposal 141 (bip141): Seg-
regated witness (consensus layer). https://github.com/bitcoin/bips/blob/maste
r/bip-0141.mediawiki

[104] L. Luu, J. Teutsch, R. Kulkarni, and P. Saxena. Demystifying incentives in the consen-
sus computer. In Proc. of the 22nd Conference on Computer and Communications Security

(SIGSAC), pages 706-719. ACM, 2015. DOI: 10.1145/2810103.2813659.

[105] D. Malkhi and M. Reiter. Unreliable intrusion detection in distributed computations.
In Proc. of the 10th Computer Security Foundations Workshop, pages 116-124. IEEE, 1997.
DOI: 10.1109/csfw.1997.596799.

[106] A.]J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptogra-
phy. CRC Press, 1996. DOI: 10.1201/9781439821916.

[107] R. C. Merkle. A digital signature based on a conventional encryption function. In Con-
ference on the Theory and Application of Cryptographic Techniques, pages 369-378. Springer,
1987. DOI: 10.1007/3-540-48184-2_32.

[108] A. Miller and L. J]. Anonymous byzantine consensus from moderately-hard puzzles:
A model for bitcoin. https://socrates1024.s3.amazonaws.com/consensus.pdf,

2014.
[109] A.Miller, A. Kosba, J. Katz, and E. Shi. Nonoutsourceable scratch-off puzzles to discour-

age bitcoin mining coalitions. In Proc. of the 22nd Conference on Computer and Communica-

tions Security (SIGSAC), pages 680-691. ACM, 2015. DOI: 10.1145/2810103.2813621.

[110] A. Miller, J. Litton, A. Pachulski, N. Gupta, D. Levin, N. Spring, and B. Bhattacharjee.
Discovering bitcoin’s public topology and influential nodes. http://cs.umd.edu/pro
jects/coinscope/coinscope.pdf, 2015.

[111] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. The honey badger of BE'T protocols.
https://eprint.iacr.org/2016/199.pdf, 2016.

[112] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible protocol kernel supporting
multiple coordinated channels. In Distributed Computing Systems, 21st International Con-
ference on, pages 707-710. IEEE, 2001. DOI: 10.1109/icdsc.2001.919005.

[113] H. Moniz, N. F. Neves, M. Correia, and P. Verissimo. Experimental comparison of lo-
cal and shared coin randomized consensus protocols. In 255 Symposium on Reliable Dis-

tributed Systems (SRDS’06), pages 235-244. IEEE, 2006. DOI: 10.1109/srds.2006.19.

[114] M. Méser, 1. Eyal, and E. G. Sirer. Bitcoin covenants. In Proc. of the 20th International
Conference on Financial Cryptography (FC’16), 2016. DOI: 10.1007/978-3-662-53357-
4.9.

https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
http://dx.doi.org/10.1145/2810103.2813659
http://dx.doi.org/10.1109/csfw.1997.596799
http://dx.doi.org/10.1201/9781439821916
http://dx.doi.org/10.1007/3-540-48184-2_32
https://socrates1024.s3.amazonaws.com/consensus.pdf
http://dx.doi.org/10.1145/2810103.2813621
http://cs.umd.edu/projects/coinscope/coinscope.pdf
http://cs.umd.edu/projects/coinscope/coinscope.pdf
https://eprint.iacr.org/2016/199.pdf
http://dx.doi.org/10.1109/icdsc.2001.919005
http://dx.doi.org/10.1109/srds.2006.19
http://dx.doi.org/10.1007/978-3-662-53357-4_9
http://dx.doi.org/10.1007/978-3-662-53357-4_9

106 BIBLIOGRAPHY

[115] A. Mostéfaoui and M. Raynal. Solving consensus using chandra-toueg’s unreliable failure

detectors: A general quorum-based approach. In International Symposium on Distributed
Computing, pages 49-63. Springer, 1999. DOI: 10.1007/3-540-48169-9_4.

[116] A. Mostefaoui, M. Raynal, and F. Tronel. From binary consensus to multivalued con-
sensus in asynchronous message-passing systems. Information Processing Letters, 73(5-

6):207-212, 2000. DOI: 10.1016/50020-0190(00)00027-2.

[117] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/
bitcoin.pdf, 2008.

[118] Namecoin community. Bitcoin wiki—merged mining. https://en.bitcoin.it/wiki
/Merged_mining_specification

[119] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder. Bitcoin and cryp-
tocurrency technologies. https://d28rh4a8wq0iub.cloudfront.net/bitcointech
/readings/princeton_bitcoin_book.pdf7a=1, 2016.

[120] K. Nayak, S. Kumar, A. Miller, and E. Shi. Stubborn mining: Generalizing selfish mining
and combining with an eclipse attack. In 15z European Symposium on Security and Privacy,
IEEE, 2016. DOI: 10.1109/eurosp.2016.32.

[121] NIST. FIPS 180-4: Secure hash standard (SHS), 2012.

[122] K. Okupski. Bitcoin protocol specification. https://github.com/minium/Bitcoin-
Spec

[123] R. Pass, L. Seeman, and A. Shelat. Analysis of the blockchain protocol in asynchronous
networks. http://eprint.iacr.org/2016/454.pdf, 2016. DOI: 10.1007/978-3-
319-56614-6_22.

[124] R. Pass and E. Shi. Fruitchains: A fair blockchain. http://eprint.iacr.org/2016/
916.pdf, 2016.

[125] R. Pass and E. Shi. Hybrid consensus: Scalable permissionless consensus. https://ep
rint.iacr.org/2016/917.pdf, 2016.

[126] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults.
Volume 27, pages 228-234. ACM, 1980. DOI: 10.1145/322186.322188.

[127] C. Percival. Stronger key derivation via sequential memory-hard functions. http://ww
w.bsdcan.org/2009/schedule/attachments/87_scrypt.pdf, 2009.

[128] D. Project. Dogecoin homepage. https://dogecoin.com/

[129] L. Project. Litecoin. https://litecoin.org/

http://dx.doi.org/10.1007/3-540-48169-9_4
http://dx.doi.org/10.1016/s0020-0190(00)00027-2
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://en.bitcoin.it/wiki/Merged_mining_specification
https://en.bitcoin.it/wiki/Merged_mining_specification
https://d28rh4a8wq0iu5.cloudfront.net/bitcointech/readings/princeton_bitcoin_book.pdf?a=1
https://d28rh4a8wq0iu5.cloudfront.net/bitcointech/readings/princeton_bitcoin_book.pdf?a=1
http://dx.doi.org/10.1109/eurosp.2016.32
https://github.com/minium/Bitcoin-Spec
https://github.com/minium/Bitcoin-Spec
http://eprint.iacr.org/2016/454.pdf
http://dx.doi.org/10.1007/978-3-319-56614-6_22
http://dx.doi.org/10.1007/978-3-319-56614-6_22
http://eprint.iacr.org/2016/916.pdf
http://eprint.iacr.org/2016/916.pdf
https://eprint.iacr.org/2016/917.pdf
https://eprint.iacr.org/2016/917.pdf
http://dx.doi.org/10.1145/322186.322188
http://www.bsdcan.org/2009/schedule/attachments/87_scrypt.pdf
http://www.bsdcan.org/2009/schedule/attachments/87_scrypt.pdf
https://dogecoin.com/
https://litecoin.org/

BIBLIOGRAPHY 107

[130] M. O. Rabin. Randomized byzantine generals. In Foundations of Computer Science, 24th
Annual Symposium on, pages 403—-409. IEEE, 1983. DOI: 10.1109/sfcs.1983.48.

[131] M. K. Reiter. A secure group membership protocol. Volume 22, page 31, 1996. DOI:
10.1109/32.481515.

[132] A. M. Ricciardi. The group membership problem in asynchronous systems, Ph.D. thesis,
Cornell University, 1992.

[133] Ripple. Ripple homepage. https://ripple.com/

[134] M. Rosenfeld. Analysis of hashrate-based double spending. http://arxiv.org/abs/
1402.2009, 2014.

[135] A. Sapirshtein, Y. Sompolinsky, and A. Zohar. Optimal selfish mining strategies in
bitcoin. http://arxiv.org/pdf/1507.06183.pdf, 2015.

[136] E. B. Schneider. Implementing fault-tolerant services using the state machine approach:
A tutorial. Volume 22, pages 299-319. ACM, 1990. DOI: 10.1145/98163.98167.

[137] O. Schrijvers, J. Bonneau, D. Boneh, and T. Roughgarden. Incentive compatibility of
bitcoin mining pool reward functions. In Proc. of the 20th International Conference on

Financial Cryptography (FC’16), 2016.

[138] A. Shamir. How to share a secret. Volume 22, pages 612-613. ACM, 1979. DOI:
10.1145/359168.359176.

[139] Y. Sompolinsky and A. Zohar. Accelerating bitcoin’s transaction processing. Fast mone
P g P g y
grows on trees, not chains. IACR Cryptology ePrint Archive, page 881, 2013.

[140] Y. Sompolinsky and A. Zohar. Secure high-rate transaction processing in bitcoin.
In Financial Cryptography and Data Security, pages 507-527. Springer, 2015. DOI:
10.1007/978-3-662-47854-7_32.

[141] Y. Sompolinsky and A. Zohar. Bitcoin’s security model revisited. http://arxiv.org/
pdf/1605.09193, 2016.

[142] D. Stebila, L. Kuppusamy, J. Rangasamy, C. Boyd, and J. G. Nieto. Stronger difficulty
notions for client puzzles and denial-of-service-resistant protocols. In Cryptographers
Track at the RSA Conference, pages 284-301. Springer, 2011. DOI: 10.1007/978-3-642-
19074-2_19.

[143] T. Swanson. Consensus-as-a-service: A brief report on the emergence of permis-
sioned, distributed ledger systems. http://www.ofnumbers.com/wp-content/upload
s/2015/04/Permissioned-distributed-ledgers.pdf, 2015.

http://dx.doi.org/10.1109/sfcs.1983.48
http://dx.doi.org/10.1109/32.481515
http://dx.doi.org/10.1109/32.481515
https://ripple.com/
http://arxiv.org/abs/1402.2009
http://arxiv.org/abs/1402.2009
http://arxiv.org/pdf/1507.06183.pdf
http://dx.doi.org/10.1145/98163.98167
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1007/978-3-662-47854-7_32
http://dx.doi.org/10.1007/978-3-662-47854-7_32
http://arxiv.org/pdf/1605.09193
http://arxiv.org/pdf/1605.09193
http://dx.doi.org/10.1007/978-3-642-19074-2_19
http://dx.doi.org/10.1007/978-3-642-19074-2_19
http://www.ofnumbers.com/wp-content/uploads/2015/04/Permissioned-distributed-ledgers.pdf
http://www.ofnumbers.com/wp-content/uploads/2015/04/Permissioned-distributed-ledgers.pdf

108 BIBLIOGRAPHY
[144] N. Szabo. Shelling out: The origins of money. http://nakamotoinstitute.org/shel
ling-out/, 2002. Accessed: 2017-06-09.

[145] S. Toueg. Randomized asynchronous byzantine agreements. In Proc. of the 3rd Annual
Symposium on Principles of Distributed Computing, pages 163-178. ACM, 1984. DOI:
10.1145/800222.806744.

[146] P. Verissimo. Uncertainty and predictability: Can they be reconciled? In Future Directions
in Distributed Computing, pages 108-113. Springer, 2003. DOI: 10.1007/3-540-37795-

6_20.
[147] M. Vukoli¢. The quest for scalable blockchain fabric: Proof-of-work vs. BFT replication.

In International Workshop on Open Problems in Network Security, pages 112-125. Springer,
2015. DOI: 10.1007/978-3-319-39028-4_9.

[148] M. Vukoli¢. Eventually returning to strong consistency. https://pdfs.semanticsch
olar.org/a6al/b70305b27c556aac779fb65429db9c2elef2. pdf, 2016.

http://nakamotoinstitute.org/shelling-out/
http://nakamotoinstitute.org/shelling-out/
http://dx.doi.org/10.1145/800222.806744
http://dx.doi.org/10.1145/800222.806744
http://dx.doi.org/10.1007/3-540-37795-6_20
http://dx.doi.org/10.1007/3-540-37795-6_20
http://dx.doi.org/10.1007/978-3-319-39028-4_9
https://pdfs.semanticscholar.org/a6a1/b70305b27c556aac779fb65429db9c2e1ef2.pdf
https://pdfs.semanticscholar.org/a6a1/b70305b27c556aac779fb65429db9c2e1ef2.pdf

	Contents
	Introduction
	Aspects of Cryptocurrencies
	Cryptocurrency Community
	From Cryptocurrency to Blockchain
	Analog Stone-Block-Chain
	Structure of this Book

	Background
	Cryptographic Primitives
	Notation, Symbols & Definitions

	History of Cryptographic Currencies
	Before Bitcoin
	Bitcoin

	Bitcoin
	Bitcoin at a Glance
	Core Data Structures & Concepts
	Consensus Management
	Network & Communication Management
	Digital Asset Management
	Altcoins

	Coin Management Tools
	History & Categorization of CMTs
	Metaphors
	Usability
	User Experiences with Security
	Cryptocurrency Usage Scenarios

	Nakamoto Consensus
	Problem Bitcoin strives to Solve
	Consensus & Fault Tolerance in Distributed Systems
	Closer Look at Nakamoto Consensus

	Conclusion & open Challenges
	Glossary
	Biblio

