PAPER-I BIOSYSTEMATICS, TAXONOMY AND QUANTITATIVE BIOLOGY

(Questions, will be set from each unit)

UNIT- I BIOSYSTEMATICS AND TAXONOMY - I

History of classification, 2. Theories of classification, 3. Mechanism of Speciction, 4. Taxonomic procedures - Collections, Preservations Curetting Process of identification, 5. Integrnational code of Zoological Nomencllature, 6. Taxonomic categories, 7. Evaluation of biodiversity indices:

A. Shannon - Weinner index, Dominance index, B. Similarity and dissimilarity index, C. Association index.

UNIT-II BIOSYSTEMATICS AND TAXONOMY-II

- Importance and applications of biosystematics in biology.
- 2. Trends in biosystematics -
 - A. Chemotaxonomy B. Cytotaxonomy C. Molecular Taxonomy.
- 3. Molecular Perspective on the conservation of diversity Diversity and eco-system process Theory, achievements and future directions.
- Wild life and its conservation, 5. National parks and sanctuaries of India, 6. Geological and Zoogeographical distribution of animals, 7. Fossils and Palaeozoology.

UNIT - III BIOSTATISTICS TAMMAXE LAME DE M

- 1. General concept and and Significance of Biostatistics to Bioscience.
- 2. Probability Distributions and their properties. 3. Probability theory.
 - 4. Regression, 5. Experimental designing and sampling theory, 6. Correlation
 - 7. Uses and applications of chi square test, 't' test, and 't' test.

UNIT-IV BASIC MATHEMATICS AND MATHEMATICAL MODELING

- 1. Matrices and Vectors. 2. Exponential Functions. 3. Periodic functions.
- 4. Differential equations. 5. Integration. 6. Laws of Thermodynamics and is application in biological systems.
- Mathematical Modelling Detailed treatment of selected specific models from different areas of biology -
 - A. Cycling of nutrients in an ecosystem/eutrophication model.
 - B. Optimal clutch size in birds. C. Morphogenesis.
 - D. Genetic drift.